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General Introduction
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Leukemia

a historical perspective

In 1845, 3 independent pathologists, Bennett, Craigie and Virchow, described leu-

kemia as a lethal disease characterized by abnormal high levels of blood cells1-3. 

Although many textbooks assign the discovery of this disease to either one of them, 

actually the French physicians Alfred Velpeau and Alfred Francois Donné made the 

first clinical and microscopic descriptions of this disease in 1827 and 1844, respec-

tively4,5. Nevertheless, it was the German pathologist Rudolf Virchow who provided 

this condition in 1847 with its rightful name, leukemia (derived from the greek words 

leukos and heima, meaning white blood)1. Indeed, leukemia is a cancer of the blood, 

characterized by uncontrolled accumulation of immature white blood cells.

Pathogenesis of leukemia

The formation of blood cells (hematopoiesis) is a balanced process of proliferation, 

differentiation and cell survival that mainly occurs in the bone marrow. In case of 

leukemia, uncontrolled expansion of immature malignant cells will harm the main-

tenance of a healthy blood cell population, and results in anemia (red blood cell 

deficiency), internal bleeding (platelets deficiency) and increased risk for infections 

(normal white blood cell deficiency). Further malignant expansion will drive the 

leukemic cells into the peripheral blood circulation and eventually lead to organ 

infiltration including spleen, liver and kidney. Without treatment, leukemia is a lethal 

disease.

types of leukemia

All different types of blood cells are derived from a common ancestor, the he-

matopoietic stem cell (HSC), which only comprises about 0.01-0.05% of the total 

bone marrow population. These self-renewing and pluripotent HSCs can differentiate 

either into lymphoid or myeloid committed stem cells. The lymphoid stem cells will 

eventually differentiate into B- or T-lymphocytes, whereas myeloid cells will differ-

entiate towards monocytes, macrophages and granulocytes (neutrophils, eosinophils 

and basophils), or towards megakaryocytes, platelets and erythrocytes. Based upon 

their cell of origin, leukemias are divided into lymphoid and myeloid leukemia. Lym-

phoid leukemias are further subdivided into T- and B-lineage leukemias, whereas 

the several subgroups of myeloid leukemia depend on the myeloid cell of origin. 

Finally, both lymphoid and myeloid leukemias can be further subdivided into acute 

and chronic leukemias. Acute leukemias are characterized by rapid progression 

and accumulation of immature malignant cells. They mostly occur in children and 

young adults and can be fatal within weeks or months without immediate treatment. 
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Chronic leukemias develop more slowly and involve more mature blood cells. They 

mainly occur in older people and immediate treatment is not required as therapy is 

often postponed to ensure maximum treatment efficiency.

childhood acute lymphoblastic leukemia (aLL)

In general, leukemia is the most common form of childhood cancer, representing 

about 30 percent of all cancers in children. Acute lymphoblastic leukemia (ALL) is 

the most prevalent type, accounting for approximately 80-85% of childhood leuke-

mias, whereas acute myeloid leukemia (AML) represents about 15-20%6,7. About 120 

children with ALL and 20 children with AML are diagnosed yearly in the Netherlands. 

The peak incidence of childhood ALL is situated between 3 and 5 years of age.

t-ceLL acute LYmPHoBLastic Leukemia (t-aLL)

T-ALL is an aggressive malignancy of thymocytes that mainly develops in children 

but can also affect adults8. Pediatric T-ALL accounts for about 15 percent of ALL cases 

and has been associated with an inferior outcome compared to pediatric B-ALL. 

Current T-ALL treatment schedules, mainly consisting of multi-agent combination 

chemotherapy, provide overall event-free survival rates of about 75% in children, 

whereas in adults these survival rates only reach 30 to 40%. In addition, T-ALL 

patients tend to relapse earlier compared to B-lineage ALL7,8.

On the immunophenotypic level, leukemic cells from T-ALL patients are typically 

positive for cytoplasmatic CD3 and surface CD7, and show variable expression of 

other T-cell-associated antigens like CD2, surface CD3, CD4, CD5, CD8 and CD1a9-11. 

In addition, a number of very immature T-ALL cases also show aberrant expression 

of myeloid-associated antigens including CD13 and CD33. The expression of these 

antigens does not seem to have any impact on treatment outcome12-14.

Genetic rearrangements identified in leukemic cells of T-ALL patients often involve 

the T-cell receptor genes (TCR), TCRα/δ or TCRβ. During normal T-cell development, 

maturating T-cells rearrange their TCR genes in order to generate a wide variety of 

different TCR chains15,16. These gene rearrangement processes are highly vulner-

able to recombination errors, thereby creating TCR-associated translocations. These 

translocations result in oncogene activation due to juxtaposition of a TCR enhancer 

element in the proximity of a T-cell specific proto-oncogene8,17-19. TCR-mediated 

translocations occur in about 35% of T-ALL patients and this percentage is still grow-

ing given the regular identification of novel TCR translocations.

Extensive research on the genetics of T-ALL during the last years has elucidated a 

large number of other, non TCR-mediated, genetic lesions in T-ALL, including other 
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chromosomal translocations, inversions, cryptic deletions, duplications, amplifica-

tions and mutations8,17-19. The main mutational target in T-ALL is NOTCH1, mutated 

in more than 50% of patients20. An in-depth overview of T-ALL genetics is provided 

in chapter 2.

GeNetics

conventional cytogenetics and fluorescent in situ hybridization (FisH)

Cytogenetics, which studies chromosomes and chromosomal abnormalities, has 

evolved intensively during the past decades. At first, conventional karyotyping, 

based upon chromosome banding, allowed the identification of a large number 

of structural chromosomal abnormalities in a wide variety of malignancies. One 

of the first observations was the association of an additional copy of chromosome 

21 with Down’s syndrome21. In terms of hematology research, the identification of 

the Philadelphia chromosome in 1973 became a milestone in the understanding of 

leukemia genetics22. However, the limited resolution of conventional chromosome 

analysis triggered the search for new genetic techniques that could detect more 

cryptic rearrangements that are easily missed by conventional cytogenetics.

Fluorescent in situ hybridization (FISH) is a technique that may enable the verifi-

cation of the rearrangement status of specific chromosomal regions. It makes use of 

specific probes, covering particular chromosomal loci, which are hybridized on cells. 

This technique became a valuable addition to conventional karyotyping and allowed 

detection of specific chromosomal translocations, inversions, deletion or amplifica-

tions23,24. However, this analysis depends on the availability of adequately working 

FISH probes in the genomic region of interest and is only capable of investigating a 

few genomic regions simultaneously23,24.

comparative genome hybridization (cGH) and array-cGH

General principle

Comparative genome hybridization (CGH) is a method developed for the comparison 

of copy number changes (i.e. amplification and/or deletions) between tumor DNA 

versus normal reference DNA. Differential labeling of both DNAs using a differ-

ent fluorescent label, for example Cy3 and Cy5, and hybridization on methaphase 

spreads from a normal individual allows for the measurement of the fluorescent 

ratio along each chromosome. This way, genomic regions of relative gain and loss 

can be visualized in the tumor DNA sample25,26. This technique has been shown to 

be a valuable tool for the identification of new genomic imbalances in a number of 
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hematological malignancies27,28. However, the limited resolution of about 5-10 Mb 

has remained the major drawback for this genome comparison technique.

On April 14, 2003, the Human Genome Project was completed29, providing great 

opportunities for the improvement of CGH resolution. This publicly accessible 

genome project, which claimed the identification of nearly the complete human 

genome, provided large-insert clone libraries of bacterial artificial chromosomes 

(BAC-clones) that were assembled into overlapping contigs by sequencing30,31. This 

know-how could be used to replace the methaphase chromosome slides with ar-

rays containing BAC-clones precisely mapped onto the human genome and spotted 

robotically onto glass slides. Therefore, the resolution was no longer limited to 

5-10 Mb, but depended on the size and the number of sequences present on the 

array. The experiments that used this type of technology were first reported in 1997 

as matrix-CGH32 and in 1998 as array-CGH33, the term that is currently used for 

this genome-wide copy number screening assay. Similar to conventional CGH, the 

fluorescent ratios are measured for each clone and plotted relative to the clone’s 

position along the genome.

Depending on the DNA sequences used for the construction of the arrays, differ-

ent array-CGH platforms have been introduced in the past. BAC array-CGH platforms 

used large-insert BAC clones containing human DNA inserts of about 50-200 kb. 

Due to the relative long DNA sequences present on each spot, this type of arrays 

produced high signal-to-noise ratio’s and were considered as the most reliable array-

CGH platform in the first years after the introduction of this novel method34,35. How-

ever, in recent years, array technology has progressed rapidly and there has been a 

significant trend towards increased numbers of spots and shorter DNA hybridization 

targets. Especially the introduction of oligonucleotide arrays36,37 provided enormous 

opportunities to further increase the resolution of array-CGH analyses. A number of 

commercial platforms have used advanced printing technologies to reliably spot up 

to 244,000 probe sets on a single glass slide, and it is expected that within a couple 

of years this number of spots will be increased further. These developments will 

further increase array-CGH resolution up until a couple of thousand base pairs. In 

addition, this will provide opportunities for high-throughput array-CGH analysis in 

which multiple samples can be analyzed on a single glass slide with a reasonable 

resolution, further reducing the price for a single experiment. In the last couple 

of years, numerous reports have shown that array-CGH is a reliable tool for the 

detection of new genetic deletions and/or amplifications in different hematological 

malignancies38-41.

Approximately at the same time as array-CGH was implemented successfully in a 

large number of laboratories, the possibility of using Single Nucleotide Polymorphism 

(SNP) chips for the assessment of DNA copy number alterations was discovered42. 
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Although these SNP arrays were originally developed for the detection of specific 

base compositions present at a particular SNP locus, the intensity information of 

these arrays can be used to determine the copy number of specific genomic loci. 

In contrast to array-CGH, in which 2 DNA samples are co-hybridized, SNP arrays 

are hybridized with a single DNA sample. An important advantage of this technol-

ogy is the ability to detect uniparental disomy (UPD), a phenomenon in which 2 

copies of a chromosome, or part of a chromosome, originate from a single parent 

through duplication and replacement of the other copy43-46. Using SNP array analysis, 

genomic regions that show UPD are visualized by successive homozygous SNPs in 

combination with 2 copies of that specific genomic locus. Therefore, UPD remains 

undetected using array-CGH technology. Recently, SNP array platforms have been 

used successfully to identify numerous novel genetic lesions and chromosomal 

regions of UPD in different hematological malignancies, including ALL47-49.

Large-scale copy number variation in the human genome

Besides the clear benefits of array-CGH technology in terms of disease related ge-

netic research, the introduction of this genome-wide screening technique also had 

great impact on our understanding and knowledge of genomic variation between 

healthy individuals. Before the array-CGH era, variation in the human genome was 

thought to be mainly present at the single nucleotide level through the occurrence 

of SNPs. However, this idea was challenged in 2004 by two independent studies that 

analyzed the genomes of healthy individuals using array-CGH and found that more 

than 100 genomic regions differed between individuals with respect to the number 

of copies present of a specific DNA fragment50,51. These copy number variants (CNV) 

are currently defined as DNA segments, longer than 1 kb, with a variable copy 

number compared to a reference genome. After the first landmark studies on the 

occurrence of CNVs in humans, the knowledge on structural variation has improved 

rapidly, mainly through large-scale projects that used high-density oligonucleotide 

or SNP arrays to map structural variation in different populations52. Currently, a 

number of publicly available databases try to collect CNV data from different human 

variation studies. For example, the Database of Genomic Variants (http://projects.

tcag.ca/variation) currently assembled 6482 CNV entries from 40 different published 

studies.

It is clear that studies on the variation in the human genome are extremely im-

portant with regard to the use of array-CGH for the linkage of specific copy number 

alterations to a particular disease phenotype. Indeed, the identification of specific 

genomic regions of gain or loss in patients with a certain malignancy could originate 

from the genetic variation between the two individuals tested, rather than being 

disease related. Therefore, it is mandatory that array-CGH studies that identify new 
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genetic aberrations, confirm that these specific abnormalities are acquired genetic 

events, for example by analyzing the patients’ remission material.

outLiNe oF tHis tHesis

T-ALL is an aggressive T-cell malignancy with an inferior treatment outcome com-

pared to B-lineage ALL. Intensive T-ALL research efforts during the last years lead to 

the identification of multiple genetic abnormalities that cooperate in the malignant 

transformation of thymocytes. Currently and in contrast to B-lineage ALL, genetic 

abnormalities are clinically not used for therapy stratification. Further progress 

on the treatment of T-ALL will require further genetic characterization, which will 

provide us with a better understanding of the pathogenesis of T-ALL and hopefully 

will lead to improved treatment schedules. As the general scope of this thesis, we 

performed genome-wide copy number analysis using array-CGH for the identifica-

tion of novel genomic rearrangements in T-ALL that possibly relate to treatment 

outcome, i.e. prognostic factors, or provide further insight in the pathogenesis of 

T-cell leukemia.

In Chapter 2 we provide a review on the genetics of T-ALL. In the first part, we 

discuss the different genetic abnormalities and their respective target genes that are 

currently associated with T-cell leukemia and propose a new classification of these 

genetic defects into ‘Type A’ and ‘Type B’ abnormalities. Mutations that occur in 

a mutually exclusive manner and probably delineate specific T-ALL subtypes are 

denoted as type A mutations, whereas other mutational events that are shared by 

various subtypes and may synergize with type A mutations during T-cell patho-

genesis are denoted as type B mutations. These type B mutations affect genes that 

normally play a role in cell cycle regulation, self-renewal and T-cell commitment, 

(pre)TCR signaling, T-cell differentiation or lead to the aberrant activation of tyrosine 

kinases. In the second part, we provide an overview of genome-wide copy number 

analysis on 107 genetically well-characterized T-ALL patients. We discuss all recur-

rent genomic lesions together with their potential genes of interest in relation to the 

major genetic subgroups in T-ALL.

Chapter 3 describes the identification of a cryptic deletion, del(11)(p12p13), 

as a new mechanism of LMO2 activation in pediatric T-ALL. Detailed molecular-

cytogenetic analysis revealed that this deletion activates the LMO2 oncogene in most 

of the del(11)(p12p13)-positive T-ALL patients, mainly through deletion of negative 

regulatory sequences upstream of LMO2. The relation to other recurrent cytogenetic 

abnormalities, the immunophenotypic characteristics and clinical outcome of T-ALL 

cases with this new cryptic abnormality is discussed.
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This negative regulatory region of LMO2 is a relatively small domain comprised 

by a region of approximately 3000 base pairs. We assumed that our initial screening 

for cryptic LMO2 deletions using FISH may have been unsuccessful to detect rela-

tively small deletions upstream of LMO2 including this negative regulatory element. 

Chapter 4 describes the development of an LMO2 specific MLPA assay to detect 

even smaller deletions upstream of the LMO2 oncogene. Using this approach, we 

identified one additional T-ALL case with an LMO2 deletion that remained unde-

tected in our previous FISH analysis. In this chapter, we also investigate the relation 

between mono- or biallelic LMO2 expression and the presence of specific LMO2 

rearrangements in T-ALL.

Elevated expression of HOXA genes is a hallmark of a specific T-ALL subgroup 

that includes MLL-rearranged, CALM-AF10 translocated and inv(7)(p15q34) positive 

cases. In Chapter 5, we combined gene expression profiling and array-CGH analysis 

to detect a new and recurrent molecular cytogenetic abnormality in T-ALL patients 

that co-clustered with well-defined HOXA-activated T-ALL samples. We describe the 

cloning of the recurrent SET-NUP214 fusion product in these samples, and identify 

the mechanism by which SET-NUP214 can activate the HOXA gene cluster as poten-

tial leukemogenic event in T-ALL.

In collaboration with the research group of Dr. Jan Cools (Leuven, Belgium), 

we identified a duplication of the MYB oncogene by means of array-CGH, which 

is described in Chapter 6. Screening of our pediatric T-ALL cohort by quantita-

tive PCR analysis revealed that this MYB duplication was present in about 8% of 

pediatric T-ALL cases. A role for MYB duplications in the pathogenesis of human 

T-ALL is investigated through specific down regulation of MYB expression. MYB 

is evaluated as a potential new therapeutic target in human T-ALL by studying the 

potential synergism between MYB down regulation and inhibition of NOTCH1, the 

main mutational target in T-ALL20.

In Chapter 7, we specifically focus on TLX3 rearranged pediatric T-ALL patients 

and use array-CGH to identify new chromosomal imbalances that may provide further 

insight in the development of TLX3 mediated T-cell leukemia. All genomic lesions 

are discussed in relation to potential target genes and known genetic aberrations, 

including NOTCH1 mutations, NUP214-ABL1 amplifications and mono-/biallelic 

CDKN2A/CDKN2B deletions.

Another part of the research focused on leukemia associated NF1 inactivation in 

pediatric T-ALL patients that lack evidence for neurofibromatosis. Neurofibromatosis 

type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the 

NF1 gene. NF1 patients have a higher risk to develop juvenile myelomonocytic leu-

kemia (JMML) and acute myeloid leukemia (AML). In chapter 8, we identify somatic 

NF1 microdeletions as a cryptic genetic abnormality in T-ALL patients that did not 
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have any clinical evidence of NF1. Subsequent mutation analysis was performed to 

identify potential mutations in the remaining NF1 allele, and to confirm a role for 

NF1 as a bona fide tumor-suppressor gene in T-ALL. In addition, we investigated 

if NF1 microdeletions were exclusively present in T-ALL or represented a general 

leukemogenic mechanism also present in other types of leukemia, including AML 

and B-lineage ALL.

In T-ALL, a number of genetic defects are only detected in a limited percentage 

of leukemic cells, indicating that they probably reflect a progression marker, rather 

than an initiating leukemogenic event. In chapter 9 and chapter 10, we describe 

examples of such genetic abnormalities that only occur in a subclone of the leuke-

mic T-ALL population. Chapter 9 illustrates the identification of a new and recurrent 

9q34 duplication present in 33 percent of pediatric T-ALL samples. This duplication 

was studied in relation to other 9q34 abnormalities in T-ALL, including NUP214-ABL1 

amplifications and activational mutations in NOTCH1. This chapter demonstrates that 

the 9q34 region is genetically unstable in T-ALL. In chapter 10, we show that FLT3 

mutations in pediatric T-ALL are rare, and mainly occur in immature T-ALL cases as 

a subclonal event.

In chapter 11, we provide a summary and general conclusions on the work pre-

sented in this thesis and speculate on future directions in T-cell leukemia research. 

Chapter 12 contains a brief summary of this thesis in Dutch.
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aBstract

Pediatric T-cell ALL is an aggressive malignancy of thymocytes that accounts for 

about 15 percent of ALL cases and for which treatment outcome remains inferior 

compared to B-lineage acute leukemias. In T-ALL, leukemic transformation of matu-

rating thymocytes is caused by a multistep pathogenesis involving numerous genetic 

abnormalities that drive normal T-cells into uncontrolled cell growth and clonal 

expansion. In this review, we provide an overview of the current knowledge on 

onco- and tumor suppressor genes in T-ALL and suggest a classification of these 

genetic defects into type A and type B abnormalities. Type A abnormalities occur in 

a mutually exclusive manner and may delineate distinct molecular-cytogenetic T-ALL 

subgroups, whereas type B abnormalities are found in all major T-ALL subgroups 

and may synergize with these type A mutations during T-cell pathogenesis. In ad-

dition, we review our genome-wide copy number data on 107 T-ALL patients and 

discuss all recurrent genomic lesions in T-ALL together with their potential genes of 

interest and possible link towards leukemogenesis.
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iNtroDuctioN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymo-

cytes that is diagnosed in children, adolescents and adults. Although this neoplastic 

disorder originates in the thymus, it metastasises throughout the body and is rapidly 

fatal without therapy. Current treatment, mainly consisting of multi-agent combina-

tion chemotherapy, provides an overall survival rate of ~70% in children, whereas in 

adults the long-term survival rate only reach 30 to 40%1.

Leukemic transformation of immature thymocytes is caused by a multistep patho-

genesis involving numerous genetic abnormalities that drive normal T-cells into 

uncontrolled cell growth and clonal expansion. A wide variety of genetic events 

affecting cellular processes like the cell cycle, differentiation and survival have thus 

far been identified in T-ALL and result in developmental arrest in nearly all stages of 

T-cell maturation in the thymus. In normal T-cell development, lymphoid progeni-

tor cells migrate from the bone marrow towards the thymus, where mature T-cell 

receptor (TCR) αβ or γδ positive T-cells develop from a common CD4-CD8- double 

negative progenitor cells (reviewed in2-4 and figure 1).

Many of the genes that are involved in chromosomal rearrangements in T-ALL 

become activated due to disturbances in the rearrangement process of the T-cell 

receptor genes (TCR). Other genes become activated or inactivated due to the pres-

ence of specific point- or insertion/deletion mutations, or are affected by somatic 

copy number variations, i.e. amplifications and/or deletions. Many of these genes 

normally play important roles in T-cell commitment and differentiation or control 

important checkpoints in T-cell development that warrant for the selection of proper 

antigen specificity5. In this review, we provide an overview of the current literature 

on onco- and tumor suppressor genes in T-ALL. We have distinguished between 

mutations that occur in a mutually exclusive manner, probably delineating specific 

T-ALL subtypes (denoted as “type A” mutations), and other mutational events that 

are shared by various of the subtypes and that may synergize with type A mutations 

during T-cell pathogenesis (denoted as “type B’ mutations). These type B mutations 

affect genes that normally play a role in cell cycle regulation, self-renewal and 

T-cell commitment, (pre)TCR signaling, T-cell differentiation or lead to the aberrant 

activation of tyrosine kinases.

Recently, a number of studies showed that large-scale genome wide screening 

using microarray-based comparative genomic hybridisation (array-CGH) or single 

nucleotide polymorphism (SNP) arrays are valuable tools for the identification of 

novel genetic aberrations that are associated with specific types of leukemia6-10. In 

this review, we present our genome-wide copy number analyses on 107 genetically 

well-characterized T-ALL patients. All recurrent genomic lesions in the various T-ALL 
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subgroups will be discussed including potential genes of interest and their possible 

leukemogenic role.

1. type a abnormalities delineate specific subgroups in t-aLL

Over the last years, great progress has been made in unravelling molecular-genetic 

abnormalities in T-ALL, including chromosomal translocations, deletions, amplifica-

tions, duplications and mutations11-14. A number of these genetic events occur in a 

mutually exclusive manner, and it is believed that they delineate distinct molecular-

cytogenetic T-ALL subgroups. These abnormalities include defects that result in 
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Figure 1. Schematic representation of normal T-cell development. 

The earliest phases of T-cell development can be subdivided according to the expression of CD38 and CD1a 

membrane markers while still lacking expression of either CD4 and/or CD8, i.e. the double-negative (DN) 

stages. It is believed that T-cells that express CD34, but lack CD38 and CD1a expression (DN1: CD38-, CD1a-) 

are not yet committed to the T-cell lineage and may still be able to differentiate towards B cells, dendritic cells or 

natural killer cells165. Commitment to the T lineage is characterized by upregulation of CD38 (DN2: CD38+, 

CD1a) and CD1a (DN3: CD38+, CD1a+) expression and depends on signals from the thymic microenvironment 

like IL7 and c-KIT ligand166. 

 

 

Figure 1. Schematic representation of normal T-cell development.

The earliest phases of T-cell development can be subdivided according to the expression of CD38 

and CD1a membrane markers while still lacking expression of either CD4 and/or CD8, i.e. the 

double-negative (DN) stages. It is believed that T-cells that express CD34, but lack CD38 and CD1a 

expression (DN1: CD38-, CD1a-) are not yet committed to the T-cell lineage and may still be able 

to differentiate towards B cells, dendritic cells or natural killer cells165. Commitment to the T lineage 

is characterized by upregulation of CD38 (DN2: CD38+, CD1a) and CD1a (DN3: CD38+, CD1a+) 

expression and depends on signals from the thymic microenvironment like IL7 and c-KIT ligand166.

During the early double negative stages, T-cell progenitors start to rearrange their TCR β, γ and δ loci 

by V(D)J recombination at similar time points, whereas TCR α rearrangements occur at later stage 

of pre T-cell maturation167. This V(D)J recombination process, in which joining of diversity segments 

(D) to joining segments (J) is followed by the fusion of variable segments (V) V to already joined DJ 

elements warrants almost unlimited diversity of the TCR chains towards antigens168. At this point, the 

choice between the αβ or γδ lineage takes place. Next, the selected TCR β chains associates with pTα 

and CD3 on the cell surface to form the pre-T-cell receptor (pre-TCR) complex (DN3). Although this 

complex lacks CD4 and CD8, it is capable of initiating T-cell signaling, leading to clonal expansion 

and proliferation169. After a TCRα gene rearrangement, a mature αβTCR will be expressed on the 

surface of the developing T-cell. These T-cells will be educated by positive and negative selection at 

the double positive stages (DP; CD4+/CD8+) which is crucial to distinguish between self and foreign 

antigens4. Finally, these CD4+/CD8+ thymocytes will undergo transition towards single positive (CD4+ 

or CD8+) mature T-cells.
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ectopic expression of TAL1, TAL2, LMO1, LMO2, LYL1, TLX1, TLX3, MYB and HOXA 

genes, or generate specific fusion products including CALM-AF10, MLL-ENL and SET-

NUP2149,11-21. These genetic defects mainly function by facilitating differentiation 

arrest at specific stages of T-cell development and will be further denoted in this 

review as ‘type A’ mutations. Various micro-array studies led to the establishment of 

specific expression profiles for several of these ‘type A’ subgroups17,20,22. These stud-

ies pointed to overlapping expression profiles for subgroups with TAL1, TAL2, LMO1 

and LMO2 abnormalities. These genes normally participate in the same transcriptional 

complex (see below), and may together form the TAL/LMO subgroup. Also, CALM-

AF10, MLL-rearrangements, inversion 7 positive patients and SET-NUP214 positive 

T-ALL patients share a similar expression profile that is characterized by the activa-

tion of the cluster of HOXA genes17,20. T-ALL cases with these abnormalities are now 

recognized as the HOXA subgroup. Other type A mutations including TLX1, TLX3, 

and MYB have each been shown to have a unique gene expression profile15,17,20,22 

(table 1).

Table 1. Overview type A and B abnormalities in T-ALL

Genetic T-ALL subgroups

TAL/LMO TLX1 TLX3 HOXA MYB

TAL1 TLX1 TLX3 HOXA MYB

Type A TAL2 CALM-AF10

abnormalities LMO1 MLL

T cell differentiation LMO2 SET-NUP214

bHLHB1

Type B1
Cell cycle

Type B2
NOTCH

Type B3
(pre)TCR

Type B4
differentiation

Type B5
Other kinases

CDKN2A NOTCH1 LCK MYB 
duplication

ABL1

Type B CDKN2B FBXW7 RAS JAK2

abnormalities CYCLIND2 PTEN FLT3

Calcineurin

Type B1
Cell cycle

Type B2
NOTCH

Type B3
(pre)TCR

Type B4
differentiation

Type B5
Other kinases

ATM FBXW7 NFKB1 MYB none

Type B RB1 cMYC TCF1

abnormalities p27KIP CTCF SYK

array-CGH NFKB1 PTEN

NF1
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Deregulation of the TAL/LMO transcription complex: the TAL/LMO subgroup

Basic helix-loop-helix (bHLH) transcription factors share a 60 amino acid HLH motif 

that includes a dimerization domain and a DNA binding domain for specific E-box 

sites23. Class A bHLH proteins like E2A (E12/E47) and HEB control the expression 

of various genes that are involved in V(D)J recombination of the TCR genes. E2A 

knockout mice develop aggressive T-cell lymphomas24, indicating that disruption of 

E2A/HEB function may represent an important mechanism in human T-ALL. How-

ever, genetic rearrangements in human T-ALL directly affecting E2A or HEB have not 

been described.

Another class of bHLH proteins, i.e. class B type of bHLH proteins, include TAL1, 

TAL2, LYL1, and bHLHB1. These proteins function as transcriptional co-factors 

that form complexes with E2A/HEB23. TAL2 is not expressed during normal T-cell 

development, whereas LYL1 and TAL1 expression in mice are restricted to the earliest 

double-negative stages of T-cell maturation25. Class B bHLH members are predomi-

nantly targeted by chromosomal rearrangements in T-ALL mostly due to miss rear-

rangements of the TCRα/δ or TCRβ loci. Consequently, the aberrant juxtaposition of 

these genes in the vicinity of TCR enhancers may result in their ectopic expression. 

TAL1 activation in childhood T-ALL results from the t(1;14)(p32;q11) or variant t(1;7)

(p32;q35) or from a small interstitial deletion placing the protein coding domains 

of the TAL1 gene under the control of the promoter region of the SIL gene26. TAL2 

and bHLHB1 can also be activated by the rare translocations t(7;9)(q34;q32)21 and 

t(14;21)(q11;q22)27, respectively.

For function, bHLH family members also bind to members of the LIM-domain only 

(LMO) gene family. Class B bHLH and LMO proteins participate in a single transcrip-

tion complex that inhibits E2A function28-32. The LIM domain only genes LMO1 and 

LMO2 are also frequently targeted in T-ALL by chromosomal translocations t(11;14)

(p13;q11), t(7;11)(q35;p13), t(11;14)(p15;q11) or t(7;11)(q35;p15), leading to high 

activation of LMO1 or LMO233. Recently, we identified an interstitial deletion, i.e. the 

del(11)(p12p13), that functions as an alternative mechanism for LMO2 activation in 

T-ALL. This intra-chromosomal deletion leads to the loss of a negative regulatory 

domain directly upstream of the LMO2 gene and results in elevated LMO2 expres-

sion9. Loss of this negative regulatory domain has now also been suggested to drive 

ectopic LMO2 expression in LMO2 translocations34. LMO1 is not expressed during 

T-cell development, whereas LMO2 expression, like TAL1 and LYL1 expression, is 

confined to the most immature T-cell development stages in mice25. Inhibition of an 

E2A enforced cell proliferation block may represent the most predominant function 

for the TAL/LMO transcription complex and could explain synergy of bHLH and LMO 

genes in T-cell pathogenesis29.
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the TLX1 t-aLL subgroup

TLX1 is a class II homeobox gene that is normally involved in spleen development 

but is not expressed during normal T-cell development. In about 5% of pediatric 

T-ALL cases, TLX1 is activated through the translocations t(7;10)(q34;q24) or t(10;14)

(q24;q11) in which TCRα/δ or TCRβ regulatory sequences drive TLX1 expression35. 

TLX1 positive T-ALL cases share a highly similar gene expression profile that shows 

arrest at the early cortical, CD1-positive thymocyte stage22. This differentiation arrest 

was recently confirmed by a study in which retroviral TLX1 expression in differ-

entiating murine and human thymocytes caused a block in T cell differentiation 

prior to the DP thymocyte stage36. TLX1 positive T-ALL has been associated with 

a favorable outcome, possibly due to a low expression of anti-apoptotic proteins 

characteristic for this early cortical differentiation stage22 or a high expression of 

genes involved in cell growth and proliferation22,37. In addition, this subset has also 

been associated with elevated expression levels of the glucocorticoid receptor22 that 

may explain the enhanced sensitivity towards dexamethasone38. Murine studies con-

firmed that overexpression of TLX1 in bone marrow cells induced T-cell leukemia 

after a long latency period, indicating that additional genetic hits are required for 

T-cell leukemogenesis39.

TLX1 expression has occasionally been reported in T-ALL cases in the absence 

of TLX1 rearrangements, indicating that alternative mechanisms like promoter 

demethylation or trans-activating mechanism may be responsible for this aberrant 

gene expression40. However, the current controversy on TLX1 expression in the 

absence of genetic rearrangements may be due to differences in the sensitivity of 

TLX1 expression quantification methods. We found a strict correlation between TLX1 

expression and the presence of TLX1 rearrangements41. Also in a recent study, high 

TLX1 expression was associated with genomic rearrangements at the TLX1 locus and 

a good prognosis, whereas low TLX1 expression was observed in a heterogeneous 

T-ALL subgroup frequently characterized by other type A abnormalities without 

prognostic relevance42.

the TLX3 t-aLL subgroup

Ectopic expression of TLX3, another class II homeobox gene, is present in about 20% 

of childhood T-ALL patients43. TLX3 expression is mostly due to the cryptic transloca-

tion t(5;14)(q35;q32), juxtaposing TLX3 to BCL11B, a gene expressed during T-cell 

maturation19. Like TLX1, TLX3 is not expressed during normal T-cell development. 

A number of alternative TLX3 translocations have been described, including t(5;14)

(q32;q11)44, involving the TCRα/δ locus, and t(5;7)(q35;q21), involving the CDK6 

gene45. TLX3 positive T-ALL has been associated with poor outcome in some studies, 

but this effect was not confirmed in other studies41,46,47, possibly due to differences 
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in treatment protocols or differences in additional cooperating genetic aberrations. 

TLX3 positive T-ALL patients are recognized as a single cluster in gene expression 

profiling studies17,22. However, the link towards T-cell differentiation is inconclusive. 

Some TLX3 positive cases are restricted to the γδ lineage, while others have an 

immature immunophenotype41. However, these patients never show a mature im-

munophenotype from the αβ lineage41.

the HOXA t-aLL subgroup

In a previous micro-array study17, 3 different molecular-cytogenetic abnormalities 

tightly clustered into a T-ALL subgroup sharing an expression profile that was 

characterized by elevated expression levels of members of the HOXA gene cluster. 

This subgroup of patients was characterized by CALM-AF10 translocations, MLL-

rearrangements or inversions on chromosome 7, i.e. the inv(7)(p15q35)17.

The chromosomal inversion inv(7)(p15q35) has been observed in about 3% of 

T-ALL cases17,48. This inversion results in the relocation of the HOXA gene cluster 

in the vicinity of the TCRβ locus enhancer, possibly boosting expression of the 

entire HOXA gene cluster. These cases show a mature immunophenotype that can 

originate from both αβ or γδ lineage17,18.

