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Ideas with Impact: How Connectivity Shapes Idea Diffusion 

 

ABSTRACT 

Despite a growing body of research on idea diffusion, there is a lack of knowledge on why some 

ideas successfully diffuse and stand out from the crowd while others do not surface or remain 

unnoticed. We address this question by looking into the characteristics of an idea, specifically its 

connectivity in a content network. In a content network, ideas connect to other ideas through their 

content—the words that the ideas have in common. We hypothesize that a high connectivity of an 

idea in a content network is beneficial for idea diffusion because this idea will more likely be 

conceived as novel yet at the same time also as more useful because it appears as more familiar to 

the audience. Moreover, we posit that a high social connectivity of the team working on the idea 

further enhances the effect of high content connectivity on idea diffusion. Our study focuses on 

academic conference publications and the co-authorship data of a community of computer science 

researchers from 2006 to 2012. We find confirmation for our hypotheses and discuss the implications 

of these findings.  

 

Keywords: content network, social network, idea diffusion, research collaboration, scientific 

publication, citations 
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Ideas with Impact: How Connectivity Shapes Idea Diffusion 

 

1. Introduction 

Every day, new knowledge is being created and published in the form of scientific articles. 

When knowledge is steadily increasing, it becomes difficult for new ideas to gain traction and to get 

noticed (Katz, Levin, & Hamilton, 1963; Rogers, 2003). To navigate this complex and overloaded 

market of ideas, scientists often consider the citations that a publication receives. Independent of the 

alleged quality of a scholarly idea, citations indicate the recognition that it received in the past, 

evidencing the extent to which the idea diffused successfully in the community (Radicchi, Fortunato, 

& Castellano, 2008; Uzzi, Mukherjee, Stringer, & Jones, 2013; Wang, 2016). Research has shown 

that the network position of idea generators and their teams critically influences whether or not an 

idea diffuses successfully (Abrahamson & Rosenkopf, 1997; McFadyen & Cannella, 2004; Wang, 

2016; Wejnert, 2002). For instance, a central network position is often associated with the possibility 

to access more resources and new knowledge (Perry-Smith, 2006; Tsai, 2001). This access provides 

teams with a higher awareness of what is going on in the field and thus might help the team to 

develop potentially more relevant ideas. A central network position could also be a signal of a 

team’s status which could be leveraged to exert influence on others (Podolny, 2001).  

While our knowledge about idea generators and their social network position has 

continuously increased, theorizing about the role of ideas has taken a backseat in recent years 

(Goldenberg, Lehmann, & Mazursky, 2001; Litchfield, Gilson, & Gilson, 2015). We suggest that it 

is necessary to not only focus on the social network, but also on the characteristics and the network 

of the idea itself (Goldenberg et al., 2001). We do so by studying how an idea’s diffusion is shaped 

by its connectivity in a so-called “content network.” A content network represents the semantic 
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connections between ideas. In this study, we specifically focus on how ideas are connected to other 

ideas through common title words. Similar to earlier studies on relatedness in the context of 

regional knowledge production (Boschma, Heimeriks, & Balland, 2014; Heimeriks & Balland, 

2016) our approach is based on the analysis of co-occurrences of words. We adapt this approach 

and construct a connectivity measure for each scientific paper by examining the title words that 

different papers share with each other. Making these connections visible allows us to shed light on 

the organization of knowledge and how highly connected scientific ideas intermediate between 

different knowledge domains (Mannucci & Yong, 2018). 

Ideas which have a high connectivity in the content network can indeed be considered as 

important “bridges” (Gloor, Krauss, Nann, Fischbach, & Schoder, 2009; Van der Hulst, 2009) and 

we therefore argue that they trigger more attention than ideas that are connected with fewer 

knowledge domains. When ideas have a high connectivity, they often combine and blend different 

knowledge into something novel (Hargadon & Sutton, 1997; Harvey, 2014). At the same time, 

individuals from different knowledge domains can relate more easily to at least certain aspects of 

such an idea and thus experience a higher familiarity, which often makes that particular idea more 

useful to them (Berg, 2016; Dailey & Mumford, 2006). We therefore argue that connectivity in a 

content network indicates novelty and familiarity—both of which are critical features of an idea 

and facilitate its diffusion process in the marketplace for ideas. 

In addition to examining how the connectivity of an idea influences idea diffusion, we 

suggest that this effect is further enhanced by the social network of people and their teams. Bridging 

research on the influence of content connectivity on idea diffusion (Nerghes, Lee, Groenewegen, & 

Hellsten, 2015) and the influence of social network connectivity on idea diffusion (Abrahamson & 

Rosenkopf, 1997; McFadyen & Cannella, 2004; Wang, 2016; Wejnert, 2002), we show that the joint 
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effect of content and social network connectivity is highly beneficial for idea diffusion. This research 

thus contributes to our understanding of how an idea’s connectivity across knowledge domains in a 

content network influences its diffusion and how social network connectivity of people and their 

teams can further assist in pushing forward an idea. 

While others have studied, for example, how the relatedness of scientific topics shapes 

knowledge dynamics or specialization patterns on a regional level (Boschma et al., 2014; Heimeriks 

& Balland, 2016; Hidalgo et al., 2018), in our study, we focus on the diffusion of scholarly ideas 

(Horowitz, 2017). Prior work has studied idea diffusion in different ways, for example through 

looking at innovation adoption (Battisti & Iona, 2009) or sales (Garber, Goldenberg, Libai, & Muller, 

2004). While recognizing the value of such approaches, we operationalize idea diffusion as the 

acceptance of an idea by groups of scientists and thus measure the total citation score of the 

scientific publication of an author team (Radicchi et al., 2008; Uzzi et al., 2013; Wang, 2016). 

Indeed, citations are often used to measure diffusion success—not only of scientific publications but 

also, for example, of patents (Balconi, Breschi, & Lissoni, 2004; Fischer & Henkel, 2012; 

Magerman, Van Looy, & Debackere, 2015; Sorenson & Fleming, 2004).  

