

Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease

de Wijs-Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D.

Physiol Rep. 2018 Oct;6(20):e13889.

ABSTRACT

Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of souluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.

INTRODUCTION

Dysmorphic pulmonary vascular growth and impaired alveolarization are hallmarks of the disruption of normal lung development that characterizes bronchopulmonary dysplasia (BPD). 1-3 Pulmonary vascular disease (PVD) encompasses decreased angiogenesis, abnormal vascular function with increased vasomotor tone and altered vasoreactivity, and abnormal vascular structure (vascular remodeling) with smooth muscle cell proliferation. These changes result in an increased pulmonary vascular resistance (PVR), thereby increasing the risk of pulmonary hypertension (PH) in BPD patients.¹⁻⁴ Retrospective studies have determined the incidence of BPD-associated PH to be approximately 20-40%. 5-8 Although most studies concerning long-term outcome of BPD focus on respiratory function, there is increasing awareness that PVD (including PH) imposes additional morbidity, including prolonged oxygen requirements and exercise intolerance, and mortality in the already vulnerable BPD infants. 6,8 Therapies currently used in clinical practice for infants with PVD are supplemental oxygen therapy to avoid hypoxic pulmonary vasoconstriction^{4,9}, pulmonary vasodilators such as sildenafil (phosphodiesterase 5 inhibitor) and inhaled nitric oxide (iNO)^{4,9}, that may also limit oxidative stress caused by hyperoxia. 10,111 However, the knowledge regarding treatment efficacy and safety of BPD-associated PH is limited and needs to be further investigated.

Previous studies in swine showed an important role for the nitric oxide (NO)-cGMP signaling pathway in the pathogenesis of chronic PH. Nitric oxide (NO) is produced in the vascular endothelial cells from L-arginine by the enzyme endothelial nitric oxide synthase (eNOS), and then diffuses to the vascular smooth muscle cell. There, NO stimulates soluble guanylyl cyclase (sGC), resulting in the production of cGMP, which activates cGMPdependent protein kinases. Ultimately, this leads to opening of the large conductance K (BK_{Ca}) channel, smooth muscle cell relaxation and thus vasodilation. ¹² There is growing evidence that neonatal pulmonary hypertension is associated with multiple disruptions in this signaling cascade. A decreased eNOS activity and reduced vasodilator response to NO were found in different animal models for neonatal PH. ¹³⁻¹⁸ There are, however, only a few studies regarding the role of more downstream disruptions in the NO-cGMP signaling pathway, including sGC -and cGMP-dependent mechanisms. 13,16,19 Furthermore, no studies were performed to assess the long-term consequences of disruptions in the NO-cGMP signaling pathway. Therefore, examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of BPD-associated PH, not only in the neonatal period but also later in life.

We previously developed a neonatal swine model with hypoxia-induced PH showing the clinical features resembling those found in patient with neonatal PVD and/or PH, in terms of pulmonary hemodynamics, abnormalities in the structure of the right ventricle and disruptions in normal lung development (vascular remodeling). 20 This model allows 3-weeks of follow-up after re-exposure to normoxia with hemodynamic measurement at rest and

Δ

during exercise in awake piglets. By placing the cardiopulmonary system under stress with exercise testing, subtle dynamic abnormalities that are not apparent on conventional static tests may be revealed. Additionally, exercise testing helps to assess the severity of the disease. Consequently, the main purpose of this study was to determine the functionality of different parts of the NO-cGMP signaling pathway in the long-term, in vivo (at rest and during incremental exercise) and in vitro, to achieve greater understanding of the pathogenesis of neonatal PH associated with BPD (or other chronic cardiopulmonary disorders associated with hypoxia) and the long-term sequelae of damage to the developing neonatal lung.

METHODS

Ethical approval

Studies were performed in accordance with European Directive 2010/63/EU as well as with the "Guiding Principles in the Care and Use of Laboratory Animals" as approved by the Council of the American Physiological Society, and with approval of the Animal Care Committee of the Erasmus MC Rotterdam (Protocolnumber 109-12- 11, EMC 2702).

In vivo animal experiments

Thirty-four crossbred Landrace x Yorkshire piglets of either sex entered the study when they were 48 h old. Shortly after arrival, all piglets received a single dose of artificial colostrum (Colo-active) and were placed in an incubator, in which the fraction of inspired oxygen (FiO₂) can be regulated, for 4 weeks. Piglets assigned to the control group were exposed to a normobaric normoxic environment (FiO₂ 21%; N=16), whereas piglets assigned to the intervention group were exposed to a normobaric hypoxic environment (N=18). Piglets in the Hypoxia group were exposed to FiO₂ 10% for at least 1 week, and FiO₂ was adjusted to higher levels (max. FiO₂ 12%) based on clinical signs of severe pulmonary hypertension (severe dyspnea, growth retardation, septal shift on echocardiography). Piglets were fed age appropriate (Lactowean Extra, Babywean, Topwean; Denkavit, Voorthuizen, The Netherlands) and received a supplementary feed for piglets, based on egg-yolk (MS Pig Pusher Oral, Schippers BV, Bladel, The Netherlands) from day 1-3, to support the immune system and to increases the vitality of the newborn piglets, especially in case of insufficient colostrum. They were weighed daily.

After 4 weeks in the incubator, piglets were chronically instrumented as described below, and subsequently placed in a normoxic environment. A schematic representation of the methods is presented in Figure 1.

Figure 1. Schematic representation of the experimental design of the study.

Surgical procedures

Piglets were sedated with tiletamine/zolazepam (3 mg kg⁻¹ i.v.), xylazine, (1.75 mg kg⁻¹ i.v.), and atropine (0.5 mg), intubated and ventilated with a mixture of O2 and N2 (1:2) to which 2.0% (v/v) isoflurane was added for adequate anesthesia. The depth of anesthesia was checked regularly using a pain stimulus (toe-pinch). Due to premature death, caused by health problems related to exposure to hypoxia (N=6), only 28 piglets (Normoxia, N=16;, Hypoxia N=12) were instrumented under sterile conditions as previously described. ²¹ Briefly, the chest was opened via the fourth left intercostal space and fluid-filled polyvinylchloride catheters were inserted into the aortic arch, pulmonary artery, left atrium, and right ventricle for pressure measurements. Furthermore, these catheters were used for blood sampling as well as for the infusion of drugs. In a subset of animals (N=13), a flow probe (14-16 mm, Transonic Systems) was positioned around the pulmonary artery for measurement of cardiac output. Catheters and electrical wires were tunneled subcutaneously to the back and the chest was closed in layers. All animals were placed in a normoxic environment and were allowed to recover, receiving analgesia (Buprenorphine 0.015 mg kg⁻¹ i.m., Fentanyl slowrelease patch 6 µg hr⁻¹) and antibiotic prophylaxis (Augmentin 25/5 mg kg⁻¹ i.v.) for 7 days. The catheters were flushed daily with heparinized saline (1000-5000 IE mL⁻¹). Five piglets died during or shortly after surgery, and four piglets were not able to perform exercise experiments due to limb infection. Finally, 19 piglets (Normoxia, N=10, 6 female piglets, 4 male piglets; Hypoxia, N=9, 5 female piglets, 4 male piglets) were included for analysis.

