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Abstract 

 

For many countries, statistical information on macroeconomic variables is not abundant and 

hence creating forecasts can be cumbersome. This paper addresses the creation of current year 

forecasts from a MIDAS regression for annual inflation rates where monthly inflation rates are 

the explanatory variables, and where the latter are only available for the last one and a half 

decade. The model can be viewed as a hybrid New-Keynesian Philips curve (NKPC). Specific 

focus is given to the forecast accuracy concerning the high inflation period in 2016-2017.  
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Introduction 

 

For macroeconomic policy it is helpful to have reliable forecasts for key variables like real Gross 

Domestic Product growth, unemployment and inflation. Typically, such forecasts are made for 

annually observed variables in the current year and for the next year. This paper addresses 

creating accurate current year forecasts for inflation.  

 

To predict annual inflation, one may use various variables, see Stock and Watson (1999), and 

rely on modern variable-selection techniques to choose the best predictors. For many countries, 

there is however no abundant availability of timely observed variables. Also, at the same time, 

for many countries the sample span can also be short. One possible avenue may now be to 

consider so-called MIDAS regression models. These are models that connect for example annual 

inflation rates with explanatory variables that are observed at a higher frequency, like months. In 

this paper we consider the case of Suriname (in South America), where we rely on a particular 

inflation forecasting model, where the input is again inflation but then observed at the monthly 

level. We show that this model matches with a version of the Hybrid New-Keynesian Phillips 

Curve (HNKPC), where the forward looking behavior of agents is captured by the incoming 

monthly inflation rates.  

 

Our paper proceeds as follows. In the next section we show that a MIDAS model for annual 

inflation with monthly inflations rates as explanatory variables makes sense from an economic 

theory perspective. Next, we illustrate the model for the sample 2004-2015, where we focus on 

the forecast accuracy for the years 2016-2018, where in particular for Suriname the years 2016 

and 2017 were very high inflation years. We document that our model can deliver highly 

accurate forecasts, in particular when the summer months are included. In brief, when we know 

the annualized inflation rate in May or June, the subsequent forecasts for the entire year are very 

accurate. Finally, we conclude with limitations and further research topics.  
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Background  

 

The New-Keynesian Phillips Curve (NKPC) proposes that the inflation rate in the current period 

depends linearly on next period’s expected inflation rate and on marginal costs. The NKPC is 

derived from the basic price-setting model of Calvo (1983).  Since its inception, the model was 

re-estimated and improved several times with various econometric specifications, see for 

example Gali and Gertler (1999) and Lanne and Luoto (2013). Gali and Gertler (1999) improved 

the NKPC model by incorporating lagged inflation. This model version is referred to in the 

literature as the hybrid NKPC (HNKPC). Many studies have shown the advantages of including 

inflation expectations in forecasting models for better outcomes. Mavroeidis et al. (2014) provide 

a recent overview on the inclusion of inflation expectations. Also, Woodford (2003), Preston 

(2005) and Gali (2008) have reiterated the importance of incorporating inflation expectations and 

to use these as a key input in various forecasting models. 

 

The HNKPC model is closely connected to the concept of rational expectations (RE) (Gali et al. 

2005), whereas the traditional NKPC model builds upon the micromodel of Calvo (1983). Point 

of departure is  

 

                                                          𝜋௧ =  𝛼𝐸௧𝜋௧ାଵ + 𝛾𝑥௧                                  (1) 

 

where 𝜋௧ is the annual inflation rate1, 𝐸௧𝜋௧ାଵ is the one-year-ahead expected inflation at time 𝑡 

and 𝑥௧ is a measure of marginal costs. Gali and Gertler (1999) modify this model by assuming 

that some firms are able to change prices, but they rather choose not to do so in the short-run. 

This assumption leads to the HNKPC, given by 

 

                                                   𝜋௧ = 𝜇 +  𝛼𝐸௧𝜋௧ାଵ + 𝜌𝜋௧ିଵ + 𝛾𝑥௧                    (2) 

 

                                                 
1 Denote the annual average of the consumer price index (CPI) as 𝐶𝑃𝐼௧, then the annual inflation 

rate is defined as 100(log
஼௉ூ೟

஼௉ூ೟షభ
), where log is the natural logarithm.   
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The HNKPC augments the model with one lag of inflation (𝜋௧ିଵ) which can substantially 

improve the fit of the model in empirical settings. The key issue in practice is to find an 

approximation of 𝐸௧𝜋௧ାଵ. One may rely on survey expectations, or one may replace it by 

observable variables. Based on the ideas in Frijns and Margaritis (2008), who use early-in-the-

day volatility estimates to predict end-of-day volatility of stocks with intraday data from the New 