We investigate the Semantic Web research community, a sub-field of computer science, 

which develops structures and processes to organize, access, and share information on the Web. We 

use publication data from the Semantic Web Conference Corpus and complement this data with 

citation scores from Microsoft Academic Search. Our findings support our hypotheses that ideas that 

connect multiple knowledge domains are more successfully diffused, and that this effect is further 

enhanced when the author team is highly connected in the social network. 

  



6 

2. Theory and hypothesis development 

2.1. Scholarly ideas 

Ideas are conceptions in the mind; they are products of mental activity expressing a 

“thought or suggestion to a possible course of action” (Oxford English Dictionary, 2000). In this 

paper, we specifically examine scholarly ideas disseminated through scientific publications. An 

idea is represented most notably by a publication’s title (Boschma et al., 2014). Besides a main 

idea that is communicated in the title, a publication may of course entail several other ideas, 

concepts, and contributions. In this paper, however, we entirely focus on the publication’s title and 

thus on the main idea—the overall intellectual line—that is presented in the paper (Leydesdorff, 

1989). The title is typically the first notion the reader has of a particular scientific idea. Therefore, 

the words that constitute the title carry meaning; they direct attention to an idea’s structure 

(Milojević, Sugimoto, Yan, & Ding, 2011). In fact, title words “offer a means of making visible 

the internal cognitive structure” (Leydesdorff, 1989: 217) of a scholarly publication. This means 

that the title words represent the essence of a scientific idea. A publication represents a scientific 

idea that originates from one or several scholars. It is a concrete end-product documenting an idea, 

preceded by individual and collective activities such as designing the study, collecting data, 

writing, and revising the manuscript. Through publication, an idea is validated by and exposed to 

the larger scientific community (Balconi, Breschi, & Lissoni, 2004; Horowitz, 2017; McFadyen 

& Cannella, 2004). An impactful and, therefore, successful idea will be referred to more often by 

scholars in subsequent publications (Alvesson & Sandberg, 2013; Wouters, 1999); in other words, 

it will be cited more often.  

  



7 

2.2. Content connectivity shapes idea diffusion 

Ideas and the knowledge that fuels these ideas are organized in knowledge domains 

(Mannucci & Yong, 2018). When an idea shares certain words with one idea and other words with 

another idea, it connects two or more knowledge domains (Leydesdorff, 1989). In order to identify 

ideas that bridge knowledge domains, we take a network perspective and assess an idea’s 

connectivity in a “content network.” Content networks have been defined as networks in which 

words are the nodes and the co-occurrences of those words form the ties between the nodes (Rice 

& Danowski, 1993). Through co-occurrence of, for example, title words of scientific articles, a 

content network illustrates how ideas, as represented by their title words, are connected. In this 

study, we focus on the connectivity of ideas in the larger content network. Ideas are highly 

connected as part of a content network when they share title words with many other ideas. These 

shared title words thus link different ideas to each other. We specifically operationalize 

connectivity by investigating an idea’s betweenness centrality in a content network. Betweenness 

centrality reflects the extent to which an idea sits between all the other ideas present in a network 

(cf. Everett & Borgatti, 2005). Thus, if a focal idea exhibits a high betweenness centrality, it means 

that many other existing ideas in the network are connected to each other through the focal idea: 

the focal idea is on the shortest path between pairs of ideas in the network. We argue that ideas 

which have a high connectivity in the content network can be considered as important “bridges” 

(Gloor et al., 2009; Van der Hulst, 2009), and that these bridges facilitate people picking up on an 

idea. There are two interrelated reasons for why ideas with high connectivity can be considered as 

attractive candidates for successful diffusion: they signal novelty and at the same time they appear 

as more familiar and thus useful. 
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First, ideas which are central in the content network should exhibit a high degree of novelty. 

Serving as a bridge in the content network (Gloor et al., 2009; Van der Hulst, 2009), these highly 

connected ideas blend different knowledge domains (Hargadon & Sutton, 1997; Harvey, 2014). By 

connecting to a variety of knowledge domains, an idea expressed through a publication title will 

most likely establish new combinations of knowledge and thus signal to an audience that it takes a 

novel approach on a particular issue. Novelty is essential to scholarship (Wagner, Whetsell, & 

Mukherjee, 2019) and is even considered an indicator of quality (Trapido, 2015). Indeed, ample 

research has demonstrated that the novelty of an idea is an important factor which determines 

whether or not an idea diffuses successfully (e.g., Lee, Walsh, & Wang, 2015; Trapido, 2015; Uzzi 

et al., 2013; Wang, Veugelers, & Stephan, 2017). In turn, novel combinations of knowledge are 

more difficult to accomplish when the number of knowledge domains that an idea connects with 

is limited (Mannucci & Yong, 2018). In such a case, an idea will most likely extend the knowledge 

in a particular domain in an incremental way but will hardly offer a very original or new approach. 

Unlike highly connected ideas, those with low connectivity will therefore have a minor impact on 

the scientific community.  

While the first reason for why ideas that have a high degree of connectivity should diffuse 

more successfully is concerned with the idea itself, the second reason addresses how people, in 

our case other scholars, may perceive these ideas. Diverse audiences can—at least partially—be 

familiar with the content of an idea when this idea is connected to different knowledge domains, 

such that ideas may appear as more familiar and thus are estimated as being more useful. In 

bridging different knowledge domains, ideas with high content connectivity span the boundaries 

between otherwise separated fields of expertise (cf. Cross & Prusak, 2002). When an idea connects 

to multiple knowledge domains, there is in fact great overlap in the vocabulary between the focal 



9 

idea and other, existing, ideas. This overlap should facilitate that more people in a particular 

knowledge domain pay attention to the idea in question because it appears familiar to them (Kaplan 

& Vakili, 2015). Familiarity also triggers that people evaluate an idea as useful (Berg, 2016; Dailey 

& Mumford, 2006). Contrary, if ideas have low connectivity, they most probably cover topics that 

are more specialized and that appear to be less known in other communities (Hill & Carley, 1999; 

Hooper, Marie, & Kalampokis, 2012; Nerghes et al., 2015). These ideas do not connect with many 

of the already existing ideas and people therefore have a harder time appreciating the usefulness 

of these ideas which are more distant to ideas in their own knowledge domain (Fleming, Mingo, 

& Chen, 2007).  