Experimental protocols; agonist-induced vasodilation

Studies were performed 10±1 days after surgery in both groups. Fluid-filled pressure transducers were positioned on the back of the animals and calibrated at midchest level. Baseline hemodynamic measurements were obtained in resting piglets (Normoxia, N=8, 6 female piglets, 2 male piglets; Hypoxia, N=8, 4 female piglets, 4 male piglets), consisting of heart rate, cardiac output (CO), aortic pressure (MAP), pulmonary artery pressure (PAP), left atrial pressure (LAP), and right ventricular pressure (RVP). To study the responsiveness of the vascular beds to nitric oxide (NO), we determined the hemodynamic responses to the endothelium-independent exogenous NO-donor sodium nitroprusside (SNP; 0.5-5 µg kg⁻¹ min⁻¹, i.v.) in resting swine.

Experimental protocols; exercise experiments

Controle exercise trials were performed 9±1 days after surgery in both groups with piglets exercising on a motor-driven treadmill. Fluid-filled pressure transducers were positioned on the back of the animals and calibrated at midchest level. With piglets (Normoxia, N=10, 6 gemale piglets, 4 male piglets; Hypoxia, N=9, 5 female piglets, 4 male piglets) standing on the treadmill, resting hemodynamic measurements, consisting of heart rate, cardiac output (CO), MAP, PAP, LAP, and RVP were obtained. Rectal temperature was measured, and arterial and mixed venous blood samples were collected. Subsequently, a four-stage treadmill exercise protocol was started (1-4 km h⁻¹); each exercise stage lasted 3 min. Hemodynamic parameters were continuously recorded and blood samples were collected during the last 45 sec of each exercise stage, at a time when hemodynamics had reached a steady state. After completing the exercise protocol, animals were allowed to rest on the treadmill. After 90 min of rest, two different protocols (see below) were performed in a subset of swine, on different days and in random order. The number of swine in each protocol, as well as overlap between protocols, are shown in Table 1. Excellent reproducibility of consecutive exercise trials has been reported previously.²²

Ninety minutes after piglets had undergone a control exercise trial (as described above) the NO-synthase inhibitor N^{ω} -nitro-L-Arginine (LNNA, Sigma) was administered at a dose of 20 mg kg⁻¹ i.v. in nine normoxia-exposed (6 female piglets, 3 male piglets, 19±1 days after

 Control
 LNNA
 EMD360527
 Total

 Control
 10N/9H
 9N/8H
 6N/5H

 LNNA
 9N/8H
 6N/5H

 EMD360527
 6N/5H

Table 1. Schematic representation of the overlap of swine used in the different protocols.

Bold font indicates the total number of swine in each experimental protocol.

N: normoxia, H: hypoxia

Total

10N/9H

surgery) and eight hypoxia-exposed (5 female piglets, 3 male piglets, 18±1 days after surgery and re-exposure to normoxia) piglets. Ten minutes after completion of the infusion, resting measurements were obtained and the four-stage exercise protocol was repeated.²³

On a different day (16±2 days after surgery for normoxia animals and 14±1 days after surgery and re-exposure to normoxia for the hypoxia-exposed animals), the exercise protocol was repeated, but during the second exercise protocol the phosphodiesterase-5 (PDE5) inhibitor EMD360527 (a gift from Merck, Darmstadt, Germany) was infused continuously in a dose of 300 µg kg⁻¹ min⁻¹ i.v. in six normoxia-exposed (2 female piglets, 4 male piglets) and five hypoxia-exposed (3 female piglets, 2 male piglets) piglets. Ten minutes after starting the infusion, resting measurements were obtained and the four-stage exercise protocol was performed.^{24,25}

In vitro myograph experiments

At the end of the study (4-6 weeks after re-exposure to normoxia), all piglets (Normoxia, N=10; Hypoxia, N=9) were reanesthetized and killed by inducing cardiac arrest using electromechanical dissociation of the heart. Right lungs were immediately excised and pulmonary small arteries (diameter ≈ 300 µm) were dissected out from the lower lung lobe and stored overnight placed in cold, oxygenated Krebs bicarbonate solution of the following composition (in mmol/L): NaCl 118, KCl 4.7, CaCl₂ 2.5, MgSO₄ 1.2, KH₂PO₄ 1.2, NaHCO₃ 25, and glucose 8.3; pH 7.4. The next day, pulmonary small arteries were cut into segments of ~2mm length and mounted in microvascular myographs (Danish MyoTechnology) with separated 6mL organ baths containing Krebs bicarbonate solution aerated with 95% O2-5% CO2 and maintained at 37°C. Changes in contractile force were recorded with a Harvard isometric transducer. Following a 30-minute stabilization period, a length-tension curve was constructed and the internal diameter was set to a tension equivalent to 0.9 times the estimated diameter at 20 mmHg effective transmural pressure. Vessels were then exposed to 30 mmol/L KCl twice. Endothelial integrity of pulmonary arteries was verified by observing dilation to 10 nmol/L substance P after precontraction with 100 nmol/L of the stable thromboxane A₂ analogue pyridoxalphophate-6-azophenyl-2'4'-disulfonic acid (U46619). If no vasorelaxation to substance P was observed, the vessel segment was excluded from further study. Then vessels were subjected to 100 mmol/L KCl to determine the maximal vascular contraction. Thereafter, pulmonary arteries were allowed to equilibrate in fresh Krebs solution for 30 min, before initiating different experimental protocol.²⁵

Response to vasoactive substances in vitro

After 30 minutes of equilibration in fresh Krebs, pulmonary small arteries were precontracted with 100 nmol/L U46619 before starting with one of five different experimental protocols.²⁵ Only one protocol was executed per vessel and within one protocol, all vessels were obtained from different animals.

In a first set of segments (Normoxia, N=5, 3 female, 2 male; Hypoxia, N=8, 4 female, 4 male), endothelium-dependent vasodilation to bradykinin (BK; $10^{-10} - 10^{-6.5}$ mol/L; Sigma-Aldrich, Zwijndrecht, The Netherlands) was recorded. Concentration-response curves (CRC to the PDE-5 inhibitor sildenafil ($10^{-10} - 10^{-5}$ mol/L; Sigma-Aldrich) were constructed from a second set of segments (Normoxia, N=6, 4 female, 2 male; Hypoxia, N=8, 4 female, 4 male). To study whether responses to endothelium-independent but NO-mediated vasodilation were altered by transient exposure to chronic hypoxia, CRCs to exogenous NO-donor sodium nitroprusside (SNP; $10^{-9} - 10^{-6}$ mol/L; Sigma-Adrich) were examined (Normoxia, N=9, 6 female, 3 male; Hypoxia, N=8, 4 female, 4 male). Finally, separate vessel segments were studied to determine whether impairments in smooth muscle cell relaxation to the NO second messenger, cyclic GMP, were involved in altered responses to SNP. For these studies, CRCs to 8-bromo-cyclic GMP ($10^{-7} - 10^{-3.5}$ mol/L) were measured (Normoxia, N=8, 5 female, 3 male; Hypoxia, N=8, 4 female, 4 male).

