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There is rapid emergence of increasingly sophisticated 
informatics being applied in biomedical research. Machine 
learning is a collection of algorithms (including deep neural 
network learning, support vector machine, random forest, 
and super learning which integrates all above algorithms) 
often used in informatics and has been successfully applied 
in clinical decision making, diagnosis, and image iden-
tification [1, 2]. Given its success in these areas, there is 
great anticipation that a similarly impressive impact is to 
be expected in explanatory research, the area of research 
focused on identifying and understanding causes of disease. 
However, application of machine learning in explanatory 
research is not straightforward and might lead to misinter-
pretations [3]. Efforts are ongoing to develop an appropri-
ate theoretical context for integrating machine learning with 
explanatory research [4]. In this Letter, we outline the funda-
mental differences between predictive research and explana-
tory research and summarize challenges and possibilities of 
applying machine learning in explanatory research.

Biomedical research is by and large focused on either of 
the following two aims: prediction and explanation. Epide-
miology provides the theoretical framework as well as the 
corresponding statistics to properly carry out either aim. Pre-
dictive research is primarily focused on recognizing people 
with disease or those at increased risk of disease. Modern 
incarnations of this basic principle that additionally include 
therapeutic consequences based on such recognition are 
termed ‘precision medicine’. On the other hand, explanatory 
research, sometimes called analytic research, is primarily 
focused on identifying causes of disease; to elaborate on the 

causality by demonstrating and quantifying possible mecha-
nisms; and to investigate how to attenuate disease burden 
through interventions, i.e. trials. Due to the differences in 
aims, statistical models also differ accordingly. In predic-
tive research, fitting a model to obtain higher accuracy for 
predicting the outcome is key, whilst in explanatory research 
the focus is on estimating the size of a certain parameter to 
be interpreted as the impact of the cause on the disease.

Machine learning can be regarded as an algorithm that 
comprehensively screens thousands of predictive models to 
select one with the best accuracy. Accuracy is here defined 
as how well the model recognize persons with disease (i.e. 
diagnostic research, image identification, screening) or those 
with highest risk of developing disease or responding to 
treatment (i.e. prognostic research). Typically, such algo-
rithms require large sample sizes and intensive computa-
tional facilities, and only report the final predictive accuracy 
without necessarily revealing the model used. Nevertheless, 
machine learning has repeatedly far outperformed conven-
tional predictive models. It is this success that had led to the 
expectation that machine learning will similarly impact the 
field of explanatory research. Yet, further scrutiny learns 
that the impact of machine learning in explanatory research 
might not be that straightforward.

Appropriate inference of causality is the cornerstone of 
explanatory research. In recent years, a causal inference 
framework has been formalized based on probability and 
mathematical models (Fig. 1). Initially, in the exploratory 
stage a causal relationship structure is built, usually by 
direct acyclic graphs or structural equation models. Next, 
the confirmatory stage consists of three further steps. First, 
a causal question of interest is formally defined as a causal 
parameter under the counterfactual outcome model. Second, 
since causal parameters under the counterfactual outcome 
model cannot be directly measured by real data, they should 
be thus identified as statistical parameters. Several causal 
assumptions, such as no confounding or selection bias, are 
required for this combining of theory with empirical data. 
Third, statistical inference estimates or tests the causal ques-
tion of interest, in terms of statistical parameters.
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The main question is at what stage of the causal inference 
framework should machine learning be positioned. While 
there are claims that the causal relationship structure can be 
determined based on data, there is general consensus that 
the construction of this structure per definition relies on 
prior substantive information. Similarly, the definition and 
identification of the causal question is based on substantive 
knowledge of the investigator(s) on pathophysiology and 
biology. Against this background, machine learning can be 
best considered part of the final step pertaining to statistical 
inference. It thus follows that machine learning per se is per 
definition insufficient to infer causality.

The positioning of machine learning as part of statisti-
cal inference may still prove useful for causal inference. 
We illustrate this idea by discussing propensity scores 
and inverse-probability weighting. Propensity scores are a 
powerful way to control for confounding when the poten-
tial covariates are high dimensional. Usually, a propensity 
score model for treatment status is constructed regressed on 
all potential covariates. Next, these propensity scores are 
included in the final causal model instead of all separate 
covariates. Relating propensity scores to causal inference 
framework, it follows that constructing the two models 
belongs to the third step, i.e. statistical inference. Since 

the covariates are high-dimensional, it is likely insufficient 
to use regular statistical models to construct a propensity 
score without model misspecification. It may thus be fruit-
ful to construct the propensity score model using machine 
learning. Inverse probability weighting (IPW) is another 
approach in causal inference used for control of confound-
ing and selection bias. First, a model is constructed for treat-
ment based on all potential covariates, and subsequently 
an outcome model, weighted by the inverse probability of 
treatment. Similar to propensity scores, these models can 
be considered part of the third step (statistical inference) 
and could therefore be improved by application of machine 
learning. Although machine learning may be powerful to 
avoid model misspecification for a given set of covariates, 
note that such approaches should not be used for the initial 
selection of covariates, as detailed elsewhere [5–7].

In conclusion, explanatory research focuses on identify-
ing and understanding causes of disease and relies heavily 
on the causal inference framework. This framework involves 
prior knowledge on biology, knowledge on flow of infor-
mation, and knowledge on methodological issues in study 
design, i.e. biases. These aspects cannot be derived from 
the data, which precludes machine learning per se to reach 
appropriate causal conclusions. Nevertheless, certain aspects 

Fig. 1   Framework of causal 
inference
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in causal inference, i.e. those related to model specifica-
tion and statistical inference might benefit from machine 
learning.
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