York Stock Exchange, the Nasdaq and Paris Bourse, Franses (2019) proposes to use current 

monthly inflation rates as predictors for the expected inflation. In year t, the annualized inflation 

rate in month s is  

 

                                               𝜋௦,௧ = 1200൫log 𝐶𝑃𝐼௦,௧ −  log 𝐶𝑃𝐼௦,௧ିଵ൯                                       (3) 

 

where 𝐶𝑃𝐼௦,௧ is the consumer price index in month 𝑠 of year 𝑡. For example, when the January 

inflation rates have been observed, Franses (2019) proposes the model in (2) to become 

 

                                                   𝜋௧ = 𝜇 +  𝛼𝜋௃௔௡௨௔௥௬,௧ + 𝜌𝜋௧ିଵ + 𝜀௧           (4) 

 

where we have collected the measure of marginal costs in the error term 𝜀௧. Next, when February 

data come in, one may consider  

 

                                                   𝜋௧ = 𝜇 +  𝛼𝜋ி௘௕௥௨௔௥௬,௧ + 𝜌𝜋௧ିଵ + 𝜀௧           (5) 

 

but also one may consider 

 

                                𝜋௧ = 𝜇 + 𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ + 𝜌𝜋௧ିଵ + 𝜀௧           (6) 

 

Basically, these two models are so-called MIDAS models, see Ghysels et al. (2006, 2007), 

Breitung and Roling (2015), and Foroni et al. (2015). From (6) it can be seen that when the 

December data have come in, the model contains many parameters to be estimated. Much of the 

literature on MIDAS models therefore addresses methods to reduce the number of parameters. 

When no restrictions are imposed, the model is called the UMIDAS model, see Foroni et al. 

(2015).  
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We also consider a version of the MIDAS model with restrictions, where we tailor the 

restrictions to the case at hand. Below, we present an analysis of annual inflation rates for 

Suriname for 2004-2015, and we create forecasts for 2016 to 2018. As explanatory variables we 

consider the annualized monthly inflation rates, which we only have available for these same 

years. UMIDAS does require many degrees of freedom, and the model  

 

              𝜋௧ = 𝜇 + 𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + … +  𝛼ଵଶ𝜋஽௘௖௘௠௕௘௥,௧ + 𝜌𝜋௧ିଵ + 𝜀௧              (7) 

 

contains 14 parameters, which, given our sample size, is infeasible. We therefore consider the 

restrictions 

 

𝛼௜ =
ଵ

ଵାఉୣ୶  (ିఊ௜)
        (8) 

 

with 𝛽, 𝛾 > 0. Depending on the size of these parameters, there is a tendency for 𝛼ଵ to approach 

0, and 𝛼ଵଶ (or the last one in the sequence) to approach 1. This largest weight for the most recent 

month seems to have face value.  

 

Results 

 

A graph of the annual inflation rates for the period 2004-2018 is presented in Figure 1. The 12 

annualized monthly inflation rates are presented in Figure 2. The high inflation rates around 

2016 and 2017 are clearly visible. To examine whether our HNKPC model has any useful 

predictive power, we estimate the parameters of the models for 2004-2015 and we reserve 2016-

2018 to evaluate predictive accuracy.  

 

Table 1 presents the estimation results for MIDAS model like in (4) and (5), that is, for each 

month separately. It can be seen that the 𝑅ଶ peaks in August. Also, the parameter 𝜌 for lagged 

inflation becomes insignificant when the months proceed, whereas the parameter 𝛼 is significant 

for almost all months. Table 2 presents the associated forecast accuracy, measured by the Mean 
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Absolute Error (MAE), of these 12 models in Table 1, and there we see that the predictive 

accuracy for the model 

 

                                                   𝜋௧ = 𝜇 +  𝛼𝜋஺௨௚௨௦௧,௧ + 𝜌𝜋௧ିଵ + 𝜀௧                     (9) 

 

is exceptionally good. With a mean absolute error if 0.815 for 2016, where annual inflation was 

55.2%, the forecast is almost spot on. At the same time, the forecasts from the model with the 

May data as explanatory variable are also already quite accurate.  

 

Since Table 1 learns that lagged inflation is rarely a useful predictor, we also consider the models 

like (4) and (5) without this variable, and the estimation results appear in Table 3. Needless to 

say that the 𝑅ଶ values are smaller, but not to a very large extent. The associated forecast 

accuracy is reported in Table 4 and we see a slight deterioration of the predictive ability of the 

models. Still, starting from May and until October, the forecasts are quite accurate.  