The CALM-AF10 fusion gene is caused by a recurrent translocation, t(10;11)

(p13;q14), which is found in both T-ALL and AML patients49. This observation is 

in line with murine studies in which retroviral CALM-AF10 expression induced 

leukemias showing both myeloid and lymphoid characteristics50. The CALM-AF10 

fusion is detected in about 10% of childhood T-ALL and has been associated with 

poor prognosis41,51. All of these patients have an immature or γδ-positive T-cell im-

munophenotype51. HOXA gene activation by CALM-AF10 depends on the recruit-

ment of the histone H3 methyltransferase hDOT1L by the AF10 motion52. hDOT1L 

was shown to be a crucial factor for cellular transformation that prevents nuclear 

export of CALM-AF10 and activates HOXA5 expression through specific histone H3 

methylation on residue K7952.

Rearrangements of the MLL gene, situated on chromosome 11q23, are frequently 

identified in infant ALL and AML53. MLL fusions are only detected in a small subset 

(<1%) of pediatric T-ALL54 and are associated with maturation arrest at a γδ-positive 

differentiation stage55. The expression profile of MLL rearranged T-ALL also shows 

activation of the HOXA cluster of genes like CALM-AF10 positive cases55,56. Like 

CALM-AF10, both MLL-AF1057 and MLL-ENL58 also interacts with the H3K79 methyl-

transferase hDOT1L resulting in the activation of the HOXA cluster.

In a recent study, we combined gene expression profiling and array-CGH analysis to 

identify 5 T-ALL cases with an HOXA gene signature that lacked MLL-rearrangements, 

CALM-AF10 translocations and the inv(7)(p15q35). In 3 out of these 5 pediatric T-ALL 



Molecular-genetic insights in pediatric T-cell acute lymphoblastic leukemia 31

cases, a new recurrent deletion, the del(9)(q34.11q34.13), was identified resulting in 

a conserved SET-NUP214 fusion product20. A similar fusion product was previously 

described for a single acute undifferentiated leukemia patient having a reciprocal 

translocation t(9;9)(q34;q34)59 and more recently in a single case of AML60. SET-

NUP214 functions as a transcription co-factor that binds in the promoter regions of 

specific HOXA genes, i.e. HOXA9 and HOXA10, where it interacts with CRM1 and 

the H3K79 methyltransferase hDOT1L. Methylation of the histone H3 backbone is 

accompanied by histone H3 acetylation in the promoter regions of all HOXA gene 

members as identified in the SET-NUP214 positive cell line LOUCY. This possibly re-

sults in an “open state” chromatin structure that allows binding of other transcription 

regulators and eventually leads to the activation of the entire HOXA gene cluster. In 

our study20, 2 additional T-ALL cases with a HOXA gene signature that lack any of the 

HOXA related rearrangements, as mentioned, above were identified, indicating that 

other HOXA activating mechanisms await identification in T-ALL.

From a therapeutic point of view, the recruitment of hDOT1L by SET-NUP214 

is of particular interest since this methyltransferase has previously been implicated 

in HOXA activation by CALM-AF10, MLL-AF10 and MLL-ENL mediated leukemias 

(see above). Since hDOT1L seems to be the common factor in the leukemogenic 

HOXA activation for these different fusion genes, further research could focus on 

the potential of hDOT1L as a therapeutic target in the treatment of SET-NUP214, 

MLL-AF10, MLL-ENL and CALM-AF10 mediated leukemias.

the MYB t-aLL subgroup

The t(6;7)(q23;q34) was recently identified as a novel recurrent translocation in 

T-ALL that results in the activation of the MYB oncogene through rearrangement 

with the TCRβ locus15. This MYB translocation was predominantly identified in very 

young children and may define a new and unique T-ALL subgroup based upon gene 

expression profiling. At this point, it is unclear at which stage of T-cell development 

these MYB translocated cases become arrested15.

2. shared genetic abnormalities among t-aLL subgroups: type B 
abnormalities.

Various genetic abnormalities that have been identified in T-ALL are found in all major 

T-ALL subgroups. These abnormalities will be denoted as type B abnormalities, and 

affect genes that are involved in cell cycle (type B1 mutations), self-renewal (type 

B2 mutations), TCR signaling pathway (type B3 mutations), T-cell differentiation 



C
h
ap

te
r 

2

32

(type B4 mutations) or lead to the activation of tyrosine kinases (type B5 mutations) 

(table 1).

Genetic abnormalities affecting the cell cycle (type B1 mutations)

The cell cycle is a tightly regulated process, in which a number of checkpoints 

control the coordination between cell growth, cell division and differentiation (as 

reviewed in61). Major regulators of the cell cycle are summarized in figure 2.

Homozygous or heterozygous inactivation of the genomic CDKN2A and CD-

KN2B loci, that are located in tandem at chromosome 9p21, is the most frequent 

genetic abnormality identified in T-ALL62. In up to 90% of cases, the CDKN2A/2B 

loci are inactivated through cryptic deletions, promoter hypermethylation, inactivat-

ing mutations or (post)-transcriptional modifications63-65. The CDKN2A and CDKN2B 

loci encode for p16 and p15, respectively, and act as inhibitors of the cyclinD/

cyclin-dependent kinase CDK4 proteins (INK4). The CDKN2A locus also encodes 

for the alternative p14ARF product which is a negative regulator of HDM2 as part 

of the p53-regulatory circuitry. Therefore, deletion of CDKN2A and CDKN2B not 

only promotes uncontrolled cell cycle entry, but also disables the p53-controlled cell 

cycle checkpoint and apoptosis machinery. CDKN2A and CDKN2B deletions are not 

restricted to T-cell leukemia but reflect a general mechanism in cancer.

Apart from inactivation of cell cycle regulators, overexpression of cyclins may 

similarly promote uncontrolled cell cycle entry. In the translocation, t(7;12)(q34;p13), 

as identified in a number of childhood T-ALL cases, the cyclin D2 gene is positioned 

in the vincinity of the TCRβ locus resulting in ectopic cyclin D2 levels66. Since some 

of these patients also demonstrated homozygous loss of CDKN2A/CDKN2B of cell 

cycle may synergize on multiple levels in the leukemic conversion of a cell.

activation of the NOTCH1 pathway (type B2 mutations)

NOTCH1 is a transmembrane receptor that plays a major role in normal hematopoi-

esis as an early transcription factor and regulates self-renewal of stem-cells and 

lineage commitment of lymphoid progenitor cells towards T-cell development67. 

Inactivation of NOTCH1 signaling in lymphoid progenitor cells in mice results in 

almost exclusive B-cell development at the expense of T-cells68-70. In the reciprocal 

setting, constitutive activation of NOTCH1 inhibits B-cell development and promotes 

extrathymic T-cell development71,72.

NOTCH1 is synthesized as a single precursor protein (pre-NOTCH) which re-

quires a proteolytic cleavage step resulting in an extracellular subunit that dimerizes 

to the transmembrane/intracellular subunit of NOTCH1. Upon binding of ligands, 

NOTCH1 undergoes several successive proteolytic cleavages leading to the release 

of intracellular NOTCH (ICN)68. ICN is transported to the nucleus where it mediates 
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the expression of various target genes including HES1, HEY1, cMYC, PTCRα, DEL-

TEX114,73-75 and members of the NFκB pathway76. At the protein level, activation of 

NOTCH1 can cause phosphorylation of multiple signaling proteins in the mTOR 

pathway, indicating that NOTCH1 may also regulate the activity of the mTOR path-

way77 .Figure 2.2 
 

 

 

 

 

Figure 2. Schematic representation of the human cell cycle.

Mitogenic signals will initiate and activate the interaction between cyclins and cyclin-dependent 

kinases (CDK). These cyclin-CDK complexes cause phosphorylation of RB1 after which RB1 is 

unable to bind and repress the E2F transcription factors113 and the ABL1 tyrosine kinase170. Initiation 

of E2F will relieve the G0/G1 cell cycle arrest, whereas release of ABL1 will restore the its ability to 

react at DNA damage in the cell170,171. The INK4 proteins, p15, p16, p18 and p19, the KIP proteins, 

p27 and p57, and the CIP1/p21 protein, all inhibit the activity of these cyclin-CDK complexes and 

therefore keep the cells in an inactive state. Upon detection of cellular DNA damage, activation of 

ATM will cooperate with activated ABL1 tyrosine kinase in upregulating expression of the p53 tumor 

suppressor gene110,172. Next, p53 will initiate transcriptional activation of CDKN1A, which encodes 

p21. This CDK inhibitor will cause cell cycle arrest allowing DNA repair or apoptosis in case of 

irreversible DNA damage. The activity of p53 is regulated by HDM2, which mediates its degradation, 

whereas the ARF protein, p14, inhibits HDM2 activity112.

Proteins that are targeted by genetic defects and therefore have potential roles in the development 

of T-ALL are depicted in black. This overview is based upon the Kyoto Encyclopedia of Genes and 

Genomes (Kegg Pathway database).
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A specific role for NOTCH1 in human T-ALL was previously postulated due to 

its involvement in the rare chromosomal translocation, t(7;9)(q34;q34.3), coupling 

the intracellular part of NOTCH1 to the T-cell receptor-β locus78. Activating NOTCH1 

mutations have now been identified in more than 50% of T-ALL samples resulting 

in constitutive NOTCH signaling79. NOTCH1 mutations affect the heterodimeriza-

tion (HD) domain and the C-terminal PEST domain. It was postulated that point 

mutations in the HD domain enhance the accessibility for proteolytic cleavage by 

gamma-secretase leading to ligand independent cleavage of NOTCH1 and release of 

ICN. Truncating mutations, as predominantly identified in the PEST domain, result in 

the removal of so-called Cdc phosphodegron domains (CPDs), which are normally 

involved in the degradation of ICN by the proteasome-complex. PEST domain muta-

tions therefore lead to the stabilization of ICN. One of the proteins that binds to 

CPDs, thereby priming ICN for degradation, is the F-box protein FBXW7. FBXW7 is 

an E3-ubiquitin ligase that also regulates the half-life of other proteins including Cy-

clinE, cMYC and cJUN. About 20% of T-ALL patients harbor mutations in both the HD 

and PEST domain of NOTCH179. In one study, the presence of activating NOTCH1 

mutations has been associated with a favorable early treatment response80.

Great interest exists in the inhibition of NOTCH1 signaling by gamma-secretase 

inhibitors (GSIs) as a potential therapeutic strategy in T-ALL. These small molecules 

interfere with the proteolytic cleavage of the receptor, inhibiting the release of ICN to 

the nucleus. GSIs induce growth arrest in some T-ALL cell lines and cause prolonged 

cell cycle arrest and apoptosis in primary T-ALL cells79,81. Unfortunately, a clinical trial 

using GSI-based therapies in T-ALL has thus far been unsuccessful due to limited 

toxicity on leukemic blasts in vivo and the emergence of serious side effects like 

severe gastrointestinal toxicity82-84.

In a number of T-ALL cell lines, sustained ICN levels were detected upon GSI 

treatment, indicating that these cell lines posses a mechanism of GSI resistance79. 

In addition, some T-ALL patients show activation of the NOTCH1 pathway in the 

absence of NOTCH1 mutations. From these data it was hypothesized that other 

mechanisms for NOTCH1 activation/stabilization should exist in human T-ALL. In-

deed, some of the GSI resistant T-cell lines demonstrated inactivating mutations in 

FBXW785-88. Heterozygous FBXW7 point mutations were also identified in 8-30% of 

T-ALL patients, and can occur in combination with NOTCH1 HD mutations. In that 

case, FBXW7 inactivation may complement the weak transcriptional activation of 

NOTCH1 HD mutations87. In contrast, FBXW7 mutations have not been observed 

in combination with PEST mutations85-88, indicating that NOTCH1 PEST mutations 

may relieve the mutational pressure of the FBXW7 gene87. FBXW7 mutations render 

FBXW7 inactive to prime target proteins including NOTCH1 for proteosomal degra-

dation. FBXW7 mutations therefore represent an alternative mechanism for NOTCH1 
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Figure 3. Schematic representation of the (pre)-T-Cell Receptor signaling pathway.

After antigen stimulating of the TCR-CD3 complex, the SCR proteins, LCK and FYN, are activated. 

These tyrosine kinases catalyze phosphorylation of tyrosine residues in the immunoreceptor tyrosine 

based activation motifs (ITAM) of the TCR-CD3 complex leading to recruitment of ZAP70 and PI3K173. 

Besides direct activation through LCK, ZAP70 can also be triggered indirectly by ABL1104,105. Activated 

ZAP70 subsequently phosphorylates SLP76 and LAT, after which LAT interacts with PLCγ1 to hydrolyse 

PIP
2
 into DAG and IP

3
174. IP

3
 induces the release of intracellular Ca2+, which initiates calcineurin 

phosphatase activity. Active calcineurin dephosphorylates NFAT resulting in the translocation of 

NFAT to the nucleus175. Activated DAG will interact with PKC (not shown) to activate RAS, which 

will lead to ERK (not shown) activation and increased MAPK signaling176. PI3K is the other kinase 

(besides ZAP70) that is recruited through the TCR-CD3 complex. PI3K induces phosphorylation of 

PIP
2
 to PIP

3
, which cause activation of AKT and eventually lead to activation of the NFKB pathway177. 

PTEN has the exact opposite function of PI3K as it dephosphorylates PIP
3
 into PIP

2
178. Finally, 

nuclear NFAT will cooperate with activated RAS/MAPK and NFKB signaling to trigger the activation 

of multiple transcription factors, which will eventually lead to T-cell proliferation, differentiation, or 

the induction of a T-cell immune response.

Proteins that are targeted by genetic defects and therefore have potential roles in the development of 

T-ALL are depicted in black. Since the NFKB pathway is deregulated indirectly (through NOTCH176 

or TAL1179) in T-ALL, it is depicted in grey. Proteins that are targeted by genetic defects and therefore 

have potential roles in the development of T-ALL are depicted in black. Interplay between pathways 

that are deregulated in T-ALL pathogenesis is shown on the left panel of the figure. Both NOTCH1 

and E2A regulate the expression of the preTCRα gene. The NOTCH pathway can be activated through 

NOTCH1 or FBXW7 mutations, whereas E2A is inhibited through TAL or LMO activation. This 

overview is based upon the Kyoto Encyclopedia of Genes and Genomes (Kegg Pathway database).
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activation in T-ALL. The combined presence of FBXW7 and NOTCH1 mutations has 

been associated with good treatment response in T-ALL patients86.

Subclonal duplications of the chromosomal region 9q34, which includes NOTCH1, 

are present in about 30% of pediatric T-ALL patients8. Although there is no clear 

relationship between the presence of NOTCH1 mutations and this 9q34 abnormality, 

duplication of this genomic region could induce subtle changes in NOTCH1 gene 

expression levels and contribute to global NOTCH1 activation in T-ALL.

Genetic defects in the (pre)tcr signaling pathway (type B3 mutations)

In normal T-cell development, various checkpoints warrant for a proper selection 

of T-cells with high affinity for foreign antigens without specificity for self-antigens 

(reviewed in89). One such important checkpoint is the β-selection which depends 

on signals generated through a primitive TCR complex, i.e. the preTCR complex. 

This complex consists of a rearranged TCRβ-chain, a surrogate TCRα chain called 

pre-Tα (pTα) and CD3 accessory molecules. Signals generated through this com-

plex lead to the activation of a cascade of signaling molecules and eventually lead 

to the downstream activation of the RAS-MAPK pathway, the PI3K-AKT pathway, 

the PLCγ-calcineurin-NFAT pathway and others (reviewed in90,91; figure 3). Multiple 

components of the (pre)TCR signaling pathway are targeted by either mutations 

or chromosomal rearrangements in T-ALL indicating that the (pre)TCR pathway or 

downstream components play an important role in T-cell leukemogenesis.

LCK is a member of the SRC family of tyrosine kinases which is highly expressed in 

T-cells and plays a central role in the initiating events of (pre)TCR signaling92 (figure 

3). In a few T-ALL cases, a translocation, t(1;7)(p34;q34), has been described causing 

ectopic LCK expression through rearrangement with the TCRβ locus93.

The RAS protein is involved in the transmission of TCR signaling from the mem-

brane receptor molecules to the ERK protein. However, RAS is also involved in a 

variety of other signal transduction pathways and is commonly mutated in a wide 

variety of malignancies94. In T-ALL, activating RAS mutations have been identified in 

4-10% of cases95-97. T-ALL patients with activated RAS could potentially benefit from 

additional treatment with RAS inhibitors like farnesylthiosalicylic acid.

The PTEN phosphatase has been identified as an important regulator of down-

stream (pre)TCR signaling, that directly opposes the activity of the phosphor-inosital-3 

kinase (PI3K). PTEN dephosphorylates PIP
3
 into PIP

2 
thereby functioning as a nega-

tive regulator of the AKT pathway (figure 3). Independent from activation following 

(pre)TCR stimulation, PTEN is negatively regulated by NOTCH198. Homozygous 

PTEN inactivation through frameshift and non-sense mutations have been found in 

17% of primary T-ALL patient samples98, and revert the sensitivity of T-ALL cell lines 

for GSI treatment. Inactivation of PTEN was associated with activation of the PI3K-



Molecular-genetic insights in pediatric T-cell acute lymphoblastic leukemia 37

AKT pathway resulting in enhanced cell size, glucose uptake and proliferation98. 

Since PTEN mutations were also identified in relapse samples while being absent at 

diagnsosis, PTEN inactivation could represent a progression marker rather than an 

initiating event in T-ALL. Albeit providing resistance for NOTCH1 inhibition by GSIs, 

PTEN mutant T-cell lines were still sensitive for AKT inhibition, providing a rational 

for combined NOTCH1- and PI3K-AKT- directed therapeutic approaches in human 

T-ALL.

Calcineurin is a phosphatase, with an important role in (pre)TCR signaling. 

(Pre)TCR activation results in a calcium-dependent activation of the phosphatase 2A 

(PP2A/calcineurin) leading to dephosphorylation and nuclear translocation of the 

transcription factor NFAT. Sustained calcineurin activity has been identified in mouse 

models of T-cell leukemia induced by TEL-JAK2 or ICN. Interestingly, this sustained 

calcineurin activity was rapidly lost when cells were maintained in culture, and it 

was concluded that specific signals from the tumor microenvironment are required 

to maintain calcineurin activation. Treatment of TEL-JAK2 or ICN leukemic mice 

with calcineurin inhibitors restored normal hematopoiesis and induced apoptosis of 

leukemic cells99. Although these preclinical data provide a rationale to use calcineu-

rin inhibitors as a new therapeutic strategy in T-ALL, detailed studies on primary 

samples are required to clarify which molecular subtypes have sustained calcineurin 

activity.

additional deregulation of t-cell differentiation (type B4 mutations)

Apart from MYB translocations, a second type of genomic abnormality involving 

the MYB locus was recently identified, ie. duplications of the MYB oncogene, pres-

ent in about 8% of T-ALL cases15,100. For reasons that are poorly understood, MYB 

duplications in contrast to MYB translocations do not represent a unique T-ALL 

entity, as MYB duplications were identified in T-ALL patients with different type 

A mutations15,100. Interestingly, functional analyses revealed that MYB expression is 

required to block differentiation in MYB duplicated T-ALL cell lines100. Since MYB 

duplications occur in combination with other genetic rearrangements that contribute 

to T-cell differentiation arrest (TAL/LMO, TLX1, TLX3, HOXA), different genetic aber-

rations can cooperate in the complete deregulation of T-cell maturation in T-ALL. 

Combined inhibition of MYB and NOTCH1 showed strong effects on cell prolifera-

tion and viability of T-ALL cell lines, indicating that MYB could act as a novel target 

for therapy in T-ALL100.

activation of other tyrosine kinases (type B5 mutations)

In T-ALL, ABL1 is involved in various molecular-cytogenetic abnormalities including 

the episomal NUP214-ABL1 amplification that is identified in about 6% of cases, 
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and results in the formation of a variable number of ABL1 gene copies16. Other 

variant ABL1 aberrations with a very low incidence have been identified in T-ALL, 

including the gene fusions ETV6-ABL1, EML1-ABL1 and BCR-ABL1101,102. For most 

T-ALL patient samples, NUP214-ABL1 is only detected in a limited percentage of 

leukemic cells, indicating that it may represent a relatively late genetic event in T-ALL 

that probably reflects a progression marker. The various ABL1 fusion products are 

constitutively phosphorylated and lead to an aberrant tyrosine kinase activation and 

excessive proliferation. This constitutive ABL1 activation can be reverted by imatinib, 

a tyrosine kinase inhibitor, and these patients may therefore benefit from additional 

imatinib treatment103. Apart from a role in the DNA damage response pathway, ABL1 

also acts in the (pre)TCR signaling cascade104,105 (figure 3). Therefore, genetic ABL1 

rearrangements could also lead to the deregulation of (pre)TCR signaling in T-ALL.

JAK2 encodes for the Janus tyrosine kinase 2, which is involved in cytokine 

signaling. The ETV6-JAK2 fusion gene was identified in a t(9;12)(p24;p13) positive 

T-ALL patient, resulting in constitutive tyrosine kinase activity106. The leukemogenic 

role of this fusion protein was subsequently shown in an ETV6-JAK2 mouse model, 

which developed T-cell leukemias with high penetrance107.

Activating mutations in the FLT3 gene are the most common genetic aberration in 

AML. Internal tandem duplications in the juxtamembrane domain or point mutations 

in the activation loop of the tyrosine kinase domain lead to a constitutive activated 

state of the FLT3 tyrosine kinase. In T-ALL, FLT3 mutations are rare and, in some 

patients, only present in leukemic subclones108,109 indicating that FLT3 mutations may 

represent a T-ALL progression marker rather than an initiating event.

3. Genome-wide copy number analysis of 107 pediatric t-aLL patients 
in relation to t-aLL subgroups

During the last years, large-scale genome-wide screening techniques including array-

CGH and SNP-arrays have evolved rapidly in terms of quality and resolution. Recent 

studies, mainly focusing on B-ALL patients, confirmed that such a SNP-array based, 

high resolution genomic screening approach provides valuable information on new 

genes that may play important roles during the pathogenesis of leukemia6,7,10. Array-

CGH analysis of T-ALL patients have proved successful over the last years, and led to 

the identification of various new abnormalities including the del(11)(p12p13) lead-

ing to LMO2 activation9 and the del(9)(q34.11q34.13) resulting in the SET-NUP214 

fusion gene20 that are part of TAL/LMO and HOXA subgroups, respectively. Also, 

other abnormalities have been identified that are shared by various T-ALL subgroups 

including the duplication of MYB15,100 and duplication of 9q348.
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Figure 2.4  

Figure 4. Genome-wide copy number analysis of 107 pediatric T-ALL patients in relation to 

T-ALL subgroups.

Overview of array-CGH data on 107 genetically well-characterized T-ALL patients including TAL1 

(n=11), LMO2 (n=8), LMO1/TAL2 (n=3), MYC (n=2), TLX3 (n=21), TLX1 (n=8), CALM-AF10 (n=5), 

SET-NUP214 (n=3), MLL (n=2), inv(7) (n=1) and unknown (=43) cases. Deletions are visualized in 

red, whereas amplifications are shown in blue.
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Here, we will review our array-CGH data for 107 molecular-cytogenetically well-

characterized pediatric T-ALL samples. The patient cohort consisted of samples 

from various T-ALL subgroups, including TAL/LMO (n=24; TAL1 (n=11), LMO2 

(n=8), LMO1/TAL2 (n=3), MYC (n=2)), TLX3 (n=21), TLX1 (n=8), HOXA (n=11; 

CALM-AF10 (n=5), SET-NUP214 (n=3), MLL (n=2) and inv(7) (n=1)). The remaining 

43 patient samples lack rearrangements at any of these loci and are denoted as 

“unknown” cases. Recurrent genetic lesions, as observed in this patient cohort and 

different from those already discussed in the previous part, will be discussed with 

their potential genes of interest (summarized in Figure 4, Table 1 and 2). Most of the 

genetic abnormalities that were identified as a single case observation are not further 

discussed in detail.

type B1 mutations: Deregulation of cell cycle

ATM induces a cell cycle arrest following cellular DNA damage (figure 2)110, and 

genetic variants of the ATM gene have been associated with susceptibility to T-ALL111. 

In one TLX3 and one unknown T-ALL patient, we identified a cryptic deletion on 

chromosome 11, del(11)(q14.1q22.3), for which the breakpoints were situated in 

the ATM gene. Therefore, rearrangements of the ATM gene could contribute to the 

deregulation of the cell cycle and response to DNA damage in T-ALL.

The RB1 gene plays a crucial role in the progression through the cell cycle. Mi-

togenic signals that generate active cyclin-CDK complexes lead to phosphorylation 

of RB1 and consequently cell cycle progression (figure 2)112-114. In two T-ALL patients 

(TLX3 and unknown), large deletions of the long arm of chromosome 13, cover-

ing RB1, were identified. In addition, two other T-ALL cases (TLX1 and unknown) 

harbored cryptic interstitial deletions targeting the RB1 gene. Therefore, RB1 is a 

potential target gene on chromosome 13 and RB1 inactivation may contribute to cell 

cycle deregulation in T-ALL.

p27/KIP1 is an inhibitor of cyclin-CDK complexes that functions as an important 

negative regulator of cell cycle. Loss of p27/KIP1 could contribute to uncontrolled 

cell cycle activity. Deletions on the short arm of chromosome 12 are frequently 

detected in a wide range of hematological malignancies. A recent genome-wide copy 

number analysis showed 12p deletions in about 25% of B-ALL cases and suggested 

the TEL gene as the main target of this genomic abnormality6. In our T-ALL cohort, 

12p deletions were identified in about 10% of cases of various T-ALL subgroups, 

including LMO2 (n=1), TLX3 (n=1), TLX1 (n=3), CALM-AF10 (n=1), MLL (n=1) and 

unknown (n=4). However, the minimal deleted region, which was about 600 kb in 

size, included the CDKN1B gene (encoding p27/KIP1), but not the TEL gene.
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type B2 mutations: Deregulation of the NOTCH1 pathway

Apart from point mutations in the FBXW7 gene, as described above, we identi-

fied a heterozygous and cryptic deletion on the long arm of chromosome 4, del(4)

(q31.3q32.1), of about 2.5 Mb in size that included the FBXW7 gene in a single TLX3 

T-ALL case.

Amplifications of the complete or part of the chromosome 8 occurred in about 

8% of T-ALL patients. This genetic defect was present in LMO2 (n=1), TLX3 (n=1), 

CALM-AF10 (n=1) and unknown (n=5) patients, indicating that there is no link to 

a specific genetic subtype. Since TCR-mediated cMYC translocations have been de-

scribed in T-ALL and cMYC has been shown to represent an important downstream 

target of activated NOTCH1115,116, cMYC, which is present in the minimal amplified 

region, could be the potential target gene of these chromosome 8 amplifications. 

However, this genomic region contains too many genes to make a valid prediction 

of potential oncogene(s).

Cryptic deletions on chromosomal band 16q22.1 were identified in TLX3 (n=3) 

and unknown (n=1) T-ALL cases. In AML, this genomic region is recurrently targeted 

by cytogenetic abnormalities including an inversion, inv(16)(p13q22), a transloca-

tion, t(16;16)(p13q22) and a deletion, del(16)(q22)117. The inv(16) and t(16;16) both 

result in a CBFB-MYH11 fusion gene, which is associated with a more favorable 

prognosis118. In contrast, the deletion del(16)(q22) does not provide a favorable out-

come and it remains to be elucidated whether CBFB is targeted in the 16q deletions 

in AML119. In the T-ALL patients, the minimal deleted region on 16q22.1 contained 21 

genes but lacked the CBFB gene. One interesting candidate gene in this genomic re-

gion is CTCF, which is a conserved transcriptional repressor of the MYC oncogene120. 

Therefore, inactivation of CTCF could represent an alternative mechanism for MYC 

activation in T-ALL.

type B3 mutations: Deregulation of the (pre)tcr pathway

The NFkB pathway is an important regulator of cell survival and cell cycle, and 

deregulation of this pathway has been implicated in a variety of human cancers121. 

T-cell transformation by human T-cell leukemia virus type I involves deregulation 

of NF-kB signaling122. The NFkB pathway is one of the key transcriptional factors 

activated by (pre)TCR engagement, and is important for proliferation, differentiation, 

and survival of T-cells (figure 3)123. T-cell specific overexpression of v-Rel, a viral 

NFKB pathway component, leads to the development of T-cell tumors in mice124. 

Also, NFkB can synergize with transgenic Notch3 to induce T-cell lymphoma125-127. 

Recently, NFKB2 was identified as one of the downstream target genes of NOTCH1, 

and inhibition of the NFkB pathway efficiently restricted tumor growth both in vitro 

and in vivo128.
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In our array-CGH screen, we identified a recurrent deletion on chromosome 4, ie. 

del(4)(q23q24), in 2 unknown T-ALL cases. The minimal deleted region was approxi-

mately 3 Mb in size and contained the NFKB1 gene. These data, in combination with 

the previously established link between T-ALL and NFkB, provide a rational for a 

future mutational screening of NFKB1 and other components of the NFkB pathway, 

in T-ALL.

Terminal or interstitial deletions of all or part of the long arm of chromosome 

5 were present in 5 unknown T-ALL cases and a single CALM-AF10 case. Similar 

deletions have been observed in about 15% of human myelodysplastic syndrome 

(MDS) that progressed into secondary AML129,130, in which loss of the CTNNA1 tumor 

suppressor gene was suggested as the prime target of these deletions131. The minimal 

deleted area of the 5q deletions in our T-ALL cohort did not comprise the CTNNA1 

gene, providing evidence for the presence of another tumor suppressor gene in 

this area. One of the candidate genes may be the TCF1/TCF7 gene, which is a 

T-cell-specific transcription factor that regulates CD3α gene expression132. Therefore, 

TCF1/TCF7 inactivation could potentially deregulate TCR signaling and thymocyte 

differentiation. In mice, TCF1/TCF7 inactivation leads to a block in the double-

positive stage of T-cell differentiation133.

Complete 9q amplifications were identified in 4 T-ALL patients (TLX1, CALM-

AF10, MLL and unknown), whereas one other patient (unknown) showed a small 

region of amplification at 9q22.1-9q22.31. This minimal amplified region con-

tained 26 genes and included the spleen tyrosine kinase SYK. This protein kinase is 

homologous to ZAP70 and is activated upon TCR stimulation134. Therefore, constitu-

tive SYK activation may lead to the constitutive activation of downstream (pre)TCR 

signaling cascade.

A recurrent deletion at chromosome 10, del(10)(q23.2q23.31), was identified in 2 

unknown T-ALL cases and included the PTEN tumor suppressor gene135. The role of 

mutated PTEN in T-ALL has been described above.

NF1 is a negative regulator of the RAS signaling pathway136 and therefore NF1 

inactivation could act as an alternative RAS activation mechanism. We identified 

NF1 micro deletions on chromosome 17 in a TLX3 and an unknown T-ALL patient 

without clinical evidence for neurofibromatosis. Both patients showed truncation 

mutations on the remaining NF1 allele, confirming potential NF1 inactivation as an 

alternative RAS activation mechanism in these T-ALL cases137.

Loss/gain of microrNa clusters

MicroRNAs are a recently discovered class of small ( 22nt) endogenously expressed 

translational-repressor RNAs that play key roles in many cellular pathways. Several 

lines of evidence suggest that microRNAs may play important roles in the pathogenesis 
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of human cancer138. Moreover, it has been suggested that for different cancer types, 

microRNA expression profiling can distinguish between tumor samples and their cor-

responding tissue of origin139. In our genome wide copy number analysis in T-ALL, 

a number of genomic deletions and/or amplifications were identified that contain 

known microRNA clusters. Therefore, deregulated expression of specific microRNAs 

could potentially contribute to development of T-cell leukemia.

As discussed in the first part of this review, deletions of the short arm of chromo-

some 9 are frequently detected in T-ALL. Although there is great variation between 

these 9p deletions, both in size as well as copy number, the main target of this dele-

tion is thought to be the INK/ARF locus. However, this genomic region also harbors 

the microRNAs mir-491 and mir-31. Deletions of 12p that cover the CDKN1B gene 

were identified in about 10% of cases. Moreover, the minimal deleted area also 

covers the microRNAs miR-613 and miR-614. It would be interesting to investigate 

if these microRNAs are expressed during normal T-cell development, and whether 

alterations in their expression levels could contribute to T-ALL pathogenesis.

Deletions on chromosome 13 may target the RB1 gene. Two other T-ALL patients 

(one TLX3, one unknown) defined a chromosome 13 minimal deleted region contain-

ing the miR-15/miR-16a cluster. Similar deletions were recently identified in B-ALL, 

indicating that these genetic defects could have a general role in the pathogenesis 

of ALL6. In CLL, inactivation of this miR-15/miR-16a cluster leads to BCL2 activation, 

providing enhanced cell survival140. Therefore, it would be interesting to investigate 

whether in T-ALL (and B-lineage ALL), BCL2 is a target of this microRNA cluster.

Large 13q amplifications were observed in 3 unknown T-ALL patients and included 

the miRNA cluster miR-17-92, consisting of 6 different microRNAs, and the single 

microRNAs, miR-622 and miR-623. The miR-17-92 cluster is located in a genomic 

region frequently amplified in human B-cell lymphomas. Enforced expression of 

the miR-17-92 cluster acts together with cMYC to accelerate B-cell lymphoma in 

mice141. Given the clear role of cMYC in T-ALL (see above), over expression of the 

miRNA-17-92 cluster could synergize with cMYC activation in the development of 

T-cell leukemia.