Data analysis and statistical analysis

Digital recording and off-line analysis of hemodynamics have been described previously. Pulmonary vascular conductance (PVC) was defined as CO divided by PAP minus LAP. Systemic vascular conductance (SVC) was calculated as the ratio of CO and MAP. To accommodate for the varying weights between animals and groups, CO, PVC, and SVC were indexed to body weight. Statistical analysis was performed using SPSS version 21.0 (IBM, Armonk, NY). To test whether the effect of drug intervention (change vs. control; Δ) on exercise response was different in hypoxia vs. normoxia, regression analysis was performed with FiO₂ and treadmill speed, as well as their interaction as independent variables and animal number as case label. To test for the effect of hypoxia (vs. normoxia) on endothelium-independent but NO-mediated vasodilation (SNP), General Linear Model (GLM) – Repeated Measures were used.

Vascular relaxation responses to the different vasoactive agents were expressed as percentage of contraction to U46619. Statistical analysis was performed using SPSS version 21.0 (IBM) and Prism version 5.0 (Graphpad Software, Inc., La Jolla, CA). The maximal relaxation (E_{max}) and half maximal effective concentration (EC50) in each experiment was calculated using the GraphPad Prism version 5 for Windows (Graphpad Software, San Diego, CA). Statistical analysis of maximal relaxation and EC50 was performed using nonlinear regression (log (agonist) vs. respons). Statistical analysis of maximal relaxation and EC50 was performed nonlinear regression (log (agonist) vs. respons).

Statistical significance was accepted at P \leq 0.05. Grouped data are presented as mean \pm SEM.

RESULTS

Effect of chronic exposure to hypoxia on hemodynamics at rest and during exercise

Exercise up to 4 km h⁻¹ produced a significant increase in heart rate (Figure 2A) and cardiac index (Figure 2B) both in animals raised in normoxia and hypoxia. Although MAP was slightly, but significantly, lower in hypoxia-raised piglets as compared to normoxia-raised piglets, the exercise-induced systemic vasodilatation, as measured by the decrease in SVCi, was comparable between the two groups, and minimally affected MAP in either the normoxic or the hypoxic group (Figure 2C and 2D).

Figure 2. Changes in systemic and pulmonary hemodynamics during graded treadmill exercise in normoxia (N=10, 9±1 day postsurgery) -and hypoxia (N=9, 9±1 day postsurgery and re-exposure to normoxia) exposed piglets. Relation between treadmill speed and (A) heart rate (HR), (B) cardiac index (CI), (C) mean arterial pressure (MAP), (D) systemic vascular conductance index (SVCi), (E) mean pulmonary arterial pressure (PAP) and (F) pulmonary vascular conductance index (PVCi). Values are mean \pm SEM. * P \leq 0.05 effect of exercise; † P \leq 0.05 versus controls vs.normoxia.

In the pulmonary circulation, PVCi remained constant during exercise due to the small vasodilator capacity of the lung vasculature (Figure 2F; normoxia, $16 \pm 10\%$; hypoxia, -3 ± 6). The increase in LAP during exercise, in combination with the marked increase in cardiac index, which caused an increase in the pressure drop across the pulmonary vasculature, in the face of a constant PVCi, resulted in a progressive increase in PAP with incremental levels of exercise. This exercise-induced increase in PAP was similar in both groups (Figure 2E).

Both at rest, and during incremental exercise, PAP was significantly higher in hypoxia-exposed piglets as compared to normoxia-exposed piglets (Figure 2E). PVCi was significantly lower in animals raised in hypoxia, indicative for pulmonary vasoconstriction and/or vascular remodeling (Figure 2F). Thus, exposure to chronic hypoxia in early life leads to pulmonary hypertension at rest and during exercise, even following re-exposure to normoxia.

Effect of chronic exposure to hypoxia on the NO-pathway in the pulmonary vasculature in vivo

In the systemic circulation in vivo, administration of incremental dosages of the exogenous NO-donor SNP resulted in a similar decrease in mean aortic pressure in hypoxia- and normoxia-exposed animals (Figure 3A), while heart rate, cardiac index (CI) and SVCi did not significantly change in either group (data not shown). In contrast to the systemic hemodynamic response, SNP caused a dose-dependent decrease in PAP only in normoxia-exposed piglets (Figure 3B). In hypoxia-exposed piglets, the pulmonary vasodilator response to SNP was abolished (Figure 3B), indicative for a reduced responsiveness of the pulmonary vascular bed to NO.

Administration of the NO-synthase inhibitor LNNA in vivo increased MAP and decreased SVCi to a similar extent in normoxia-exposed and hypoxia-exposed piglets, both at rest and during incremental levels of exercise (Table 2). This increase in aortic pressure

Figure 3. Effect of exogenous NO-donor sodium nitroprusside (SNP) on mean arterial pressure (MAP) and mean pulmonary artery pressure (PAP) during graded treadmill exercise in normoxia-and hypoxia-exposed piglets. Relation between SNP-dosage and (A) change in mean arterial pressure (Δ MAP; Normoxia, N = 9; Hypoxia, N = 8), and (B) change in mean pulmonary artery pressure (Δ PAP; Normoxia, N = 10; Hypoxia,N = 8). Experiments were performed 10 ± 1 days postsurgery in both groups. Values are mean \pm SEM. *P \leq 0.05 effect of SNP-dosage; \dagger P \leq 0.05 versus normoxia.

Table 2. Hemodynamics in normoxia-exposed and hypoxia-exposed piglets.