At first sight, it might seem paradoxical that idea connectivity can signal both novelty and 

familiarity, because novelty is often conceived as the opposite of familiarity. That said, several 

studies have demonstrated that audiences which were tasked to evaluate ideas can indeed perceive 

ideas as both novel and familiar simultaneously. In fact, ideas which signal both novelty and 

familiarity often receive the most positive evaluations. For instance, Pieters, Warlop, and Wedel 

(2002) tested the effectiveness of advertisement originality and familiarity and demonstrated that 

advertisements which were evaluated as both original (i.e., novel) and familiar drew the most 

attention to the advertised brand. In a study about citations of scholarly papers, Uzzi and colleagues 

(2013) found that the most cited papers were those which seemed to combine novel and 

conventional (i.e., familiar) knowledge. Finally, in a study of patent citation data, Fleming (2001) 

argued that novel recombinations of familiar sets of technology components are, on average, more 

successful than novel recombinations of completely new technology components. While 

completely new component combinations might sometimes lead to an impactful breakthrough 

invention, they can also spark a higher level of uncertainty. More often than not, they therefore 
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turn into completely useless patent ideas which will fail to receive many citations. In their recent 

review on how people receive and evaluate creative ideas, Zhou and colleagues (2019: 2574) 

additionally concluded that “[h]ighly novel insights can achieve appreciation if they are grounded 

in strongly familiar knowledge.” Thus, prior research provides evidence for our two-tiered 

argument that highly connected ideas are perceived as novel because they blend existing 

knowledge in new ways; while, at the same time, highly connected ideas are perceived as at least 

partially familiar by different audiences from these knowledge domains. Consequently, an idea 

which is perceived as novel and familiar should diffuse more successfully.  

Hypothesis 1. There is a positive association between content connectivity and idea 

diffusion success. 

2.3. Social connectivity enhances the effect of content connectivity on idea diffusion 

Previously, we argued that ideas with high content connectivity attract attention because 

these ideas signal novelty and because they appear as more familiar and thus useful. Novelty and 

usefulness are also what creativity researchers find important when judging the creativity of an 

idea (Amabile, 1996; Woodman, Sawyer, & Griffin, 1993). While creativity is often desired, 

however, it is also associated with costs and risks (for a review, see Khessina, Goncalo, & Krause, 

2018). Therefore, people might explicitly or implicitly resist creativity. For example, a creative 

idea might explicitly be rejected because it calls into question a person’s long held assumptions 

and routines (Deichmann & Van den Ende, 2014). Adopting such an idea would therefore require 

some level of adjustment which may be perceived as too costly and time intensive (Kahneman, 

Knetsch, & Thaler, 1991). A creative idea might also be implicitly rejected. For example, research 

by Mueller and colleagues (2012) uncovered that people often have a covert bias for creativity: 

While they claim to value creativity, they nevertheless reject the most creative ideas. This 
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creativity bias is activated when evaluators of ideas experience uncertainty and when they are 

motivated to reduce this feeling of uncertainty.  

We argue that a high social connectivity of the co-authorship team alleviates some of the 

costs and risks that could be associated with an idea that is highly connected in the content network 

(cf. Deichmann & Jensen, 2018). When teams are tasked with developing ideas, the position of 

the team in the larger social space (i.e., connections to other teams) may indeed influence important 

outcomes. Studies have suggested that the relationship of teams with other teams inside or outside 

an organization positively increases team performance (Oh, Chung, & Labianca, 2004; Perry-

Smith & Shalley, 2014; Reagans, Zuckerman, & McEvily, 2004). Building on this literature, in 

this study we investigate the position of a co-authorship team in the larger social space. Within 

this social space, we specifically focus on the social connectivity of the team, operationalized here 

as a team’s betweenness centrality. If a co-authorship team of an idea exhibits a high betweenness 

centrality it means that many other co-authorship teams in the social space are connected to each 

other through the focal team. 

A high social connectivity should generally be important because highly connected co-

authorship teams should have a greater possibility of gaining access to the wider expertise 

available within the network (Abbasi, Hossain, & Leydesdorff, 2012; Tsai, 2001). This access to 

expertise provides them with a higher awareness of what is going on in the field, which should 

help in the subsequent development of a promising idea. Beyond the direct effect that a high social 

network connectivity can have on the success of the idea’s diffusion, we argue that it will also 

attenuate some of the costs and risks that might be linked to a creative idea (i.e., one with high 

content connectivity) and therefore influence the relationship between content connectivity and 

idea diffusion success.  
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Although we argued that highly connected ideas should generally diffuse more 

successfully, their perceived high degree of novelty might also trigger explicit or implicit 

resistance among some people in the target audience (Khessina et al., 2018). Indeed, novelty is 

often associated with uncertainty (Baer, 2012). Potential feelings of uncertainty about an idea, 

however, can be reduced when a co-authorship team is highly connected in the scientific 

community as this indicates that the team is able to produce high-quality work, which likely has 

spill-over effects for the evaluation of an idea (Zhou, Wang, Bavato, Tasselli, & Wu, 2019). For 

example, in the context of science, Trapido (2015) found that novel publications were cited more 

frequently when the authors had a reputation for having been able to produce novel work in the 

past. A team’s connectedness in the social network similarly serves as a quality signal (Podolny, 

2001). It highlights that a team has established an important role in the field by being an 

intermediary between different co-authorship teams (cf. Freeman, 1978). This role not only signals 

the team’s standing in the field but also gives increased credibility to the team’s novel ideas and 

thus is beneficial in diffusing these ideas.  