Other recurrent abnormalities in which deregulated miRNA expression could po-

tentially contribute to T-ALL development include the deletions del(3)(q13.32q21.2) 

(miR-198), del(3)(q26.2q26.31) (miR-569), del(5)(q35.3) (miR-340), del(10)

(q23.2q23.31) (miR-107), del(19)(p13.2p13.2) (miR-199a) and the amplifications, 

amp(4)(q26qter) (miR-578), amp(17)(q23.1qter) (miR-634, miR-635, miR-636, 

miR-338, miR-657 and miR-548d) (table 2).
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other recurrent copy number aberrations in t-aLL

Recurrent deletions on the short arm of chromosome 1 were identified in TLX3 (n=4), 

TLX1 (n=1) and unknown (n=2) T-ALL cases with a commonly deleted region sur-

rounding chromosomal band 1p36. Similar 1p36 deletions were previously identified 

in about 30% of human neuroblastomas142, 25% of colorectal cancer patients143, and 

a variety of hematological malignancies including AML144, CML145 and non-Hodgkin’s 

lymphoma146. In neuroblastoma and colorectal cancer, reduced expression levels of 

the CAMTA1 gene correlated with adverse outcome, suggesting that CAMTA1 could 

act as the 1p36-specifc tumor suppressor gene in these malignancies142,143. Another 

interesting target gene in this genomic region is the chromodomain helicase DNA 

binding domain 5 (CHD5) gene, which is a tumor suppressor that controls prolif-

eration and apoptosis via the p19Arf/p53 pathway147. Other potential target genes 

within this genomic region include HES2 and HES3, both of which are highly 

similar to HES1, a bHLH transcriptional repressor and known NOTCH1 target gene148, 

and TNFRSF25. TNFRSF25 is a member of the TNF-receptor family which controls 

lymphocyte proliferation and apoptosis149. Two unknown T-ALL patients showed 

chromosome 1 amplification in combination with a terminal 1p34.2 deletion next 

to the amplified region. In both patients, the genomic breakpoints of this deletion 

were situated in the MACF1 gene, a cytoskeletal linker protein.

At Chromosome 2, the cryptic deletion, del(2)(p23.3p24.1), was identified in a 

TLX3 and unknown T-ALL patient. This genomic region contained the NCOA1 gene 

which is a transcriptional coactivator highly homologous to NCOA2 and NCOA3. 

Both NCOA2 and NCOA3 are involved in chromosomal rearrangements in AML, i.e. 

the inv(8)(p11q13)150 and the t(8;20)(p11;q13)151.

In an LMO2 rearranged T-ALL patient, the complete long arm of chromosome 3 

was deleted, whereas a TLX3 positive case showed 2 smaller 3q deletions, ie. del(3)

(q13.32q21.2) and del(3)(q26.2q26.31). A third T-ALL patient (unknown) only had 

a del(3)(q26.2q26.31). We suggest that especially the common deleted 3q26.2-q26.31 

area may contain an important tumor suppressor gene. The EVII gene that is situated 

on 3q26 and frequently targeted by chromosomal 3q rearrangements in AML was not 

present in the minimal deletion region for 3q deletions in T-ALL.

Amplifications of the long arm of chromosome 4 were identified in 3 unknown 

T-ALL patients. The common amplified region for the 3 T-ALL patients is about 32Mb 

in size, ranging from 4q26 until 4qter.

Our array-CGH analysis revealed small terminal 5q35 deletions that were exclu-

sively detected in TLX3 rearranged cases (n=5). In 3 out of these 5 cases, the deletion 

starts just downstream of TLX3, whereas the other 2 deletions started downstream of 

NKX2-5. Whether or not these deletions occur in combination with TLX3 transloca-
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tions or that they may aberrantly activate the TLX3 gene due to the loss of a potential 

negative regulating element in the 5q35 region remains to be determined.

Deletions of the long arm of chromosome 6 are known recurrent aberrations 

in T-ALL for which the target gene(s) remain(s) to be identified152. In our large-

scale copy number analysis, 6q deletions (n=13) were identified in different T-ALL 

subgroups (TAL1 (n=1), LMO2 (n=1), cMYC (n=1)) but especially in the unknown 

patients (n=10). Strikingly, no 6q deletions in any of the HOX rearranged (including 

TLX1, TLX3, HOXA) T-ALL cases were identified, indicating that this potential tumor 

suppressor gene on 6q does not cooperate with TLX1, TLX3 or HOXA oncogenes 

in the malignant transformation of thymocytes. In addition, the search for potential 

tumor suppressor genes on 6q could be hampered by the fact that 2 different mini-

mal deleted areas seem to be present, at 6q14 and at 6q16-q21, respectively. Both 

domains contain multiple potential tumor suppressor genes. Large 6q amplifica-

tions were identified in 3 unknown T-ALL cases. The minimal amplified region 

included the MYB oncogene. Since MYB duplications were recently identified in 

T-ALL15,100, MYB is a likely target of these large 6q amplifications in T-ALL. Neverthe-

less, upregulation of other genes in this genomic region could also contribute to 

T-cell leukemogenesis.

Recurrent amplifications/deletions at chromosome 7 were present in or near the 

TCRβ locus at 7q35 and therefore probably reflect unbalanced TCRβ translocations 

or rearrangements of the normal TCRβ gene.

As discussed in the first part of this review, 9p deletions are frequently detected 

in T-ALL with the CDKN2A/CDKN2B locus as the principle target. In our array-

CGH screening, we identified one T-ALL patient with a different 9p deletion, del(9)

(p22.3p24.1), which included the protein tyrosine phosphatase receptor type D 

(PTPRD) gene. PTPRD has been suggested as a potential tumor suppressor gene 

in lung carcinoma, cutaneous squamous cell carcinomas and neuroblastoma due 

to recurrent homozygous PTPRD deletions153-156. Although this particular deletion 

was only present in a single T-ALL case, 11 other T-ALL patients showed larger 9p 

deletions including both the PTPRD and the CDKN2A/CDKN2B locus. Similarly, one 

T-ALL patient showed a 9p deletion, del(9)(p13.2p13.3) that included the PAX5 

gene, which was recently shown to be recurrently deleted in B-ALL6. Larger 9p dele-

tions including both PAX5 and the CDKN2A/CDKN2B locus were present in 11 other 

T-ALL patients. Four T-ALL patients showed variable 9q deletions with a minimal 

deleted region surrounding the chromosomal region 9q21.13 that covered 7 genes 

that have previously not been associated with malignant transformation.

A recurrent deletion, del(11)(p13p14.1), was identified in a TLX3 and an un-

known T-ALL case that included the WT1 gene. In one patient, we demonstrated 

that the remaining WT1 gene was also lost due to the presence of a smaller del(11)
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(p13p13) deletion on the second chromosome 11, suggesting that WT1 may represent 

the prime target of these deletions. This was further strengthened by the presence 

of a non-sense mutation in the remaining WT1 allele of the second patient lead-

ing to truncation of WT1. WT1 is a transcription factor involved in normal cellular 

development and cell survival and was initially discovered as a tumor suppressor 

in Wilms’ Tumor157. There is some controversy on the exact role of WT1 since there 

are reports suggesting both an oncogene158 as well as a tumor suppressor role159 for 

WT1 in acute leukemias.

Large 13q amplifications were identified in 3 unknown T-ALL patients. Trisomy 

13 is a recurrent chromosomal abnormality in a small subset of acute leukemias. 

Previously, FLT1 and RB1 have been suggested as potential target genes for trisomy 

13 in acute leukemia, but these genes were not present in the common amplified 

region in our T-ALL cases. Although specific miRNAs could be the target of these 

amplifications (see above), the common amplified region contains a large portion of 

genes which also could contribute to malignant transformation.

Two T-ALL patients (LMO2 and unknown) showed a similar deletion, del(14)

(q32.2), on chromosome 14. BCL11B, which is involved in the pathogenesis of 

T-ALL through an inv(14)(q11q32)160, could be the potential target of this deletion.

Besides the NF1 microdeletions, which were recently described in T-ALL, B-ALL 

and AML6,138, the main genetic lesions on chromosome 17 were large 17q amplifica-

tions, which were detected in TAL1 (n=2), LMO2 (n=1), CALM-AF10 (n=1) and un-

known (n=1) T-ALL cases. The 17q gain is the most common chromosomal abberation 

in neuroblastoma, and is associated with a poor outcome161,162. The target genes for 

these 17q amplifications in neuroblastoma remain to be elucidated, but the general 

idea is that increased dosage of a number of genes may confer a growth advantage 

to the tumour cells. Similarly, given the large common amplified region in T-ALL, the 

oncogene(s) that contribute to T-ALL pathogenesis remain to be elucidated.

A recurrent deletion, del(19)(p13.2p13.2), was identified in TLX3 (n=2) and 

TLX1 (n=1) T-ALL patients. The minimal deleted region is about 1.2 Mb in size, but 

none of the genes situated in this chromosomal region have been previously linked 

to any form of cancer.

Finally, amplification of the complete or short arm of chromosome 20 was 

identified in a TLX3 and unknown T-ALL patients, whereas trisomy 21 was observed 

in an MLL and SET-NUP214 positive case. Down’s syndrome has been associated 

with an increased risk of developing acute leukemia163. However, it remains unclear 

which genes on chromosome 21 truly contribute to the leukemic transformation 

process.
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4. coNcLusioNs

T-ALL is an aggressive T-cell malignancy with an inferior treatment outcome com-

pared to B-lineage ALL. Currently and in contrast to B-lineage ALL, genetic abnor-

malities are clinically not used for therapy stratification. However, upon reviewing 

the genetics of T-ALL, it becomes clear that different combinations of a large variety 

of genetic defects may lead to common types of T-cell ALL. Despite the diversity in 

genetic rearrangements, the biological processes that are targeted seem conserved 

throughout all T-ALL cases, i.e. T-cell differentiation, T-cell receptor signaling and 

cell cycling. The cooperative deregulation of all these processes will lead to the 

transformation of a normal thymocyte into a leukemic T-cell.

Gene expression profiling and array CGH contributed to the classification of T-

ALL patients into unique subgroups. Type A genetic abnormalities that determine the 

T-ALL subgroups are mutually exclusive and are thought to cause arrest at a specific 

stage of normal T-cell differentiation. Type B genetic abnormalities, in contrast, are 

shared by several T-ALL subgroups and target cellular processes including the cell 

cycle, the NOTCH1 pathway and TCR signaling.

Although great improvement has been made in the elucidation of novel genetic 

defects that contribute to T-ALL pathogenesis, numerous questions remain unan-

swered. Which pathways are used in T-ALL cells that are independent of activated 

NOTCH1 signaling? Or alternatively, which other mechanisms, besides NOTCH1 and 

FBXW7 mutations, are present in T-ALL to activate the NOTCH1 pathway. Therefore, 

it would be interesting to screen a large cohort of T-ALL samples, and determine 

the exact percentage of patients that have sustained protein levels of activated ICN, 

irrespective of their NOTCH1 activation mechanism. In a recent mouse study, over 

expression of β-catenin as one of the key players in the WNT-signaling cascade 

induced T-cell leukemias that did not depend on NOTCH1 signaling164. Therefore, 

the WNT signaling cascade may act as an attractive target in T-ALL patients that do 

not depend on activated NOTCH1 signaling.

For TAL/LMO driven T-cell leukemias, E2A and NOTCH1, which execute opposite 

functions during the β-selection checkpoint of normal T-cell development, seem 

to represent the most predominant oncogenic targets. Aberrant expression of TAL/

LMO family members will induce E2A inhibition, whereas activation of the NOTCH1 

pathway may enforce a pre-TCR dependent relieve of cell cycle arrest and enable 

proliferation. So for these types of T-ALL patients, inactivation of E2A and activation 

of NOTCH1, in combination with a functional (pre)-TCR complex, could reflect 

essential processes that synergize in the pathogenesis of T-ALL.

In contrast to the data present on the role of TAL/LMO family members in T-ALL, 

the oncogenic mechanism behind HOX driven T-cell leukemias remains largely 
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unknown. Especially the molecular mechanisms by which deregulated TLX1, TLX3 

or HOXA expression interfere with normal T-cell differentiation remains to be elu-

cidated. In our molecular-genetic characterization studies in pediatric T-ALL, we 

observed that activating tyrosine kinase mutations, mainly targeting crucial compo-

nents of the (pre)-TCR signaling complex, exclusively occurred in HOX driven T-ALL 

cases and not in TAL/LMO rearranged cases. Therefore, it remains unclear whether 

TAL/LMO driven T-ALL truly needs activational tyrosine kinase mutations, or whether 

the synergy between TAL/LMO activation and NOTCH1 mutations is sufficient for 

leukemic transformation. In contrast, 6q deletions were completely absent in any of 

the HOX rearranged T-ALL cases, suggesting that 6q specific tumor suppressor genes 

fail to cooperate with HOX mediated leukemogenesis.

In conclusion, this review on molecular-cytogenetic research in T-ALL shows that 

T-cell leukemia is not a single disease entity, but rather reflects a genetically diverse 

malignancy that targets the same cell of origin. Therefore, specific treatment mo-

dalities in which chemotherapy is combined with additional treatment based on the 

genetic T-ALL subtype, could lead to further treatment progress in T-cell leukemia. In 

addition, genome wide copy number screening is a valuable tool for the identifica-

tion of new chromosomal imbalances in T-ALL and could provide further insight in 

the pathogenesis of T-cell leukemia. Indeed, the identification of FBXW7 and PTEN 

deletions in our copy number screening nicely illustrates that detection of new 

genomic deletions/amplifications, even at low frequency, can reveal new and impor-

tant genes with a broader role in T-ALL. Therefore, the new copy number changes 

in T-ALL described in this review offer great new challenges for the identification of 

new target genes that may play a role in the pathogenesis of T-ALL and may serve 

as new therapeutic targets.
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aBstract

To identify new cytogenetic abnormalities associated with leukemogenesis or disease 

outcome, T-ALL patient samples were analyzed by means of the array-comparative 

genome hybridization technique (array-CGH). Here, we report the identification of a 

new recurrent and cryptic deletion on chromosome 11, i.e. the del(11)(p12p13), in 

about 4% (6/138) of pediatric T-ALL patients. Detailed molecular-cytogenetic analysis 

revealed that this deletion activates the LMO2 oncogene in 4 out of 6 del(11)(p12p13) 

positive T-ALL patients, alike patients with an LMO2 translocation (9/138). The LMO2 

activation mechanism of this deletion is loss of a negative regulatory region upstream 

of LMO2, causing activation of the proximal LMO2 promoter. LMO2 rearrangements, 

including this del(11)(p12p13) and t(11;14)(p13;q11) or t(7;11)(q35;p13), were found 

in the absence of other recurrent cytogenetic abnormalities involving TLX3, TLX1, 

CALM-AF10, TAL1, MLL or MYC. LMO2 abnormalities represent about 9% (13/138) 

of pediatric T-ALL cases and are more frequent in pediatric T-ALL than appreciated 

up till now.
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iNtroDuctioN

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk malignancy of thymocytes, 

and accounts for 10-15% of pediatric ALL cases. T-ALL often presents with a high 

tumor-mass that is accompanied by a rapid progression of disease. About 30% of 

T-ALL cases relapse within the first years during or following treatment and eventu-

ally die1.

Genetic analyses of T-ALL have elucidated an enormous heterogeneity in genetic 

abnormalities including chromosomal translocations, deletions, amplifications and 

mutations2. These abnormalities result in the aberrant expression of transcription 

factors like the basic Helix-Loop-Helix (bHLH) genes MYC, TAL1(SCL), TAL2, LYL1, 

or bHLHB1, genes involved in transcriptional regulation like the Cysteine rich LIM-

domain-only genes LMO1 or LMO2 or the Krüppel-like zinc-finger gene BCL11B. It 

can also affect genes that are involved in embryonic development like the home-

odomain genes TLX1/TLX1, TLX3/TLX3, or members of the HOXA cluster as well as 

signalling molecules like the tyrosine kinase ABL13-6(reviewed in7,8). Other transloca-

tions lead to the formation of specific fusion products and include CALM-AF109 or 

MLL rearrangements. Mutational mechanisms may also enhance gene activity as, for 

example, activating mutations in the NOTCH1 gene were recently identified in about 

50% of human T-ALL10.

LMO2 encodes a protein that participates in the transcription factor complex, 

which includes E2A, TAL1, GATA1 and LDB1 in erythroid cells11,12. Within this 

transcription complex, LMO2 mediates the protein-protein interactions by recruiting 

LDB1, whereas TAL1, GATA1 and E2A regulate the binding to specific DNA target 

sites13. This complex regulates the expression of several genes in various cellular 

backgrounds including C-KIT14, EKLF15 and RALDH16. In normal T-cell development, 

LMO2 is expressed in immature CD4/CD8 double-negative thymocytes, and is down-

regulated during T-cell maturation17,18. In various mouse models, ectopic expression 

of LMO2 leads to clonal expansion of T-cells, eventually leading to T-ALL develop-

ment. LMO2-mediated leukemogenesis seems restricted to the T-cell, as transgenic 

mice with constitutive expression of LMO2 in all tissues develop malignancies in-

volving the T-lineage only19-22. The long latency of leukemia in these mice suggests 

that T-ALL development requires secondary mutations in addition to the activation 

of LMO222,23.

LMO2 driven oncogenesis in humans was suggested by its frequent involvement 

in the chromosomal translocations t(11;14)(p13;q11) and t(7;11)(q35;p13) in T-ALL, 

in which the TCRα/δ or TCRβ locus is fused to LMO224,25. Direct prove came from the 

retroviral IL2Rγc gene therapy trial for X-linked severe combined immunodeficiency 



C
h
ap

te
r 

3

66

(X-SCID) patients, in which 2 patients developed T-ALL after retroviral insertions in 

the LMO2 gene26,27.

In this study, we report the identification of a new recurrent and cryptic deletion, 

i.e. the del(11)(p12p13), in about 4% (6/138) of pediatric T-ALL patients. Detailed 

molecular-cytogenetic analysis revealed that this deletion activates the LMO2 onco-

gene in 4 out of 6 of these del(11)(p12p13) positive T-ALL patients, mainly through 

deletion of negative regulatory sequences upstream of LMO2. The relation to other 

recurrent cytogenetic abnormalities, the immunophenotypic characteristics and clini-

cal outcome of this new cryptic abnormality in pediatric T-ALL is discussed.

materiaLs & metHoDs

Patient samples

Viably frozen diagnostic bone marrow or peripheral blood samples from 64 pediatric 

T-ALL patients and clinical and immunophenotypic data were provided by the Dutch 

Childhood Oncology Group (DCOG). Patients were considered positive as more 

than 25 percent of total cells were positive for a specific immunophenotypic marker. 

A second pediatric T-ALL cohort (n=74) was obtained from the German Co-operative 

study group for childhood acute lymphoblastic leukemia (COALL). The patients’ 

parents or their legal guardians provided informed consent to use leftover mate-

rial for research purposes. Leukemic cells were isolated and enriched from these 

samples as previously described28. All resulting samples contained ≥90% leukemic 

cells, as determined morphologically by May-Grünwald-Giemsa (Merck, Darmstadt, 

Germany)-stained cytospins. Viably frozen T-ALL cells were used for DNA and RNA 

extraction, and a minimum of 5×106 leukemic cells were lysed in Trizol reagent 

(Gibco BRL, Life Technologies, Breda, The Netherlands) and stored at -80°C. A 

total of 25×103 leukemic cells was used for cytospin slides for fluorescence in-situ 

hybridization (FISH) and stored at -20°C. For the preparation of metaphase slides, a 

minimum of 5×106 leukemic cells were cultured for 72 hr in serum free medium (JRH 

Biosciences, Kansas, USA) in the presence of IL7 (10ng/ml) and IL2 (10ng/ml), and 

harvested according to standard cytogenetic techniques.

Genomic DNa isolation, rNa extraction and cDNa synthesis

Genomic DNA and total cellular RNA were isolated according to the manufacturers’ 

protocol, with minor modifications. An additional phenol-chloroform extraction was 

performed and the DNA was precipitated with isopropanol along with 1 µl (20µg/ml) 

glycogen (Roche, Almere, The Netherlands). After precipitation, RNA pellets were 

dissolved in 20µl RNAse-free TE-buffer (10mM Tris-HCl, 1mM EDTA, pH=8.0). The 

RNA concentration was quantified spectrophotometrically. Following a denaturation 
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step of 5 min at 70°C, 1µg of RNA was reverse transcribed to single-stranded cDNA 

using a mix of random hexamers (2.5µM) and oligodT primers (20nM). The RT 

reaction was performed in a total volume of 25µl containing 0.2mM of each dNTP 

(Amersham Pharmacia BioTech, Piscataway, NJ, USA), 200U Moloney murine leuke-

mia virus reverse transcriptase (M-MLV RT) (Promega, Madison, WI, USA) and 25U 

RNAsin (Promega). Conditions for the RT reaction were 37°C for 30’, 42°C for 15’, 

and 94°C for 5’. The cDNA was diluted to a final concentration of 8ng/µl and stored 

at -80°C.

Bac array-comparative genomic hybridization (Bac array-cGH)

BAC array-CGH analysis was performed using a dye-swap experimental design to 

minimize false positive results. Patient genomic DNA (2µg) and male/female ref-

erence DNA (2µg) (Promega) were fragmented by sonification (VibraCell Model 

VC130, Sonics & Materials, Newtown, CT, USA). DNA fragmentation was verified 

by agarose gel electrophoresis. Individual reference and experimental samples 

were then purified using the QIAQuick PCR clean-upkit (Qiagen, Valencia, CA, 

USA). Labeling reactions with Cy5-dUTP and Cy3-dUTP (PerkinElmer, Wellesley, 

MA, USA) were performed with 5μg of purified restricted DNA using the Bioprime 

labeling kit (Invitrogen, Paisley, UK) according to the manufacturer's instructions. 

The patient and reference DNA were combined, denatured, and applied to the 1Mb 

GenomeChipTM V1.2 Human BAC arrays (2,632 BAC clones spotted on a single array; 

Spectral Genomics, Houston, TX, USA) according to the manufacturer’s protocol. 

Hybridization and washing procedures were performed as recommended, and the 

slides were scanned on a GenePix 4000B Microarray Scanner (Axon Instruments, 

Union City, CA, USA). Cy3 and Cy5 fluorescent intensities at each DNA spot were 

quantified using GenePix Pro 4.0 Microarray Image Analysis Software, and the data 

were subsequently imported into SpectralWare software (www.spectralgenomics.

com). Using this software, background intensities were subtracted and initial fluo-

rescent ratios were log2 transformed. The ratios for each clone were subsequently 

plotted into chromosome-ideograms. At this stage, known large-scale copy number 

polymorphisms were not considered disease-related29.

oligo array-cGH

Oligo array-CGH analysis was performed, as previously described30, on the human 

genome CGH Microarray 44A (Agilent Technologies, Palo Alto, USA), which consists 

of ~40,000 60-mer oligonucleotide probes that span both coding and non-coding 

sequences with an average spatial resolution of ~35Kb. Briefly, 10μg of genomic 

reference or patient DNA was digested with AluI (20U) and RsaI (20U) (Invitrogen) 

overnight at 37°C. Verification of DNA fragmentation, purification and Cy-3 or Cy-5 



C
h
ap

te
r 

3

68

labeling was as described above. Experimental and reference targets for each hybrid-

ization were pooled and mixed with 50μg of human Cot-1 DNA (Invitrogen), 100μg 

of yeast tRNA (Invitrogen), and 1× hybridization control targets (SP310, Operon 

Technologies, Alameda, CA, USA) in a final volume of 500μl in-situ hybridization 

buffer (Agilent Technologies). The hybridization mixtures was denatured at 95°C 

for 3’, pre-incubated at 37°C for 30’, and hybridized to the array in a microar-

ray hybridization chamber (Agilent Technologies) for 14-18h at 65°C in a rotating 

oven (Robbins Scientific, Mountain View, CA, USA) at 20rpm. The array slides were 

washed in 0.5× SSC/0.005% Triton X-102 at room temperature for 5’, followed by 

5’ at 37°C in 0.1× SSC/0.005% Triton X-102. Slides were dried and scanned using a 

2565AA DNA microarray scanner (Agilent Technologies). Microarray images were 

analyzed using feature extraction software (version 8.1, Agilent Technologies) and 

the data were subsequently imported into array-CGH analytics software v3.1.28 

(Agilent Technologies).

FisH-procedure

BACs were obtained from BAC/PAC Resource Center (Children’s Hospital, Oakland, 

USA). BAC DNA was isolated using DNA MiniPrep plasmid kit (Promega) and la-

beled with biotin-16-dUTP/digoxigenin-11-dUTP (Roche) by nick translation31. BAC 

clones RP11-646J21, RP11-98C11 and RP11-603J2 were used for the characteriza-

tion of the telomeric breakpoints of the del(11)(p12p13), whereas the centromeric 

breakpoints were localized using RP11-36H11, RP11-769M16, and RP11-465C16. 

LMO2 translocations were identified using a split-FISH procedure with the LMO2 

flanking BAC clones RP11-646J21 and RP11-90F13. FISH analysis was performed on 

freshly prepared interphase and metaphase slides from methanol/acetic acid cell 

suspensions or cytospins stored at –20°C. Slides were pretreated by an RNase and 

pepsin treatment, fixed with acid-free formaldehyde and denatured at 72oC. Probes 

were denatured (4’ 72°C in 70% formamide/2x SSC) in the presence of a 100-fold 

excess of human Cot-1 DNA (Gibco BRL). Following pre-annealing at 37°C for 30’, 

biotinylated probes were hybridized overnight at 37°C, and visualized by fluorescein 

avidin (Vector Laboratories, Burlingame, VT, USA) and biotinylated anti-avidin D 

sandwich detection (affinity purified; Vector Laboratories). The digoxigenin hybrid-

ization signal was detected using anti-digoxigenin-rhodamine (Boehringer Man-

nheim) and donkey anti-sheep-Texas Red (Jackson ImmunoResearch Laboratories, 

Westgrove, PA, USA). Cells were counterstained with DAPI/Vectashield mounting 

medium. Fluorescence signals were visualized on a Zeiss Axioplan II fluorescence 

microscope (Zeiss, Sliedrecht, The Netherlands) equipped with double and triple 

bandpass filters for simultaneous visualization of rhodamine-TR/FITC/DAPI. TAL1-, 

TLX3-, TLX1- and MLL- chromosomal rearrangements or the SIL-TAL1 deletion were 



 New LM02 activation mechanism in pediatric T-ALL 69

CHAPTER 3 
 
FIGURES 
 
Figure 3.1 New recurrent deletion, del(11)(p12p13), in pediatric T-ALL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. New recurrent deletion, del(11)(p12p13), in pediatric T-ALL.

(a) Chromosome 11 ideogram and corresponding BAC array-CGH plot of test DNA:control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patients 1950 (left 

panel) and 2720 (right panel). (b) Overview of BAC array-CGH results for the 11p12-11p13 region 

for the 4 DCOG and the 2 COALL T-ALL patients with del(11)(p12p13). The BAC clones present on 

the DNA array and located on chromosome bands 11p12-11p13 are shown. Specific genes located 

in this region are indicated. Depicted genome positions are based on the UCSC Genome Browser at 

http://genome.ucsc.edu/.
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determined using FISH kits (DakoCytomation, Glostrup, Denmark)32, hybridized and 

scored as described by the manufacturer. The CALM-AF10 chromosomal rearrange-

ment was detected using FISH as previously described32.

Genomic and cDNa Pcr

The genomic breakpoint in T-ALL patient 1950 was determined by long-range PCR 

using forward primer 5’ GATGCCTTCCCTCATGTA 3’ (intron 1 RAG2) and reverse 

primer 5’ CGCAGTGCCTAGAACAGT 3’ (intron 1 LMO2). PCR reactions were per-

formed using 200ng of genomic DNA (200ng/μl), 10pmol primers, 10nmol of dNTPs, 

4mM MgCl
2, 

1.25U of ampliTaq gold (Applied Biosystems, Foster City, CA, USA) in 

10x PCR buffer II (Applied Biosystems) in a total volume of 50μl. After the initial 

denaturation at 94°C for 10’, PCR was performed for 15 cycles of 95°C for 15”, 60°C 

for 1’ and 68°C for 3’ followed by 15 cycles consisting of 95°C for 15”, 60°C for 1’ 

and 68°C for 3’ (+10s/cycle).

To identify the RAG2-LMO2 fusion gene in T-ALL patient 1950, cDNA PCR (RT-PCR) 

was performed in the presence of forward primer 5’ GTGGGCAGTCAGTGAATC 3’ 

(exon 1 RAG2) and reverse primer 5’ TGCAAGTTCAGGTTGAAA 3’ (exon 2 LMO2). 

RT-PCR reactions were as described above in a total volume of 50μl. Following initial 

denaturation at 95°C for 10’, reactions were amplified for 39 cycles of 95°C for 15’’ 

and 60°C for 1’.

Ligation-mediated Pcr

Ligation-mediated PCR (LM-PCR) was performed as previously described33. Briefly, 1 

μg of patient (2846) and control DNA (2720) was digested with blunt-end restriction 

enzymes (EcoRV, DraI, PvuII and StuI) and 50 μM of an adaptor was ligated to 

both ends of the restriction fragments. The ligation products were subjected to two 

rounds of PCR with nested adaptor-specific primers AP1 (5’ GCT AGA TAC GAC TCA 

GTA TAG 3’) and AP2 (5’ TAT AGG CGC ACG AAC G 3’) and nested LMO2-intron 

1-specific primers LMO2F (5’ CAG CCA CAT GGG TAG AAC 3’) amd LMO2Fnested (5’ 

TGG CAT TAG GGT ATG GAA 3’). The band that differed in size from the expected 

band in the control patient, lacking the del(11)(p12p13), was excised from the gel 

and purified using the QIAquick gel extraction kit (Qiagen, Hilden, Germany) and 

subjected to direct nucleotide sequencing.

Quantitative real-time rt-Pcr (rQ-Pcr)

Expression levels of LMO2, TAL1, TLX1 and TLX3 transcripts and the CALM-AF10 

fusion product were quantified relative to the expression level of the endogenous 

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using 

real-time RT-PCR in an ABI 7700 sequence detection system (Applied Biosystems) as 
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Figure 2. Molecular characterization of deletion, del(11)(p12p13), in 6 pediatric T-ALL 
patients.

Chromosome 11 ideogram and corresponding oligo array-CGH plot of test DNA:control DNA ratios 

(blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patient 1950 (a) and patient 

2104 (d). Hybridization signals in the absence of amplifications or deletions scatter around the 

“zero”line, indicating equal hybridization for patient and reference DNA. Hybridization signals around 

the –2X or +2X lines represent loss of the corresponding region in the patient DNA. Detailed analysis 

of the telomeric breakpoints in patients 1950 (b) and 2104 (e) and the centromeric breakpoints in 

patients 1950 (c) and 2104 (f) of the deletion, del(11)(p12p13). (g) Overview of oligo array-CGH 

results in the potential breakpoint regions for 4 DCOG and the 2 COALL T-ALL patients with del(11)

(p12p13). The 60-mer oligos present on the DNA array and located in the telomeric and centromeric 

breakpoint regions, as well as the specific genes located in this region with their transcription 

direction, are shown. Abbreviations: N; normal, L; loss, U; non-informative.
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described previously28,34. The expression levels relative to the GAPDH housekeeping 

gene were calculated following the equation:

Relative expression level as percentage of GAPDH expression = 2-ΔCt x 100%, 

whereby ΔCt = Ct
target

–Ct
GAPDH

 Primer and probe combinations were designed us-

ing Oligo 6.22 software (Molecular Biology Insight, Cascade, CO, USA), and were 

purchased from Eurogentec (Seraing, Belgium). Primers and probe had melting 

temperatures of 65-66.5oC and 73-75oC respectively, and performed with 95% ef-

ficiency or higher as determined from slopes of standard curves. This allows direct 

normalization of the target reaction to GAPDH expression levels at the Ct-level34. 

Primers and probe for the detection of the house-keeping gene GAPDH have been 

described previously28. For the detection of total LMO2 transcripts derived from the 

LMO2 distal promoter (upstream of exon 1), RAG2-LMO2 fusion transcripts and 

transcripts derived from the LMO2 proximal promoter (exon 3), the forward primer 

5’-TTG GGG ACC GCT ACT T-3’ and reverse primer 5’-ATG TCC TGT TCG CAC 

ACT-3’ were used in combination with the probe 5’-(FAM)-AAG CTC TGC CGG 

AGA GAC TAT CT-3’. For the detection of distal LMO2 transcripts and/or RAG2-

LMO2 fusion transcripts, forward primer 5’-TCA ACC TGA ACT TGC AGT AG-3’ and 

reverse primer 5’-TCT CTC GGG AAG GTC TAT TT-3’ were used in combination 

with the probe 5’-(FAM)-AAC CAG AGA CAG AGG GAA GCT G-3. For CALM-AF10, 

5’ and 3’ CALM-AF10 fusion transcripts were detected in separate reactions using the 

CALM-AF10 forward primer 5’-TTA ACT GGG GGA TCT AAC TG-3’ in combination 

with the 5’ fusion transcript reverse primer 5’-GCT GCT TTG CTT TCT CTT C-3 

or the 3’ fusion transcript reverse primer 5’-CCC TCT GAC CCT CTA GCT TC-3’ 

both in combination with the common CALM-AF10 probe 5’-(FAM)-CTT GGA ATG 

CGG CAA CAA TG-(TAMRA)-3’. For detection of TLX1 expression levels, the forward 

primer 5’-CTC ACT GGC CTC ACC TT-3’ and reverse primer 5’-CTG TGC CAG GCT 

CTT CT-3’ were used in combination with the probe 5’-(FAM)-CCT TCA CAC GCC 

TGC AGA TC-(TAMRA)-3’. For detection of TLX3 expression levels, forward primer 

5’-TCT GCG AGC TGG AAA A-3’ and reverse primer 5’-GAT GGA GTC GTT GAG 

GC-3’ were used in combination with probe 5’-(FAM)-CCA AAA CCG GAG GAC CAA 

GT-(TAMRA)-3’. For the detection of TAL1 transcripts, the forward primer 5’-TGC 

CTT CCC TAT GTT CAC-3’ and reverse primer 5’-AAG ATA CGC CGC ACA AC-3’ 

were used in combination with probe 5’-(FAM)-CCT TCC CCC TAT GAG ATG GAG 

A-(TAMRA)-3’. The SIL-TAL1 primers (ENF601, ENR664) and probe (ENP641) for the 

detection of a SIL-TAL1 deletion were used as recommended by the Europe Against 

Cancer Program32.
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Figure 3.3 FISH analysis confirms the presence of del(11)(p12p13) in T-ALL patient 1950. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. FISH analysis confirms the presence of del(11)(p12p13) in T-ALL patient 1950.