 

Table 5 presents the estimation results for models like that in (6). Until and including August, 

there are enough degrees of freedom, so only for the related months we can estimate the 

parameters in an unrestricted MIDAS model. Clearly, the forecasts for 2016 are not at all as good 

as before, nor are the forecasts for 2017 and 2018. Excluding the lagged inflation rate, as is done 

in Table 6 does give some improvement, but not much.  

 

Table 7 and 8 present the mean absolute errors for the MIDAS models with the logistic 

parameter restriction as in (8). Now, the forecast accuracy improves, in particular starting from 

June/July onwards. Also, forecast accuracy seems best when all months are included, which 

makes sense. Figures 3 and 4 present the logistic curves for the models up to and including May 

and December, respectively. The typical sigmoid shape is clearly visible from Figure 3, whereas 

the parameters seem to converge to a common value (around 0.084) when all months are 

included.  
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Conclusion 

 

The novelty of this paper is that we applied an economic-theory based MIDAS-based regression 

model proposed in Franses (2019) to forecast inflation in Suriname that includes a high-inflation 

episode. We used available year-on-year inflation rates in the current year that become available 

every month, to create forecasts for the current year’s annual inflation rate. The forecasts became 

very accurate when the models included data from May onwards. A particular parameter restriction 

was also useful to improve forecast accuracy.   

 

Our approach demonstrates the merits of forecasting inflation, including high-inflation episodes, 

in a simple yet sound manner in small and perhaps less developed economies with the same 

features as that of Suriname. Typically, inflation rate forecasts presented in the literature concern 

western industrialized countries where statistical data are abundantly available. However, for many 

countries in the world, only recently people have started to collect quarterly or monthly data. We 

showed that such higher frequency data can be instrumental to predict (or to nowcast) current 

year’s annual data. Of course, a limitation is that one quickly runs out of degrees of freedom, and 

hence smart restrictions could or should be imposed on the parameters.  
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Table 1 

 

Estimation results for  

𝜋௧ =  𝜇 +  𝛼𝜋௃௔௡௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

…. 

𝜋௧ =  𝜇 +  𝛼𝜋஽௘௖௘௠௕௘௥,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

 

Effective sample size is 2004-2015. Standard errors are in parentheses 

 

Month   𝜇   𝛼   𝜌   𝑅ଶ 

 

January  4.704 (1.759)  1.200 (0.232)  -0.752 (0.205)  0.774 

February  4.379 (1.708)  0.881 (0.161)  -0.414 (0.168)  0.793 

March   4.025 (1.538)  0.776 (0.123)  -0.274 (0.144)  0.836 

April   3.413 (1.271)  0.717 (0.089)  -0.141 (0.115)  0.893 

May   1.746 (1.337)  0.795 (0.095)  0.005 (0.112)  0.900 

June    1.137 (1.775)  0.790 (0.123)  0.080 (0.144)  0.840 

July   0.539 (1.420)  0.782 (0.092)  0.151 (0.115)  0.902 

August   1.034 (1.145)  0.774 (0.075)  0.093 (0.095)  0.931 

September  0.886 (1.260)  0.808 (0.086)  0.090 (0.103)  0.919 

October  1.895 (2.131)  0.713 (0.144)  0.059 (0.177)  0.759 

November  2.285 (3.743)  0.534 (0.229)  0.089 (0.285)  0.416 

December  4.156 (4.139)  0.365 (0.238)  0.023 (0.323)  0.243 
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Table 2 

 

One-step-ahead forecast accuracy for  

  

𝜋௧ =  𝜇 +  𝛼𝜋௃௔௡௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

…. 

𝜋௧ =  𝜇 +  𝛼𝜋஽௘௖௘௠௕௘௥,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     20.260    9.469 

February     24.724    9.454 

March      24.627    9.137 

April      17.371    7.506 

May      7.539    3.412 

June       5.448    2.700 

July      4.791    2.855 

August      0.815    1.708 

September     8.534    5.256 

October     3.598    4.288 

November     21.692    10.643 

December     31.772    15.056 
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Table 3:  

 

Estimation results for  

𝜋௧ =  𝜇 +  𝛼𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

…. 