We also argued that idea connectivity is beneficial for diffusion because highly connected 

ideas invoke a higher degree of familiarity and thus appear as more useful to an audience. A high 

social connectivity of the co-authorship team should further enhance this effect as it adds another 

layer of familiarity. In addition to larger and more diverse audiences being familiar with ideas that 

are connected to different knowledge domains, these audiences can also be familiar with the 

authors of an idea. This familiarity increases the more the co-authorship team occupies a central 

position in the community. This double-layered familiarity should not only help to attract more 

attention from the broader network of scientists (Sorenson & Fleming, 2004), but it should also 

help people who search the crowded marketplace for ideas for something that they find useful. 
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Past research showed that social connections play a vital role in the selection of ideas (Hofstetter, 

Aryobsei, & Herrmann, 2018; Reitzig & Sorenson, 2013). To that end, high social connectivity of 

a co-authorship team can serve as an additional filter that people might apply when searching for 

ideas. Research by Piezunka and Dahlander (2015) on how organizations filter and select ideas 

that external contributors suggest to them provides some initial evidence for this notion. They find 

that organizations pay less attention to ideas that come from contributors that they do not know—

especially when these organizations have to review many different ideas. 

To conclude, we argue that the effect of content connectivity on the success of idea 

diffusion is enhanced when the co-authorship team has a high connectivity in the social network. 

Social connectivity takes away some of the skepticism which could be linked to the development 

of new ideas and adds to the idea’s familiarity. 

Hypothesis 2. The effect of content connectivity on idea diffusion success is moderated by 

social connectivity; such that an idea with high content connectivity will have a higher 

likelihood of idea diffusion success when the team has a high, rather than a low, social 

connectivity.  

3. Method 

3.1. Sample and setting  

In this study, we examine scholarly ideas in the form of scientific publications. Scientific 

publications document ideas that originate from one or several scholars. Publications codify 

knowledge and make these ideas explicit. Through the publication of ideas, the ideas become 

certified in the larger scientific community. We acknowledge that each publication can entail 

several ideas but we focus here on the main idea—the overall intellectual line—that is 

communicated in the title of the paper. The successful diffusion of a scholarly idea can be defined 
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in terms of the number of citations that a specific publication receives. The notion is that influential 

and impactful ideas will be referred to more often by scholars (Alvesson & Sandberg, 2013; 

Wouters, 1999).  

We test our hypotheses in the setting of the Semantic Web research community. Semantic 

Web is a sub-field of Computer Science that develops structures and processes to organize, access, 

and share information on the Web. Techniques developed by the field provide a language (e.g., 

RDF, OWL, or XML) that expresses both data and rules for reasoning about the data and that 

allows rules from existing knowledge–representation systems to be exported onto the Web 

(Berners-Lee, Hendler, & Lassila, 2001). This facilitates interoperation between distributed data 

allowing metadata on the Web to be integrated.  

The Semantic Web research community provides a suitable context to test our hypotheses 

for two reasons. First, in technically oriented fields such as Computer Science and the sub-field of 

Semantic Web, ideas are commonly disseminated first in the form of conference proceedings. 

Unlike, for example, Organizational Studies, where also book chapters and books count toward 

meaningful knowledge diffusion and conference proceedings are largely absent, in Computer 

Science, conferences and conference proceedings are an important documentation of scientific 

ideas. This means that most publications can be queried from conference proceedings databases, 

thus minimizing selection bias and increasing the likelihood of capturing most publications. 

Second, publishing in conference proceedings coincides with the speed of knowledge production 

and a rapid knowledge turnaround (Bar-Ilan, 2010). Again, unlike other fields such as 

Organizational Studies where it can take many years from initial submission to final publication, 

the turnaround time in the field of Computer Science can typically be expressed in months. 

Because publications receive citations relatively soon, we are able to closely observe how content 
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and social connectivity affect the diffusion of ideas. To conclude, for our purpose of investigating 

idea diffusion, it is beneficial to draw on data that is bounded in terms of publication outlets (i.e., 

conference proceedings) and publication speed (i.e., months instead of years).  

We used publication records from the Semantic Web Conference Corpus (also known as 

the Semantic Web “Dog Food Corpus”) to calculate content and social connectivity scores (our 

independent variables). The Dog Food Corpus is a community-maintained digital bibliometric 

database, with records on conferences, individual publications, and institutions involved in 

Semantic Web research (Möller, Heath, Handschuh, & Domingue, 2007). We extracted conference 

proceedings data from the Dog Food Corpus for all conferences related to Semantic Web research 

between 2006 (inception of the sub-field) and February 2012 (time of data collection), including 

articles, abstracts, posters, and demos.1 This resulted in a total of 2,492 publication items with 

5,456 unique authors. We used the Microsoft Academic Search (MAS) API to query our data. 

MAS, Microsoft’s academic search engine which retired in 2012, to be renamed Microsoft 

Academic in 2016, was one of the most valid databases at the time for querying citation scores for 

Computer Science as it included conference proceedings which are often ignored by other large 

commercial citation indexes. MAS also provided a title similarity matching, through which we 

were able to match publications of the Semantic Web Conference Corpus, to ensure valid matching 

across the two databases. We matched 1,795 publications which have received citations. The 

remaining 697 publications had not yet received citations and therefore received a score of zero. 

  

 
1 For simplicity, we will refer to “publications” when we talk about the different items including 

proceedings, demos, and posters. Besides citing other proceedings, scholars in Computer Science 

may also cite demos or posters. For robustness, we ran additional analyses where we only focused 

on conference proceedings in article form. Results are similar to the ones reported in the paper.  
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3.2. Dependent variable: Idea diffusion success  

To measure idea diffusion success, we follow prior studies (Magerman et al., 2015; Uzzi 

et al., 2013; Wang, 2016) and consider the success of a publication as acknowledged through 

citations. Citations measure how the publication was received in the scientific community; they 

show the “acknowledgment of [the idea’s] original contributions to science from peers in the field” 

(Wang, 2016: 72). We queried citation scores per year from MAS. 

Idea diffusion success, measured through citations, is a count variable. Due to the skewed 

nature of this variable, and to facilitate analysis and interpretation of the results, we used the natural 

logarithm of idea diffusion success. Before log-transforming the variable, we added a value of one 

to avoid taking the natural logarithm of zero.2 Furthermore, we used a two-year moving window 

to see how many citations a particular publication had acquired. This means that we excluded 

publications from 2011 to 2012 because publications in one of these years would have less 

allocated time to acquire citations, thus we considered 2,096 publication items. The citation count 

includes self-citations. Shortly after publication, more self-citations are sometimes observed 

(Aksnes, 2003). However, we also ran analyses using longer (and even shorter) time windows, and 

results were similar to the ones we report in the main analyses. Therefore, we have no reason to 

believe that the inclusion of self-citations biased the results. 