(a) Chromosome ideogram and overview of the genomic position of the BAC clones used for FISH 

analysis, located in the telomeric and centromeric breakpoint regions. (b) Dual-color FISH analysis 

on metaphase spreads of patient 1950 using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-

98C11 (Red). The wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on 

the mutated allele the red signal is lost and both green signals fuse. The extrachromosomal red signal 

represents background. (c) Dual-color FISH analysis on metaphase spreads of the same patient using 

RP11-465C16 (Green) and RP11-603J2 (Red). The intensity of the red signal is lower compared to the 

wild-type allele of chromosome 11, suggesting that only part of RP11-603J2 is deleted. (d) Dual-color 

FISH analysis on metaphase spreads using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-

36H11 (Red). The wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on 

the mutated allele the red signal is lost and both green signals fuse. (e) Dual-color FISH analysis on 

metaphase spreads using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-769M16 (Red). The 

wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on the mutated allele 

the red signal is lost and both green signals fuse.
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statistical analysis

Kaplan Meier curves were constructed in SPSS 11.0 software in a stratified analysis 

pair wise over strata, and p-values were determined using the log-rank test. An event 

was defined as having a relapse or being a non-responder after induction therapy. 

The Mann-Whitney U-test was used to analyze differences in LMO2 expression levels 

between subgroups. Data were considered statistically significant if p<0.05.

resuLts

New recurrent deletion del(11)(p12p13) in pediatric t-aLL

To identify new chromosomal abnormalities in pediatric T-ALL related to outcome 

and/or leukemogenesis, BAC array-CGH analysis was performed on a selected cohort 

of 30 out of 64 clinically and karyotypically well-defined diagnostic T-ALL patient 

samples treated according to DCOG protocols. A recurrent loss of genomic material 

at chromosomal band 11p12-11p13 was found in 2 out of 30 pediatric T-ALL cases 

(Figure 1a). Analyzing of this pediatric T-ALL cohort and an second independent 

cohort (n=74) treated according to the COALL97 protocol using FISH, confirmed the 

presence of the del(11)(p12p13) in both positive patients, but also revealed 4 ad-

ditional patients with this same deletion (data not shown). BAC array-CGH analysis 

of these additional positive cases confirmed the presence of this del(11)(p12p13) 

Table 1. FISH analysis in 6 pediatric T-ALL patients with del(11)(p12p13) 

Number of hybridization signals

 

 
Telomeric breakpoint

 
Centromeric breakpoint
 

 

Patient ID 646j21 603j2 98c11 36h11 769m16 465c16

        

1950 2 2 (int) 1 1 1 2

2846 2 2 (int) 1 1 1 2

2104 2 1 1 2 (int)  2 (int) 2

10110 2 2 (int) 1 1 1 2

2774 2 2 2 2 (int)  2 (int) 2

704 2 2 2 2 (int)  2 (int) 2

        

Int; intensity difference between the hybridization signal on the wild-type and the mutated allele.
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Figure 4. Molecular characterization of del(11)(p12p13) in T-ALL patients 1950 and 2846.

(a) Long-range PCR analysis on genomic DNA of patient 1950 using primers situated in intron 

1 of RAG2 and intron 1 of LMO2 revealed a specific band of ∼2000 bp. Patient 2720 served as a 

negative control. (b) Sequence analysis confirmed the exact position of the genomic breakpoint. 

(c) PCR analysis on cDNA of this patient revealed a RAG2-LMO2 fusion gene, in which exon 1 of 

RAG2 was fused to exon 2 of LMO2. (d) Gene (exon) structure of both RAG2 and LMO2 shows that 

the translation initiation sites are situated in exon 2 and exon 4, respectively. As a consequence, 

translation of the RAG2-LMO2 fusion gene will also be initiated in exon 4. (e) LM-PCR analysis on 

HincII digested genomic DNA from patient 2846 using an LMO2 intron 1 specific primer, revealed 

an aberrant PCR product of ∼600 bp. The expected wildtype product is ∼1000 bp and is visible in 

both patients 2846 and 2720, which served as a negative control. (f) Sequence analysis confirmed 

that in patient 2846 the LMO2 intron 1 sequences are fused to a genomic region upstream of RAG2. 

Abbreviation: prom; promoter.
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(Figure 1b). This deletion is therefore present in about 4% (6/138) of pediatric T-ALL 

patients. In 4 patients (1950, 2846, 2104 and 10110), the deleted region was flanked 

by the BAC clones RP1-187A11 (11p13) and RP11-72A10 (11p12), and comprised 

the clones RP1-22J9, RP11-90F13, RP11-91G22, AC090692.9, RP11-219O3 and RP11-

36H11. In the 2 remaining cases (2774 and 704), the deleted area was smaller and 

flanked by the clones RP1-22J9 and RP11-72A10 (Figure 1b).

The resolution of the BAC array-CGH system as used for our analysis is approxi-

mately 1 Mb. To determine the exact telomeric and centromeric breakpoints for this 

del(11)(p12p13) in pediatric T-ALL, we used the oligo array-CGH system of Agilent 

Technologies with a resolution of approximately 35 Kb. In agreement with the BAC 

array-CGH data, the oligo array-CGH analysis showed identical genomic losses at 

11p12-11p13 for these 6 patients albeit at higher resolution (Figure 2a-g). Detailed 

analysis of the telomeric breakpoints indicated that both LMO2 probes located in 

intron 2, hybridized in a 1:1 ratio in patients 1950 (Figure 2b), 2846, 10110, 2774 and 

704 (Figure 2g), indicating that this part of LMO2 was retained. In all these cases, 

both probes situated in M11S1 were deleted (Figure 2b, 2g). For patient 2104, the 

LMO2 intron 2 probes were lost whereas the telomeric part of LMO2 (exon 6) was 

retained (Figure 2e), indicating that the genomic breakpoint is probably located 

downstream of LMO2 intron 2. At the centromeric breakpoint, the hybridization 

signals of both RAG1 and RAG2 probes were altered and indicated that one copy 

of both RAG1 and RAG2 genes were lost in patients 1950, 2846 and 10110, whereas 

they had retained the LOC119710 locus (Figure 2c, 2g). For patient 2104 and 704, 

the centromeric breakpoint seemed to be situated in the FLJ14213 gene (Figure 2f, 

2g). For patient 2774, both FLJ14213 probes were lost whereas the TRAF6 probes 

hybridized normally.

Table 2. Immunophenotypic characteristics of LMO2-rearranged pediatric T-ALL patients 

Positive cells (%)

LMO2         

Patient ID rearrangement CD34 CD33 CD1 CD4 CD8 cytCD3 mCD3 TCRab

          

1950 del(11)(p12p13) 0 0 0 85 91 90 80 pos

2846 del(11)(p12p13) 0 10 0 48 57 75 26 neg

2104 del(11)(p12p13) 0 0 0 6 1 98 45 pos

          

2698 t(11;14)(p13;q11) 1 8 0 42 69 93 3 neg

2789 t(11;14)(p13;q11) 1 12 25 59 73 85 12 neg

2735 t(11;14)(p13;q11) 4 1 71 90 94 82 8 neg

          

Pos; positive, Neg; negative, cytCD3; cytoplasmic CD3, mCD3; membrane CD3.
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 Figure 3.5 LMO2 and TAL1 expression in pediatric T-ALL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. LMO2 and TAL1 expression in pediatric T-ALL.

Relative expression levels of LMO2 (a) and TAL1 (b) as percentage of GAPDH expression levels for 

59 pediatric T-ALL patients (DCOG cohort). Patients were divided into 2 maturation stages according 

to their cytoplasmatic TCRβ (Cytβ) and membrane CD3 (mCD3) expression35.
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FisH analysis confirms array-cGH data

To confirm the BAC and oligo array-CGH data and to further characterize the exact 

breakpoints of this del(11)(p12p13), metaphase and interphase cells of the positive 

T-ALL cases were analyzed by FISH. In Figure 3a, the genomic positions of the 

FISH-probes are visualized. For patient 1950, FISH analysis with RP11-465C16 which 

covers both RAG genes, RP11-646J21 which covers the telomeric part of LMO2 and 

RP11-98C11 which is located directly centromeric of LMO2, confirmed heterozygous 

loss of a region directly upstream of LMO2 (Figure 3b). The RP11-603J2 probe that 

includes part of the LMO2 locus was partly retained in the mutant allele (Figure 3c), 

indicating the telomeric breakpoint of the del(11)(p12p13) was situated in a 9 kb re-

gion surrounding exon 1 of LMO2. Similar analysis in this patient of the centromeric 

breakpoint indicated that both RP11-36H11 (Figure 3d) and RP11-769M16 (Figure 3e) 

were deleted, whereas at least part of RP11-465C16 was retained. This confirms that 

the telomeric breakpoint of the del(11)(p12p13) in this patient was located in or just 

flanking the RAG genes.

FISH analysis for the 5 other cases with del(11)(p12p13) (table 1) confirmed that 

this deletion also targeted LMO2 in patients 2846, 2104 and 10110. However, for 

patients 2774 and 704 (table 1) both RP11-603J2 and RP11-98C11 probes showed a 

normal hybridization pattern, suggesting that in these cases the break had occurred 

upstream of LMO2 between the LMO2 and M11S1 genes.

A single patient from the DCOG T-ALL cohort had a classical t(11;14)(p13;q11) 

by conventional cytogenetics. To determine the exact frequency of classical t(11;14)

(p13;q11) or the t(7;11)(q34;p13) translocations involving LMO2, both the DCOG and 

the COALL cohorts (n=138) were analyzed by FISH using LMO2 flanking BAC clones 

(data not shown). In total, 9 cases were identified that contained a translocation 

involving LMO2 (9/138, 6.5%), including the patient also positive by conventional 

cytogenetics. Including these LMO2 translocated patients, the frequency of LMO2 

rearrangements (t(11;14)(p13;q11), t(7;11)(q34;p13) or del(11)(p12p13)) was 9.4% 

(13/138) in total.

molecular characterization of the del(11)(p12p13)

We next characterized the genomic breakpoint of the del(11)(p12p13) in T-ALL 

patient 1950 in more detail. Long-range PCR analysis on genomic DNA using prim-

ers situated in intron 1 of RAG2 and intron 1 of LMO2 revealed a specific band of 

∼2000bp (Figure 4a) for patient 1950 that was not present in a del(11)(p12p13) nega-

tive control (2720). Sequence analysis showed the exact positions of the genomic 

breakpoints in both intron regions (Figure 4b). It was expected that this deletion 

gives rise to a fusion of exon 1 of RAG2 to exon 2 of LMO2 which was confirmed at 

the mRNA level (Figure 4c-d). Subsequent RT-PCR failed to detect RAG2-LMO2 fusion 
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products in any of the remaining del(11)(p12p13) positive T-ALL patients. Therefore, 

we performed ligation-mediated PCR (LM-PCR) in order to determine additional 

genomic breakpoints. In patient 2846, LM-PCR with an LMO2 intron 1 specific primer 

revealed an aberrant PCR product in addition to the expected wildtype band (Figure 

4e). Sequence analysis showed that in this case LMO2 intron 1 sequences were fused 

to a region located 72 kb upstream of RAG2 (Figure 4f).

Del(11)(p12p13) correlates with a mature immunophenotype and high LMO2 

expression in t-aLL

Immunophenotypic analysis of LMO2-rearranged cases revealed that patients with 

the del(11)(p12p13) did not express CD34, CD33 or CD1 but expressed mCD3 (table 

2). None of these cases expressed TCRγδ, whereas two patients expressed TCRαβ 

(1950 and 2104) and 2 patients were CD4/CD8 double positive (1950 and 2846) 

Figure 3.6 LMO2 activation induced by enhanced activity of the LMO2 proximal promoter. 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6. Elevated LMO2 expression by activation of the LMO2 proximal promoter.

Relative expression of long and total mRNA transcript levels of LMO2 as measured by the RQ-PCR 

strategy. Long-transcripts including the RAG2-LMO2 fusion transcript can be measured by the exon 

2/3 primer combination, whereas the total amount of LMO2 transcript was measured using an exon 

5/6 primer combination. Expression of proximal promoter transcripts is calculated by subtracting the 

long-transcript expression from the total expression. Abbreviations: F
L,
 forward primer long mRNA 

transcript; R
L, 

reverse primer long mRNA transcript; F
T
, forward primer total mRNA transcript; R

T, 

reverse primer total mRNA transcript; prox, proximal.
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in agreement with an immunophenotypic mature developmental stage. The LMO2 

translocated patients were immunophenotypically more immature. Two out of 3 

cases expressed CD1 but none expressed mCD3 and/or the TCR. All 3 cases were 

CD4/CD8 double positive consistent with an early cortical developmental stage.

LMO2 mRNA expression levels of LMO2 rearranged versus non-rearranged cases 

were measured using quantitative real-time RT-PCR (RQ-PCR) on 59 DCOG T-ALL 

patient samples for which immunophenotypic data were available. Since LMO2 is 

highly expressed in T-ALL samples with an immature immunophenotype33, we divid-

ed T-ALL samples into 2 categories: the first category included the immature double 

negative cases (CD4-/CD8-, mCD3-, Cytβ-), whereas the second category comprised 

more mature cases with evidence for TCRβ rearrangements (Cytβ+) and/or TCR/

CD3 expression35. For LMO2 non-rearranged cases (WT), LMO2 expression was sig-

nificantly higher in the immature T-ALL cases compared to the immunophenotypic 

more advanced patients (Figure 5a, Mann-Whitney, p<0,0001). LMO2 rearranged 

cases had significantly higher LMO2 levels compared to the LMO2 non-rearranged 

T-ALL patients with a comparable immunophenotype (p<0.0001). LMO2 expression 

was low for patient 2774 (Figure 5a), which was in line with the observation that the 

deletion breakpoints did not affect the LMO2 gene.

LMO2 rearrangements in relation to other oncogenic events in pediatric t-aLL

In order to determine the relation between LMO2 rearrangments and other recurrent 

cytogenetic abnormalities in pediatric T-ALL, we screened all 13 LMO2-rearranged T-

ALL patients for abnormalities at the TAL1, TLX3, TLX1, CALM-AF10, MLL and cMYC 

loci using FISH analysis and RQ-PCR (data not shown). None of the LMO2 positive 

cases showed rearrangements of any of the loci mentioned above. Nevertheless, in 

the del(11)(p12p13) positive patient 2774 without involvement of LMO2, a SIL-TAL1 

interstitial deletion was identified. This indicates that del(11)(p12p13) positive T-ALL 

with elevated LMO2 levels together with LMO2 translocated T-ALL samples reflect a 

separate cytogenetic subgroup without detectable TAL1, TLX3, TLX1, CALM-AF10, 

MLL and cMYC abnormalities.

We further determined TAL1 expression levels by RQ-PCR (Figure 5b). These 

analyses showed that for intermediate and mature T-ALL patients, TAL1 is significantly 

higher expressed in both LMO2-rearranged (Figure 5b, Mann-Whitney, p<0,0001) 

and TAL1-rearranged (Figure 5b, Mann-Whitney, p<0,0001) cases, as compared to 

non-LMO2/TAL1 rearranged samples.

LMO2 activation induced by enhanced activity of the LMO2 proximal promoter

In patient 1950, the del(11)(p12p13) resulted in a RAG2-LMO2 gene fusion in which 

the distal LMO2 promoter is replaced by the RAG2 promoter (Figure 4c). However, 
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in none of the remaining three del(11)(p12p13) positive patients with elevated LMO2 

levels, a comparable fusion product was detected suggesting that RAG2-LMO2 fusion 

products were either expressed at very low levels or that other genomic regions 

were fused to LMO2 such as found for patient 2846 (Figure 4f). We hypothesized 

that LMO2 rearrangements due to the del(11)(p12p13) could result in the loss of 

a negative regulatory domain upstream of LMO2, with subsequent activation of 

the proximal promoter (exon 3), a situation comparable to LMO2 translocated pa-

tients36,37. To elucidate which kind of LMO2 transcripts are predominantly expressed, 

we developed a double RQ-PCR: one RQ-PCR can quantify LMO2 transcripts derived 

from the distal LMO2 promoter as well as RAG2-LMO2 fusion products. The second 

RQ-PCR quantifies total LMO2 transcripts derived from both the distal and proximal 

LMO2 promoters as well as RAG2-LMO2 fusion products (Figure 6). These analyses 

revealed that LMO2 transcripts derived from the distal promoter or RAG2-LMO2 

fusion products in del(11)(p12p13) positive patients (1950 and 2846) only represent 

5.5-9.3% of total LMO2 transcripts (Figure 6). For both LMO2-translocated patients 

(2789 and 2735) also 8.5-10% of total LMO2 transcripts originate from the distal 

promoter.

clinical relevance of LMO2 rearrangements in pediatric t-aLL

To study the prognostic relevance of LMO2-rearrangments in pediatric T-ALL, 

Kaplan–Meier disease-free-survival (DFS) curves were created for LMO2-rearranged 

cases versus LMO2 wild type cases. In a stratified analysis of the combined DCOG 

and COALL cohorts (n=138), LMO2-rearrangements had borderline significance for 

poor outcome (log-rank, p=0.03).

DiscussioN

LMO2 has been identified as oncogene in T-ALL due to its involvement in the trans-

location t(11;14)(p13;q11) or t(7;11)(q35;p13), in which the TCR-LMO2 fusion results 

in a constitutive activation of the LMO2 gene15,16. However, high LMO2 expression 

levels have also been reported in the absence of translocations32,38, suggesting that 

alternative mechanisms may exist in T-ALL resulting in the activation of LMO2.

Using the genome-wide array-CGH technique for the detection of genomic am-

plification an/or deletion areas, we identified a new recurrent deletion in pediatric 

T-ALL cases, i.e. the del(11)(p12p13). Screening pediatric T-ALL samples showed 

that this deletion is present in about 4% of pediatric T-ALL patients (6/138 cases). 

The genomic breakpoints are located in intron 1 of RAG2 and intron 1 of LMO2 for 

patient 1950, placing LMO2 under the control of the RAG2 promoter. As expected, 
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a RAG2-LMO2 fusion product could be cloned. Since exon 1 of RAG2 does not 

contain a translation initiation-site and the translation initiation-site of LMO2 is lo-

cated in exon 3, this fusion product will produce normal LMO2 protein. However, 

RAG2-LMO2 fusions could not be identified in any of the remaining del(11)(p12p13) 

positive T-ALL patients, suggesting that the localization of genomic breakpoints in 

these deletions are heterogeneous. This was demonstrated by the identification of 

the genomic breakpoint in patient 2846, in which the deletion caused fusion of a 

genomic region ∼72 Kb upstream of the RAG2 gene with LMO2 intron 1 sequences. 

Although the exact genomic breakpoints of both other del(11)(p12p13) positive 

cases (2104 and 10110) remain to be identified, oligo array-CGH, FISH and RQ-PCR 

analyses predict involvement of LMO2 in these cases alike patients 1950 and 2846.

Recently, it has been proposed that deletion of negative regulatory sequences, 

located approximately 3000 bp upstream of exon 1 of LMO2, could contribute to 

ectopic LMO2 expression in T-cell leukemia37. Interestingly, this negative regulatory 

element was consistently removed in 4 del(11)(p12p13) positive T-ALL cases that 

target LMO2, and may therefore provide a mechanism for the enhanced LMO2 activa-

tion in pediatric T-ALL. However, based upon the RAG2-LMO2 fusion product that 

was identified in patient 1950, promoter substitution could also contribute to elevated 

levels of LMO2 expression. Our RQ-PCR data supported only marginal contribution 

of the distal LMO2 promoter from the remaining wildtype allele or RAG2-LMO2 

fusion products to the total LMO2 mRNA levels in del(11)(p12p13) positive patients. 

Also, two LMO2 translocated patients as analyzed by RQ-PCR demonstrated low 

distal LMO2 promoter activity, confirming enhanced proximal promoter activity due 

to the loss of this negative regulatory domain36,37.

Array-CGH and FISH data indicated that the deletion area for both del(11)(p12p13) 

positive patients 2774 and 704 is smaller compared to the other 4 del(11)(p12p13) 

positive patients. For both patients, the deletion seem to be located upstream of the 

negative regulatory region of LMO2 as patient 2774 does not have elevated LMO2 

expression levels. These 2 cases may support the hypothesis that the minimally 

deleted region on chromosome 11 further contains a tumor suppressor gene that 

could contribute to the pathogenesis of T-ALL.

LMO2-rearranged cases of the DCOG cohort including those with the del(11)

(p12p13) as well as the 3 patients with a t(11;14)(p13;q11) expressed significantly 

higher levels of LMO2 than LMO2 non-rearranged T-ALL samples with a comparable 

immunophenotypic development stage, i.e. the cortical or mature T-cell developmen-

tal stage. The expression was comparable to immature T-ALL patients that highly ex-

press LMO2 as consequence of their immature developmental stage.17,18 Nevertheless, 

a number of immunophenotypic more advanced T-ALL patients demonstrated high 

LMO2 expression levels in the absence of currently known LMO2 rearrangements, 
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yet other alternative mechanisms leading to LMO2 activation in pediatric T-ALL 

may exist. LMO2-rearranged pediatric T-ALL samples with the del(11)(p12p13) may 

have a maturation stage that is more advanced in comparison to LMO2 translocated 

patients. Two out of 3 cases with the del(11)(p12p13) involving the LMO2 gene 

were TCRαβ positive. In contrast, none of the LMO2 translocated patients expressed 

CD3 and/or TCRαβ but 2 out of these patients expressed CD1 conform an early 

cortical developmental stage. Whether this reflects true differences in maturation 

stage between patients with the del(11)(p12p13) and the LMO2 translocated cases 

needs to be validated in a larger panel of patients. Similar variations in cortical and 

mature T-cell developmental stages were also observed for TAL1-rearranged T-ALL 

patients in the same cohort32. Deregulation of LMO2 or TAL1 may lead to a similar 

T-cell developmental arrest. TAL1 and LMO2 act in the same pentameric transcription 

complex, and deregulation of either of both genes may lead to the (in)activation of 

identical target genes.

The frequency of LMO2 rearrangements in both cohorts combined is about 9%, 

and includes 4 patients with LMO2 rearrangements due to the del(11)(p12p13) and 

9 cases with a t(11;14)(p13;q11) or the t(7;11)(q35;p13). These LMO2 abnormalities 

were shown to be independent of other recurrent cytogenetic abnormalities includ-

ing TAL1, TLX3, TLX1, CALM-AF10, MLL or cMYC32. Patient 2774, which was del(11)

(p12p13) positive but lacked LMO2 activation, had an interstitial SIL-TAL1 deletion.

Since LMO2 and TAL1 are frequently co-expressed in mature T-ALL cases and 

since no TAL1 deletions and/or translocations were observed in the LMO2-rear-

ranged cases, we determined TAL1 mRNA expression in the 59 T-ALL samples for 

which LMO2 expression data were available. These analyses confirmed that TAL1 

is significantly higher expressed in both LMO2- and TAL1-rearranged T-ALL cases, 

as compared to non-LMO2/TAL1 rearranged samples. These data further suggest 

that for del(11)(p12p13) positive patients alternative mechanisms of TAL1 activation 

besides TAL1 deletions and translocations may exist in T-ALL or that TAL1 may be a 

direct target gene for LMO2-driven transcription.

The presence of LMO2-rearrangements predicted for poor outcome in a stratified 

analysis of both the DCOG and COALL pediatric T-ALL cohorts. This prognostic 

significance has to be looked at cautiously due to the low number of patients, and a 

larger panel of T-ALL patients is needed to validate these findings. The presence of 

LMO2 translocations did not predict for poor outcome in a previous study.39

In conclusion, we report the identification of a new cryptic cytogenetic abnormal-

ity, i.e. the del(11)(p12p13) in 6 pediatric T-ALL patients targeting the LMO2 gene in 

4 cases. For del(11)(p12p13) positive patients involving LMO2, the proximal LMO2 

promoter is highly activated due to the deletion of negative regulatory sequences 

upstream of LMO2. Abnormalities involving LMO2, including the del(11)(p12p13) 
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the t(7;11)(q35;p13) and the t(11;14)(p13;q11) are more common in pediatric T-ALL 

(9%) as appreciated up till now. LMO2 abnormalities are independent from other 

recurrent cytogenetic abnormalities as frequently present in T-ALL.
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to tHe eDitor

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thy-

mocytes in which multiple genetic defects cooperate during pathogenesis resulting 

in uncontrolled cell growth. For T-ALL, a large variety of genetic rearrangements 

have been identified including chromosomal translocations, deletions, amplifica-

tions, duplications and mutations. Translocations predominantly involve aberrant 

rearrangements of the T-cell receptor (TCR) loci during T-cell development through 

illegitimate V(D)J recombination. These recombination errors ultimately result in the 

activation of oncogenes1.

One such an important oncogene is LMO2. In the t(11;14)(p13;q11) and t(7;11)

(q35;p13) translocations, the LMO2 gene is brought in close proximity of the TCRα/δ 

or TCRβ enhancers possibly boosting LMO2 expression1. Hammond et al. demon-

strated that deletion of a negative regulatory element (NRE) located just upstream 

the LMO2 locus also activates the LMO2 gene2. This alternative mechanism for LMO2 

activation also occurs in human cancer as we identified the recurrent interstitial 

deletion, del(11)(p12p13), in pediatric T-ALL in which loss of the NRE region is 

associated with LMO2 activation3. It was recently proposed that for most LMO2 

translocations, LMO2 activation is presumably caused by the loss of the NRE region 

during the translocation event rather than the juxtaposition of LMO2 in the vicinity 

of the TCR-enhancers4.

The NRE region is a relatively small domain comprised by a region of approxi-

mately 3000 base pairs directly upstream of the transcription initiation site of LMO22. 

Our initial screening for LMO2 translocations or cryptic LMO2 deletions using FISH 

on 138 childhood T-ALL cases3 may have been unsuccessful to detect relatively small 

deletions upstream of LMO2 including this NRE region. For this reason, we developed 

a Multiplex Ligation Probe Amplification (MLPA) assay5 with multiple probes located 

in or just flanking the NRE region to detect such smaller deletions upstream of 

LMO2 (Figure 1A). Using some of our previously identified del(11)(p12p13)-positive 

cases3 as positive controls, the MLPA assay confirmed the location of the telomeric 

breakpoints in these samples (Figure 1B). Re-screening of our cohort revealed one 

additional T-ALL case (#2845) with an LMO2 deletion that had remained undetected 

in our previous FISH screening (Figure 1C). Oligo array-CGH analysis on patient 

DNA confirmed the presence of the deletion, del(11)(p13p13), which was about 400 

kb in size and included part of the NRE-element and the centromeric genes M11S1, 

NAT10 and ABTB2 (Figure 2A). Copy number variations at this specific genomic 

locus have not been reported for the normal population6. In addition, FISH analysis 

using a BAC clone situated just upstream of LMO2 (RP11-98C11) in combination with 

an LMO2 telomeric BAC clone (RP11-646J21) confirmed the loss of this genomic 
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region (Figure 2B). This indicates that smaller del(11)(p13p13) deletions compared 

to the del(11)(p12p13) deletions as previously described3 occur in pediatric T-ALL 

(Figure 2C). Because of the differences in the deletion area among T-ALL cases, 

MLPA analysis could serve as a valuable additional tool to FISH screening for the 

proper identification of LMO2 rearranged T-ALL cases.

To study the effect of this deletion in case #2845 in relation to LMO2 expression, 

the LMO2 mRNA expression level for this case as measured using quantitative real-

time RT-PCR (RQ-PCR) was compared to the expression levels of 66 LMO2 rearranged 

and non-rearranged T-ALL cases (Figure 3). As LMO2 is normally highly expressed 

in early T-cell development and is repressed during later development stages7-9, we 

distinguished T-ALL cases with an immature immunophenotype (IM: Cytβ-, mCD3-, 
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Figure 1. MLPA analysis of the LMO2 gene in pediatric T-ALL.

(a) Overview of the localization of the MLPA probes in the genomic locus surrounding the LMO2 

gene at chromosomal band 11p13. (b) MLPA analysis of 4 del(11)(p12p13)-positive cases for the 

genomic loci described in (a). For each MLPA probe, the peak intensity, relative to the endogenous 

reference peak (LMO2 exon 6), is shown for each case. When 2 copies are present for each indicated 

genomic region, the relative peak intensities range between 0.9 and 1.1. Peak intensities between 

0.4 and 0.6 indicate a one-copy loss for that specific region. (c) Similar MLPA analysis on different 

childhood T-ALL cases revealed an additional T-ALL case (#2845) with an LMO2 deletion, starting in 

between 500 and 1200 bp upstream of the LMO2 gene.
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TCRαβ-, TCRγδ-) from those with an cytoplasmatic-beta (Cytβ) positive, intermedi-

ate (pre-αβ: Cytβ+, mCD3-, TCR-) or mature immunophenotype (mCD3+, TCRαβ+ 

or TCRγδ+)10. The leukemic cells from case #2845 had a mature immunophenotype 

and showed high LMO2 levels comparable to levels as observed in other LMO2 

rearranged cases3. Pre-αβ and mature T-ALL cases without LMO2 rearrangements 

significantly expressed lower LMO2 levels (Figure 3).Figure 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A novel cryptic deletion, del(11)(p13p13), targeting LMO2 in T-ALL.

(a) Detailed overview of the centromeric and telomeric breakpoints of the del(11)(p13p13) deletion 

based upon oligo array-CGH micro-array results (44K oligo array, Agilent) for T-ALL case #2845. 

Patient DNA versus control DNA ratios are indicated in Blue whereas the reciprocal experiment is 

shown in red. Hybridization signals around the –2X or +2X lines represent loss of the corresponding 

region in the patient DNA. (b) FISH analysis using a BAC clone situated just upstream (RP11-98C11, 

Red) and downstream (RP11-646J21, Green) of LMO2 confirming loss of a genomic region upstream 

of LMO2 in case 2845. (c) Overview of the deletion areas for del(11)(p12p13) positive cases as 

previously described3 as well as the del(11)(p13p13) of case #2845 characterized by the activation of 

the LMO2 gene. RP11-98C11 is situated just upstream of LMO2, whereas RP11-646J21 is positioned 

telomeric of LMO2.
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About half of the immature T-ALL cases without LMO2 rearrangements also dis-

played high LMO2 levels comparable to levels as observed in LMO2 rearranged 

cases. Although postulated as an oncogenic mechanism in the absence of cytogenetic 

rearrangements by Ferrando and coworkers (2004)7, high LMO2 expression levels 

could also be attributed to a residual characteristic of early T-cell development7-9 

rather than reflecting an oncogenic hit.

In support of this notion, 7 out of 12 IM T-ALL cases with high LMO2 levels (above 

the median, Figure 3) are characterized by other recurrent abnormalities that are 

commonly mutually exclusive and may delineate specific subgroups in T-ALL. From 

these, 5 single cases had an MLL-AF6 translocation, a CALM-AF10 translocation, a 

cMYB-TCRβ translocation, a TAL2-TCRβ translocation or an TLX1 rearrangement, 

while 2 cases had a TLX3 rearrangement.

To further support that high LMO2 expression in these IM T-ALL cases is a reflec-

tion of early T-cell maturation arrest rather than an oncogene activation mechanism, 

we investigated whether LMO2 expression was driven from a single allele or both 

Figure 4.3  

 

 

 

 

Figure 3. LMO2 expression in LMO2-rearranged and non-rearranged samples in relation to 
T-cell development stage. Relative expression levels of LMO2 as percentage of GAPDH expression 
levels for 67 pediatric T-ALL patients treated on DCOG protocols. Patients were classified based upon 
their T-cell development status: Immature cases (Cytβ-, mCD3-, TCRαβ-, TCRγδ-) versus intermediate/
mature cases: pre-αβ (Cytβ+, mCD3-, TCRαβ-, TCRγδ-) and mature cases (mCD3+, TCRαβ+ or TCRγδ+). 
The horizontal line indicates the median LMO2 expression level.
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alleles. For this, we performed allele-specific LMO2 mRNA analysis7 using an RT-PCR 

and sequencing approach on selected T-ALL cases including 27 TAL1 rearranged 

cases, 14 LMO2 rearranged cases, 1 MLL-rearranged case and 25 cases lacking cur-

rently known molecular-cytogenetic abnormalities. These latter cases are denoted as 

‘unknown’ cases. Thirty-four out of these 67 samples were informative (heterozy-

gous) at the DNA level for a single nucleotide polymorphism in the 3’UTR region of 

LMO2 including 13 TAL1 rearranged, 9 LMO2 rearranged, and 1 MLL rearranged case 

as well as 11 unknown cases (Table 1).

 All LMO2 rearranged cases analyzed demonstrated monoallelic LMO2 activation 

(Figure 4; table 1), indicating that cis-acting mechanisms (loss of the NRE and/or 

juxtaposition to the TCR enhancer) resulted in ectopic LMO2 expression of the rear-

ranged allele with no or neglectable expression of the remaining wild-type allele. A 

number of T-ALL cases without known LMO2 rearrangements also expressed LMO2 

in a monoallelic manner. Although the LMO2 expression levels in these case are 

relatively low, it would still be possible that they contain deletions, insertions or 

point-mutations in the NRE region, that have remained undetected by FISH or MLPA 

analysis. Most TAL1 rearranged cases as well as about half of all LMO2/TAL1 non-

rearranged cases with lower LMO2 levels compared to the LMO2 rearranged cases 

demonstrated biallelic LMO2 expression (Figure 4). Biallelic LMO2 expression was 

also observed for the 3 LMO2 wildtype cases with an immature phenotype (1 MLL+ 

Figure 4.4  

 

Figure 4. Mono- or biallelic LMO2 expression in pediatric T-ALL patients.