	I	- 1/	O J J						
		Normoxia				Hypoxia			
		Rest	Maximum	ΔRest	∆ Maximum	Rest	Maximum	∆ Rest	△ Maximum
			Exercise		Exercise		exercise		Exercise
H	Control	171 ± 6	289±13*	3 3 + 1/0	CC + 9C	174 ± 8	290 ± 13 *	0	25 + 14
(Beats min ⁻¹)	LNNA	147±8‡	263±19*	124 H O S	_20 ± 22	166 ± 10	267 ± 17 *	N H	+1 ± C7−
	Control	166 ± 21	221 ± 71	10±10	-4 ± 10	174 ± 42	253 ± 32 *	9±35	123 ± 104
	EMD360527	176±26	218 ± 69			183 ± 18	376 ± 78 **		
MAP	Control	92 ± 4	8 ∓ 96 3 ± 8	- 20	37	82 ± 5	85±3		3 (- 2)
(mmHg)	LNNA	127 ± 5 #	122 ± 15 ##	00 H 4	20 H 02	111 ± 4 †	120 ± 3 *#	8 / H OC	30 H Z S
	Control	102 ± 11	8 ∓ 96	4 C + 0	7	83 ± 3	91 ± 2 *	$-8 \pm 4 \S$	-19 ± 1 *†§
	EMD360527	95 ± 11 ‡	91 ± 1	n 1	\ H C -	75 ± 5 ##	72 ± 2 † ‡		
LAP	Control	4±2	8 + 3	ς -	4	4±1	7±1*	33 C + 7	+
(mmHg)	LNNA	8 ± 3 #	7 ± 4	գ Н Ն	C H	8 ± 2 ##	9±2	4 H N N	7 H 7
	Control	4±2	6 ± 4	, ,	* 1 * 5	2 ± 1	9±2*	+	+ C
	EMD360527	5 ± 2	\$\pm***	1 H 7	88 - H 0	3±1	7±2*	- Н Э	- H 7-
ū	Control	0.39 ± 0.03	0.46 ± 0.07 *	-0.11 ±	- 000	0.34 ± 0.06	0.51 ± 0.07 *	-0.06 ±	00 0 + 7 0 0
$(L min^{-1} kg^{-1})$	LNNA	$0.28 \pm 0.04 \ddagger$	$0.27 \pm 0.06 *$	0.02 §	2 + 0.0 H € 1.0 H	0.28 ± 0.05	$0.37 \pm 0.05 *$	0.03	10.1 1 + 1.01 20.00
	Control	0.31 ± 0.04	0.44 ± 0.07 *	-		0.26 ± 0.03	$0.45 \pm 0.04 *$	-	+ 0 11
	EMD360527	0.31 ± 0.03	0.48 ± 0.09 *	0.00 ± 0.02 0.04 ± 0.02	0.04 ± 0.02	0.29 ± 0.02	$0.60 \pm 0.14 **$	0.12 ± 0.12	1.0
SVCi (ml min ⁻¹	Control	4.5 ± 0.4	$5.8 \pm 0.5 *$	-2.1 ±	28+018	$3.3 \pm 0.5 + 1$	5.1 ± 0.2	0.0+11	25+038
kg ⁻¹ mmHg ⁻¹)	LNNA	2.4 ± 0.3 ‡	2.9 ± 0.4 **	0.2 §	2.0 -l	2.4 ± 0.5	2.7 ± 0.1 ‡		2.0 - 0.2 3
	Control	3.1 ± 0.1	5.3 ± 0.5 **	+ 0 7	00+00	3.2 ± 0.6	$5.0 \pm 0.5 *$	8 + 0 + 8 0	33+15
	EMD360527	3.5 ± 0.5	6.2 ± 0.4	1.0 H	0.9 ± 0.2	$4.0 \pm 0.6 \pm$	8.3 ± 2.0 **	n 	

Table 2. Hemodynamics in normoxia-exposed and hypoxia-exposed piglets. (continued)

		Normoxia				Hypoxia			
		Rest	Maximum Exercise	∆ Rest	∆ Maximum Exercise	Rest	Maximum exercise	∆ Rest	Δ Maximum Exercise
PVCi (ml min ⁻¹	Control	26.5 ± 3.6	22.0 ± 7.3	-12.8 ± 2.2 §	-13.1 ± 4.2 §	14.6 ± 1.0 † 14.9 ± 1.4	14.9 ± 1.4	-2.9 ± 5.3 ††	-8.7 ± 1.1 §
kg ⁻¹ mmHg ⁻¹)	LNNA	13.7 ± 4.5 ‡	8.9 ± 3.4 ‡			11.8 ± 4.3	$6.2 \pm 0.4 \mp$		
	Control	15.9 ± 2.5	15.1 ± 3.3	10.6 ± 5.6	10.6 ± 5.6 7.3 ± 2.3 §§	16.6 ± 3.0 16.6 ± 4.6	16.6 ± 4.6	4.5 ± 1.7 §	4.5 ± 1.7 § 10.3 ± 2.3 *§
	EMD360527	26.5 ± 5.3	22.4 ± 4.1 ##			$21.1 \pm 2.5 \ddagger$	21.1 ± 2.5		

cardiac index; SVCi, systemic vascular conductance indexed for bodyweight; PVCi, pulmonary vascular conductance indexed for bodyweight. * P < 0.05 effect of Values are means ± SEM; N=9 normoxia-exposed and N=8 hypoxia-exposed piglets in the control/LNNA group; N=6 normoxia-exposed and N=5 hypoxiaexposed piglets in the control/EMD360527 group. Maximum exercise is 4 km h⁻¹. HR, heart rate; MAP, mean arterial pressure; LAP, left atrium pressure; CI, exercise; ** P < 0.10 effect of exercise; † P < 0.05 versus normoxia; †† P < 0.10 versus normoxia; ‡ D < 0.05 versus hemodynamic value during control treadmill experiment (without vasoreactive agent); ‡‡ P ≤ 0.10 versus hemodynamic value during control treadmill experiment (without vasoreactive agent); § P ≤ 0.05 versus no difference (vs. $\Delta=0$); §§ P ≤ 0.10 versus no difference (vs. $\Delta=0$). was accompanied by a decrease in CI (Table 2). Similar to the systemic hemodynamic response, PAP markedly increased after LNNA administration in both groups (Figure 4A). This increase in PAP was the result of extensive pulmonary vasoconstriction, as evidenced by a marked decrease in PVCi (Table 2). At rest, the LNNA-induced decrease in PVCi tended to be smaller in hypoxia-exposed piglets (Table 2, Δ PVCi normoxia vs. hypoxia p=0.09), resulting in a trend toward a smaller increase in PAP in hypoxia-exposed piglets as compared to normoxia-exposed piglets (Figure 3A; Δ PAP normoxia, +17 ± 3 mmHg; hypoxia, +12 ± 3 mmHg; p=0.06). In contrast, the effect of LNNA on PAP during exercise increased significantly more in hypoxia-exposed piglets as compared to controls (Figure 4A; FiO2*exercise p=0.05).

At rest, PDE5 inhibition with EMD360527 resulted in a decrease in MAP in normoxia-exposed and hypoxia-exposed piglets (Table 2). This decrease in MAP was accompanied by an EMD360527-induced increase in SVCi, reaching statistical significance in hypoxia-exposed piglets only. The effect of PDE5 inhibition during exercise on MAP was significantly larger in hypoxia-exposed piglets as compared to normoxia-exposed pigets, resulting in a significantly lower MAP at maximal exercise in hypoxia-exposed piglets (Table 2). In the pulmonary circulation of normoxia-exposed piglets, PDE5 inhibition increased PVCi and decreased PAP to a similar extent at rest and during exercise (Table 2, Figure 4B). However, in hypoxia-exposed piglets the EMD360527-induced increase in PVCi was significantly augmented during graded treadmill exercise (Table 2; ΔPVCi rest vs maximal exercise, p=0.05). Consequently, while the decrease in PAP at rest tended to be smaller, the effect of PDE5 inhibition during exercise was significantly larger in hypoxia-exposed

Figure 4. Effect of drug intervention on mean pulmonary artery pressure (PAP) during graded treadmill exercise in normoxia- and hypoxia- exposed piglets. Relation between treadmill speed and (A) change in mean pulmonary arterial pressure (ΔPAP) after administration of NO- synthase inhibitor LNNA (Normoxia, N = 9; Hypoxia, N = 8), and (B) change in mean pulmonary artery pressure (ΔPAP) after administration of PDE5-inhibitor EMD360527 (normoxia, N = 6; Hypoxia, N = 5). LNNA-experiments were performed 18±1 (normoxia) and 19±1 (hypoxia) days postsurgery, whereas EMD360527 experiments were performed 16±2 (Normoxia) and 14±1 (Hypoxia) days postsurgery. Values are mean±SEM. *P ≤ 0.05 effect of exercise; †P ≤ 0.05 versus Normoxia.

as compared to normoxia-exposed piglets (Figure 4B; FiO2*exercise p=0.01). These data suggest an impaired cGMP production or PDE5 activity in hypoxia-exposed piglets at rest, which recovers during exercise.