3.3. Independent variables 

We derived both network connectivity measures from two-mode undirected binary 

networks created from the publication database. Two-mode networks, also known as affiliation or 

 
2 For robustness, we also ran mixed-effects negative binomial regressions to fit models with the 

original count variable. By and large, the results of these analyses are consistent with the results 

reported in this paper although we note that the interaction effect between content connectivity 

and social connectivity on idea diffusion success drops in significance (p = 0.10, two-tailed).  
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bipartite networks (Borgatti & Everett, 1997), discern two different sets of nodes, as well as the 

ties that link these different sets (Opsahl, 2013). Researchers often infer that one set plays a greater 

role in the generation of ties, and thus project the networks as one-mode. This causes information 

loss (Vernet, Kilduff, & Salter, 2014) and also assumes a primacy of the sets of nodes that we 

cannot infer (Opsahl, 2013). Instead, a two-mode data structure retains a more accurate 

representation of our data.  

3.3.1. Content connectivity 

Content networks have been defined as two-mode undirected and binary semantic networks 

in which publications are related when the words and concepts in the titles co-occur (Cucchiarelli, 

D’Antonio, & Velardi, 2012; Leydesdorff, 1989; Rice & Danowski, 1993). Semantic networks 

project text (in our case publication titles) into networks of concepts and the ties between them, 

where a concept can be a word or a phrase (Popping, 2003), and a tie a shared affiliation or co-

occurrence. In generating the semantic networks, we first automatically identified possible phrases 

and concepts constituting bi-grams (bi-word expressions such as “big data”) and n-grams (multi-

word expressions such as “world wide web”). Bi-grams and n-grams were recoded by replacing 

the spaces between words with an underscore. The resulting list was manually reviewed by an 

expert to corroborate that the bi- and n-grams captured relevant terms for this specific field. Next, 

the data was cleaned by replacing punctuation, single letters, numbers, and stop words (e.g., the, 

a, in, and) with a placeholder to retain the structure of the title. Then stemming was applied 

(including capitalized words) to relate similar terms (such as plurals: computer and computers) 

and different verb forms (such as write, writing, wrote). In this process, we identified three entries 

in a language other than English: one entry in Italian, one entry in French, and one entry partly in 

English and partly in Spanish. We retained those entries in the dataset without translating them to 
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English. In addition, we used a spell checker to identify misspelled words and words that had been 

stemmed improperly (e.g., analysi, crisi, consensu) and created a thesaurus (i.e., dictionary) to 

identify these words correctly. The cleaning was completed in AutoMap (Carley, Columbus, & 

Landwehr, 2013) and R (R Development Core Team, 2013) and resulted in a refined dataset that 

allowed us to identify the co-occurrence of terms between publication titles. See Table 1 for an 

excerpt of the set with a list of the 50 most frequently used words. 

--------------------------------------- 

Insert Table 1 about here 

--------------------------------------- 

In this study, we use the proximity co-occurrence method (Rice & Danowski, 1993) to 

construct the content network. We generated a two-mode network for each year where publications 

were connected by shared title words or concepts. More specifically, a link between two words or 

concepts was created if these words or concepts occurred in the same title. Thus, a publication 

could be related to another publication multiple times. We analyzed this network by calculating 

the betweenness centrality score for each publication. Betweenness centrality measures the number 

of times a node is a bridge between other nodes’ shortest paths to two other nodes (Freeman, 1977). 

Following Borgatti (2012: 2920), the betweenness centrality of node k is expressed as: 

𝑏𝑘 = 
1

2
∑ ∑

𝑔𝑖𝑘𝑗

𝑔𝑖𝑗

𝑛

𝑗≠𝑘,𝑖

𝑛

𝑖≠𝑘

 

“where gij is the number of geodesic paths from node i to node j, and gikj is the number of geodesic 

paths from i to j that pass through k.” Given our data structure, we used a two-mode version of this 

betweenness centrality measure in Ucinet 6 in which additional steps are taken to account for the 

two-mode data structure as described by Borgatti and Everett (1997). 
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The content connectivity score reflects the connection of a publication to other publications 

based on the frequency of shared words or concepts in the title. For our content networks, we 

therefore presume that a word with a high betweenness centrality has a higher likelihood to serve 

as a bridge between ideas. See Figure 1a for an exemplary content network visualization. In the 

example, Publication 1 is connected to Publications 3 and 5. Publication 3 shares the word 

“improve” and Publication 5 shares the word “structure” with Publication 1. Thus, Publication 1 

is the bridge between Publication 3 and 5; therefore, it has a higher connectivity score than the two 

other publications. 

-------------------------------------------- 

Insert Figures 1a and 1b about here 

-------------------------------------------- 

3.3.2. Social connectivity 

Our dataset includes 5,456 individual authors. We generated an undirected, binary, two-

mode network for each year, where publications are connected by shared authors. To identify the 

social connectivity of the team across the different conferences, we used a measure of betweenness 

centrality in Ucinet 6 which accounts for the two-mode data structure in the way described by 

Borgatti and Everett (1997). A group of authors whose publication has a high social connectivity 

score is much more likely to reach, know, communicate, or interact with other authors. This is 

relative to the number of possible co-authorships allowed per conference regulations (typically the 

maximum is three). Thus, publications receive a higher social connectivity score the more they are 

connected to other publications and thus other co-authorship teams. See Figure 1b for an 

exemplary two-mode social network visualization. In the example, Publications 1 and 3 are linked, 

because Frank and Lucy are co-authors on both publications.  
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3.4. Controls 

We also considered a number of control variables to exclude possible alternative 

explanations for idea diffusion success. Since all control variables were count variables, we log-

transformed them to correct for skewness. First, we controlled for the number of title words (after 

data cleaning) in a given title. We did so because the number of title words may not only influence 

idea diffusion success (Van Wesel et al., 2014), but may also positively affect the betweenness 

centrality of a publication in the content network. Second, the makeup of a team influences team 

performance (Reagans & Zuckerman, 2001). Therefore, we controlled for the number of authors. 