LMO2 mRNA expression levels relative to GAPDH (%) for 34 selected pediatric T-ALL patients. Mono- 

or bi-allelic expression of the LMO2 gene is visualized as open or filled circles, respectively.
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Table 1. LMO2 expression levels and genetic characteristics of 34 T-ALL cases.

ID Genetics LMO2 expression Mono-/biallelic

subgroup rearrangement

2793 Unknown Unknown 0.43644 Biallelic

2847 MLL Translocation 1.62321 Biallelic

2782 Unknown Unknown 1.20903 Biallelic

2436 Unknown Unknown 0.01051 Monallelic

230 Unknown Unknown 0.00955 Monoallelic

1632 Unknown Unknown 0.01522 Monallelic

9160 Unknown Unknown 0.01955 Monoallelic

9696 Unknown Unknown 0.01849 Monallelic

1032 Unknown Unknown 0.00264 Biallelic

2805 Unknown Unknown 0.01158 Monallelic

9027 Unknown Unknown 0.00955 Biallelic

9376 Unknown Unknown 0.01437 Monallelic

8815 TAL1 SIL-TAL1 0.09987 Monoallelic

9083 TAL1 SIL-TAL1 0.05399 Biallelic

2720 TAL1 Translocation 0.04265 Biallelic

1949 TAL1 SIL-TAL1 0.03254 Biallelic

9243 TAL1 SIL-TAL1 0.03216 Biallelic

3037 TAL1 SIL-TAL1 0.02325 Biallelic

258 TAL1 SIL-TAL1 0.02004 Monoallelic

1941 TAL1 SIL-TAL1 0.01757 Monoallelic

1842 TAL1 SIL-TAL1 0.01385 Biallelic

2759 TAL1 SIL-TAL1 0.01259 Monoallelic

2722 TAL1 Translocation 0.00659 Biallelic

8628 TAL1 Translocation 0.00273 Monoallelic

750 TAL1 SIL-TAL1 0.00123 Biallelic

704 LMO2 Deletion 0.26546 Monoallelic

10110 LMO2 Deletion 0.21543 Monoallelic

1950 LMO2 Deletion 0.78396 Monoallelic

2104 LMO2 Deletion 0.10322 Monoallelic

492 LMO2 Translocation 0.23423 Monoallelic

344 LMO2 Translocation 0.15513 Monoallelic

2698 LMO2 Translocation 0.86385 Monoallelic

9928 LMO2 Translocation 0.22135 Monoallelic

2735 LMO2 Translocation 0.43043 Monoallelic
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case and 2 unknown cases) that had the highest LMO2 expression levels comparable 

to LMO2 rearranged cases.

In conclusion, our study confirms that MLPA analysis for the detection of dele-

tions upstream of LMO2 gene which includes the NRE region is a valuable tool 

to screen T-ALL patients for the del(11)(p12p13) mostly leading to ectopic LMO2 

expression. Furthermore, bi-allelic activation of LMO2 in immature T-ALL cases may 

reflect their early T-cell development stage rather than it represents a true oncogenic 

mechanism.
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aBstract

T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chro-

mosomal abnormalities, some occurring in a mutually exclusive manner possibly 

delineating specific T-ALL subgroups. One subgroup, including MLL-rearranged, 

CALM-AF10 or inv(7)(p15q34) cases, is characterized by elevated expression of 

HOXA genes. Using a gene expression based clustering analysis of 67 T-ALL cases 

with recurrent molecular genetic abnormalities and 25 samples lacking apparent 

aberrations, we identified 5 new cases with elevated HOXA levels. Using array-CGH, 

a cryptic and recurrent deletion, del(9)(q34.11q34.13), was exclusively identified in 3 

of these 5 cases. This deletion results in a conserved SET-NUP214 fusion product, that 

was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter 

regions of specific HOXA genes, where it interacts with CRM1 and DOT1L leading 

to the transcriptional activation of HOXA genes. Targeted inhibition of SET-NUP214 

by siRNA abolished expression of HOXA genes, inhibited proliferation and induced 

differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 

contributes to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.
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iNtroDuctioN

T-cell acute lymphoblastic leukemia (T-ALL) is a thymocytes malignancy, and rep-

resents about 15% of pediatric ALL cases. T-ALL often presents with a high tumour-

mass, accompanied by a rapid progression of disease. Still, about 30% of T-ALL cases 

relapse during therapy or within the first 2 years following treatment and eventually 

die1.

Over the last years, great progress has been made in unravelling the genetics 

of T-ALL, including chromosomal translocations (TAL1, LYL1, LMO1, LMO2, TLX1, 

TLX3, MYB, Cyclin D2), deletions (SIL-TAL1, del(6q), del(9)(p21), del(11)(p12p13)), 

amplifications (NUP214-ABL1), duplications (MYB) and mutations (RAS, NOTCH1)2-13. 

Various of these abnormalities represent unique aberrations possibly delineating 

distinct T-ALL subgroups (i.e. TAL1, LMO1, LMO2, TLX1, TLX3, CALM-AF10, MLL, 

Inv(7)). Others are shared by various of these subgroups and may lead to the de-

regulation of cell-cycle (i.e. del(9)(p21) that includes the CDKN2A/p15 and CDKN2B/

p16 loci)3,4. Some may be acquired during leukemic growth and are predominantly 

associated with relapse, like the episomal NUP214-ABL1 amplification6. NOTCH1 

activation mutations are present in more than half of all T-ALL cases irrespective 

of the presence of other rearrangements7. It has been hypothesized that activation 

of NOTCH1 represents one of the most advanced abnormalities in T-ALL that may 

enable for uncontrolled proliferation and/or inhibition of apoptosis possibly through 

upregulation of the target genes cMYC and DELTEX114-16.

In contrast to the wide variety of genetic abnormalities in T-ALL, initial microarray 

studies have revealed only 5 different expression clusters: immature/LYL1, TAL1, 

TLX1, TLX3 and HOXA clusters8,17. One of the explanations for this phenomenon is 

that cases with different molecular cytogenetic defects may share a highly similar 

expression profile and are being recognized as one single expression cluster8,17. For 

example, cases with different abnormalities demonstrate high expression of genes of 

the HOXA cluster (HOXA5, -A9, -A10 and -A11). This cluster includes patients with 

CALM-AF108,18 or MLL-rearrangements8,19 or cases with an inversion on chromosome 

7 due to the rearrangement of the T-cell receptor-beta (TCRβ) locus into the HOXA 

cluster8,10. Elevated HOXA gene expression levels have also been reported in the 

absence of these genetic aberrations8,20, suggesting that alternative mechanisms of 

HOXA activation may exist in T-ALL.

Previously, we have studied the incidence and prognostic relevance of recurrent 

molecular cytogenetic abnormalities for pediatric T-ALL21. Within our cohort, about 

half of the T-ALL patients lack currently known molecular cytogenetic abnormalities. 

To identify the underlying genetic defects in these patients, we used various high-

resolution genomic screening strategies including microarray-based comparative 
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genomic hybridization (array-CGH). We recently described a new and recurrent de-

letion, i.e. the del(11)(p12p13), in about 4 percent of T-ALL patients12. This interstitial 

deletion leads to the loss of a negative regulatory domain upstream of LMO2 resulting 

in ectopic expression of this oncogene. Array-CGH also led to the identification of a 

recurrent duplication of MYB in about 10 percent of T-ALL patients2,9.

In this study, we combined gene expression profiling and array-CGH analysis 

to detect a new and recurrent molecular cytogenetic abnormality in T-ALL patients 

that co-clustered with 5 well-defined HOXA-activated T-ALL samples. We describe 

the cloning of a recurrent SET-NUP214 fusion product in these samples, and identi-

fied the mechanism by which SET-NUP214 can activate the HOXA gene cluster as 

potential leukemogenic event in T-ALL.

materiaLs aND metHoDs

Patient samples

Viably frozen diagnostic bone marrow or peripheral blood samples from 92 pediatric 

T-ALL patients, clinical and immunophenotypic data were provided by the German 

Co-operative study group for childhood Acute Lymphoblastic Leukemia (COALL) and 

the Dutch Childhood Oncology Group (DCOG). The patients’ parents or their legal 

guardians provided informed consent to use leftover material for research purposes 

according to the declaration of Helsinki. Leukemic cells were isolated and enriched 

from these samples as previously described12. All resulting samples contained ≥90% 

leukemic cells, as determined morphologically by May-Grünwald-Giemsa-stained 

cytospins (Merck, Darmstadt, Germany). Viably frozen T-ALL cells were used for 

DNA and RNA extraction, and a minimum of 5×106 leukemic cells were lysed in 

Trizol reagent (Invitrogen, Life Technologies, Breda, The Netherlands) and stored 

at -80°C. A total of 25×103 leukemic cells was used to prepare cytospin slides for 

fluorescence in-situ hybridization (FISH) and stored at -20°C.

Genomic DNa isolation, rNa extraction and cDNa synthesis

Genomic DNA and total cellular RNA were isolated using Trizol (Invitrogen) ac-

cording to the manufacturers’ protocol, with minor modifications. An additional 

phenol-chloroform extraction was performed and the DNA was precipitated with 

isopropanol along with 1 µL (20 µg/mL) glycogen (Roche, Almere, The Nether-

lands). After precipitation, RNA pellets were dissolved in 20 µL RNAse-free TE-buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH=8.0). The RNA concentration was quantified 

spectrophotometrically. Following a denaturation step of 5’ at 70°C, 1 µg of RNA 

was reverse transcribed to single-stranded cDNA using a mix of random hexamers 
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(2.5 µM) and oligodT primers (20 nM). The RT reaction was performed in a total 

volume of 25 µl containing 0.2 mM of each dNTP (Amersham Pharmacia BioTech, 

Piscataway, NJ, USA), 200U Moloney murine leukemia virus reverse transcriptase 

(M-MLV RT) (Promega, Madison, WI, USA) and 25 U RNAsin (Promega). Conditions 

for the RT reaction were 37°C for 30’, 42°C for 15’, and 94°C for 5’. The cDNA was 

diluted to a final concentration of 8 ng/µL and stored at -80°C.

Gene expression array analysis

Integrity of total RNA was checked using the Agilent 2100 Bio-analyzer (Agilent, 

Santa-Clara, USA). Copy-DNA and ccRNA syntheses from total RNA, hybridization 

of Humane Genome U133 plus2.0 oligonucleotide microarrays (Affymetrix, Santa-

Clara, USA) and washing steps were performed according to the manufacturers’ 

protocol. Probeset intensities were extracted from CEL-files using GeneChip Op-

erating Software (GCOS), version 1.4.0.036 (Affymetrix), and all arrays had a 3’ 

to 5’ GAPDH ratio lower than 3 fold. Probe intensities were normalized using the 

variance stabilization procedure (Bioconductor package VSN22) in the statistical data 

analysis environment R, version 2.2.0. Differentially expressed genes between T-

ALL subgroups were calculated using a Wilcoxon statistical test, and corrected for 

multiple testing error according to the false discovery rate procedure as developed 

by Hochberg and Benjaminin23 using the Bioconductor package Multtest. The fold 

change was calculated using the formula: e(median value groupA-median value groupB). Supervized 

clustering and principal component analyses were performed using GeneMath XT 

1.6.1. software (Applied Maths, Inc, Austin TX, USA).

microarray based comparative genome hybridization (array-cGH)

Array-CGH analysis was performed, as previously described12,24, on the human 

genome CGH Microarray 44A (Agilent), which consists of ~40,000 60-mer oligo-

nucleotide probes that span both coding and non-coding sequences with an average 

spatial resolution of ~35kb. Briefly, 10 μg of genomic reference or patient DNA was 

digested overnight at 37°C with AluI (20U) and RsaI (20U) (Invitrogen). Reference 

and patient DNA were purified and labeled with Cy5-dUTP and Cy3-dUTP (PerkinEl-

mer, Wellesley, MA, USA). Reference and patient DNA for each hybridization were 

pooled and mixed with 50 μg of human Cot-1 DNA (Invitrogen), 100 μg of yeast 

tRNA (Invitrogen), and 1× hybridization control targets (SP310, Operon Technolo-

gies, Alameda, CA, USA) in a final volume of 500 μL in-situ hybridization buffer 

(Agilent). The hybridization mixtures was denatured at 95°C for 3’, pre-incubated 

at 37°C for 30’, and hybridized to the array in a microarray hybridization chamber 

(Agilent) for 14-18h at 65°C in a rotating oven (Robbins Scientific, Mountain View, 

CA, USA) at 20 rpm. The array slides were washed in 0.5× SSC/0.005% Triton X-102 
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at room temperature for 5’, followed by 5’ at 37°C in 0.1× SSC/0.005% Triton X-102. 

Slides were dried and scanned using a 2565AA DNA microarray scanner (Agilent). 

Microarray images were analyzed using feature extraction software (version 8.1, 

Agilent) and the data were subsequently imported into array-CGH analytics software 

v3.1.28 (Agilent).

Fluorescent in-situ hybridization (FisH)

FISH analysis was performed on thawed cytospin slides using the LSI BCR-ABL ES 

translocation probe, according to the manufacturer’s protocol (Vysis, IL, USA). Cells 

were counterstained with DAPI/Vectashield mounting medium. Fluorescence signals 

were visualized with a Zeiss Axioplan II fluorescence microscope (Zeiss, Sliedrecht, 

The Netherlands). The combined presence of a clonal del(9)(q34.11q34.13) and an 

episomal NUP214-ABL1 amplification in patient #120 was determined by FISH analy-

sis as previously described12 using Bacterial Artificial Chromosomes (BAC) clones 

RP11-83J21 (covering ABL1) and RP11-618A20 (covering ASS1, located in the deleted 

area between SET and ABL1). BACs were obtained from BAC/PAC Resource Center 

(Children’s Hospital, Oakland, USA).

reverse transcriptase Pcr (rt-Pcr) and quantitative rt-Pcr (rQ-Pcr)

The SET-NUP214 fusions were determined by RT-PCR using forward primer 

5’-TTCCCGATATGGATGATG-3’ (exon 7 SET) and reverse primer 5’-CTTTG-

GGCAAGGATTTG-3’ (exon 20 NUP214). PCR reactions were performed using 40 

ng of cDNA (8 ng/μL), 10 pmol primers, 10nmol of dNTPs, 4 mM MgCl
2, 

1.25 U 

of ampliTaq gold (Applied Biosystems, Foster City, CA, USA) in 10x PCR buffer II 

(Applied Biosystems) in a total volume of 50 μL. After the initial denaturation at 94°C 

for 10’, PCR was performed for 39 cycles of 95°C for 15”, 60°C for 1’ and 68°C for 3’. 

NUP214-ABL1 fusions were determined as previously described6.

Expression levels of HOXA, SET and SET-NUP214 transcripts were quantified rela-

tive to the expression level of the endogenous housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) using RQ-PCR in an ABI 7700 sequence detec-

tion system (Applied Biosystems). The HOXA primers were as described previously8. 

For SET expression, the forward primer 5’-TTCCCGATATGGATGATG-3’ (exon 7 SET) 

and the reverse primer 5’-CCCCCCAAATAAATTGAG-3’ (exon 8 SET) were used. For 

SET-NUP214 expression, the primers used were as described above.

cell culture

T-ALL cell lines (DSMZ, Braunschweig, Germany) were cultured in RPMI-1640 

medium (Invitrogen) supplemented with 10% fetal calf serum (Integro, Zaandam, 

The Netherlands), 100 IU/mL penicillin, 100 μg/mL streptomycin and 0.125 μg/mL 
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fungizone (Invitrogen) and grown as suspension cultures at 37°C in humidified air 

containing 5% CO
2
. LOUCY and SKW3 cells (1 x 107) were transfected with 100 

nM SET siRNA by electroporation in 400 μL RPMI 1640 with L-Alanyl-L-Glutamine 

(Invitrogen) in 4 mm electroporation cuvettes (BioRad, Hercules, CA, USA). The 

SET siRNA were located in exon 5 (5’ GAAATCAAATGGAAATCTGGAAA) and exon 

8 (5’ AGGAGAAGAUGACUAAATA). To compensate for the amount of cell death 

induced as a consequence of the electroporation procedure, control cells were elec-

troporated without siRNA. Electroporation was performed using an EPI 2500 gene 

pulser (Fischer, Heidelberg, Germany) applying a rectangle pulse of 350V for 10 ms. 

After incubating for 15 min at room temperature, the cells were diluted 10-fold with 

RPMI 1640 medium (Invitrogen) supplemented with 10% FCS (Integro), 100 IU/mL 

penicillin, 100 μg/mL streptomycin and 0.125 μg/mL fungizone (Invitrogen) and 

incubated at 37°C and 5% CO
2
. Cell viability was assessed by AnnexinV/PI staining 

and determined by flow cytometry using a FACSCalibur (Becton Dickinson, San Jose, 

CA, USA). Electroporation of a FITC labeled siRNA (Eurogentec, Seraing, Belgium) 

and subsequent FACS analysis indicated that transfection efficiencies were >90%. 

Electroporation of this FITC labeled siRNA also served as negative siRNA control.

Protein extraction and Western blot analysis

Cell pellets stored at -80°C were briefly thawed and resuspended in 50 μL lysis buffer 

composed of 50 mM Tris buffer, 150 mM NaCl, 100 mM EDTA, 1% Triton X-100, 

2 mM PMSF, 3% aprotinine (Sigma, Zwijndrecht, The Netherlands), 4 g/mL pepstatin 

(Sigma) and 4 μg/mL leupeptin (Sigma). Accordingly, cells were lysed for 15 min on 

ice. The supernatant of the lysed cells was cleared by centrifugation for 15 min at 

13 000 rpm and 4°C. The protein content of the cleared lysates was determined using 

the BCA protein assay (Pierce Biotechnology, Inc., Rockford, USA) with different 

concentrations of bovine serum albumin as standards. Cell lysates containing 25 μg 

of protein were separated on 10% polyacrylamide gels topped with 4% stacking 

gels, and transferred onto nitrocellulose membranes (Schleichler & Schuell, Dassel, 

Germany). Western blots were probed with mouse anti-SET (provided by Dr. K. Na-

gata) or with mouse anti-Actin (Sigma, cat# A2547) antiserum. Anti-SET was used in 

different concentrations for proper detection of both SET (1:1000) and SET-NUP214 

(1:250). Accordingly, the blots were labeled with peroxidase-conjugated anti-mouse 

IgG antibodies (DAKO, Glostrup, Denmark) and visualized using SuperSignal® West 

Femto chemiluminescent substrate (Pierce Biotechnology).

immunoprecipitation (iP) and chromatine immunoprecipitation (chiP)

For ChIP analysis, 20x106 cells were crosslinked using formaldehyde to a final con-

centration of 1% for 15 min at RT. Crosslinking was stopped by adding glycine to a 
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final concentration of 0.125 M followed by 5 min incubation at RT. Fixed cells were 

washed twice using ice cold 1x PBS and harvested in SDS buffer (100mM NaCl, 

50mM Tris-HCl pH 8.1, 5 mM EDTA pH 8.0, 0.2% NaN
3 
and protease inhibitors). After 

centrifugation, the pellet was resuspended in IP buffer (100 mM Tris at pH 8.6, 0.3% 

SDS, 1.7% Triton X-100, and 5 mM EDTA) and the cells were sonicated yielding 

genomic DNA fragments with a size of 500-1000 bp. After pre-clearing of the lysates 

with protein A beads (50% slurry protein A-Sepharose, Upstate, Charlottesville, USA), 

the samples were immunoprecipitated overnight at 4°C with affinity purified anti-

NUP214 antibodies (provided by Dr. M. Fornerod25), anti-acetylated H3 (upstate, cat# 

06-599) or anti-FLAG (sigma, cat# 7425). The immune complexes were recovered by 

adding 50 μL of protein A beads and incubated for 2 h at 4°C. Subsequently, beads 

were washed with low salt buffer (0.1% SDS, 1% triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl pH 8.1, 150 mM NaCl), high salt buffer (0.1% SDS, 1% triton X-100, 2 mM 

EDTA, 20mM Tris-HCl pH 8.1, 500 mM NaCL), LiCl buffer (250 mM LiCl, 1 mM EDTA, 

0.5% NP-40, 10 mM Tris-HCL pH 8.0, 0.2% NaN
3
) and 1x TE buffer (10 mM Tris-HCL 

pH 8.0, 1 mM EDTA). The immune complexes were eluted from the beads by adding 

elution buffer (1% SDS, 0.1M NaHCO
3
) for 15 min at RT. Cross links were reversed by 

overnight incubation at 65°C. The eluted material was phenol/chloroform-extracted 

and ethanol-precipitated. The immunoprecipitated DNA was quantified by RQ-PCR 

using HOXA specific promoter primers as previously described26.

For immunoprecipitation analysis, cells were washed twice using ice cold 1x PBS 

and lysed in a single detergent lysis buffer (142,5 mM KCl, 5 mM MgCl
2
, 10 mM 

HEPES pH 7.0, 1 mM EDTA, 1% NP-40
 
and protease inhibitors). After pre-clearing of 

the lysates with protein A beads (Upstate), samples were immunoprecipitated over-

night at 4°C with rabbit anti-NUP214, rabbit anti-PP32 (gift from Dr. J. Brody), mouse 

anti-SET, rabbit anti-CRM1 (gift from Dr. M. Yoshida), rabbit anti-hDOT1L (gift from 

Dr. Yi Zhang). The immune complexes were recovered by adding 50 μL of protein 

A beads and incubated for 2 h at 4°C. Subsequently, beads were washed twice by 

single detergent lysis buffer and twice by single detergent lysis buffer without NP-40. 

The pellets were resuspended in loading buffer, boiled for 5 min and western blot 

analysis was performed as described above.

resuLts

Gene expression profiling of pediatric t-aLL subgroups

We have used gene expression profiling data to cluster 92 T-ALL patients: 67 patients 

with known cytogenetic abnormalities and 25 patients without recurrent aberrations 

(from this point denoted as unknown cases). For the 67 T-ALL patients having one of 
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the major molecular cytogenetic abnormalities (i.e. TAL1 (n=24), LMO2 (n=9), HOXA 

(n=5), TLX1/TLX1 (n=7), and TLX3/TLX3 (n=22)), differentially expressed probesets 

were calculated from Affymetrix U133plus2.0 data based upon a Wilcoxon analysis 

and corrected for multiple testing for each probeset. Significant and differentially 

expressed probesets were obtained for the TAL1, TLX1 and TLX3 subgroups (Figure 

1A). No significant probesets were obtained for the HOXA subgroup or the LMO2 

subgroup (Figure 1A). As TAL1 and LMO2 both participate in the same transcriptional 

complex27, activation of these genes may both lead to a highly similar expression 

profile. Combined analysis of TAL1 and LMO2 rearranged cases revealed significant 

and differentially expressed probesets that, as expected, almost entirely overlapped 

with the gene signature obtained for the TAL1-subgroup only.

Next, we tried to cluster all 92 T-ALL cases. Cluster analysis was performed based 

upon the top 25, 50 or 100 most significant probesets for the TAL1, TAL1/LMO2, 

TLX1 and TLX3 subgroups combined with 15 HOXA probesets identified by Soulier 

et al (2005)8 (Figure 1A-B). Cluster and principal component analyses (PCA) led 

to a stable clustering of unknown T-ALL cases with specific molecular cytogenetic 

subgroups (Figure 1B-C): 1 patient clustered with TLX3 rearranged cases, and this 

patient uniquely highly expressed the TLX3 homologous gene TLX1L1 (data not 

shown). Nineteen unknown cases tightly clustered with TAL1 or LMO2 rearranged 

cases. FISH analysis (not shown) revealed TAL1 and/or LMO2 homologous rearrange-

ments to the TCRβ or TCRαδ loci in 5 out of these 19 patients (i.e. TAL2 (1 case); 

LMO1 (1 case); TAL2/LMO1 (1 case); cMYC (2 cases)) in line with karyotypic data. 

Another 5 unknown T-ALL samples formed a separate cluster with the 5 HOXA-type 

T-ALL cases (Figure 1B-C), and will be denoted as HOXA-like samples.

New recurrent deletion, del(9)(q34.11q34.13), in HOXA-like t-aLL samples

To identify new chromosomal abnormalities in the 5 HOXA-like cases, we screened 

these patients using oligonucleotide array-CGH. A one-copy loss of an approximately 

3 Mb region involving chromosomal band 9q34.11-9q34.13 was identified in 3 out of 

5 HOXA-like patients (cases #126, #125 and #120, Figure 2A-C). Detailed analysis of 

the centromeric breakpoints in these 3 patients revealed a breakpoint within or in 

the vicinity of the SET gene. The PKN3 gene just telomeric to SET was consistently 

lost in all 3 patients (Figure 2A-C). The telomeric breakpoint seemed located in the 

NUP214/CAN gene in 2 patients (#125 and #126, Figure 2A-C) whereas the telomeric 

breakpoint of patient #120 was situated in the ABL1 oncogene (Figure 2B-C).

The presence of the del(9)(q34.11q34.13) in patients #125 and #126 was confirmed 

by FISH using the LSI BCR-ABL ES translocation probe resulting in a single copy loss 

of the ABL1 gene (Figure 2D). Strikingly, FISH analysis on patient #120 also revealed 

an identical mono-allelic loss of ABL1 in all leukemic cells. However, an episomal 
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CHAPTER 5 
 
Figure 5.1 

Figure 1. Gene expression profiles of 92 T-ALL patients.

(a) Differentially expressed genes among the major molecular cytogenetic T-ALL subgroups (TAL1, 

LMO2, HOXA, TLX1, and TLX3, n=67). The significance level (Wilcoxon p-value) and FDR corrected 

p-value for the top100 gene in each T-ALL subgroup is indicated. TAL1, TLX1 and TLX3 subgroups 

show significant differentially expressed probesets. (b) Cluster analysis of 92 T-ALL patients (67 

known, 25 unknown) based upon the top25 most significant probesets for the TAL1, TAL1/LMO2, 

TLX1 and TLX3 subgroups combined with 15 HOXA probesets as previously described8. (c) Principal 

component analyses shows clustering of the unknown T-ALL cases along the molecular cytogenetic 

known cases: 1 TLX3-like, 19 TAL1/LMO2-like and 5 HOXA-like patients.
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Figure 5.2  

  

Figure 2. Submicroscopic del(9)(q34.11q34.13) in T-ALL.

(a) Chromosome 9 ideogram and corresponding oligo array-CGH plots of test DNA:control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for patient #126. Detailed analyses 

of the centromeric and telomeric breakpoints show involvement of SET and NUP214. (b) Similar 

array-CGH plot for patient #120. Centromeric and telomeric breakpoints show involvement of SET 

and ABL1. (c) Overview of oligo array-CGH results in the potential breakpoint regions for 3 T-ALL 

patients with del(9)(q34.11q34.13). The 60-mer oligonucleotide probes present on the array-CGH 

slide and located in the telomeric and centromeric breakpoint regions, as well as the specific genes 

located in this region with their transcription direction, are shown. Dual-color FISH analysis of 

patient #125 (d) and #120 (e) using the LSI BCR-ABL ES translocation probe.
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NUP214-ABL1 amplification6 was detected in a leukemic subclone comprising ~5% of 

the total leukemic cell population (Figure 2E). Subsequent FISH analysis confirmed 

that the episomal NUP214-ABL1 amplification as well as the del(9)(q34.11q34.13) 

were both present in this subclone (data not shown). The combined presence 

of a clonal del(9)(q34.11q34.13) in combination with an episomal NUP214-ABL1 

amplification in a leukemic subclone in this patient explains why the telomeric 

breakpoint of the del(9)(q34.11q34.13) seemed situated in the ABL1 gene according 

to the array-CGH data. Additional FISH screening of the remaining 87 T-ALL patients 

did not reveal other patients with this same deletion.

SET-NUP214 fusion in del(9)(q34.11q34.13)-positive patients

Subsequent RT-PCR analysis to amplify a potential SET-NUP214 fusion product using 

a SET forward primer (exon 7) in combination with a NUP214 reverse primer (exon 

20) revealed an SET-NUP214 fusion product in all 3 del(9)(q34.11q34.13)-positive 

T-ALL patients that we also identified in the T-ALL cell line LOUCY28 (Figure 3A). A 

similar SET-NUP214 fusion product due to the reciprocal chromosomal translocation 

t(9;9)(q34;q34) has been described previously for a patient with an acute undifferen-

tiated leukemia (AUL) by Von Lindern et al (1992)29. Material of this AUL patient was 

still available, and RT-PCR analysis revealed a SET-NUP214 fusion product in this 

patient (Figure 3A). Sequence analyses of the SET-NUP214 PCR products confirmed 

that these 3 T-ALL cases, the AUL patient29 as well as the cell line LOUCY all had 

an identical fusion product fusing SET at exon 7 with the NUP214 gene at exon 18 

(Figure 3B). Additional oligonucleotide array-CGH analysis further confirmed that 

the SET-NUP214 fusion in the cell line LOUCY was indeed due to the presence of a 

del(9)(q34.11q34.13). This deletion was not present in the AUL patient, confirming 

that the SET-NUP214 fusion was the result of a balanced t(9;9)(q34;q34) in this 

patient29.

RT-PCR analysis also confirmed an episomal NUP214-ABL1 fusion product present 

in patient #120, as well as in control patient material with an episomal NUP214-ABL1 

amplification (Figure 3A, patient #88). Sequence analysis confirmed an in-frame fu-

sion of NUP214 exon 31 to exon 2 of ABL1 for patient #120.

As expected, the presence of a SET-NUP214 fusion protein was detected by west-

ern blotting in LOUCY (Figure 3C), but was absent in other T-ALL cell lines lacking 

the del(9)(q34.11q34.13). For all patients described, the breakpoints are situated in 

the acidic tail of SET and the coiled-coil domain of NUP214, generating an in-frame 

fusion protein with a molecular weight of approximately 155 kDa (Figure 3D).

Clinical and genetic patient characteristics (i.e. NOTCH1 mutation status and ad-

ditional aberrations detected by array-CGH) of the SET-NUP214 positive T-ALL cases 

and the cell line LOUCY are summarized in table 1.
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Figure 5.3  

Figure 3. SET-NUP214 fusion transcript in T-ALL.

(a) RT-PCR analysis using SET and NUP214 specific primers and GAPDH primers as internal control, 

reveals a specific SET-NUP214 fusion gene in T-ALL patients #125, #126, #120, the AUL patient and 

the T-ALL cell line LOUCY. NUP214-ABL1 fusion was detected in patients #120, #88 and in the T-ALL 

cell line PEER (b) Sequence analysis confirmed an identical fusion between exon 7 of SET and exon 

18 of NUP214 in all SET-NUP214 positive T-ALL patients, the AUL case and the LOUCY cell line, (c) 

Western blot analysis of T-ALL cell lines revealed a SET-NUP214 fusion in the cell line LOUCY. (d) 

At the protein level, the breakpoints are situated in the acidic tail of SET and the coiled-coil domain 

of NUP214.
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elevated HOXA levels in SET-NUP214 positive patients

To confirm the clustering of these 3 del(9)(q34.11;q34.13) positive patients within 

the HOXA cluster based upon the most significant and differentially expressed 

probesets between the major T-ALL subgroups, we analyzed the expression of the 

HOXA gene cluster using RQ-PCR. As a control, we also determined the expression 

levels for these genes in various other patient samples representing other T-ALL 

subgroups. As described previously8,10,18,19, MLL rearranged cases (n=2), CALM-AF10 

positive cases (n=4) and a patient with an inv(7)(p15q34) all highly expressed most 

genes from the HOXA cluster in contrast to TAL1, LMO2, TLX3 or TLX1 rearranged 

patients (p<0.01, Figure 4A-B, only results for HOXA9 are shown). All 3 SET-NUP214 

positive T-ALL patients as well as the cell line LOUCY also highly expressed the 

HOXA cluster of genes. Other T-ALL cell lines including MOLT13, SKW3, HPB-ALL, 

HSB2 and PEER did not express the HOXA gene cluster. Although most HOXA genes 

Table 1. Characteristics of 3 T-ALL cases and the T-ALL cell line LOUCY with the SET-NUP214 fusion 
transcript.

Age Perc Immune NOTCH1 NUP214-
Other 
chromosomal

Relapse

ID Sex (yrs) WBC blast Phenotypea CDKN2Ab mutation ABL1
abnormalities 
by array-CGH

CCR 
(#months)

126 F 15.3 213 98 Mature + / + L1601Q - None CCR, 83+

125 F 10.6 142 94 Mature + / + L1601P - del(16)(p13.13) CCR, 83+

trisomy 21

120 F 17.1 15 93 Cortical - / - N1683D + del(9)(p21.2) CCR, 37+

Q2460* 
(stop) monosomy 21

LOUCY F 38 NA NA Mature + / - ND - del(5)
(q14.3q31.1)

NA

del(5)(q33.1)

del(6)(q16.4)

del(9)
(p21.2p21.3)

del(12)
(p13.1p13.3)

dup(13)(q31.3)

del(16)(p12.3)

WBC, White blood cells (x 109 per l); aAccording to EGIL classification. bStatus of the CDKN2A locus: +/+, no 
deletion; +/-, hemizygous deletion; -/-, homozygous deletion. CCR, continued complete remission; ND, none 
detected; NA, not available.
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were highly expressed in LOUCY, in the AUL case and in the SET-NUP214 positive 

T-ALL patients, expression of HOXA11 and HOXA13 was virtually absent. In addi-

tion, the expression of the short HOXA10 isoform, HOXA10B, which previously has 

been exclusively associated with inv(7)(p15q34) T-ALL patients8,20, was also highly 

expressed in the SET-NUP214 positive patients (Figure 4C).