Effect of chronic exposure to hypoxia on the NO-pathway in isolated pulmonary small arteries

Six weeks following re-exposure to normoxia and chronic instrumentation, responses of pulmonary small arteries were determined in vitro. There were no significant differences in concentration-dependent vasodilation to SNP in precontracted isolated porcine pulmonary small arteries from either normoxia-exposed or hypoxia-exposed piglets (Figure 5A). Also, no differences in relaxation to 8-bromo-cyclic GMP were found in pulmonary small arteries isolated from hypoxia-exposed piglets as compared to controls (Figure 5B).

Cumulative concentrations of bradykinin produced a concentration-dependent vasodilation up to 100% in precontracted isolated porcine pulmonary small arteries from both normoxia-exposed and hypoxia-exposed piglets (Figure 5C). This vasodilator response to bradykinin was significantly shifted to the right in pulmonary small arteries from hypoxia-exposed piglets as compared to normoxia-exposed controls (logEC50 normoxia-8.32±0.09M; hypoxia -7.82±0.09M; P<0.05), indicative for impaired endothelium-dependent vasodilation in hypoxia-exposed piglets (Figure 5C). These findings are in agree-

Figure 5. Vasodilator effects of different vasoactive agents in isolated pulmonary small arteries preconstricted with U46619 (100 nmol/L) from normoxia- and hypoxia-exposed piglets. Shown are the concentration-response curves to (A) exogenous NO-donor sodium nitroprusside (SNP; normoxia, N = 9; hypoxia, N = 8), (B) 8-bromo-cyclic GMP (Normoxia, N = 8; Hypoxia, N = 8), (C) bradykinin (Normoxia, N = 5; Hypoxia, N = 8), and (D) PDE5-inhibitor sildenafil (Normoxia, N = 6; Hypoxia, N = 8). Values are mean \pm SEM. \pm P ≤ 0.05 versus controls (vs. normoxia).

ment with the reduced vasoconstriction in the pulmonary vasculature in response to LNNA at rest in hypoxia-exposed piglets in vivo.

In accordance with to the smaller pulmonary vasodilator response in vivo in resting hypoxia-exposed piglets, the CRC to the PDE5 inhibitor sildenafil was significantly different in precontracted isolated porcine pulmonary small arteries from hypoxia-exposed piglets as compared to those from normoxia-exposed piglets (Figure 5D, logEC50 normoxia –7.67±0.17 M; hypoxia –7.28±0.24 M)). These data are consistent with an impaired basal cGMP production or lower PDE5 activity in pulmonary small arteries from hypoxia-exposed piglets.

DISCUSSION

The present study compared the pulmonary vascular response of normoxia-exposed control piglets and piglets with hypoxia-induced pulmonary vascular disease, both in vivo and in vitro, to determine the functionality of different parts of the NO-cGMP signaling pathway. The main findings of the present study were that (1) exposure to chronic hypoxia in early life leads to pulmonary hypertension at rest and during exercise, even following re-exposure to normoxia. (2) The exogenous NO-donor SNP produced a dose-dependent decrease in PAP in normoxia-exposed but not hypoxia-exposed piglets, indicative for a reduces responsiveness of the pulmonary vascular bed to NO in this groups. (3) eNOS inhibition with LNNA resulted in an increase in PAP that tended to be smaller at rest, and larger during exercise in hypoxia-exposed compared to normoxia-exposed piglets. (4) In vivo, the PDE5 inhibitioninduced decrease in PAP tended to be smaller at rest, while the effect of PDE5 inhibition during exercise was significantly larger in the pulmonary vasculature of hypoxia-exposed as compared to normoxia-exposed piglets. (5) In vitro, the vasodilator response to BK was significantly shifted to the right in hypoxia-exposed piglets and (6) the vasorelaxant response to the PDE5 inhibitor sildenafil was significantly blunted in precontracted isolated porcine pulmonary small arteries from hypoxia-exposed piglets as compared to normoxia-exposed piglets. However, (7) no impairments in vasorelaxation to SNP or the NO second messenger, 8-bromo-cyclic GMP, were found in pulmonary small arteries isolated from hypoxia-exposed piglets as compared to controls. The implications of the present findings are discussed below.

Animal model

Infants suffering from cardiopulmonary disorders associated with persistent or episodic hypoxia, such as BPD, are at risk for the development of PVD (including PH). Unfortunately, these patients often have a poor responsiveness to inhaled NO and alternative effective treatments for chronic PH in these patients remain largely limited. To better understand the pathophysiological mechanisms and to develop new therapies, several animal models for

neonatal PVD and pulmonary hypertension, including a neonatal swine model with hypoxia-induced pulmonary hypertension, have already been established.²⁸⁻³⁵ Swine lungs share many anatomical, histological, biochemical, and physiological features with human lungs³⁶ and the relevance of the developing pulmonary circulation of neonatal piglets to human infants has been established already in the early '80s. 37,38 Although alveolar multiplication occurs faster in piglets (2-4 weeks compared to 3 years in human infants), the morphological development of pulmonary architecture in swine is comparable with humans.³⁶ We recently developed a neonatal swine model with hypoxia-induced PH, allowing long-term follow-up for several weeks after re-exposure to normoxia.²⁰ We showed that pulmonary hypertension induced by chronic hypoxia is transient, as pulmonary artery pressure was normalized 2-3 weeks after re-exposure to normoxia particularly in female swine. However, despite normalization of PAP, structural and functional changes in the right ventricle and the lung vasculature (vascular remodeling with smooth muscle cell proliferation) persisted throughout the 6-week study period. 20 In the present study, we elaborated on these findings and showed that the structural pulmonary microvascular changes were accompanied by altered regulation of pulmonary microvascular tone both in vivo and in vitro. Unfortunately, sample size in the different experimental protocols did not allow to investigate whether sex affected the vasoreactivity of the pulmonary vasculature.

A limitation of our model is that the flow probe, that was placed around the pulmonary artery in a subset of animals to measure cardiac output in vivo, caused a significant pulmonary artery stenosis that precluded pulmonary hemodynamic as well as right ventricular structural analyses beyond 3 weeks of re-exposure to normoxia.