Prior research indicates that the number of authors involved in a publication influences the 

publication’s citations (Didegah & Thelwall, 2013; Van Wesel et al., 2014). Also, having more 

co-authors may positively influence the betweenness centrality of a co-authorship team.3 We also 

controlled for the average prior citation count of the co-authorship team.4 To construct this 

variable, we matched the publication to its author list. Then, we queried the individual names of 

the respective co-authors to return the author’s complete publication record. We separated these 

publications by year using an automated script and then examined the author’s citations in the 

years that followed until the year of the focal (team) publication. We then averaged the individual 

citation scores for the whole co-authorship team. Finally, we controlled for the number of 

 
3 Of all 2492 publications in our dataset, 281 are single-authored. In robustness checks, we 

excluded these single-authored publications and found similar results. 
4 We also calculated the average number of prior publications of the co-authorship team but this 

measure correlated strongly with our prior citations variable (r = 0.78). Results, however, are very 

similar whether or not we include prior publications in the models. In addition, we also controlled 

for the average scientific career age of the co-authorship team. This variable, too, correlated 

strongly with prior citations (r = 0.72). To construct this variable, we identified for each co-author 

the first noted publication in the MAS dataset and calculated the time in years until the focal 

publication. We then averaged individual values for the whole co-authorship team. Again, results 

remain robust, even when we do include this variable into our main analysis.  
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conferences that co-authors attended in a given year (average conferences attended). Here, we 

averaged again the individual scores across the whole co-authorship team. We included this control 

because it indicates the visibility of a team which, in turn, could influence the relationship between 

content and social network connectivity and idea diffusion success. 

3.5. Analysis 

As we have a nested data structure—several publications are submitted to any given 

conference—we used models with random intercept. These multilevel models allow us to analyze 

the data on two levels: publications (level 1) and conferences (level 2).5 We fitted these multilevel 

models using the “mixed” command in Stata 15. We standardized both content connectivity and 

social connectivity before entering them into the regression models. 

4. Results 

Descriptive results and correlations of all the variables considered in the models can be 

found in Table 2.  

--------------------------------------- 

Insert Table 2 about here 

--------------------------------------- 

The results of our mixed-effects regression analyses are presented in Table 3. Model 1 

includes the control variables that may influence the diffusion success of a publication. Results 

show that the number of authors and prior citations of the co-authorship team have a significant 

positive effect on idea diffusion success (β = 0.56, p < 0.001 and β = 0.18, p < 0.001, respectively). 

 
5 An alternative to this approach is to use a linear regression analyses and to control for conference 

fixed effects by including conference identifying dummies. The results of such an analysis are very 

similar to the results of the mixed-effects linear regression and thus provide additional evidence 

for the robustness of our findings.  
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In Models 2 and 3, we separately added content connectivity and social connectivity, and in Model 

4 we added both simultaneously. We find confirmation for Hypothesis 1 because the effect of 

content connectivity on idea diffusion success is significant and positive in Models 2 and 4 (β = 

0.13 p < 0.001 and β = 0.13, p < 0.001, respectively). In Model 5 we examine the interaction 

between content connectivity and social connectivity. The interaction term is significant and 

positive (β = 0.18, p < 0.01), confirming Hypothesis 2. In Figure 2, we plotted the interaction at 

high and low values (one standard deviation above and below the mean, respectively) of content 

connectivity and social connectivity. For this we used the estimates of Model 5; control variables 

are held constant at their mean value. The figure shows that the highest diffusion success can be 

attributed to publications with high content connectivity and high social connectivity. As further 

support for Hypothesis 2, a simple slopes test reveals that the slope between content connectivity 

and idea diffusion is significant (β = 0.30, t = 4.69, p < 0.001) at high levels of social connectivity 

(one standard deviation above the mean), whereas the slope is not significant (β = -0.07, t = -0.94, 

p = 0.35) at low levels of social connectivity (one standard deviation below the mean).6 

 
6 In our theory and analyses, we focus on two-mode betweenness centrality to assess the degree to 

which a publication is connected in a content network. High betweenness centrality reflects that a 

publication has many shared title words with other publications that themselves are not connected 

through shared title words. Such a publication, in other words, serves as a bridge between different 

topics and ideas. An alternative measure to capture a publication’s connectivity is that of 

“constraint” (Burt, 1992). The advantage of the betweenness centrality measure we use is that it 

suits our two-mode network data (Borgatti & Everett, 1997) and that it is a more global measure, 

taking into account the entire network (Perry-Smith, 2006). Neither of these arguments applies to 

measuring constraint. In additional analyses, however, we also examined the role of constraint in 

both the content and the social network. To do so, we projected the networks as one-mode and 

calculated constraint scores for each title word and for each co-author. Next, we averaged these 

scores with the publication level. While the analysis shows no statistically significant effect of the 

interaction between content network constraint and social network constraint on idea diffusion, we 

find confirmation for our first hypothesis. Specifically, the results show that high constraint in the 

content network is negatively associated with idea diffusion success. This result is in line with our 

main analysis as it shows that publications that act as a bridge between several knowledge domains 

(i.e., have low constraint) receive more citations. 
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----------------------------------------------------- 

Insert Table 3 and Figure 2 about here 

----------------------------------------------------- 

In Table 4 we report results of analyses for which we used different moving windows to 

investigate how many citations a particular publication has acquired (one-, three-, and five-year 

windows). Using these shorter and longer time windows (compared to the two-year window in our 

main analysis), by and large support our earlier findings. In particular, we find additional support 

for Hypothesis 2 across all models. Concerning the direct effect of content connectivity 

(Hypothesis 1), we observe similar findings in models using longer time windows, but no 

significant effects in a model in which we only include the citations a publication received in the 

year after publication. These findings show that, despite the Semantic Web being a highly dynamic 

community, highly connected ideas need about two years before they will be recognized in the 

form of citations. 