From the expression microarray data, the most significant and differentially ex-

pressed probesets were calculated for the entire HOXA cluster. Twenty significant 

and differentially expressed probesets with a FDR rate lower than 5% were obtained 

for this cluster (Figure 4D). Various of these probesets encoding for QKI, HOXA5, 

HOXA9 (2 probesets), HOXA10 (2 probesets) and HOXA11 were also previously 

found to be differentially expressed within MLL19 or CALM-AF1018 rearranged T-ALL 

patients or in T-ALL patients belonging to the HOXA subgroup8.

set-NuP214 activates HOXA expression, increases cellular proliferation and inhibits 

cellular differentiation

To study the role of the SET-NUP214 fusion transcript in the pathogenesis of T-cell 

leukemia and its contribution to the activation of the HOXA gene cluster, SET and 

SET-NUP214 expression were specifically downregulated in the cell line LOUCY 

by electroporation of SET specific siRNA’s (Figure 5). Protein expression of SET 

and SET-NUP214 was specifically reduced using a SET siRNA directed against exon 

5, whereas SET but not SET-NUP214 was downregulated using a SET siRNA di-

rected against exon 8 (Figure 5A). SET and/or SET-NUP214 mRNA expression levels 

were specifically targeted and this effect was sustained for over 7 days following 

transfection of SET siRNAs (Figure 5B). Specific downregulation of both SET and 

SET-NUP214 resulted in significant reduction in the expression levels of the HOXA 

gene cluster while knockdown of SET but not SET-NUP214 had any effect (Figure 

5C). This confirms that SET-NUP214 but not SET specifically upregulates the expres-

sion of HOXA genes. Knockdown of SET-NUP214 also reduced cellular proliferation 

(Figure 5D, E). Cell cycle may be directly inhibited, as the percentage of apoptotic 

cells did not change over time following inhibition of SET-NUP214 (Figure 5F). In 

addition, SET-NUP214 downregulation resulted in the upregulation of both TCRγδ 
and membrane CD3 expression in LOUCY (Figure 5G), indicating that repression of 

SET-NUP214 enforces differentiation.

set-NuP214 directly activated HOXA expression by recruitment of Dot1L

Our siRNA mediated knockdown experiments indicated that SET-NUP214 regulates 

the transcription of the HOXA gene cluster. To investigate whether this activation 

was caused by direct interaction of SET-NUP214 with HOXA promoter sequences, 

chromatin immunoprecipitation (ChIP) analyses with the cell lines LOUCY and the 



C
h
ap

te
r 

5

114

Figure 5.4  

Figure 4. HOXA activation in SET-NUP214 positive T-ALL.

(a) Relative HOXA9 expression levels by RQ-PCR for MLL rearranged, CALM-AF10 positive, inv(7)

(p15q34), TAL1, LMO2, TLX3 or TLX1 rearranged patients and T-ALL cell lines including LOUCY, 

MOLT13, SKW3, HPB-ALL, HSB2 and PEER. (b) Comparison of HOXA9 expression levels between 

the HOXA T-ALL subgroup (MLL, CALM-AF10, inv(7)(p15q34), SET-NUP214, n=10) and other T-ALL 

subgroups (TAL1, LMO2, TLX3 or TLX1). (c) Relative expression levels of HOXA genes by RQ-PCR 

for the 3 SET-NUP214 positive T-ALL patients, the LOUCY cell line, the AUL patient and SKW3. (d) 

Heatmap of the 20 significant and differentially expressed probesets with a FDR rate lower than 5% 

for the HOXA cluster compared to the other T-ALL cases.
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Figure 5.5  

Figure 5. siRNA knockdown of SET and SET-NUP214 in T-ALL cell line LOUCY.

(a) SET expression using Western blot analysis 4 days after electroporation with the following 

conditions: no siRNA, control siRNA, siRNA SET exon 8 or siRNA SET exon 5. (b) Relative SET 

and SET-NUP214 expression by RQ-PCR after 2, 4 and 7 days for conditions as mentioned in (a). 

(c) Relative expression of all members of the HOXA clusters by RQ-PCR (except for HOXA11 and 

HOXA13) after 4 days for conditions as mentioned in (a). (d) OD values relative to control cells 

without pulse after 7 days for conditions as mentioned in (a). (e) Total cell numbers after 7 days 

for conditions as mentioned in (a). (f) Percentage of cell death relative to control cells without 

pulse after 7 days for conditions as mentioned in (a). (g) FACS analysis 6 days after electroporation 

with either no siRNA or siRNA SET exon 5, for TCRγδ, membrane CD3, CD4, CD5, CD7 and CD8 

expression.



C
h
ap

te
r 

5

116

Figure 5.6  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. ChIP and coIP analysis of T-ALL cell lines LOUCY and SKW3.

(a) ChIP analysis of SKW3, LOUCY and LOUCY 4 days after electroporation with siRNA SET exon 5, 

for promoter sequences of HOXA1, HOXA3, HOXA9, HOXA10 and HOXA11. The amount of bound 

DNA was calculated relative to the 5% input DNA in anti-NUP214 and anti-acetH3 immunoprecipitates, 

whereas no antibody and anti-FLAG immunoprecipitates were used as negative control. (b) Western 

blot analysis of NUP214 and PP32 immunoprecipitates of the cell line LOUCY using anti-SET. (c) 

Similar western blot analysis as in (b) for CRM1 and DOT1L immunoprecipitates in LOUCY.
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negative control cell line SKW3 were performed. No enrichment of HOXA (HOXA1, 

HOXA3, HOXA9, HOXA10 and HOXA11) promoter sequences was detected in 

NUP214 immunoprecipitates obtained for SKW3 control cells (Figure 6A). For 

LOUCY cells, HOXA9 and HOXA10 promoter sequences were enriched in NUP214 

immunoprecipitates, but not HOXA1, HOXA3 and HOXA11 promoter sequences 

indicating that SET-NUP214 may only bind to specific members of the HOXA cluster 

(Figure 6A). Enrichment of HOXA9 and HOXA10 promoter sequences in the ChIP 

analysis could be completely reversed using SET siRNA molecules directed against 

exon 5.

Additional ChIP analysis using an anti-acetyl histone-H3 specific antibody re-

vealed histone-H3 acetylation of HOXA1, HOXA3, HOXA9, HOXA10 and HOXA11 

promoters in the cell line LOUCY, which was absent in SKW3 (Figure 6A). This 

further strengthens the idea that binding of SET-NUP214 as a specific transcriptional 

co-factor for some HOXA gene members may result in an open chromatine structure 

of the entire HOXA cluster. As SET normally associates with the HOXA gene cluster30 

and has an inhibitory role on gene transcription as part of the INHAT complex31, we 

investigated whether SET-NUP214 may substitute for SET in this complex render-

ing this complex inactive. However, IP experiments failed to demonstrate a direct 

interaction between SET-NUP214 and components of the INHAT complex, i.e. SET 

and PP32 (Figure 6B).

CALM-AF10 and MLL-AF10 fusion proteins have been shown to recruit the 

methyltransferase DOT1L, leading to aberrant methylation of histone H3 thereby 

facilitating transcriptional activation of the HOXA gene cluster32,33. In this respect, we 

could demonstrate that SET-NUP214 also interacts with DOT1L in vivo (Figure 6C). 

Whether this reflects a direct interaction or requires the participation of additional 

proteins remains to be established. As shown by others34, we could confirm an in 

vivo interaction between SET-NUP214 and CRM1 (Figure 6C), which normally binds 

to the FG-repeat of wildtype NUP214 as part of the nuclear pore complex.

DiscussioN

Gene expression profiling studies in T-ALL have shown that patients with a CALM-

AF10 translocation, an MLL rearrangement and an inv(7)(p15q34) share a gene 

expression signature characterized by elevated expression levels of HOXA genes. 

Cluster analysis of 25 T-ALL cases lacking known cytogenetic abnormalities with 67 

cytogenetically well-characterized cases led to the identification of 5 unknown cases 

that clustered with HOXA activated samples having CALM-AF10 translocations or an 

inv(7)(p15q34).
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Subsequent array-CGH analysis revealed an identical interstitial deletion, del(9)

(q34.11q34.13), in 3 out of 5 cases as a novel chromosomal aberration in pediatric T-

ALL that was also identified in the T-ALL cell line LOUCY. This deletion gives rise to a 

similar SET-NUP214 fusion gene in all cases, that was also identical to a SET-NUP214 

fusion as described 15 years ago for a single acute undifferentiated leukemia patient 

with a reciprocal translocation t(9;9)(q34;q34)29,35 and most recently for a single case 

of acute myeloid leukemia36.

We studied the role of SET-NUP214 in the pathogenesis of T-ALL by siRNA-

mediated knockdown of SET-NUP214 expression in the T-ALL cell line LOUCY. 

Downregulation of SET-NUP214 reduced HOXA expression levels indicating that 

SET-NUP214 could function as a transcriptional regulator of the HOXA gene cluster. 

Our ChIP data in fact provide evidence that SET-NUP214 directly interacts with the 

promotor regions of specific HOXA members itself, and especially to HOXA9 and 

HOXA10, and therefore may function as a transcriptional co-activator. SET-NUP214 

does not bind to promotor sequences of HOXA1, HOXA3, HOXA11 and possibly 

others despite their SET-NUP214 dependency for transcriptional activation in LOUCY. 

Binding of SET-NUP214 to HOXA9 and HOXA10 promotor regions may presumably 

lead to an open chromatin structure and transcriptional activation of the entire HOXA 

cluster. Enrichment of all HOXA promotor sequences in the ChIP analysis using an 

anti-acetylated histone H3 antibody may be in support of this notion.

For MLL-AF10 and CALM-AF10 fusion proteins, it has been demonstrated that 

the oncogenicity of these proteins depends on binding of DOT1L to the OM-LZ 

region of AF1032,33. MLL-AF10 and CALM-AF10 both bind to the promotor regions 

of the HOXA gene cluster, and it was shown that recruitment of DOT1L results 

in aberrant methylation of Lys79 in histone H3 and transcriptional activation of 

especially HOXA9 for MLL-AF1033 and HOXA5 for CALM-AF1032. Our data suggest 

that HOXA9 may also represent a bonafide target of the CALM-AF10 fusion protein, 

as HOXA9 is highly expressed in CALM-AF10 positive T-ALL cells (18 and this study). 

We propose a similar mechanism for SET-NUP214 in the activation of HOXA genes, 

and HOXA9/HOXA10 in particular, as we could demonstrate binding of DOT1L to 

the SET-NUP214 fusion protein. An OM-LZ-like structure as present in AF1033 seems 

lacking in SET-NUP214, and therefore other SET-NUP214 interacting proteins may 

facilitate recruitment of DOT1L. In this respect, we confirmed that CRM1 also binds 

to SET-NUP21434, possibly to the FG-repeats as retained in this fusion protein.

SET-NUP214 is highly similar to the DEK-NUP214 fusion as previously identi-

fied in t(6;9)(p23;q34)-positive AML patients37. As DEK-NUP214 AML samples also 

have an activated HOXA gene signature (PJ Valk, personal communication), DEK-

NUP214 may function in a similar fashion compared to SET-NUP214 by binding to 
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the promotor regions of specific HOXA gene members in t(6;9)(p23;q34)-positive 

AML patients.

SiRNA knockdown experiments in LOUCY led to complete absence of SET-

NUP214 and down regulation of HOXA expression levels that sustained for over 

7 days. Ablation of SET-NUP214 reduced cellular proliferation without inducing 

apparent apoptosis in this timeframe. In fact, inhibition of SET-NUP214 resulted in 

cellular differentiation and promoted mCD3 and TCRγδ expression. Our results are 

in agreement with previous data by others, in which overexpression of SET-NUP214 

inhibits differentiation in vitro38 as well as in vivo39.

During normal T-cell development, HOXA expression (HOXA7, HOXA9, HOXA10) 

is restricted to the earliest stages of differentiation40,41. We therefore propose that 

SET-NUP214 will sustain HOXA gene expression and therefore impair T-cell differen-

tiation. This differentiation arrest may encourage the acquisition of additional genetic 

hits, eventually leading towards the development of T-cell leukemia. In mouse stud-

ies, overexpression of Hoxa10 inhibits both myeloid and lymphoid cell differentia-

tion42 whereas overexpression of Hoxa9 results in defective T-cell development43.

T-cell leukemia depends on multi-step pathogenic events3-5. Cooperative genetic 

abnormalities affecting cell cycle and proliferation, differentiation and survival initi-

ate leukemic transformation of thymocytes. We identified a number of cooperative 

aberrations in the SET-NUP214 positive T-ALL samples. NOTCH1 mutations, gener-

ally present in about 50% of T-ALL7, were found in all 3 SET-NUP214 positive T-ALL 

samples. Besides the SET-NUP214 fusion (differentiation arrest) and NOTCH1 muta-

tions, patient #120 also showed a homozygous CDKN2A/CDKN2B deletion (cell cycle 

defect) and an episomal NUP214-ABL1 amplification (proliferation and survival), 

showing the multiple molecular pathways that are involved in the pathogenesis of 

T-ALL4. It is remarkable that in this case 2 different genetic rearrangements (SET-

NUP214 and NUP214-ABL1) target the same gene (NUP214) in a single leukemic 

cell. The SET-NUP214 fusion was present as a clonal genetic rearrangement present 

in all leukemic cells whereas NUP214-ABL was only present in a leukemic subclone. 

So SET-NUP214 probably acts as a primary oncogenic event, whereas NUP214-ABL1 

rather functions as a further dedifferentiating event in T-ALL. In patient #125 and the 

LOUCY cell line, terminal deletions of chromosome 16 were identified (table 1). Be-

cause these 16p deletions were not previously identified as a recurrent abnormality 

in T-ALL44, it is likely that they cooperate in SET-NUP214 mediated leukemogenesis. 

Nevertheless, the target genes of this aberration remain to be identified.

In conclusion, we identified SET-NUP214 as a novel recurrent fusion gene in 

T-cell leukemia. Our experiments show that SET-NUP214 contributes to T-ALL patho-

genesis by inhibition of T-cell maturation through the transcriptional activation of 

the HOXA genes.
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aBstract

We identified a duplication of the MYB oncogene in 8.4 % of individuals with T-cell 

acute lymphoblastic leukemia (T-ALL) and in 5 T-ALL cell lines. The duplication 

is associated with a 3-fold increase in MYB expression, and knockdown of MYB 

expression initiates T-cell differentiation. Our results identify duplication of MYB as 

an oncogenic event and suggest that MYB could be a therapeutic target in human 

T-ALL.
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iNtroDuctioN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy that 

is most common in children and adolescents1. Leukemic transformation of thymo-

cytes is caused by the cooperation of mutations that affect proliferation, survival, 

cell cycle, and T-cell differentiation2,3. Molecular analyses have identified a large 

number of genetic alterations in T-ALL including deletion of CDKN2A/CDKN2B, 

ectopic expression of transcription factors, episomal amplification of NUP214-ABL1, 

and mutation of NOTCH12-5.

metHoDs

affected individuals

We retrospectively selected 27 individuals with T-ALL from the database of the 

Department of Human Genetics (Leuven) for the initial array-CGH screening. We 

later screened a set of 107 individuals with T-ALL from the Erasmus Medical Center/

Sophia Children’s Hospital (Rotterdam) for the presence of the MYB duplication by 

Q-PCR. This study was approved by the Ethical Committee of the Medical Faculty of 

the University of Leuven and informed consent was obtained from all subjects.

cytogenetics and Fluoresence in situ hybridization

We carried out cytogenetic studies on bone marrow or blood cells using direct or 

short-term cultures without mitogens and R banding. Fluorescence in situ hybridiza-

tion was performed on stored fixed cell suspension originally used for karyotyping.

array cGH

Array CGH was performed using Code Linked Slides (AP Biotech) containing the 

3,527 BAC clones from the Wellcome Trust Sanger Institute 1 Mb Clone Set, a gift 

from N. P. Carter (The Wellcome Trust Sanger Institute, UK), as described before5. 

Additional clones covering all 90 protein tyrosine kinase genes were added to this 

set. The complete list of these clones, as well as the array slides are available upon 

request.

real-time Quantitation of DNa copy Number

We used the comparative ddCt method (Sequence Detection System bulletin 2 (Ap-

plied Biosystems)) with SYBR-green. Primers were designed with PrimerExpress soft-

ware (Applied Biosystems). We first validated whether the efficiency of amplification 

of the chosen primer sets was equal to that of the normalizer. A primer set for the 
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ABL1 and TIE1 genes was used for normalization. The validation experiments were 

performed on fourfold dilutions of genomic DNA, starting with 100 ng in the first 

dilution. For relative quantitation, the reaction mixtures consisted of LightCycler 480 

SYBR Green I Master (Roche) with 500 nM of each primer and 10 ng DNA in a total 

volume of 25 μl. After an initial denaturation step for 10 min at 95 °C, thermal cycling 

conditions were 15s at 95 °C and 1 min at 60 °C for 40 cycles. Finally, the dissociation 

curves for each reaction were determined. All samples were run in duplicate/tripiclate 

on a LightCycler 480 instrument (Roche). The primers used were: ABL1-F (5’GGT-

GTGAAGCCCAAACCAAA), ABL1-R (5’TGACTGGCGTGATGTAGTTGCT), TIE1-F 

(5’CGAGATCCAGCTGACATGGAA), TIE1-R (5’CTCCACAACGTACTTGGATATTGG), 

MYB-F (5’GAACACCACTCCACTCCATCTCT), MYB-R (5’GGCGAGGCGCTTTCTTC).

Gene expression array analysis and statistics

RNA integrity, processing and hybridization to the U133 plus 2.0 GeneChip oli-

gonucleotide microarray (Affymetrix) was performed according to manufacturer’s 

protocol. The expression of MYB was calculated relatively to the median expression 

of GAPDH (six probesets) for each patient sample. The difference in gene expres-

sion levels for patients with and without the MYB duplication was evaluated using 

the Mann–Whitney U test (MWU).

cell culture

DND-41, HSB-2, RPMI-8402, ALL-SIL, MOLT-4, LOUCY, P12-ICHIKAWA, CCRF-CEM 

(DSMZ, Braunschweig, Germany) were cultured in RPMI-1640 supplemented with 

20% fetal calf serum. The number of viable cells was counted with a Vi-cell XR cell 

viability analyzer (Beckman Coulter, Fullerton, CA). For differentiation experiments, 

cells were cultured during a period of 6 days and electroporated on the first day 

and again on the 4th day with 50 nM siRNA. MYB stealth select siRNAs were pur-

chased from Invitrogen (Carlsbad, CA). MYB siRNA1 (MYB-HSS106819, sequence: 

5’UAUAGUGUCUCUGAAUGGCUGCGGC) was found to be the most efficient siRNA 

and was used in the differentiation experiments. Electroporation with a stealth siRNA 

directed against ERBB4 (Invitrogen, Carlsbad, CA), a gene not expressed in these 

cell lines, served as a control. FACS analysis with a FITC labeled siRNA (Invitrogen) 

indicated that transfection efficiencies were generally > 55 %.

For inhibition of NOTCH1, we treated the cell ines with 1 μM of Compound E 

(gamma-secretase inhibitor XXI, Calbiochem, San Diego, CA) or DMSO (control) for 

2 days.
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Facs analysis

Analysis of CD3, CD4 and CD8 expression and cell cycle analysis was performed 

on 0.3-1 x 106 cells 6 days after the first electroporation with siRNA. We used the 

TriTEST CD4 FITC/CD8 PE/CD3 PerCP Reagent kit (Becton Dickinson, San Jose, CA) 

and the CycleTEST™ PLUS DNA Reagent Kit (Becton Dickinson). After staining, the 

cells were detected on a FACSCanto Flow Cytometer (Becton Dickinson) and the 

data were analyzed with the BD FACSDiva software (Becton Dickinson). Unstained 

cells and cells treated with ERBB4 siRNA were used as controls.

resuLts & DiscussioN

In order to detect novel unbalanced genomic rearrangements in T-ALL, we have 

performed array comparative genomic hybridization (array CGH)6 using an array CHAPTER 6 
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Figure 6.2  

Figure 1 Molecular analysis of T-ALL cases with MYB duplication.

(a) Array CGH analysis of 2 individuals with T-ALL, revealing a duplication of the MYB locus. Each 

dot represents the log2 of the value for affected individuals versus a control sample, obtained for 

the different probes ordered based on their chromosomal location. The region between 131 and 141 

Mb is shown as a shaded area. The location of the probes is shown in panel b. Individual 2 also 

has a large deletion on chromosome 6. The abnormalities were confirmed by dye swap experiments 

(not shown). (b) Schematic representation of the genomic region around the MYB locus. Probes 

that were on the array are indicated as grey bars. (c) Quantitative PCR documenting the presence 

of an extra copy of MYB in bone marrow cells from individuals 1 and 2 at time of diagnosis of 

T-ALL, and the absence of this extra copy in DNA extracted at time of remission. Control 1 and 2: 

normal individuals; T-ALL 1-4: T-ALL samples without MYB duplication detected by array CGH (d) 

Relative gene expression levels of MYB in T-ALL cases with MYB duplication (n=6), or without MYB 

duplication. Cases without MYB duplication are further divided in cases with NOTCH1 mutation 

(n=35) or with wild type NOTCH1 (n=29). (e) Western blot analysis of the expression of MYB in 

different T-ALL cell lines and 1 AML cell line (EOL-1). ALL-SIL, MOLT-4 and RPMI-8402 have the 

MYB duplication.



C
h
ap

te
r 

6

130

with genomic BAC and PAC probes with an overall resolution of 1 Mb over the entire 

genome, but with additional probes around known and candidate oncogenes.

An initial screening of 27 T-ALL samples revealed an increased copy number 

of a small region (<2.5 Mb) at chromosome 6q23 in 2 individuals (Fig. 1a). The 

copy number change was detected with 2 probes covering the MYB (c-MYB) locus, 

whereas flanking probes on the array were unaffected (Fig. 1a,b). Quantitative 

PCR (Q-PCR) detected a duplication of MYB in these 2 individuals and confirmed a 

normal copy number for MYB in the other 25 individuals with T-ALL (Fig. 1c, data 

not shown). Copy number variations at the MYB locus have not been observed in 

the general population, based on data from the database of genomic variants7,8. In 

addition, Q-PCR analysis of DNA from diagnosis and remission samples showed 

the presence of the duplication in samples from diagnosis only, confirming that the 

duplication was an acquired event (Fig. 1c).

We next screened an independent set of 107 individuals with T-ALL and 12 T-ALL 

cell lines by Q-PCR. Duplication of MYB was detected in 9 of 107 (8.4 %) individuals 

Table 1. Copy number of MYB and flanking genes in individuals and cell lines with MYB 
duplication

Copy number as determined by quantitative PCR

Individual SGK HBS1L MYB AHI1 BCLAF1

1 2 2 3 2 2

2 2 2 3 2 2

3 2 2 3 2 2

4 3 3 3 3 2

5 2 2 3 2 2

6 4 4 4 4 2

7 2 3 3 3 2

8 3 nd 3 nd 2

9 2 2 3 2 2

10 2 2 3 2 2

11 nd nd 3 nd nd

Cell line

ALL-SIL normal dup dup dup dup

RPMI-8402 normal dup dup dup normal

MOLT-4 normal normal dup normal normal

P12-ICHIKAWA normal dup dup dup dup

CCRF-CEM dup dup dup dup normal

MOLT-14 normal normal normal normal normal

nd, not determined; dup, duplicated.
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and in 5 cell lines (ALL-SIL, MOLT-4, P12-ICHIKAWA, CCRF-CEM and RPMI-8402). 

The flanking genes HBS1L and AHI1 were duplicated in some patients, but the com-

monly duplicated region only covered the MYB gene (Table 1). Fluorescence in situ 

hybridization (FISH) revealed that the duplication of MYB was a local duplication with 

the extra copy of MYB located at chromosome 6q. Although the expression level of 

MYB was highly variable in T-ALL, likely to reflect the stage of T-cell differentiation9 

the mean expression level of MYB was found to be significantly elevated (3 fold) in 

T-ALL cases with MYB duplication compared to the other cases (Fig. 1d). In T-ALL 

cell lines, MYB protein expression was also variable, with MOLT-4 and RPMI-8402 

(both with MYB duplication) showing high level MYB expression (Fig. 1e)3.

The MYB gene encodes a nuclear transcription factor that is implicated in prolif-

eration, survival and differentiation of hematopoietic progenitor cells10. Proper levels 

of MYB are important during hematopoietic cell development, and overexpression 

of MYB is implicated in murine leukemogenesis9,11-14.

To determine a role for MYB duplication in the pathogenesis of human T-ALL, 

we downregulated MYB expression in T-ALL cell lines (Fig. 2a). Knock-down of 

MYB expression resulted in an irreversible differentiation of RPMI-8402, MOLT-4 

and ALL-SIL cells, but not of cell lines without MYB duplication, as reported by 

changes in expression of the CD1a, CD3, CD4 or CD8 markers (Fig. 2b; data not 

CHAPTER 6 
 
Figure 6.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  

Figure 2 Effect of knock-down of MYB expression in T-ALL cell lines.

(a) Electroporation of 3 different MYB siRNA’s in RPMI-8402 cells causes a decrease of MYB 

expression, compared to electroporation with no or control (ERBB4) siRNA. (b) Knock-down of MYB 

using MYB siRNA1 results in the differentiation of the ALL-SIL, RPMI-8402 and MOLT-4 cell lines, as 

observed by changes in expression of CD1a, CD3, CD4, or CD8 cell surface markers. Differentiated 

cells were separated from undifferentiated cells by flow sorting, and analysis of the sorted cells 10 

days later indicates that the differentiation is irreversible. (c) Treatment of ALL-SIL and RPMI-8402 

cells with gamma-secretase inhibitor (GSI), MYB siRNA or combination of both treatments indicates 

that knock-down of MYB expression in combination with GSI treatment blocks cell proliferation and 

affects cell survival. As control, cells were treated with DMSO or a control siRNA.
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shown). Downregulation of MYB expression had only a limited effect on the vi-

ability, proliferation and cell cycle (Fig 2c, data not shown). Since NOTCH1 was 

recently identified as a possible therapeutic target in TALL4, and since 7 of 10 T-ALL 

cases and all 5 T-ALL cell lines with MYB duplication also harbored mutation of 

NOTCH1 (Supplementary Table 2), we tested the effect of inhibition of NOTCH1 

combined with MYB siRNA treatment. As previously shown, inhibition of NOTCH1 

activation by treatment with a gamma-secretase inhibitor (GSI) led to inhibition of 

the proliferation of ALL-SIL and RPMI-84024.

Downregulation of MYB expression in combination with GSI treatment resulted 

in a strong synergistic effect on proliferation and viability (Fig. 2c). MOLT-4 is not 

sensitive to GSI treatment4 and was not used for this analysis. Thus, while interfer-

ence with MYB function mainly affects differentiation, a combined inhibition of MYB 

and NOTCH1 strongly affects proliferation and survival, establishing MYB as a novel 

target for therapy in T-ALL.

Table 2. Cytogenetic and molecular characteristics of individuals with T-ALL with MYB 
duplication

ind karyotype NOTCH1 mutation CDKN2A other

1 46, XY[10] Del P1583
Q2459*(stop)

+/+ ND

2 46, XY, del(9)(p13)[5] F1593S +/- NA

3 46,XX,del(14)(q21q31)[4] ND +/+ NA

4 NA InsS2468SRCHPRYSHP*(stop) +/+ NA

5 46,XX[30] NA -/- NA

6 NA Del/InsFKRDA1607-
1611PSDLRLGGSDT

+/- NA

7 46,XY,t(11,14)(p15,q11)[3] Del/InsFK1607-1608RSE -/- LMO1+

TAL2+

8 NA ND +/- NA

9 46,XY,t(10;14)(q2?4;q11)[2]; 46,idem,del(12)
(p11)[10];
46,idem,t(6;7)(p21;q34~35),del(12)(p11)[3]; 
46,XY[9]

V1605G -/- TLX1+

10 46,XY,del(6)(q15q21),del(14)
(q11q32),der(14)inv(14);
46,idem,dup(1)?(q21q42)[2]; 46,idem,del(17)
(p11)[4]

L1679P +/+ NA

11 NA V2286I +/+ NA

Ind, individual; NA, not available; ND, none detected
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aBstract

T-ALL is an aggressive neoplastic disorder, in which multiple genetic abnormalities 

cooperate in the malignant transformation of thymocytes. About 20% of pediatric 

T-ALL cases are characterized by TLX3 expression due to a cryptic translocation 

t(5;14)(q35;q32). Although a number of collaborating genetic events have been 

identified in TLX3 rearranged T-ALL patients (NOTCH1 mutations, p15/p16 deletions, 

NUP214-ABL1 amplifications), further elucidation of additional genetic lesions could 

provide a better understanding of the pathogenesis of this specific T-ALL subtype. 

In this study, we used array-CGH to screen TLX3 rearranged T-ALL patients for 

new chromosomal imbalances. Array-CGH analysis revealed 5 recurrent genomic 

deletions in TLX3 rearranged T-ALL, including del(1)(p36.31), del(5)(q35), del(13)

(q14.3), del(16)(q22.1) and del(19)(p13.2). From these, the cryptic deletion, del(5)

(q35), was exclusively identified in about 25% of TLX3 rearranged T-ALL cases. In 

addition, 19 other genetic lesions were detected once in TLX3 rearranged T-ALL 

cases, including a cryptic WT1 deletion and a deletion covering the FBXW7 gene, an 

U3-ubiquitin ligase that mediates the degradation of NOTCH1, MYC, JUN and Cyclin 

E. This study provides a genome wide overview of copy number changes in TLX3 

rearranged T-ALL and offers great new challenges for the identification of new target 

genes that may play a role in the pathogenesis of T-ALL.
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iNtroDuctioN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder of T-cells, 

and represents about 15% of pediatric ALL cases. T-ALL is characterized by a rapid 

progression of disease and shows a 30% relapse rate(1). Over the last decade, 

a large number of new genomic aberrations were identified in T-ALL, including 

chromosomal translocations (involving the genes TAL1, LYL1, LMO1, LMO2, TLX1/

HOX11, TLX3/HOX11L2, MYB, Cyclin D2), deletions (SIL-TAL1, del(6q), del(9)(p21), 

del(11)(p12p13)), amplifications (NUP214-ABL1), duplications (MYB) and mutations 

(RAS, NOTCH1)(2-11). Several of these abnormalities represent unique and mutually 

exclusive aberrations possibly delineating distinct T-ALL subgroups. Others occur 

in combination with various of these subgroups: for example, the del(9)(p21) that 

includes the CDKN2A/p15 and CDKN2B/p16 loci both deregulating the cell cycle(3, 

12). Also NOTCH1 activation mutations are present in more than half of all T-ALL 

cases of all subgroups(9). The genetic defects as identified in T-ALL so far target 

different cellular processes, including cell cycle regulation, T-cell differentiation, 

proliferation and survival. It is hypothesized that these genetic events cooperate in 

the leukemic transformation of thymocytes(13).

TLX3 is a homeobox gene that is not expressed in normal T-cell development. 

In T-ALL patients, it becomes aberrantly activated due to the cryptic translocation, 

t(5;14)(q35;q32), mostly juxtaposing TLX3 to the BCL11B gene. BCL11B is normally 

expressed during T-cell maturation(14). Some alternative TLX3 translocations have 

been described including the t(5;14)(q32;q11) juxtaposing TLX3 to the TCRα/δ lo-

cus(15), and the t(5;7)(q35;q21) coupling TLX3 to the CDK6 gene(16). Although 

there is a clear relationship between the presence of TLX3 translocations and TLX3 

expression levels(17), incidental TLX3 expression has been described in the absence 

of chromosomal abnormalities(18, 19), suggesting that alternative mechanisms for 

TLX3 activation exist in T-ALL. Conflicting data have been published about the 

relation between TLX3 expression and treatment outcome. In some studies, TLX3 

rearranged T-ALL patients showed a poor prognosis, whereas in other studies TLX3 

translocations had no effect on outcome or was even associated with an improved 

outcome(17, 20, 21). These discrepancies have not been clarified thus far, but may 

be therapy dependent.

In this study, we used microarray-based comparative genome hybridization (array-

CGH) to screen TLX3 rearranged pediatric T-ALL patients for new chromosomal 

imbalances that could provide further insight in the development of TLX3 mediated 

T-cell leukemia.
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DesiGN & metHoDs

Patients

Viably frozen diagnostic bone marrow or peripheral blood samples from 146 pediatric 

T-ALL patients were provided by the Dutch Childhood Oncology Group (DCOG) and 

the German Co-operative study group for childhood acute lymphoblastic leukemia 

(COALL)(17). The patients and patients’ parents or their legal guardians provided 

informed consent to use leftover material for research purposes. Leukemic cells were 

isolated and enriched from these samples as previously described(8) and genomic 

DNA and total cellular RNA were isolated as described before(8).

Quantitative real-time rt-Pcr (rQ-Pcr)

cDNA synthesis and RQ-PCR in an ABI 7700 sequence detection system (Applied 

Biosystems, Foster City, CA, USA) was used to quantify the expression levels of 

TLX3 transcripts relative to the endogenous housekeeping gene glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), as described previously(17). NUP214-ABL1 

fusions were determined as previously described(4).

oligo array-cGH

Oligo array-CGH analysis was performed on the human genome CGH Microarray 

44A (Agilent Technologies, Palo Alto, USA) according to the manufacturer’s protocol, 

as previously described(8). Microarray images were analyzed using feature extrac-

tion software (version 8.1, Agilent) and the data were subsequently imported into 

array-CGH analytics software v3.1.28 (Agilent). For the detection of copy number 

abnormalities, we have used a Z-score cut-off value of 3. All copy number aberra-

tions were compared to the database of genomic variants (http://projects.tcag.ca/

variation) and all genomic regions previously linked to copy number variations(22) 

were not included in table 1.