The NO-cGMP pathway in neonatal pulmonary vascular disease at rest

The NO-cGMP signaling pathway is important for the adjustments in the pulmonary vasculature that accompany the transition from pre- to postnatal life following birth. There is increasing evidence that alterations in the NO-cGMP signaling pathway play an important role in the pathogenesis of neonatal PVD, including PH. ^{13-15,30} In neonatal intensive care units, iNO is used as rescue therapy for preterm infants with respiratory disease undergoing ventilation. ^{4,9,39} As perinatal hypoxia impacts the NO-cGMP pathway ^{14,15,40,41}, and we have previously shown that neonatal hypoxia-induced pulmonary vascular alterations persist for several weeks following re-exposure to normoxia ²⁰, we investigated the functionality of different parts of this pathway in our model of neonatal hypoxia-induced PH. Endothelium-dependent vasodilation was impaired in isolated pulmonary small arteries from hypoxia-exposed piglets, as evidenced by a significant rightward shift of the vasodilator response to bradykinin. These data are consistent with a study showing that perinatal hypoxia results in an impaired vasodilator response to bradykinin in isolated pulmonary small arteries of lambs. ⁴¹ We have previously shown that pulmonary vasodilation to bradykinin is largely NO-dependent ⁴², suggesting that the reduced response to bradykinin reflects impaired

NO signaling. In accordance with these findings in older swine, preliminary data show that eNOS inhibition reduced the vasodilator response to bradykinin in vessels from both hypoxia-exposed piglets (N = 8, logEC50 from 7.82 \pm 0.09 mol/L to 7.70 \pm 0.42 mol/L, maximum response from 94 \pm 4% to 3 \pm 7%, P<0.05) and control (N=2, logEC50 from 8.32 \pm 0.09 mol/L to 7.29 \pm 0.25 mol/L, maximum response from 91 \pm 3% to 32 \pm 6%, P < 0.05) and abrogated the difference in response to bradykinin between groups. These data are consistent with our in vivo findings that eNOS inhibition resulted in a smaller increase in PAP and PVCi at rest in hypoxia-exposed piglets as well as with findings of previous studies in neonatal piglets with hypoxia-induced PH form other groups. Both Fike et al. and Berkenbosch et al. found an impaired production of NO, through reduced eNOS protein expression and/or activity ^{13,15} or a dysfunction/ uncoupling of eNOS ^{14,30,43} in swine following exposure to hypoxia in the early postnatal period. Timing of hypoxia and/or the animal model used may influence the effect of hypoxia on the NO-pathway. Thus, perinatal hypoxia in lambs did not affect the contribution of NO to bradykinin-induced dilatation. ⁴¹

In addition to this evidence showing an impaired NO-production in neonatal PH, a recent study by Baczynski et al. showed that the positive response rate to iNO in preterm neonates with acute PH is only 46%³⁹, suggesting disruptions in the NO-cGMP pathway more downstream to eNOS/NO-production which result in an apparent reduction the responsiveness to NO. In agreement with findings of other studies 13,43, chronic postnatal hypoxia was associated with a diminished vasodilator responsiveness to the exogenous NOdonor SNP in vivo in the present study. In contrast, there were no significant differences in concentration-dependent vasodilation to SNP in precontracted isolated porcine pulmonary small arteries from either normoxia-exposed or hypoxia-exposed piglets. A limitation of our in vitro study is that the isolated pulmonary small arteries were used after overnight storage at 4°C, and hence it could be argued that the discrepancy between the in vivo and in vitro results may originate from this overnight storage. This is, however, unlikely as cellular processes that may affect vascular function will be decelerated at 4°C. Indeed, it has been shown that over- night storage of middle cerebral arteries does not affect vascular function to a wide variety of vasoconstrictors (prostaglandin F2a, UTP), endothelium-independent (SNP, papaverine) and (partially) endothelium-dependent, receptor-mediated (noradrenaline, histamine), and endothelium-dependent, receptor-independent eNOS-mediated (L-arginine) vasodilators. 44 Furthermore, overnight storage is a standard procedure in our laboratory, endothelial function as assessed with substance P was preserved in the vessel segments from both normoxia - and hypoxia-exposed animals, and we have previously shown clear differences between pulmonary small arteries from swine with pulmonary hypertension secondary to pulmonary vein banding and healthy controls that were performed within a week of killing, and that were consistent with in vivo observations.⁴⁵

An alternative explanation for the discrepancy between our in vivo and in vitro results could be that the response of one segment of the pulmonary vasculature, that is the pulmo-

nary small arteries, in vitro does not completely reflect the response of the intact pulmonary vasculature with vessels from different sizes contributing to overall pulmonary vascular resistance responses. However, it is most likely that the discrepancy between in vivo and in vitro findings is explained by the length of re-exposure to normoxia. In vivo experiments were performed 1-3 weeks after re-exposure to normoxia, whereas piglets were killed after 4-6 weeks. Indeed, pulmonary small arteries from lambs exposed to prenatal hypoxia, that were maintained in normoxia for approximately 3 weeks following delivery showed a reduced responsiveness to SNP. 40 This reduced responsiveness to SNP was accompanied by upregulation of PDE5. Conversely, in our study, a reduced pulmonary vasodilator response to PDE5 inhibition in hypoxia-exposed piglets as compared to normoxia-exposed control piglets was present both in vivo and in vitro, which is consistent with a reduced cGMP production in piglets with hypoxia-induced pulmonary vascular disease. The effectors of cGMP-mediated vasodilation are the BK_{Ca} channels. These BK_{Ca} channels are upregulated in pulmonary vascular smooth muscle cells by exposure to hypoxia in vitro⁴⁶, and following prenatal hypoxia and postnatal normoxia in vivo. 40 However, their contribution to bradykinin-induced vasodilatation in vitro following perinatal hypoxia was reduced. 41 Altogether, evidence from literature as well as the present study suggests that the impaired endothelium-dependent vasodilation in piglets with hypoxia-induced PH in the first 3 weeks after re-exposure to normoxia is due to a reduced responsiveness to NO, probably caused by altered sensitivity and/or activity of sGC, resulting is an impaired cGMP production, which may (partially) be compensated by an increased expression of BK $_{Ca}$ channels. Our findings are consistent with previous in vivo and in vitro studies which investigated the effect of sGC activators and stimulators in acute and chronic hypoxia. Lundgren et al. showed that sGC stimulation completely reversed the pulmonary vasoconstrictor response to acute hypoxia in pigs.⁴⁷ Weissmann et al. also found a dose-dependent attenuation of acute pulmonary hypoxic vasoconstriction in isolated perfused mouse lung upon sGC stimulation.⁴⁸ Furthermore, they found that administration of the sGC activator HMR1766 during exposure to chronic hypoxia reduced pulmonary hypertension, as well as right ventricular hypertrophy and structural remodeling of the lung vasculature.⁴⁸ In addition, sGC stimulation and/or activation have been shown to inhibit or reverse the development of chronic hypoxic pulmonary hypertension in neonatal⁴⁹ and adult rats⁵⁰ and adult mice⁵¹. Our study adds important information to these previous studies by showing that alterations in the NO-pathway in a neonatal porcine model are still present several weeks after re-exposure to normoxia, and we speculate that this is due to a decrease in sGC sensitivity/activity.