--------------------------------------- 

Insert Table 4 about here 

--------------------------------------- 

5. Discussion 

In this paper, we studied how the connectivity of an idea in a content network influences 

idea diffusion. Our analysis of publications in the Semantic Web community shows that ideas which 

are highly connected in the content network perform better and receive more citations. Furthermore, 

we studied the moderating role of a team’s social connectivity on the relationship between content 

connectivity and idea diffusion success. Our results show a positive interaction between content and 

social network connectivity. This means that ideas which bridge different knowledge domains in the 
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content network will amass even more citations when they are developed by teams that are highly 

connected in the social network of co-authorship teams.  

5.1. Implications 

Our findings advance earlier studies that investigated how social network structures and 

positions foster idea adoption and diffusion (Abrahamson & Rosenkopf, 1997; McFadyen & 

Cannella, 2004; Wejnert, 2002). We specifically complement these earlier studies by examining the 

connectivity of an idea in a content network. Scholars increasingly pay attention to how meaning is 

conveyed in networks (Ferguson, Groenewegen, Moser, Borgatti & Mohr, 2017) and in particular to 

the language and vocabulary that is used to express ideas (Moser, Groenewegen & Ferguson, 2017; 

Van Atteveldt, Moser, & Welbers, 2017). Whether an idea is novel or not is believed to be reflected 

in the description of that idea. For example, Kaplan and Vakili (2015) used a text-based, topic 

modeling approach to examine novel recombinations of ideas in patents. In this paper, we further 

extend this line of research with a network perspective. By using content networks to assess the 

connectivity of an idea relative to the other ideas in our dataset, we were able to uncover not only 

idea similarity (as we would have by using, for example, topic modeling), but also the underlying 

structure of ideas and how they bridge different knowledge domains (Cucchiarelli et al., 2012; 

Leydesdorff & Nerghes, 2015). Compared to other text-analytical methods, content networks are 

better able to reveal those ideas that bridge established knowledge domains by making use of the 

inherent meaning structures of ideas—in our case, publication titles. 

We theorized that highly connected ideas diffuse more successfully because they are 

perceived as novel but also as familiar. While other studies have already highlighted that ideas which 

combine novelty with a dose of familiarity should, on average, be very successful on the marketplace 

for ideas (Fleming, 2001; Pieters et al., 2002; Uzzi et al., 2013), we further unpack how this balancing 
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act between the seemingly opposing forces of novelty and familiarity unfolds in practice. When ideas 

have a high connectivity in a content network, these ideas blend and recombine knowledge from 

different knowledge domains. As a consequence, such connected ideas also reach a larger and 

more diverse audience that occupies the different knowledge domains. While the audience in one 

domain might find a highly connected idea to be very novel as such an idea combines knowledge 

from another domain, the same audience is also more likely to recognize their own knowledge 

domain in the idea. This leads to an idea being perceived as—at least partially—familiar. Idea 

connectivity in a content network therefore enhances idea diffusion because connectivity not only 

signals novelty but also facilitates that these ideas are recognized as familiar and thus appear as 

more useful to a target audience.  

Finally, looking simultaneously at both the connectivity of an idea in a content network and 

the connectivity of people in a social network allows us to provide important insights on the 

multiplicative effects of different network structures on idea diffusion success. Our results indicate 

that separately examining content and social connectivity only offers part of the explanation for why 

some idea diffuse more successfully than others. Our findings therefore confirm earlier notions that 

content and social networks should not be seen in isolation from each other (Mika et al., 2006; Roth 

& Cointet, 2010; Taramasco et al., 2010). We show that ideas diffuse more successfully when not 

only the idea is highly connected in the content network, but also when the team responsible for 

developing the idea is highly connected in the social network. This is because the connectivity of a 

co-authorship team can serve as a seal of approval for others who need to make a judgment about 

the idea. To that end, high social connectivity takes away uncertainty around a potentially novel 

idea and provides another layer of familiarity. This helps people who navigate through a large 
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marketplace for ideas and who need to decide about whether or not they will cite a particular idea 

in their own work.  

5.2. Limitations and future research 

Our study has some limitations and our findings should therefore be generalized with 

caution. We discuss here the three most important ones. First, we investigated an academic setting 

in which ideas are communicated through the dissemination of scientific publications. There are 

many benefits of the academic setting in terms of availability and objectivity of data. However, 

generalizability of our findings to other contexts might be questionable. Relatedly, in the current 

study we did not distinguish between regions or cities as loci of knowledge production. However, 

prior work has shown that space and location matter for scientific work and publications in that space 

and location influence path dependence and relatedness of knowledge (Boschma et al., 2014; 

Heimeriks & Balland, 2016; Hidalgo et al., 2018). Future research might therefore investigate how 

social and content networks relate to each other from a perspective of space.  

Second, our study focused on conference publications, but we do not have any 

information on rejected publications. It is possible that ideas which scored low on content 

connectivity were not accepted to a conference because they appeared too unrelated to the 

conference theme. Moreover, co-authorship teams with high social connectivity might more easily 

be accepted to a conference than co-authorship teams with low social connectivity. Future research 

might address this issue by either collecting data about the rejected conference items or by studying 

a different setting in which information is available for both rejected and accepted ideas.  

Finally, we propose to study more complete text when calculating the connectivity of an 

idea in a content network. In this study, we turned to the title words of a publication to 

operationalize content network connectivity. A title represents the cognitive content of a 



27 

publication (Leydesdorff, 1989) and thus should reflect what the publication is about. Examining 

the abstract of a publication could provide more fine-grained information about the content of the 

publication. For example, an abstract might not only contain information about the topic of the 

article but also the methodology used. Future research could then study connectivity of a 

publication in terms of topic as well as methodology. This could provide a better understanding of 

the different types of content networks.  

5.3. Conclusion 

Our study contributes to a better understanding of the idea diffusion process by highlighting 

the importance of an idea’s connectivity in a content network. We show that an idea which links to 

several knowledge domains is more likely to get diffused. This successful diffusion is grounded on 

a higher level of perceived novelty and familiarity and can be further strengthened when the team of 

people involved has an equally high degree of connectivity in the social network.  
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Table 1 

Word frequency list. 