FisH

Fluorescence in situ hybridization (FISH) was performed using a standard procedure, 

as described previously(17). TLX3 translocations were determined using the TLX3-U/

TLX3-D translocation probes (DakoCytomation, Glostrup, Denmark). BAC probes 

RP11-299P16 and RP11-98C11 (BACPAC resources, Oakland, CA, USA) were used to 

confirm the presence of WT1 deletions, whereas RP11-300I24 and RP11-650G8 were 

used to confirm the FBXW7 deletion. RP11-1072I20 (RANBP17/TLX3), RP11-10N18 

(RANBP17) and RP11-117L6 (downstream of TLX3) as well as CTD-2243O22 (5qter) 

(Invitrogen, Breda, The Netherlands) were used to further characterize the deletion, 

del(5)(q35).
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real-time Quantification of DNa copy Number

Deletion analysis was performed using real-time quantitative PCR of the NSD1 gene 

relative to the internal control gene, albumin, as previously described(23).

mutation analysis

For the detection of WT1 mutations, the purified DNA was subjected to 40 cycles 

of PCR of 15’’ at 95oC and 1’ at 60ºC, using forward primer 5’-AAGCCTCCCTTC-

CTCTTACTCT-3’ and reverse primer 5’-TGGGTCCTTAGCAGTGTGAGA-3’ for WT1 

exon 7. FBXW7 mutation detection was performed using forward primer 5’-TTTTC-

CAGTGTCTGAGAACAT-3’ and reverse primer 5’-CCCAAATTCACCAATAATAGA-3’ 

for exon 9, forward primer 5’- TAAACGTGGGTTTTTTTGTT-3’ and reverse primer 

5’- TCAGCAATTTGACAGTGATT-3’ for exon 10 and forward primer 5’- GGACATG-

GGTTTCTAAATATGTA-3’ and reverse primer 5’- CTGCACCACTGAGAACAAG-3’ 

for exon 12, using similar PCR conditions as described above. NOTCH1 mutation 

screening in T-ALL was as previously described(24). PCR products were purified 

by standard methods and directly sequenced from both strands. The sequence data 

were analyzed using Seqscape V2.5 (Applied Biosystems).

resuLts

collaborating genetic events in TLX3 rearranged t-aLL

In our previous study, we screened a large pediatric T-ALL cohort (n=146) for TLX3 

rearrangements using FISH and identified 29/146 (19%) rearranged cases(17), in 

line with previous studies(18, 19). All TLX3 rearranged cases uniquely expressed 

TLX3 whereas other T-ALL cases were negative(17). To identify additional genetic 

abnormalities that may cooperate with TLX3 expression during T-cell leukemogen-

esis, we performed array-CGH analysis to detect genomic amplifications or deletions 

on those TLX3 rearranged T-ALL cases for which material was available (n=21). All 

genomic deletions and/or amplifications as identified by array-CGH are summarized 

in table 1, except for known polymorphic copy number variations(22). Genomic 

deletions are more abundant compared to amplifications, as only 2 regions of ge-

nomic amplification in contrast to 22 regions of genomic deletion were identified 

in our TLX3 rearranged patient cohort. To confirm if these additional aberrations 

are truly TLX3 specific, we analyzed whether these additional abnormalities were 

also identified in a large-scale T-ALL array-CGH study (n=85, unpublished data) of 

non-TLX3 rearranged T-ALL patients (table 1). Other known T-ALL specific genetic 

aberrations were determined using an RT-PCR or PCR and sequencing strategy or 
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using FISH, and included NOTCH1 mutations(24), NUP214-ABL1 amplifications(4) 

and p15/p16 deletions.

the cryptic deletion, del(5)(q35), is associated with TLX3 expression in t-aLL

The most frequent recurrent genetic abnormality identified in TLX3 rearranged cases, 

was a heterozygous deletion at band 5q35, which was present in 5 out of 21 (24%) 

TLX3 rearranged T-ALL cases. The deletional area differed in size among cases. In 

three cases (#2112, #2640 and #2650), the deletion started just downstream of the 

TLX3 gene, as shown by the normal hybridization pattern of the TLX3 probe, and 

loss of all 4 array-CGH probes covering the nucleophosmin (NPM1) gene located 80 

kb telomeric of TLX3 (Figure 1A,B). For these cases, FISH analysis using the TLX3-U/

TLX3-D translocation probes confirmed the presence of this cryptic deletion (Figure 

1C). In the other 2 cases (#9012 and #222), the deletion started upstream of NKX2-5 

(Figure 1D,E). However, gene expression array data revealed no NKX2-5 expres-

sion in any of these 5 cases (data not shown). For cases #2112, #2640, #2650 and 

#9012, the deletion seemed to include the complete telomeric region (Figure 1E). 

For case #222, the terminal breakpoint was situated downstream of the NSD1 gene. 

Therefore, the minimal deleted region at 5q35 for these 5 cases is about 4 Mb in size 

and contains 30 known genes including the NSD1 gene. Gene expression array data 

revealed no difference in NSD1 expression levels between del(5)(q35) positive and 

negative T-ALL patients (data not shown).

Quantitative PCR analysis of the NSD1 gene, which is present in the minimal 

deleted region, on 26 TLX3 rearranged T-ALL cases and 27 TLX3 negative cases 

(including TAL1 rearranged, LMO2 rearranged, TLX1 rearranged and CALM-AF10 

positive cases), confirmed a one-copy NSD1 loss in all TLX3 rearranged T-ALL cases 

having the cryptic del(5)(q35) deletion (Figure 1F). None of the non-TLX3 rearranged 

cases showed loss of NSD1, indicating that none of these had a similar del(5)(q35).

Next, we studied whether the deletions that started just downstream of the TLX3 

gene (#2112, #2640 and #2650), truly represented cryptic 5q35 deletions, or rather 

corresponded to unbalanced TLX3 translocations. Therefore, we performed FISH 

analysis using BAC clones covering the RANBP17/TLX3 breakpoint region and the 

telomeric end of chromosome 5. For case 2650, FISH analysis using RP11-1072I20 and 

RP11-10N18, revealed 2 fusion signals indicating that both TLX3 gene copies were 

normally present (data not shown). In addition, FISH analysis using RP11-1072I20, 

RP11-117L6 and CTD-2243O22, confirmed the presence of a del(5)(q35.1q35.3) (data 

not shown). In contrast, FISH analysis on case 2640 (data not shown) revealed an ad-

ditional RP11-1072I20 (RANBP17/TLX3) hybridization signal, indicative for a cryptic 

unbalanced chromosomal rearrangement involving the RANBP17/TLX3 loci. FISH 

analysis for the known translocation partners TCRα/δ, TCRβ and BCL11B showed 
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CHAPTER 7 
 
 

Figure 7.1  

 

Figure 1. The recurrent cryptic deletion, del(5)(q35), in TLX3 rearranged pediatric T-ALL.

(a) Chromosome 5 ideogram and corresponding oligo array-CGH plot of case DNA:control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL cases 2112. Hybridization 

signals around the –2X or +2X lines represent loss of the corresponding region in the case DNA. (b) 

Detailed analysis of the centromeric breakpoint of the deletion in case 2112. (c) Dual-color FISH 

analysis on interphase cells of case 9858 (left panel) and case 2640 (right panel) using the TLX3-U 

(Red) and TLX3-D (Green) translocation probe set. Case 9858 showed a split signal, indicative for 

a TLX3 translocation, whereas case 2640 showed loss of the TLX3-D (Green) signal. (d) Similar 

chromosome 5 ideograms as in (a) for T-ALL cases 9012 and 222. (e) Schematic overview of the 

minimal deleted region on chromosomal band 5q35 for the 5 TLX3 rearranged T-ALL cases showing 

a del(5)(q35). Depicted genome positions and gene locations are based on the UCSC Genome 

Browser at http://genome.ucsc.edu/. (f) quantitative PCR analysis of NSD1, present in the minimal 

deleted region, on 26 TLX3 rearranged T-ALL cases and 27 TLX3 negative cases.
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that these loci were not involved in this chromosomal rearrangement (data not 

shown), indicating that patient 2640 has a novel variant of TLX3 rearrangement with 

subsequent loss of 5q35.1. For case 2112, no material was left to perform additional 

TLX3 specific FISH analyses.

other recurrent genomic deletions in tLX3 rearranged t-aLL

Besides the cryptic deletion, del(5)(q35), 4 other recurrent genetic abnormalities 

were identified in various TLX3 rearranged T-ALL cases (table 1). At chromosome 1, 

an identical cryptic deletion of ~1 Mb was detected at chromosomal band 1p36 in 

three cases (#2738, #2112 and #585) (data not shown). This deletion area was also 

comprised in a larger deletion in case #2757 that in addition demonstrated multiple 

deletions on chromosome 1p (Table 1). The minimal deleted area on 1p36 for these 

4 cases comprised 18 genes, including HES2, HES3 and CHD5 (data not shown). The 

centromeric breakpoints of the del(1)(p36.31) in cases #2738, #2112 and #585 all 

clustered in the CAMTA1 gene (data not shown).

Cryptic deletions of chromosome 13q were identified in 2 TLX3 rearranged T-ALL 

cases (#2112, #2723). These deletions differed in size and the minimal deleted region 

contained the microRNA cluster, miR-15/miR-16a (data not shown).

Three T-ALL cases showed cryptic deletions at chromosomal band 16q22.1 (#2100, 

#2112 and #9012) (table 1). This del(16)(q22.1) seemed identical in 2 cases (#2100 

and #9012), but was smaller (~400 kb) in a third case (#2112). The minimal deleted 

area comprised 12 genes, and included the CTCF gene.

Finally, 2 other cases contained similar deletions at 19p13.2 (#222 and #378) 

covering a region of approximately 1.4 Mb (table 1) that covers 33 genes and the 

microRNA gene miR-199a.

 Figure 7.2  
 

Figure 2. FBXW7 deletion in pediatric T-ALL

(a) Schematic overview of the chromosomal deletion, del(4)(q31.3q32.1), as detected in case 2786. 

Genomic positions of genes situated in this chromosomal region and BAC clones used for FISH 

analysis are depicted. (b) FISH analysis using RP11-650G8 (green) and RP11-300I24 (red) confirms 

the presence of the del(4)(q31.3q32.1) in case 2786.



Cooperative genetic defects in TLX3 rearranged pediatric T-cell Acute Lymphoblastic Leukemia 145

Figure 7.3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. WT1 inactivation in pediatric T-ALL

(a) Chromosome 11 ideogram and oligo array-CGH plot for the deletion, del(11)(p13), as detected in 

case 2723 (left panel). The right panel shows a detailed overview of the deleted region for this 11p13 

deletion. (b) FISH analysis using RP11-98C11 (green) and RP11-299P16 (red, covering WT1) confirms 

the presence of the del(11)(p13) in case 2723. (c) Sequence analysis shows a truncating WT1 exon 7 

mutation on the remaining allele of case 2723. (d) Similar FISH analysis as in (b) on TLX3 wildtype 

T-ALL cases identified one additional case showing a biallelic WT1 deletion. (e) Array-CGH analysis 

confirmed the presence of a large mono-allelic deletion, del(11)(p13p14.3), in combination with an 

additional loss of the genomic region surrounding the WT1 gene on the other allele.
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Genetic abnormalities identified in single tLX3 rearranged t-aLL cases

Apart from the recurrent abnormalities, other genetic abnormalities were observed 

in single cases (table 1) and occasionally contained known tumor suppressor genes 

(FBWX7, WT1, ATM, p27KIP1, NF1). None of these abnormalities have been reported 

as normal copy number variation in the healthy population(22).

One case (#2786) showed a cryptic deletion on the long arm of chromosome 4 

of about 2.5 Mb in size, del(4)(q31.3q32.1), which contained amongst others the 

FBXW7 gene (Figure 2). The loss of one FBXW7 gene copy in this case was con-

firmed using FISH (Figure 2B). FBXW7 mutations have recently been identified in 

8-30% of primary T-ALL samples(25-28). Therefore, we screened case #2786 for the 

currently known FBXW7 mutations. This analysis revealed no additional FBXW7 

mutation on the remaining allele of this case.

Other rearrangements identified in single TLX3 rearranged cases included a cryp-

tic deletion, del(12)(p13.1p13.2), including the CDKN1B/p27/KIP1 gene (#9858) and 

a cryptic deletion, del(17)(q12), including the NF1 gene (#2780) (29). In one case 

(#2100), the breakpoint of a cryptic deletion on chromosome 9, del(9)(p24.1p24.2), 

was situated in JAK2. In another case (#1179), the breakpoint of a cryptic deletion 

on chromosome 11, del(11)(q21q22.3), was located in the ATM gene.

WT1 inactivation in pediatric t-aLL

Another abnormality that was identified in a single TLX3 rearranged case (#2723) was 

a cryptic deletion of about 1.5 Mb in size, del(11)(p13p13), and included the Wilms’ 

tumor 1 (WT1) gene (Figure 3A). Because conflicting data have been reported on 

the role of WT1 as a tumor suppressor and/or oncogene in human leukemias(30), 

we wondered whether WT1 was indeed the target gene of this genomic deletion. 

The telomeric breakpoint of this deletion was situated downstream of the WT1 gene, 

whereas the centromeric breakpoint was located downstream of the CD59 gene 

(Figure 3A). FISH analysis confirmed the one-copy loss of WT1 in this case (Figure 

Figure 3B). In order to investigate WT1 inactivation in this case, the remaining WT1 

allele was analyzed for the presence of inactivation mutations. A small frameshift 

mutation (delCinsTAG) was identified in exon 7, disrupting the WT1 coding region 

(Figure 3C).

To investigate whether WT1 inactivation is restricted to TLX3 rearranged T-ALL 

cases, we performed additional WT1 specific FISH analysis on 25 TLX3 negative 

pediatric T-ALL cases. This revealed one additional case in which FISH analysis re-

vealed a loss of both WT1 gene copies (Figure 3D). Subsequent array-CGH analysis 

confirmed the presence of a large mono-allelic deletion on the short arm of chro-

mosome 11, del(11)(p13p14.3), in combination with a loss of the genomic region 

surrounding the WT1 gene on the other allele (Figure 3E). Gene expression array 
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data showed that WT1 expression was virtually absent in this T-ALL case showing 

a homozygous WT1 deletion (data not shown). For case #2723, WT1 was equally 

expressed compared to WT1 wildtype cases of all T-ALL subgroups (TAL1, LMO2, 

TLX3, TLX1 and unknown) (data not shown).

DiscussioN

In order to get more insight in new genetic defects that may cooperate with TLX3 

gene expression in the leukemic transformation of thymocytes, we performed array-

CGH analysis on a TLX3 rearranged T-ALL patient cohort.

About 25% of TLX3 rearranged T-ALL cases showed a deletion at the terminal end 

of the long arm of chromosome 5. Interestingly, for a number of cases, the genomic 

breakpoint of this deletion was situated just downstream of the TLX3 oncogene. 

The deletions in these cases differ from the previously described TLX3 deletions 

that involved a genomic region upstream of the TLX3 gene near the translocation 

breakpoint(16). Although most T-ALL cases that show TLX3 expression harbor a 

cryptic translocation at this genomic locus, a number of studies have reported TLX3 

activation in the presence of a seemingly normal TLX3 locus(18, 19). For case 2650, 

combined array-CGH and FISH analysis strongly suggest that the TLX3 expression is 

associated with a interstitial del(5)(q35.1q35.3) in the absence of a TLX3 transloca-

tion. It is therefore tempting to speculate that TLX3 is normally under transcriptional 

control of a negative regulatory domain downstream of TLX3. Deletion of this nega-

tive regulatory element may lead to ectopic TLX3 expression. In addition, a potential 

tumor suppressor gene could be present in the minimal deleted area at 5q35 that 

specifically cooperates with TLX3 expression in the leukemogenesis of T-ALL. This 

hypothesis is strengthened by the fact that 2 cases have smaller 5q35 deletions with 

breakpoints near NKX2-5. A potential candidate gene in this 5q35 genomic region 

is NSD1. Mutations or deletions of the NSD1 gene are the major cause of Sotos 

syndrome, a constitutional overgrowth disorder(31), and patients with this syndrome 

have a higher risk for the development of leukemia(32-34). In addition, NSD1 is 

involved in a cryptic translocation, t(5;11)(q35;p15.5), generating a NUP98-NSD1 fu-

sion gene in AML(35). Although gene expression array data revealed no difference in 

NSD1 gene expression between patients with and without the del(5)(q35), a future 

mutation screening of NSD1 in TLX3 rearranged T-ALL is mandatory to evaluate a 

potential role for NSD1 inactivation in T-ALL.

Cryptic deletions on chromosome 1 were identified in 4 T-ALL cases with a 

commonly deleted region surrounding chromosomal band 1p36. Similar 1p36 

deletions were previously identified in about 30% of human neuroblastomas(36), 
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25% of colorectal cancer cases(37), and a variety of hematological malignancies 

including AML(38), CML(39) and non-Hodgkin’s lymphoma(40). In neuroblastoma 

and colorectal cancer, reduced expression levels of the CAMTA1 gene correlated 

with adverse outcome, suggesting that CAMTA1 could act as the 1p36-specifc tumor 

suppressor gene in these malignancies(36, 37). Another interesting target gene in this 

genomic region is the chromodomain helicase DNA binding domain 5 (CHD5) gene, 

which has been shown to be a tumor suppressor that controls proliferation and 

apoptosis via the p19Arf/p53 pathway(41). Other potential target genes within this 

genomic region are HES2 and HES3, both of which are highly similar to HES1 that 

is a bHLH transcriptional repressor and known NOTCH1 target gene(42). Also the 

TNFRSF25 gene may represent a target gene of this deletion. TNFRSF25 is a member 

of the TNF-receptor family which controls lymphocyte proliferation and regulates 

cell apoptosis(43).

The minimal deleted region of the cryptic deletions on chromosome 13 contained 

the microRNA cluster, miR-15/miR-16a. In CLL, deletion of this miR-15/miR-16a 

cluster leads to the activation of anti-apoptotic BCL2(44). For example in case #2723 

(data not shown), activation of BCL2 could cooperate with a homozygous deletion 

of the p15/p16 locus, a NOTCH1 mutation and activated TLX3 expression in the 

development of T-ALL.

Three TLX3 rearranged T-ALL cases showed cryptic deletions on chromosomal 

band 16q22.1. In AML, this genomic region is recurrently targeted by cytogenetic 

abnormalities including an inversion, inv(16)(p13q22), a translocation, t(16;16)

(p13q22) and a deletion, del(16)(q22)(40). The inv(16) and t(16;16) both result in a 

CBFB-MYH11 fusion gene, which is associated with a more favorable prognosis(45). 

In contrast, the deletion del(16)(q22) does not provide a favorable outcome and it 

remains to be elucidated whether CBFB is targeted in the 16q deletions in AML(46). 

In the TLX3 rearranged T-ALL cases, the minimal deleted region on 16q22.1 con-

tained 21 genes but lacked the CBFB gene. One interesting candidate genes in this 

genomic region is CTCF, which is a conserved transcriptional repressor of the MYC 

oncogene(47). MYC has been described in T-ALL to become aberrantly activated due 

to a TCR-mediated translocation(48) and has been shown to represent an important 

downstream target of activated NOTCH1(49, 50). Therefore, inactivation of CTCF 

could represent an alternative mechanism for MYC activation in T-ALL.

The majority of novel regions of genomic amplification or deletion were only 

detected in single TLX3 rearranged T-ALL cases (n=19). Given their low frequency, 

one could argue that their oncogenic role in T-ALL is negligible. However, NOTCH1, 

which was originally identified due to its involvement in a rare chromosomal trans-

location (<1%), was later identified as the most predominant mutational target in 

T-ALL (>50% of cases)(9). Similarly, the cryptic deletion, del(4)(q31.3q32.1), that 
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was detected in a single case, includes the FBXW7 gene. FBXW7 is an F-box protein 

that binds specific substrates including CyclinE, NOTCH1, cMYC and cJUN in order 

to target these for ubiquitin-mediated proteolysis. Heterozygous missense mutations 

of the FBXW7 gene are present in 8-30% of T-ALL cases(25-28), demonstrating the 

importance of this gene in T-ALL albeit inactivation through chromosomal deletions 

is rare. Mutant FBXW7 has lost the potential to bind the PEST domain of NOTCH1-IC 

and target NOTCH1 for proteolytic degradation. This results in stabilized NOTCH1-IC 

in the nucleus, providing an alternative mechanism of NOTCH1 activation in T-ALL 

that is insensitive for gamma-secretase inhibition. The present study describes the 

first case of a heterozygous FBXW7 deletion in human T-ALL. Haploinsufficiency of 

FBXW7 may be sufficient for NOTCH1 stabilization as no FBXW7 mutation could be 

identified in the remaining allele. FBXW7 mutations can occur in combination with 

NOTCH1 heterodimerization (HD) mutations but not with PEST truncating muta-

tions, and may complement the relatively weak transcriptional activity of HD mutant 

NOTCH1 molecules(28). In our del(4)(q31.3q32.1)-positive T-ALL case, an activating 

NOTCH1 mutation was identified in the HD domain.

Deletions on the short arm of chromosome 12 are frequently detected in a wide 

range of hematological malignancies. A recent genome-wide copy number analysis 

showed 12p deletions in about 25% of B-ALL cases and suggested the TEL gene as 

the main target of this genomic abnormality(51). However, the 12p deletion that we 

identified was about 600 kb in size and included the CDKN1B/p27/KIP1 gene and 

the microRNA genes miR-613 and miR-614, whereas it did not include the TEL gene. 

This indicates that the target gene(s) for 12p deletions probably differs between 

T-cell and B-cell ALL. The CDKN1B/p27/KIP1 gene encodes a cell cycle regulator 

that, similar to p15/p16, inhibits cyclin-dependent kinases (CDK). Loss of these CDK 

inhibitors may result in uncontrolled cell cycle. The T-ALL case with this CDKN1B 

deletion (#9858) also contained a homozygous p15/p16 deletion, indicating that 

different T-cell cycle defects can collaborate with a NOTCH1 mutation and TLX3 

overexpression in the development of T-ALL (data not shown).

WT1, a transcription factor involved in normal cellular development and cell 

survival, was initially discovered as a tumor suppressor in Wilms’ Tumor, a pediatric 

kidney malignancy(52). In acute leukemias, there is evidence that this gene can 

both act as an oncogene as well as a tumor suppressor gene(30). WT1 mutations 

have been described in acute myeloid leukemia (AML), leading to a truncated WT1 

protein(53, 54). In addition, specific AML subtypes show low levels of WT1 expres-

sion(30). Both observations are consistent with a tumor suppressor role of WT1 in 

AML. In contrast, a variety of leukemias are characterized by activated WT1 expres-

sion compared to normal bone marrow or normal progenitor cells(55, 56), that has 

been associated with poor outcome(57, 58). Our single T-ALL case with a deletion 
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of WT1 combined with an inactivational mutation in the remaining WT1 allele points 

towards a potential tumor suppressor role of WT1 in T-ALL. WT1 inactivation is not 

restricted to TLX3 rearranged T-ALL cases, as bi-allelic WT1 deletions were also 

observed in a TLX3 negative T-ALL case indicating that WT1 inactivation may be a 

more general collaborating genetic event in T-cell leukemia. Nevertheless, the TLX3 

rearranged T-ALL case showing WT1 inactivation also harbored a miR-15/miR-16a 

deletion, further extending the range of different genetic defects that collaborate in 

T-ALL development.

In conclusion, we performed a genome wide copy number screening on TLX3 

rearranged T-ALL cases and identified the cryptic deletion, del(5)(q35), as a new and 

recurrent genetic aberration that is exclusively associated with TLX3 expression in 

T-ALL. In addition, we identified a number of genetic events, including FBXW7 and 

WT1 inactivation that could collaborate with TLX3 expression, NOTCH1 activation 

and p15/p16 deletion in the development of T-cell leukemia. As shown for FBXW7, 

the identification of new genomic deletions/amplifications, even at low frequency, 

can still highlight important target genes with a broader role in T-ALL. Therefore, it is 

likely that the current overview of genetic defects will be further helpful for a better 

understanding of the molecular pathways leading to T-cell leukemia.
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aBstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused 

by mutations in the NF1 gene. NF1 patients have a higher risk to develop juvenile 

myelomonocytic leukemia (JMML) with a possible progression towards acute my-

eloid leukemia (AML). In an oligo array-comparative genomic hybridization based 

screening of 103 pediatric T-cell acute lymphoblastic leukemia (T-ALL) and 71 MLL 

rearranged AML patients, a recurrent cryptic deletion, del(17)(q11.2), was identified 

in 3 T-ALL and 2 MLL rearranged AML patients. This deletion has previously been 

described as a microdeletion of the NF1 region in patients with NF1. However, 

our patients lacked clinical NF1 symptoms. Mutation analysis in 4 of these del(17)

(q11.2)-positive patients revealed that mutations in the remaining NF1 allele were 

present in 3 patients, confirming its role as a tumor-suppressor gene in cancer. In 

addition, NF1 inactivation was confirmed at the RNA expression level in 3 patients 

tested. Since the NF1 protein is a negative regulator of the RAS pathway (RAS-GTPase 

activating protein), homozygous NF1 inactivation represent a novel type-I mutation 

in pediatric MLL rearranged AML and T-ALL with a predicted frequency that is less 

than 10%. NF1 inactivation may provide an additional proliferative signal towards 

the development of leukemia.



Leukemia associated NF1 inactivation in pediatric T-ALL and AML 157

iNtroDuctioN

Neurofibromatosis type 1 (NF1) is an autosomal genetic disorder that is clinically 

characterized by cafe-au-lait spots and frequent fibromatous tumors of the skin 

and tumors of the central nervous system. The NF1 disorder is caused by genetic 

heterozygous mutations in the NF1 gene on chromosome 17q11.2. The majority 

of NF1 mutations is intragenic and has been found over the complete gene. They 

comprise a diversity of mutation types, where splicing mutations are particularly 

prevalent given the number of exons. This result into truncation for a large per-

centage of cases, thereby inactivating the encoded protein neurofibromin1. Another 

genetic aberration includes microdeletions affecting the entire NF1 locus. Patients 

with these NF1 microdeletions display a more severe NF1 phenotype, character-

ized by mental retardation, facial dysmorphism, and increased risk for developing 

malignant tumors including leukemias2,3. To this end, NF1 has also been associated 

with juvenile myelomonocytic leukemia (JMML), with a risk of progression towards 

acute myeloid leukemia (AML). These malignancies are associated with loss of the 

wild-type allele, either through deletions or the acquisition of point mutations. In 

JMML, it has also frequently been reported that the wild-type allele is replaced by the 

mutant allele as an effect of recombinational events leading to uniparental disomy 

(UPD)4-6. Previously, it was shown that bi-allelic inactivation of NF1 are found as 

somatic abnormalities in JMML patients that lack clinical evidence of NF17. Somatic 

inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative 

disorder in mice8, confirming that NF1 acts as a tumor suppressor gene5. The NF1 

gene protein product, neurofibromin, is a GTPase-activating protein (GAP) which 

inhibits RAS signaling by hydrolysis of active RAS-GTP into inactive RAS-GDP1,9. 

Therefore NF1 deficiencies act as functional equivalents of activational mutations 

in RAS. Indeed, NF1 inactivation and RAS mutations have been found in a mutually 

exclusive manner in JMML7.

AML is a heterogeneous disease, in which early treatment response and cyto-

genetic abnormalities are the most important prognostic factors. In AML, genetic 

aberrations can be classified as type-I or type-II mutations. One hypothesis about the 

development of AML is the co-existence of both type I and type II mutations which 

confer proliferative signals (type I mutations affecting the FLT3, C-KIT, NRAS, KRAS 

or PTPN11 genes) in combination with type II differentiation impairing mutations 

(such as PML-RARα, AML-ETO, CBFB-MYH11 or MLL rearrangements)10.

MLL rearrangements account for 8-20% of all cytogenetic abnormalities in pedi-

atric AML11,12. HOX-genes are the prime targets of MLL fusion products and regulate 

cellular differentiation in normal hematopoietic development. However Eguchi et al 

point to another role of MLL fusion products in MLL rearranged leukemias through 
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the alteration of cell cycle arrest and apoptosis13. Most of these MLL-positive AML 

samples are morphologically classified as FAB-M4 and FAB-M5 and it has been sug-

gested that MLL rearrangements in pediatric AML are associated with a poor outcome. 

Interestingly, in some studies the t(9;11) subgroup has been associated with a higher 

sensitivity to different classes of drugs and a better prognosis14-16. In addition, many 

of these MLL rearranged AML patients lack mutations in FLT3, C-KIT, NRAS, KRAS 

and PTPN11, indicating that the type I mutations remains to be elucidated. High-

resolution genomic screening of MLL rearranged AML patients could provide us with 

further insight into novel genetic aberrations with prognostic significance or new 

type-I mutations in MLL rearranged AML.

T-ALL represents about 15% of pediatric ALL cases and is characterized by a rapid 

progression of disease and a 30% relapse rate within the first 2 years after diagnosis17. 

Over the last decade, a large number of new genomic aberrations were identi-

fied in T-ALL, including chromosomal translocations, deletions, amplifications and 

mutations18-20. All these genetic defects target different cellular processes, including 

the cell-cycle, T-cell differentiation, proliferation and survival. Cooperation of these 

genetic events initiates leukemic transformation of thymocytes18. RAS mutations have 

been found in less than 5 percent of T-ALL patients showing that proliferative hits 

affecting the RAS pathway remain rare18. On the other hand, more than 50 percent of 

the T-ALL cases are characterized by activating mutations in the NOTCH1 pathway 

including the NOTCH1 gene itself21,22, or the NOTCH1 regulating U3-ubiquitin ligase 

FBXW723,24.

In this study, we used oligo array-comparative genomic hybridization (array-CGH) 

and identified somatic NF1 microdeletions as a cryptic genetic abnormality in pediat-

ric T-ALL and MLL rearranged AML patients that lack symptoms of neurofibromatosis. 

We present further evidence for the role of NF1 inactivation as a functional equivalent 

to activated RAS signalling, and suggest that this can be considered as a new type I 

mutation in MLL rearranged AML and a proliferative hit in T-ALL.

materiaL aND metHoDs

Patients

Viably frozen diagnostic bone marrow or peripheral blood samples from 103 pedi-

atric T-ALL patients and 71 pediatric MLL rearranged AML patients were provided 

by the Dutch Childhood Oncology Group (DCOG), the German Co-operative study 

group for childhood acute lymphoblastic leukemia (COALL) and the ‘Berlin-Frank-

furt-Münster’ AML Study Group (AML-BFM-SG). Informed consent was obtained 

according to local law and regulations. Leukemic cells were isolated and enriched 
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from these samples as previously described25. All resulting samples contained ≥90% 

leukemic cells, as determined morphologically by May-Grünwald-Giemsa (Merck, 

Darmstadt, Germany)-stained cytospins. These leukemic cells were used for DNA 

and RNA extraction, and a minimum of 5×106 leukemic cells were lysed in Trizol 

reagent (Gibco BRL, Life Technologies, Breda, The Netherlands) and stored at -80°C. 

Genomic DNA and total cellular RNA were isolated as described before25. From the 

patients with a deletion of NF1, remission and relapse material was only available 

for patient #2736.

oligo array-cGH

Oligo array-CGH analysis was performed on the human genome CGH Microarray 

44k-A (Agilent Technologies, Palo Alto, USA) according to the manufacturer’s pro-

tocol using a dye-swap experimental design to minimize false positive results, as 

previously described25,26.

multiplex ligation-dependent probe amplification (mLPa)

MLPA analysis was performed using the SALSA P081/082 MLPA assay (MRC Hol-

land, Amsterdam, The Netherlands) SALSA P081/082 consists of two reaction mixes 

containing probes for all constitutive NF1 exons except for exons 5, 7, 17, 19A, 45, 

and 47. The exact localization of the MLPA probes can be downloaded from the 

MRC Holland Web site (www.mrc-holland.com). The two reactions contain 15 and 

13 control probes in other regions of the genome, respectively. The patients’ samples 

were analyzed with MLPA according to the manufacturer’s protocol27,28. Data were 

analyzed using GeneMarker v1.5 (Softgenetics, State College, USA).

mutation analysis

For the detection of NF1 mutations, DNA was subjected to 40 cycles of polymerase 

chain reaction (PCR) of 15’’ at 95oC and 1’ at 60ºC, using specific primers for all NF1 

exons, which are being used in NF1 diagnostics (Department of Clinical Genetics, 

Erasmus MC, Rotterdam, The Netherlands, manuscript in preparation, primers are 

available on request at a.vandenouweland@erasmusmc.nl). RAS, PTPN11 and C-KIT 

mutation screening was performed as described in supplementary table 1. NOTCH1 

and FLT3 mutational screening were done as previously described21,29,30. PCR prod-

ucts were purified by standard methods and directly sequenced from both strands. 

The sequence data were analysed using Seqscape V2.5 (Applied Biosystems, Foster 

City, USA).
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NF1 expression analysis

NF1 expression was calculated based upon non-normalized gene expression array 

data, performed on the human genome U133 Plus 2.0 array (Affymetrix, Santa Clara, 

USA), as previously described31, which were available for 3 del(17)(q11.2)-positive 

and 7 del(17)(q11.2)-negative leukemia patients. For the NF1 probe-sets, the expres-

sion was normalized to the median expression of GAPDH (6 probesets) for each 

patient sample. The difference in relative gene expression levels between patients 

with and without the del(17)(q11.2) was evaluated using the Mann-Whitney-U test.

resuLts

High resolution genomic screening of a selected subgroup of 103 pediatric T-ALL 

and 71 MLL rearranged AML patients using a 44K oligo array-CGH platform led to 

the identification of a cryptic deletion, del(17)(q11.2). This deletion was recurrently 

observed in 3 T-ALL and 2 AML cases (Figure 1a,b; Table 1). These deletions were 

about 1.2 Mb in size and covered the NF1 gene. For all patients, the telomeric 

breakpoints were situated in the JJAZ1 gene, whereas the centromeric breakpoints 

clustered in its pseudogene JJAZ1P (Figure 1c,d). The deletion area in these samples 

was equivalent to those observed in patients with NF1. Genetic and clinical patient 

characteristics for all del(17)(q11.2)-positive leukemia patients are summarized in 

table 1. One of the 3 T-ALL and at least one of the two AML patients relapsed.