The NO-cGMP pathway in neonatal pulmonary vascular disease during exercise

Exercise resulted in an increase in pulmonary artery pressure in both normoxia and hypoxiaexposed swine. Such exercise-induced increase in pulmonary artery pressure is generally

observed in quadrupeds, and much less in humans.²⁷ The main difference between the lungs of quadrupeds and humans is that the lungs of quadrupeds are located for a large part above heart level and that the entire lung is already perfused under resting conditions, whereas the large lower lung lobes of humans are at heart level, and the upper lobes are generally minimally perfused at rest. This means that recruitment of the hypo-perfused lung lobes during exercise as occurs in humans is not possible in swine, resulting in an increase in pulmonary artery pressure with an increase in cardiac output.²⁷

It is well known that the NO-cGMP signaling pathway plays an important role in exercise-induced pulmonary vasodilation.²⁷ Given the exercise intolerance in patients with pulmonary vascular disease, it is of interest to investigate the functionality of this pathway during exercise. In the present study, we are the first to investigate the effect of exercise on NO-cGMP signaling in a model for neonatal hypoxia-induced pulmonary vascular disease.

In contrast to the smaller vasoconstrictive response of the pulmonary vasculature to NOsynthase inhibition at rest, the effect of LNNA on PAP during exercise tended to be larger in hypoxia-exposed piglets as compared to controls.

Interestingly, the effect of PDE5 inhibition during exercise was significantly larger in the pulmonary vasculature of hypoxia-exposed as compared to normoxia-exposed piglets, whereas it tended to be smaller at rest. This apparent discrepancy between the findings at rest and during exercise suggests a normalization of cGMP production during exercise. Given the impaired sGC activity, this normalization may involve membrane-bound or particulate guanylyl cyclase (pGC), might be involved. The activity of pGC can be stimulated by natriuretic peptides (ANP and BNP).⁵² It is possible that the significant increase in PAP during incremental exercise causes secretion of natriuretic peptides by cardiomyocytes in response to cardiac stretch⁵³, and thus pGC activation. In support of this hypothesis, PAP and the pulmonary vssodilator effect of PDE5 inhibition were highly correlated (r²=0.82; P<0.05; Figure 6). In hypoxia-exposed piglets, PAP is significantly higher as compared to normoxia-exposed piglets, resulting in higher natriuretic peptide levels and, consequently,

Figure 6. Effect of mean pulmonary arterial pressure (PA) on the pulmonary vasodilator effect of PDE5 inhibition with EMD360527. A significant correlation between PAP and the pulmonary vasodilator effect (ΔPAP) of PDE5 inhibition (r^2 =0.82) is shown. Values are mean±SEM. * P \leq 0.05 correlation between PAP and ΔPAP.

higher pGC activity. Whether higher natriuretic peptide levels are indeed present in this animal model and act to enhance cGMP production and thereby increase the vasodilator response to PDE5 inhibition, should be tested in future experiments.

Conclusion and Implications

In conclusion, hypoxia-induced PH is accompanied by impaired endothelium-dependent vasodilation in the pulmonary vasculature. In addition to evidence for an impaired NO-production in neonatal hypoxia-induced PH, through a reduced eNOS protein expression and/or activity ^{13,15} or dysfunction/uncoupling of eNOS ^{14,30,43}, the present study provides evidence that there are disruptions in the NO-cGMP pathway more downstream to eNOS/NO. Thus, in our model for neonatal PH the impaired endothelium-dependent vasodilation was accompanied by a reduced responsiveness to NO in vivo, which may be caused by altered sensitivity and/or activity of sGC.

Our findings in a newborn animal model for neonatal pulmonary vascular disease suggests that sGC stimulators/activators could be of benefit as a novel treatment strategy to stop or even reverse neonatal pulmonary vascular disease and/or PH, especially since the use of iNO for preterm infants with respiratory failure is currently under debate.⁵⁴⁻⁵⁷

ACKNOWLEDGEMENTS

Expert technical assistance of Annemarie Verzijl is gratefully acknowledged. We would like to thank Mitchell Nuijen and Geraldine de Bruine for their assistance.

GRANTS

This work was supported in part by the Sophia Foundation for Medical Research (SSWO), The Netherlands, Grant S13-12, 2012. We gratefully acknowledge the support from the Netherlands CardioVascular Research Initiative; the Dutch Heart Foundation, the Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Science. CVON (2012-08), Phaedra.

REFERENCES

- 1. Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003;8(1):73-81.
- 2. Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641-643.
- Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr. 2013;25(3):329-337.
- Rossor T, Greenough A. Advances in paediatric pulmonary vascular disease associated with bronchopulmonary dysplasia. Expert Rev Respir Med. 2015;9(1):35-43.
- Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. *Circulation*. 2010; 122(2):156-163.
- 6. Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. *J Perinatol.* 2011;31(10):635-640.
- 7. Weismann CG, Asnes JD, Bazzy-Asaad A, Tolomeo C, Ehrenkranz RA, Bizzarro MJ. Pulmonary hypertension in preterm infants: results of a prospective screening program. *J Perinatol.* 2017;37(5): 572-577.
- 8. Khemani E, McElhinney DB, Rhein L, et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. *Pediatrics*. 2007;120(6):1260-1269.
- Berkelhamer SK, Mestan KK, Steinhorn RH. Pulmonary hypertension in bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):124-131.
- de Wijs-Meijler DP, Duncker DJ, Tibboel D, et al. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. *Pulm Circ.* 2017;7(1):55-66.
- 11. Berkelhamer SK, Kim GA, Radder JE, et al. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. *Free Radic Biol Med.* 2013;61:51-60.
- 12. McDonald LJ, Murad F. Nitric oxide and cGMP signaling. Adv Pharmacol. 1995;34:263-275.
- 13. Berkenbosch JW, Baribeau J, Perreault T. Decreased synthesis and vasodilation to nitric oxide in piglets with hypoxia-induced pulmonary hypertension. *Am J Physiol Lung Cell Mol Physiol.* 2000; 278(2):L276-283.
- Fike CD, Aschner JL, Zhang Y, Kaplowitz MR. Impaired NO signaling in small pulmonary arteries
 of chronically hypoxic newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L12441254.
- 15. Fike CD, Kaplowitz MR, Thomas CJ, Nelin LD. Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. *Am J Physiol.* 1998;274(4 Pt 1):L517-526.
- 16. Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG. Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation. *Am J Physiol.* 1997;272(5 Pt 2):H2436-2445.
- 17. North AJ, Moya FR, Mysore MR, et al. Pulmonary endothelial nitric oxide synthase gene expression is decreased in a rat model of congenital diaphragmatic hernia. *Am J Respir Cell Mol Biol.* 1995;13(6): 676-682.
- 18. Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin FC, 3rd. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. *Am J Physiol.* 1997;272(5 Pt 1):L1005-1012.