 
Word Frequency Type 

ontology 302 single 

semantic 261 single 
semantic web 188 bi-gram 

web 183 single 

query 151 single 
data 133 single 

evaluation 106 single 

search 104 single 
approach 102 single 

model 100 single 

corpus 98 single 
rdf 96 single 

system 95 single 

service 91 single 

annotation 89 single 

network 88 single 

resource 88 single 
language 83 single 

social 79 single 

knowledge 72 single 
tool 72 single 

text 70 single 
automatic 68 single 

owl 68 single 

base 64 single 
user 63 single 

reason 63 single 

learn 59 single 
framework 59 single 

application 56 single 

extraction 56 single 
database 54 single 

speech 53 single 

analysis 49 single 
map 49 single 

translation 48 single 

answer 46 single 
tag 46 single 

linked data 46 bi-gram 

alignment 45 single 
sparql 45 single 

graph 44 single 

online 42 single 
process 40 single 

technology 40 single 

document 39 single 
corpora 39 single 

build 39 single 

relation 39 single 
entity 38 single 
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Table 2 

Descriptive statistics and correlation matrix. 

 
Variable N Mean S.D. Min. Max. 1 2 3 4 5 6 

1. Idea diffusion success1 2,096 1.31 1.51 0 6.54       

2. Content connectivity 2,096 0.01 0.01 0 0.18 0.09      
3. Social connectivity 2,096 0.00 0.00 0 0.01 0.05 0.02     

4. Number of title words1 2,096 1.85 0.33 0 2.94 -0.02 0.19 0.02    

5. Number of authors1 2,096 1.05 0.53 0 2.71 0.28 0.01 0.22 0.08   
6. Average prior citations1 2,096 2.80 1.11 0 7.06 0.30 0.04 0.04 -0.02 0.26  

7. Average conferences attended1 2,096 0.20 0.36 0 1.79 0.06 0.04 -0.01 -0.08 0.06 0.20 

 1 Natural logarithm.  
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Table 3 

Mixed-effects regression of idea diffusion success.a 

 
 Idea diffusion success1 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 

            
Constant -0.17 -0.01 -0.17 -0.01 -0.03 

 (0.22) (0.22) (0.22) (0.22) (0.22) 

Number of title words1 -0.05 -0.13 -0.05 -0.13 -0.12 
 (0.08) (0.09) (0.08) (0.09) (0.09) 

Number of authors1 0.56*** 0.56*** 0.56*** 0.56*** 0.55*** 

 (0.06) (0.05) (0.06) (0.06) (0.06) 
Average prior citations1 0.18*** 0.17*** 0.18*** 0.17*** 0.18*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) 

Average conferences attended1 -0.04 -0.02 -0.04 -0.02 -0.01 
 (0.09) (0.09) (0.09) (0.09) (0.09) 

Content connectivity  0.13***  0.13*** 0.11*** 

  (0.03)  (0.03) (0.03) 

Social connectivity   0.01 0.01 0.03 

   (0.03) (0.03) (0.03) 

Content connectivity x     0.18** 
   Social connectivity     (0.06) 

      

Variance of constant 0.36 0.36 0.36 0.36 0.36 
Variance of residual 1.58 1.57 1.58 1.57 1.56 

      
Log likelihood -3479.72 -3470.86 -3479.63 -3470.78 -3466.19 

Publications 2,096 2,096 2,096 2,096 2,096 

Conferences 26 26 26 26 26 

 a Standard errors are in parentheses. 

 + p < 0.10 
 *  p < 0.05 

 **  p < 0.01 

 ***  p < 0.001 
 Two-tailed tests. 
 1 Natural logarithm. 
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Table 4 

Mixed-effects regression of idea diffusion success with different year windows.a 

 

 

Idea diffusion success1: 

1-year window 

Idea diffusion success1: 

3-year window 

Idea diffusion success1: 

5-year window 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

           

Constant -0.10 -0.13 -0.10 -0.11 -0.26 -0.16 

 (0.19) (0.19) (0.27) (0.27) (0.54) (0.54) 
Number of title words1 -0.07 -0.05 -0.06 -0.05 0.05 0.02 

 (0.08) (0.08) (0.10) (0.10) (0.23) (0.23) 

Number of authors1 0.42*** 0.41*** 0.61*** 0.60*** 0.64*** 0.59*** 
 (0.05) (0.05) (0.07) (0.07) (0.17) (0.17) 

Average prior citations1 0.12*** 0.13*** 0.24*** 0.24*** 0.47*** 0.48*** 

 (0.02) (0.02) (0.03) (0.03) (0.08) (0.07) 
Average conferences attended1 0.04 0.05 0.02 0.02 0.62 0.62 

 (0.08) (0.08) (0.10) (0.10) (0.47) (0.47) 

Content connectivity -0.02 -0.03 0.17*** 0.15*** 0.20*** 0.16*** 

 (0.03) (0.03) (0.03) (0.03) (0.05) (0.05) 

Social connectivity 0.01 0.07* -0.00 0.03 -0.08+ -0.06 

 (0.03) (0.03) (0.03) (0.03) (0.05) (0.05) 
Content connectivity x  0.26***  0.17**  0.21* 

   Social connectivity  (0.05)  (0.06)  (0.09) 

       
Variance of constant 0.16 0.16 0.54 0.54 0.53 0.52 

Variance of residual 1.44 1.43 1.73 1.72 2.51 2.47 

       
Log likelihood -3767.57 -3756.46 -2944.50 -2940.72 -871.98 -868.89 

Publications 2,341 2,341 1,726 1,726 460 460 

Conferences 26 26 23 23 9 9 

 a Standard errors are in parentheses. 
 + p < 0.10 

 *  p < 0.05 

 **  p < 0.01 
 ***  p < 0.001 

 Two-tailed tests. 

 1 Natural logarithm. 
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Figure 1a 

Exemplary content network visualization. 
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Figure 1b 

Exemplary social network visualization. 
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Figure 2 

Interaction of content connectivity and social connectivity on idea diffusion success. 
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