𝜋௧ =  𝜇 +  𝛼𝜋஽௘௖௘௠௕௘௥,௧ +  𝜀௧ 

 

Effective sample size is 2004-2015. Standard errors are in parentheses 

 

Month    𝜇   𝛼    𝑅ଶ 

 

January   2.576 (2.395)  0.664 (0.260)   0.394 

February   2.061 (1.691)  0.732 (0.177)   0.631 

March    2.163 (1.258)  0.745 (0.131)   0.763 

April    2.538 (0.919)  0.715 (0.094)   0.853 

May    1.861 (0.813)  0.799 (0.085)   0.897 

June     1.914 (1.045)  0.777 (0.109)   0.836 

July    2.106 (0.880)  0.750 (0.090)   0.875 

August    2.119 (0.761)  0.756 (0.078)   0.905 

September   1.916 (0.812)  0.791 (0.085)   0.897 

October   2.584 (1.243)  0.705 (0.129)   0.749 

November   3.597 (2.094)  0.496 (0.197)   0.384 

December   4.793 (2.271)  0.345 (0.205)   0.221 
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Table 4 

 

One-step-ahead forecast accuracy for  

  

𝜋௧ =  𝜇 +  𝛼𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

…. 

𝜋௧ =  𝜇 +  𝛼𝜋஽௘௖௘௠௕௘௥,௧ +  𝜀௧ 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     33.105    15.907 

February     29.073    14.858 

March      25.748    12.936 

April      17.389    7.087 

May      7.267    3.356 

June       5.987    3.812 

July      6.287    3.957 

August      1.625    3.100 

September     7.629    6.332 

October     3.224    5.186 

November     23.154    12.480 

December     32.353    15.506 
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Table 5 

 

One-step-ahead forecast accuracy for  

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 + 𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + ⋯ +  𝛼଼𝜋஺௨௚௨௦௧,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     20.260    9.469 

February     23.677    9.369 

March      23.506    9.203 

April      10.487    6.357 

May      10.247    4.335 

June       10.440    4.408 

July      28.837    16.714 

August      7.668    7.298  
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Table 6 

 

One-step-ahead forecast accuracy for  

 

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + ⋯ +  𝛼଼𝜋஺௨௚௨௦௧,௧ +  𝜀௧ 

 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     33.015    15.907 

February     30.315    11.710 

March      26.382    10.810 

April      9.338    5.970 

May      7.809    3.481 

June       8.058    4.266 

July      9.744    4.272 

August      3.142    5.899 
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Table 7:  

 

One-step-ahead forecast accuracy for  

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +. . + 𝛼ଵଶ𝜋஽௘௖௘௠௕௘௥,௧ +  𝜌𝜋௧ିଵ +  𝜀௧ 

 

with the parameter restriction that  

 

𝛼௜ =
1

1 + 𝛽exp (−𝛾𝑖)
 

 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     20.260    9.469 

February     23.677    9.369 

March      25.247    9.436 

April      17.372    7.506 

May      11.088    4.355 

June       10.744    3.782 

July      9.370    3.342 

August      6.818    2.425  

September     0.684    0.907 

October     0.292    0.590 

November     1.898    0.813 

December     0.447    0.611  
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Table 8:  

 

One-step-ahead forecast accuracy for  

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +. . + 𝛼ଵଶ𝜋஽௘௖௘௠௕௘௥,௧ +  𝜀௧ 

 

with the parameter restriction that  

 

𝛼௜ =
1

1 + 𝛽exp (−𝛾𝑖)
 

 

 

Forecast sample is 2016-2018. Forecast accuracy criterion is the mean absolute error (MAE) 

 

Month      2016    2016-2018 

 

January     33.015    15.907 

February     30.315    11.710 

March      25.747    12.936 

April      14.709    5.836  

May      9.555    3.686 

June       9.037    4.214 

July      8.307    3.822 

August      6.506    2.766 

September     2.270    1.170 

October     0.117    0.322 

November     1.212    0.564  

December     0.436    0.920 
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Figure 1: Annual Inflation, 2004-2018 (source: World Bank) 
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Figure 2: Annualized Monthly Inflation rate (source: Central Bureau of Statistics Suriname) 
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Figure 3: Parameters in  

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +. . + 𝛼ହ𝜋ெ௔௬,௧ +  𝜀௧ 

 

with the restriction  

𝛼௜ =
1

1 + 𝛽exp (−𝛾𝑖)
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Figure 4: Parameters in  

 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +  𝜀௧ 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ + 𝛼ଶ𝜋ி௘௕௥௨௔௥௬,௧ +  𝜀௧ 

….. 

𝜋௧ =  𝜇 +  𝛼ଵ𝜋௃௔௡௨௔௥௬,௧ +. . + 𝛼ଵଶ𝜋஽௘௖௘௠௕௘௥,௧ +  𝜀௧ 

 

 

with the restriction  

 

𝛼௜ =
1

1 + 𝛽exp (−𝛾𝑖)
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