- Steinhorn RH, Russell JA, Morin FC, 3rd. Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol. 1995;268(4 Pt 2):H1483-1489.
- de Wijs-Meijler DPM, van Duin RWB, Duncker DJ, et al. Structural and functional changes of the pulmonary vasculature after hypoxia exposure in the neonatal period: a new swine model of pulmonary vascular disease. *Am J Physiol Heart Circ Physiol.* 2018;314(3):H603-H615.
- De Wijs-Meijler DP, Stam K, van Duin RW, et al. Surgical Placement of Catheters for Long-term Cardiovascular Exercise Testing in Swine. J Vis Exp. 2016(108):e53772.
- Duncker DJ, Stubenitsky R, Tonino PA, Verdouw PD. Nitric oxide contributes to the regulation of vasomotor tone but does not modulate O(2)-consumption in exercising swine. *Cardiovasc Res.* 2000; 47(4):738-748.
- 23. Houweling B, Merkus D, Dekker MM, Duncker DJ. Nitric oxide blunts the endothelin-mediated pulmonary vasoconstriction in exercising swine. *J Physiol.* 2005;568(Pt 2):629-638.
- Houweling B, Quispel J, Beier N, Verdouw PD, Duncker DJ, Merkus D. Endothelial dysfunction enhances the pulmonary and systemic vasodilator effects of phosphodiesterase-5 inhibition in awake swine at rest and during treadmill exercise. Exp Biol Med (Maywood). 2012;237(2):201-210.
- Zhou Z, de Beer VJ, de Wijs-Meijler D, et al. Pulmonary vasoconstrictor influence of endothelin in exercising swine depends critically on phosphodiesterase 5 activity. Am J Physiol Lung Cell Mol Physiol. 2014;306(5):L442-452.
- Duncker DJ, Stubenitsky R, Verdouw PD. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control. Circ Res. 1998;82(12):1312-1322.
- 27. Merkus D, de Beer VJ, Houweling B, Duncker DJ. Control of pulmonary vascular tone during exercise in health and pulmonary hypertension. *Pharmacol Ther.* 2008;119(3):242-263.
- Ananthakrishnan M, Barr FE, Summar ML, et al. L-Citrulline ameliorates chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2009;297(3): L506-511.
- Binns-Loveman KM, Kaplowitz MR, Fike CD. Sildenafil and an early stage of chronic hypoxiainduced pulmonary hypertension in newborn piglets. *Pediatr Pulmonol.* 2005;40(1):72-80.
- 30. Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Rescue Treatment with L-Citrulline Inhibits Hypoxia-Induced Pulmonary Hypertension in Newborn Pigs. *Am J Respir Cell Mol Biol.* 2015;53(2):255-264.
- Fike CD, Zhang Y, Kaplowitz MR. Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets. J Appl Physiol (1985). 2005;99(2):670-676.
- Perreault T, Berkenbosch JW, Barrington KJ, et al. TBC3711, an ET(A) receptor antagonist, reduces neonatal hypoxia-induced pulmonary hypertension in piglets. *Pediatr Res.* 2001;50(3):374-383.
- Plunkett MD, Hendry PJ, Anstadt MP, et al. Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium. J Thorac Cardiovasc Surg. 1996;112(1):8-13.
- 34. Scarborough JE, Daggett CW, Lodge AJ, et al. The role of endothelial nitric oxide synthase expression in the development of pulmonary hypertension in chronically hypoxic infant swine. *J Thorac Cardiovasc Surg.* 1998;115(2):343-348; discussion 348-350.
- 35. Camelo Jr JS, Martins AR, Rosa E, et al. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system. *Braz J Med Biol Res.* 2012;45(2):163-171.
- Rogers CS, Abraham WM, Brogden KA, et al. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L240-263.

- 37. Haworth SG, Hislop AA. Adaptation of the pulmonary circulation to extra-uterine life in the pig and its relevance to the human infant. *Cardiovasc Res.* 1981;15(2):108-119.
- 38. Haworth SG, Hislop AA. Effect of hypoxia on adaptation of the pulmonary circulation to extrauterine life in the pig. *Cardiovasc Res.* 1982;16(6):293-303.
- Baczynski M, Ginty S, Weisz DE, et al. Short-term and long-term outcomes of preterm neonates with
 acute severe pulmonary hypertension following rescue treatment with inhaled nitric oxide. Arch Dis
 Child Fetal Neonatal Ed. 2017.
- 40. Herrera EA, Riquelme RA, Ebensperger G, et al. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level. *Am J Physiol Regul Integr Comp Physiol.* 2010;299(6):R1676-1684.
- 41. Blum-Johnston C, Thorpe RB, Wee C, et al. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. *Am J Physiol Lung Cell Mol Physiol.* 2016;310(3):L271-286.
- 42. de Wijs-Meijler DPM, Danser AHJ, Reiss IKM, Duncker DJ, Merkus D. Sex differences in pulmonary vascular control: focus on the nitric oxide pathway. *Physiol Rep.* 2017;5(11).
- 43. Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. *Antioxid Redox Signal*. 2013;18(14):1727-1738.
- 44. Laing RJ, Jakubowski J, Morice AH. An in vitro study of the pharmacological responses of rat middle cerebral artery: effects of overnight storage. *J Vasc Res.* 1995;32(4):230-236.
- 45. van Duin RWB, Stam K, Cai Z, et al. Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine: a key role for endothelin. *J Physiol.* 2019;597(4):1157-1173.
- Resnik E, Herron J, Fu R, Ivy DD, Cornfield DN. Oxygen tension modulates the expression of pulmonary vascular BKCa channel alpha- and beta-subunits. Am J Physiol Lung Cell Mol Physiol. 2006;290(4):L761-L768.
- 47. Lundgren J, Kylhammar D, Hedelin P, Radegran G. sGC stimulation totally reverses hypoxia-induced pulmonary vasoconstriction alone and combined with dual endothelin-receptor blockade in a porcine model. *Acta Physiol (Oxf)*. 2012;206(3):178-194.
- 48. Weissmann N, Hackemack S, Dahal BK, et al. The soluble guanylate cyclase activator HMR1766 reverses hypoxia-induced experimental pulmonary hypertension in mice. *Am J Physiol Lung Cell Mol Physiol.* 2009;297(4):L658-665.
- 49. Deruelle P, Balasubramaniam V, Kunig AM, Seedorf GJ, Markham NE, Abman SH. BAY 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and prevents pulmonary vascular remodeling during chronic hypoxia in neonatal rats. *Biol Neonate*. 2006;90(2): 135-144.
- 50. Thorsen LB, Eskildsen-Helmond Y, Zibrandtsen H, Stasch JP, Simonsen U, Laursen BE. BAY 41-2272 inhibits the development of chronic hypoxic pulmonary hypertension in rats. *Eur J Pharmacol.* 2010;647(1-3):147-154.
- 51. Dumitrascu R, Weissmann N, Ghofrani HA, et al. Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. *Circulation*. 2006;113(2):286-295.
- 52. Kobialka M, Gorczyca WA. Particulate guanylyl cyclases: multiple mechanisms of activation. *Acta Biochim Pol.* 2000;47(3):517-528.
- 53. Wong PC, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. *Adv Physiol Educ.* 2017;41(2):179-185.

- 54. Askie LM, Ballard RA, Cutter GR, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. *Pediatrics*. 2011;128(4):729-739.
- 55. Barrington KJ, Finer NN. Inhaled nitric oxide for preterm infants: a systematic review. *Pediatrics*. 2007;120(5):1088-1099.
- 56. Cole FS, Alleyne C, Barks JD, et al. NIH Consensus Development Conference statement: inhaled nitric-oxide therapy for premature infants. *Pediatrics*. 2011;127(2):363-369.
- 57. Donohue PK, Gilmore MM, Cristofalo E, et al. Inhaled nitric oxide in preterm infants: a systematic review. *Pediatrics*. 2011;127(2):e414-422.