To further confirm the deletion breakpoints, four out of five del(17)(q11.2)-positive 

leukemia patients and 15 del(17)(q11.2)-negative controls (7 T-ALL and 8 AML) were 

analyzed using an NF1 locus specific MLPA assay27,28. No residual material was avail-

able for patient #6421. These analyses confirmed that one copy of the NF1 locus was 

lost in all these 4 cases (Figure 2, only T-ALL 2736 is shown), whereas all control 

patients retained both copies of the NF1 gene (only AML control 3339 is shown).

In order to investigate complete NF1 inactivation in our patients, we performed 

mutation analysis on all exons and exon/intron boundaries of the NF1 gene in the 4 

del(17)(q11.2)-positive leukemia patients, and in an additional group of 39 patients 

without a deletion involving chromosomal band 17q11.2 (including 21 MLL rear-

ranged AMLs and 18 T-ALLs). Small frameshift mutations disrupting the NF1 coding 

region were only detected in 3 out of 4 del(17)(q11.2)-positive patients (table 1, 

figure 3), leading to bi-allelic inactivation of NF1 in these patients. One T-ALL patient 

and two MLL rearranged AML patients without a del(17)(q11.2) had a mono-allelic 

mutation in non-functional domains, possibly reflecting rare polymorphisms. Fur-

thermore, NF1 expression in the del(17)(q11.2)-positive T-ALL and MLL rearranged 
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AML leukemias was significantly lower in 3 patients tested, as compared to 7 cases 

of T-ALL and AML patient samples which are wild-type for NF1 (Figure 4).

CHAPTER 8 
 
Figure 8.1  
 

 
Figure 1. NF1 microdeletions in pediatric acute leukemias.

(a) Chromosome 17 ideogram and corresponding oligo array-CGH plot of patient DNA/control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patient #2736.

(b) Detailed visualization of the NF1 microdeletion at chromosomal band 17q11 in T-ALL patient 

#2736. Hybridization signals around the –2X or +2X lines represent loss of the corresponding region 

in the patient DNA.

(c) Detailed analysis of the centromeric (left panel) and telomeric (right panel) breakpoint of the 

NF1 microdeletion in patient #2736.

(d) Overview of oligo array-CGH results in the chromosomal region 17q11.2 for 3 T-ALL and 2 

AML patients with del(17)(q11.2). The 60-mer oligos present on the DNA array and located in this 

genomic area, as well as the specific genes located in this region with their transcription direction, 

are shown. Arrows above the indicated genes represent the direction of transcription

Abbreviations: N; normal, L; loss, cen: centromere, tel: telomere.
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To further verify a somatic rather than a genetic origin of NF1 inactivation, we 

screened relapse and remission material of T-ALL patient #2736, for whom material 

was available. At relapse the NF1 microdeletion and NF1 mutation on the other allele 

were present, while in the remission sample both mutations remained undetected.

Since NF1 deficiency could act as a novel type 1 mutation, we screened all del(17)

(q11.2)-positive leukemia patients for activational mutations in RAS. Although N-RAS 

or K-RAS mutations have been described in MLL rearranged AML and T-ALL, no 

somatic N-RAS or K-RAS mutations were found in our 5 del(17)(q11.2)-positive leu-

kemia patients. In addition, both MLL rearranged AML patients with a NF1 deletion 

lacked other type I mutations in FLT3, C-KIT or PTPN11 in their leukemic cells. The 

frequency of these mutations in the 71 MLL rearranged AML samples was low, as ex-

pected. Only 35% had one of these mutations, and all these mutations were mutually 

exclusive. Furthermore, the del(17)(q11.2)-positive T-ALL patients were screened for 

rearrangements at the TAL1, HOX11L2, HOX11, CALM-AF10, MLL and cMYC loci or 

the presence of NOTCH1 mutations. One patient (#167) lacked rearrangements of 

any of the loci mentioned above, whereas a HOX11L2 translocation (#2780) and a 

CALM-AF10 fusion gene (#2736) were detected in 2 other cases. NOTCH1 mutations 

were identified in patients #2780 (heterodimerization domain; L1601P) and #167 

(PEST domain; 2445insLL).

Figure 8.2  

 

 

Figure 2. MLPA analysis of NF1 in selected cases.

MLPA analysis of the NF1 locus in T-ALL patient #2736 and AML patient #3339. Normalized peak 

areas around 0.5 represent monoallelic loss of the corresponding genomic region.
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Figure 8.3  
 

Figure 3. Truncating NF1 mutations in pediatric T-ALL and AML.

(a) Sequence analysis of patient #4389 (AML) showing a c.2849_2850insTT mutation in the remaining 

NF1 allele

(b) Sequence analysis of patient #2736 (T-ALL) showing a c.3734delCinsGGTTTATGGTTT mutation 

in the remaining NF1 allele

(c) Sequence analysis of patient #2780 (T-ALL) showing a c.333dupA mutation in the remaining NF1 

allele
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DiscussioN

Genetic events that lead to leukemogenesis by activating uncontrolled cell prolifera-

tion remain to be elucidated in most pediatric T-ALL and MLL rearranged AML cases. 

We used oligo array-CGH to identify new abnormalities and found somatic NF1 

microdeletions as a cryptic genetic abnormality in patients lacking clinical symptoms 

of neurofibromatosis. This array-CGH study is currently expanded to other subtypes 

of leukemias. Recent SNP array analysis of pediatric ALL by investigators from St Jude 

Children’s Research Hospital showed that this microdeletion in NF1 may be present 

at low frequencies in other types of acute leukemia as well.32

NF1 microdeletions are observed in about 5-20% of NF1 patients1. The majority 

of these NF1 patients have a 1.4 Mb NF1 microdeletion due to interchromosomal 

homologous recombination between the low-copy repeats of the WI-12393 gene 

flanking NF1 and sequences with homology to chromosome 19 during meiosis33. 

A second type of NF1 microdeletions of about 1.2 Mb in size is due to a mitotic 

intrachromosomal recombination between the JJAZ1 and the homologous JJAZ1P 

pseudogene34,35. The NF1 microdeletions in our leukemia patients seemed identical 

Figure 8.4  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. NF1 expression analysis in pediatric T-ALL and MLL-rearranged AML.

NF1 mRNA expression data relative to GAPDH (%), based upon gene expression array data, which 

were available for 3 del(17)(q11.2)-positive (patient #2736, #2780 and #167) and 7 del(17)(q11.2)-

negative leukemia patients.
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to this 1.2Mb microdeletion type33. However, in contrast to NF1 patients with similar 

NF1 deletions, our leukemia patients did not meet the clinical criteria for NF1, lack-

ing cafe-au-lait spots, mental retardation and/or facial dysmorphism. This suggests 

that the NF1 deletion in our patients is somatic and leukemia specific, rather than 

of constitutional genetic origin, although molecular diagnostics for NF1 was not 

performed in these patients.

Deletion of one allele of NF1 and further inactivation of the other NF1 allele in 3 

patients through the acquisition of point mutations further confirms the role of NF1 

as a tumor-suppressor gene in the pathogenesis of both pediatric MLL rearranged 

AML and T-ALL. This point was further strengthened by the finding of clonal stabil-

ity in one of the del(17)(q11.2) patients, where the deletion of NF1 on one allele 

and the point-mutation in the other NF1 allele were both present at diagnosis and 

relapse while absent in the remission sample. Therefore, the NF1 abnormalities were 

of somatic origin in at least patient #2736 and were only present in the leukemic 

cells. Similar findings have been described for JMML patients7, explaining why these 

patients did not have any clinical symptoms of neurofibromatosis.

Since NF1 deficiency leads to the activation of the RAS signaling pathway9, and 

none of the del(17)-positive leukemia patients had mutations in NRAS or KRAS, NF1 

microdeletions presumably provide an alternative mechanism for RAS activation in 

both MLL rearranged myeloid and T-lymphoid leukemias, thereby representing a 

novel type I abnormality. These leukemia patients may potentially benefit from ad-

ditional treatment with RAS inhibitors like farnesylthiosalicylic acid36 or downstream 

inhibitors.

Both del(17)-positive AML patients were further screened for any of the other cur-

rently known type I mutations in AML. As expected, no other type I mutations were 

detected, indicating that NF1 microdeletions could act as a novel type I mutation 

which cooperate with the MLL translocation (type II mutation) in the pathogenesis 

of AML.

 The idea of a multi-step pathogenesis in T-cell leukemia is widely accepted18-20,37. 

Cooperative genetic events affect cell-cycle, T-cell differentiation, proliferation and 

survival. We identified a number of cooperative aberrations in the del(17)(p11.2)-

positive T-ALL samples. NOTCH1 mutations, generally present in about 50% of T-

ALL21, were identified in 2 out of 3 del(17)(p11.2)-positive T-ALL samples. In addition, 

genetic aberrations that induce a T-cell differentiation arrest were identified in patient 

#2780 (HOX11L2 translocation) and patient #2736 (CALM-AF10 translocation). These 

data further suggests that loss of NF1 can be involved in the development of T-ALL, 

as one of the genetic hits in multistep oncogenesis.

In this study, we identified 3 patients whith a deletion of NF1 and an inactivational 

mutation on the remaining allele. We could not identify homozygous somatic NF1 
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mutations in 21 MLL rearranged AML and 18 T-ALL patients without a microdele-

tion. This suggests that the frequency of bi-allelic inactivation, until now the only 

mechanism described for oncogenesis, is less than 10% in these groups.

Other mechanisms of NF1 inactivation, such as inactivation through the duplica-

tion of the mutated (UPD) NF1 allele at the expense of the remaining wild-type 

allele, as observed in NF1 patients with JMML, may have been missed6. Of inter-

est, recent SNP array analysis of pediatric ALL, and JMML without underlying NF1, 

showed that there was no UPD involved in the NF1 region6,32. In addition, in adult 

AML ~20% have large regions of UPD, but none of them involves the NF1 locus38,39. 

Hence, UPD of the NF1 locus may be a rare event in leukemias of somatic origin 

compared to leukemias which originate from patients with clinical evidence of NF1. 

Therefore, the frequency of bi-allelic NF1 inactivation in pediatric MLL rearranged 

AML and T-ALL as we reported here may be underestimated. Future studies should 

be extended by sequencing the NF1 locus, including the promoter region and the 3’ 

untranslated region (UTR) and look for abnormalities in NF1 protein expression.

In conclusion, we report the identification of NF1 microdeletions in pediatric T-

ALL and MLL rearranged AML cases without clinical evidence of NF1. We confirmed 

NF1 inactivation by reduced NF1 expression levels, and bi-allelic NF1 mutations 

in 3 out of 5 patients, confirming the role of NF1 as a tumor suppressor gene in 

cancer. NF1 inactivation is a novel type I mutation in MLL rearranged AML and a new 

proliferative hit in T-ALL.
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aBstract

Over the last decade, genetic characterization of T-cell acute lymphoblastic leukemia 

(T-ALL) has led to the identification of a variety of chromosomal abnormalities. In 

this study, we used array-comparative genome hybridization (array-CGH) and identi-

fied a novel recurrent 9q34 amplification in 33% (12/36) of pediatric T-ALL samples, 

which is therefore one of the most frequent cytogenetic abnormalities observed in 

T-ALL thus far. The exact size of the amplified region differed among patients, but 

the critical region encloses 4 Mb and includes NOTCH1. The 9q34 amplification may 

lead to elevated expression of various genes, and MRLP41, SSNA1 and PHPT1 were 

found significantly expressed at higher levels. Fluorescence in situ hybridization 

(FISH) analysis revealed that this 9q34 amplification was in fact a 9q34 duplication 

on one chromosome and could be identified in 17–39 percent of leukemic cells 

at diagnosis. Although this leukemic subclone did not predict for poor outcome, 

leukemic cells carrying this duplication were still present at relapse, indicating that 

these cells survived chemotherapeutic treatment. Episomal NUP214-ABL1 ampli-

fication and activating mutations in NOTCH1, two other recently identified 9q34 

abnormalities in T-ALL, were also detected in our patient cohort. We showed that 

both of these genetic abnormalities occur independently from this newly identified 

9q34 duplication.
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iNtroDuctioN

Pediatric T cell acute lymphoblastic leukemia (T-ALL) accounts for about 10-15% of 

pediatric ALL cases. Current intensive treatment schedules have improved outcome, 

as the 5 year relapse-free survival rate nearly reaches 75%. Further improvement of 

this survival rate will be expected by a better understanding of the pathogenesis of 

T-ALL and the mechanism of cellular resistance against chemotherapy, providing new 

rationales for therapeutic intervention1. Genetic analyses of this malignancy have 

elucidated an enormous heterogeneity in genetic aberrations including chromosomal 

translocations, deletions and amplifications. Most of these abnormalities cause aber-

rant expression of a specific set of helix-loop-helix transcription factors, e.g. TAL1/

SCL, TAL2, LYL1, LMO1, and LMO2; deregulate the expression of homeobox genes 

like TLX1, HOXA10/HOXA11 and TLX3; or lead to the generation of fusion genes 

like CALM-AF102-11. Some of these genetic defects are cryptic aberrations and for that 

reason remain undetected by conventional cytogenetics. New high-resolution cyto-

genetic techniques may therefore lead to the identification of novel abnormalities in 

pediatric T-ALL. One such technique is the array comparative genome hybridization 

(array-CGH) technique enabling genome-wide high-resolution screening to detect 

new chromosomal regions of deletion or amplification12-14. It has mainly been used 

thus far for genomic screening of solid tumors15-18 and its application in the genomic 

analysis of hematological malignancies is limited to a few studies19,20.

Episomal NUP214-ABL1 amplifications were recently detected in pediatric T-ALL, 

leading to an aberrant activation of the protein tyrosine kinase activity of ABL121. For 

this, the genomic region from ABL1 to NUP214 is circularized to form a NUP214-

ABL1 fusion gene. This phenomenon results in the formation of a variable number of 

episomes, not previously detected by conventional cytogenetics, and accounts for a 

novel genetic mechanism leading to the activation of a tyrosine kinase in cancer. The 

NUP214-ABL1 amplification, which is observed in about 5% of the T-ALL samples, is 

suggested to be associated with poor outcome, and patients may therefore benefit 

from additional treatment with imatinib, a tyrosine kinase inhibitor21. Recently, an-

other ABL1 fusion was identified in a T-ALL patient with a cryptic t(9;14)(q34;q32). 

In that case, the constitutive activation of the ABL1 tyrosine kinase activity was 

established by the formation of an EML1-ABL1 fusion product22.

Another abnormality also involving the 9q34 region in T-ALL were the recently 

identified mutations in the NOTCH1 gene23-33. A specific role for NOTCH1 in human 

T-ALL was previously postulated due to its involvement in the rare chromosomal 

translocation t(7;9)(q34;q34.3), coupling NOTCH1 to the T cell receptor-β locus24. 

The identification of activating NOTCH1 mutations in more than 50% of human 

T-ALL samples23, suggests a much broader role for this gene in human T cell 
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leukemogenesis25. NOTCH1 has a major role in normal hematopoiesis as early tran-

scription factor to commit lymphoid progenitor cells towards T cell development. It 

encodes for a dimer of the extracellular subunit (NEC) non-covalently bound to the 

transmembrane (NTM) subunit. Two specific dimerization regions (HD-N, HD-C) 

regulate the stable association between these subunits. NOTCH1 activation is initi-

ated by ligand binding to NEC, leading to the release of intracellular NOTCH after 

successive proteolytic cleavages. Intracellular NOTCH translocates to the nucleus 

where it forms a complex that activates the transcription of various target genes, 

including HES-1, PRE-Tα, DELTEX-1 and P2126-27. So far NOTCH1 mutations appear 

to be restricted to 3 hotspot domains: the HD-N, the HD-C and the PEST domain. It 

has been suggested that these mutations lead to ligand independent activation of this 

transmembrane receptor23.

In the present study, we used array-CGH to identify a novel duplication involving 

the 9q34 region in 33% of pediatric T-ALL samples, which is one of the most frequent 

cytogenetic abnormalities observed in T-ALL thus far. The relevance of this new and 

recurrent abnormality in relation to other newly discovered abnormalities in the 

9q34 genomic region, like NUP214-ABL1 amplification or activating mutations in 

NOTCH1, has been investigated.

materiaLs aND metHoDs

Patient samples

Viable frozen leukemic cell suspensions obtained from either bone marrow and/

or peripheral blood samples at diagnosis from untreated children with T-ALL were 

collected from the Sophia Children’s Hospital/Erasmus MC and the Dutch Child-

hood Oncology Group (DCOG). At diagnosis, informed consent of the patients and/

or parents was obtained to use left-over material for research purposes. Leukemic 

cells were isolated and enriched from these samples as previously described28. All 

samples contained ≥90% leukemic cells, as determined morphologically by May-

Grünwald-Giemsa (Merck, Darmstadt, Germany)-stained cytospins. Thawed cells 

were used for several procedures. For DNA and RNA extraction, a minimum of 5×106 

leukemic cells were lysed in Trizol reagent (Gibco BRL, Life Technologies, Breda, 

The Netherlands) and stored at -80°C. A total of 25 × 103 leukemic cells was used for 

cytospin preparations for fluorescence in situ hybridization (FISH) which were stored 

at -20°C. For the preparation of metaphase slides a minimum of 5×106 leukemic cells 

were cultured for 72 hr in serum free medium (JRH Biosciences, Kansas, USA) in the 

presence of IL7 (10 ng/ml) and IL2 (10 ng/ml), and harvested according to standard 

cytogenetic techniques.
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Genomic DNa isolation, rNa extraction and cDNa synthesis

Genomic DNA and total cellular RNA were isolated according to the manufacturers’ 

protocol, with minor modifications. An additional phenol-chloroform extraction was 

performed and the DNA was precipitated with isopropanol along with 1 µl (20 µg/

ml) glycogen (Roche, Almere, The Netherlands). After precipitation, RNA pellets 

were dissolved in 20µl RNAse-free TE-buffer (10mM Tris-HCl, 1mM EDTA, pH=8.0). 

The RNA concentration was quantified spectrophotometrically. Following a denatur-

ation step of 5 min at 70°C, 1µg of RNA was reverse transcribed to single-stranded 

cDNA using a mix of random hexamers (2.5 µM) and oligo dT primers (20 nM). The 

RT reaction was performed in a total volume of 25 µl containing 0.2 mM of each 

dNTP (Amersham Pharmacia BioTech, Piscataway, NJ, USA), 200 U Moloney murine 

leukemia virus reverse transcriptase (M-MLV RT) (Promega, Madison, WI, USA) and 

25 U RNAsin (Promega). Conditions for the reaction were 37°C for 30 minutes, 42°C 

for 15 minutes, and 94°C for 5 minutes. The obtained cDNA was diluted to a final 

concentration of 8 ng/µl and stored at -80°C.

array-cGH

Array-CGH analysis was performed in duplicate for each patient, using a dye-swap 

experimental design to minimize false positive results. Patient genomic DNA (2 µg) 

and male/female reference DNA (2 µg) (Promega) were fragmented by sonification 

(VibraCell Model VC130, Sonics & Materials, Newtown, CT), size-verified by agarose 

gel electrophoresis and labeled with Cy5 and Cy3 dyes according to standard random 

priming protocols (Bioprime Labeling Kit, Invitrogen, Carlsbad, CA, USA). The DNAs 

were combined, denatured, and applied to two separate 1 Mb GenomeChipTM V1.2 

Human BAC arrays (2,632 BAC clones spotted on a single array; Spectral Genomics, 

Houston, TX, USA) according to the manufacturer’s protocol. DNA hybridization 

and washes were performed as recommended, and the slides were scanned on a 

GenePix 4000B Microarray Scanner (Axon Instruments, Union City, CA, USA). Cy3 

and Cy5 fluorescent intensities at each DNA spot were quantified by GenePix Pro 4.0 

Microarray Image Analysis Software and the data were subsequently imported into 

SpectralWare software (Spectral Genomics). Background intensities were subtracted 

and initial fluorescent ratios were log2 transformed. Data points greater than 2 stan-

dard deviations away from the population mean ratio were identified as “outliers” 

and removed. This procedure was repeated until the data points were all within the 

2 standard deviations-established threshold29. Regression was performed against a 

ratio value of 1. Using such strict normalization procedures, including the require-

ment that the deviation occurs for both components of the dye-swap experiment29, 

some significant data points might be eliminated (i.e. false negatives), but increased 

confidence in defining abnormal data points is obtained. The ratios for each clone 
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were subsequently plotted into chromosome-specific profiles. At this stage, known 

large-scale copy number polymorphisms were not considered disease-related29. 

The cut-off fluorescence ratios used for detection of genomic gain or loss were 

0.8 and 1.2. In addition, the aberration needed to be present in both dye-swapped 

experiments.

FisH validation experiments

BACs were obtained from BAC/PAC Resource Center (Children’s Hospital, Oakland, 

USA). BAC DNAs were isolated using DNA MiniPrep plasmid kit (Promega) and 

labeled by nick translation with Spectrum Orange-dUTP (Vysis, Ill, USA). ABL1 

amplification was detected using the LSI BCR-ABL ES (Vysis) translocation probe. 

HOX11L2 translocations were identified with the TLX3 split signal probe (Dakocyto-

mation, Glostrup, Denmark). The BAC clones RP11-408N14 (9p21.3) and RP11-91o4 

(11q21) were used to identify del(9)(p21.3p23) and del(11)(q14.1q22.3) in T-ALL 

patient 1179, respectively. The BAC clones RP11-707o3 (NOTCH1) and RP11-576c12 

(9q32) were used to identify the 9q34 duplication. The cases without 9q34 abnor-

malities were used to calculate the cut-off value for this probe combination for use 

in interphase nuclei. The cut-off value was defined as the mean plus three times the 

standard deviation. The cut-off value for the presence of 3 RP11-707o3 signals was 

3%. FISH analysis was performed on interphase and metaphase preparations from 

methanol/acetic acid cell suspensions stored at –20°C. Cytospins and metaphase 

preparations were stored at -20°C. Before use, they were thawed on ice for 60 min 

and fixated in methanol/acetic acid (3:1). Afterwards, the slides were pre-treated 

with RNAse and pepsin, and post-fixed with formaldehyde, before being denatured 

for 2 min 15 sec in 70% formamide/2x SSC at 72°C. FISH probes were denatured 

for 8 min at 72°C and hybridized overnight at 37°C in a moist chamber. Slides were 

washed in 50% formamide/2x SSC and 2x SSC at 50°C, 4 min each. After dehydration 

through an ethanol series (70%, 85%, and 96%), they were mounted with antifade 

containing 4’6-diamino-2-phenyl indol (DAPI) as counterstain. For each sample a 

minimum of 100 interphase cells were scored, as well as 10-25 metaphases if pres-

ent. Images were captured using an epifluorescence microscope (Zeiss Axioplan 2, 

Sliedrecht, the Netherlands) using MacProbe software (version 4.3, Applied Imaging, 

Newcastle upon Tyne, UK).

mutational screening of NOTCH1

Mutational screening of NOTCH1 was performed as previously described23. Briefly, 

exon 26, encoding the N terminal region of the HD domain of NOTCH1, was divided 

in 2 amplicons. Exon 27, encoding the C terminal region of the HD domain of 

NOTCH1, was amplified as 1 amplicon and exon 34, encoding the PEST domain of 
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NOTCH1, was divided in three amplicons. Direct sequencing was performed on all 

of the generated PCR products.

Quantitative real-time rt-Pcr (taqman)

The mRNA expression levels of NOTCH1 and an endogenous housekeeping gene 

encoding for glyceraldehydes-3-phosphate dehydrogenase (GAPDH) as a reference 

were quantified using real-time polymerase chain reaction (PCR) analysis (TaqMan 

chemistry) as previously described28. The relative NOTCH1 mRNA expression level 

in each patient was calculated using the comparative cycle time (C
t
) method, as 

previously described30. Briefly, the target PCR C
t
 values (ie, the cycle number at 

which emitted fluorescence exceeds 10 × the standard deviation (SD) of baseline 

emissions as measured from cycles 3 to 15) is normalized to the GAPDH PCR C
t
 

value by subtracting the GAPDH C
t
 value from the target PCR C

t
 value, which gives 

the ΔC
t
 value. From this, the relative mRNA expression to GAPDH for each target 

PCR can be calculated using the following equation:

relative mRNA expression = 2- (Ct target – Ct GAPDH) × 100%

Gene expression array analysis and statistics

Total cellular RNA was extracted from a minimum of 5x106 leukemic cells using 

Trizol reagent (GIBCO BRL) according to the manufacturer’s protocol with minor 

modifications that included an additional RNA purification step with phenol–chloro-

form–isoamylalcohol (25:24:1) as previously described31. RNA integrity, processing 

and hybridization to the U133 plus 2.0 GeneChip oligonucleotide microarray (Af-

fymetrix) was performed as described before31. Probe sets located in the 9q33-34 

regions with raw fluorescent intensities that were 3 fold higher than the arbitrary 

background level of 50 were selected (78 probesets, reflecting 53 genes). For these 

probe-sets, the expression was calculated relatively to the median expression of 

GAPDH (6 probesets) for each patient sample. The difference in gene expression 

levels for patients with and without the 9q34 duplication was evaluated using the 

Mann-Whitney-U test.

resuLts

New recurrent aberration in pediatric t-aLL

To find new chromosomal imbalances in pediatric T-ALL possibly related to outcome 

or leukemogenesis, array-CGH analysis was performed on a selected cohort of 36 

clinically and karyotypically well-characterized diagnostic patient samples (Table 

1). Array-CGH analysis led to the identification of all numerical chromosomal 
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CHAPTER 9 
 
FIGURES 

 

Figure 9.1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Subclonal 9q34 amplification in pediatric T-ALL

(a) Chromosome 9 ideogram and corresponding array-CGH plot of test DNA:control DNA ratios 

(blue tracing), and the dye-swapped control DNA:test DNA ratios (red tracing), for T-ALL patients 

2852 (left panel) and 1950 (middle panel). (b) Overview of array-CGH results for the 9q34 region 

for each of the 12 pediatric T-ALL patients with the 9q34 duplication. The BAC clones present on 

the DNA array and located on chromosome bands 9q33.3-q34.3 are shown. The BAC clones within 

the region of genomic gain are shown as black boxes, clones giving a 1:1 ratio are shown as white 

boxes. Specific genes located in this region that regulate important cellular processes or that were 

previously linked to leukemogenesis, are indicated below. Depicted genome positions are based on 

the UCSC Genome Browser.35
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aberrations, amplifications and deletions that matched previous karyotypic data, 

confirming the reliability of this genome-wide screening-technique. As depicted in 

Figure 1a for example, analysis of the array-CGH plot for chromosome 9 of patient 

1950 showed a heterozygous deletion at 9p22-q21 also partly observed by conven-

tional karyotyping (Table 1). Unlike conventional karyotyping, array-CGH allows 

a more precise determination of the size of the amplified or deleted regions. For 

example, the heterozygous deletion at 9p22-q21 in patient 1950 could be specified 

to the region between 9p21.3-p22 (BAC 89C2) and 9q21.11 (BAC 203L2; Figure 1a). 

Within this area, the region covered by the BAC clones 408N14 and AL391117.8 was 

homozygous deleted, including the p15INK4B-p16INK4A loci that are frequently 

deleted in pediatric T-ALL32.

In addition to the aberrations previously detected by conventional cytogenetics, a 

gain of genomic material was present at 9q34 in 33% (12/36) of our pediatric T-ALL 

cases (Figure 1a). The exact size of the amplified region varied among patients 

(Figure 1b). The largest region of amplification was flanked by the BAC clones 1M19 

(9q33.3) and 417A4 (9q34.3), whereas the smallest region ranged from BAC clone 

326L24 (9q34.13) to 48C17 (9q34.3). The common region of genomic gain therefore 

includes clones 153P4, 145E17, 92B21, 100C15 and 707O3, which are all located 

distally from the ABL1 and NUP214 genes at 9q34.12-q34.13 (Figure 1b).

The relative difference in hybridization in the array-CGH analysis between the 

patient and the control DNA was lower than expected for a single copy gain in all 

leukemic cells of the patient. We therefore postulated that this amplification is only 

present in a sub-fraction of the total leukemic population. To determine the percent-

age of cells carrying the 9q34 amplification, interphase cells were analyzed by FISH 

using the probes RP11-707o3 (NOTCH1) located in the common region of genomic 

gain, and RP11-576c12 (9q32), situated outside the amplified region. Samples with 

the 9q34 amplification showed an additional 9q34.3-specific (RP11-707o3) hybridiza-

tion signal in a minority of leukemic cells (Figure 2a,b). Additional FISH analysis on 

metaphase cells (Figure 2) using the same 9q34.3 specific probe showed that patients 

with the 9q34 amplification had a duplication of the 9q34 region. The percentage of 

cells with a 9q34 duplication ranged from 17 to 39 percent of the leukemic popula-

tion at diagnosis (Table 2).

clinical relevance of the 9q34 duplication in pediatric t-aLL

The 9q34 duplication was observed in 12 out of 36 patients (Table 2), of which 6 

patients relapsed (Table 1). Relapse material was available for four of these patients 

(patients 335, 1179, 1933, 3247; Table 2). FISH analysis on the relapse samples 

using the same 9q34 specific BAC-probe (707O3) showed 9q34 duplication in about 

20%-25% of the leukemic cells for all four specimens (Table 2). Array-CGH analysis 
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on the relapse material from these 4 patients confirmed the presence of the 9q34 

duplication in a subpopulation of cells in all 4 relapse samples (Figure 3a).

the episomal amplification of NUP214-ABL1 and the 9q34 duplication are 

independent genetic events in pediatric t-aLL

We then investigated the relationship between this 9q34 duplication and the recently 

identified NUP214-ABL1 amplification also involving the 9q34 region. We failed to 

detect the NUP214-ABL1 amplification in our array-CGH analysis because no BAC 

clone covering this genomic region was present at the DNA chips. Therefore, the 

incidence of the episomal NUP214-ABL1 amplification in our patient cohort was 

determined by FISH analysis using the LSI BCR-ABL ES translocation probe. We 

identified the episomal ABL1 amplification in 2 out of 36 samples (5.6%; Table 2). 

This genetic abnormality was present in a very low percentage of cells (5% and 3%) 

at diagnosis (patients 1179, 2775; Table 2; Figure 3b). Both patients also carried the 

9q34 duplication in a subclone of the leukemic cells (Table 2). Notably, both patients 

relapsed but relapse material was only available for patient 1179. Interestingly, in 

this patient, the episomal amplification of NUP214-ABL1 was detected in 81% of the 

leukemic population at relapse (Figure 3c). The 9q34 duplication was present in 

only 22% of the leukemic cells (Table 2), suggesting that none of the leukemic cells 

Figure 9.2 FISH analysis showing subclonal 9q34 duplication in T-ALL patients 1950 and  2775. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2. FISH analysis showing subclonal 9q34 duplication in T-ALL patients 1950 and 
2775. 

(a) FISH analysis on interphase cells of patient 1950, using RP11-707o3 (NOTCH1) in green and 

RP11-576c12 (9q32) in red. Example of an interphase cell showing a normal hybridization pattern. 

(b) Amplification of RP11-707o3 (NOTCH1) is identified in a minority (32%) of the leukemic cell 

population. (c) Single-color FISH analysis on metaphase spreads of patient 2775, showing an 

enlarged hybridization signal on one of the chromosomes 9 (white arrow), indicating duplication of 

9q34 in one of the chromosomes 9.
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Table 1. Clinical and cytogenetic patient characteristics

ID Sex Age* WBC
(x 109 / l)

Relapse
CCR, (#months)

Karyotype

335_D M 13.9 533 Relapse, 14 46,XY[26]

335_R 46,XY[20]

419 M 10.3 149 CCR, 36+ 46,XY,t(10;14)(q2?4;q11)[2]/46,idem,del(12)
(p11)[10]/

46,idem,t(6;7)(p21;q34~35),del(12)(p11)
[3] / 46,XY[9]

720 M 13.2 417 CCR, 33+ 46,XY,t(7;9)(p1?3;p2?2)[30]/46,XY[4]

1179_D M 5.9 276 Relapse, 13 46,XY,del(11)(q2?1q2?4)[21]/

1179_R M 17,9 46,XY,der(6)t(6;8)(q26;q24),del(8)(q24),

del(9)(p21p21),der(9)del(9)(p21p21)
add(9)(q11),

del(11)(q21q23)[6]/46,idem,der(3;9)
(p10;q10),

der(6)t(3;6)(q29;p25),+del(9)[8]/46,XY[11]

1933_D M 12.6 305 Relapse, 12 47,XY,+mar1[9]/48,idem,+mar2[7]/46,XY[8]

1933_R M 29 46,XY,del(6)(q16q24)[17]/47,XY,+ mar1[5]

1950 F 9.3 900 Relapse, 5 46,XX,del(9)(p13p23)[10]/46,idem,del(13)
(q14q22)[5]/

46,idem,del(6)(q13q23)[8] / 
46,idem,del(6),del(13)[2]

2649 F 16.6 86 CCR, 22+ 46,XX,del(6)(q13q21),t(8;14)
(q24;q11),del(9)(p22)[20]

2772 M 5.1 80 CCR, 40+ 46,XY[30]

2775 M 15.9 136 Relapse, 6 46,XY,del(6)(q2?q2?)[15]/

46,idem,del(10)(q2?)[2]

2779 F 2.8 57 CCR, 119+ 46,XX,del(6)(q?)[8]

2788 M 9.3 310 CCR, 75+ 46,XY,t(1;14)(p32;q11),inc[2]

3247_D M 4.6 232 Relapse, 12 46,XY[25]

3247_R M 32 46,XY[30]

531 F 8 132 CCR, 35+ 46,XX,?add(9)(p1?)[6]/46,XX[30]

1946 M 4.5 405 Relapse, 10 46,XY[10]

1953 M 8.5 130 CCR, 116+ 47,XY,+8[15]

2036_D M 8.1 271 Relapse, 19 45,XY,der(7;9)(q10;q10), t(11;14)(p13;q11)
[4]/

45,idem,t(11;14)(p13;q11)[21]/46,XY[8]

2036_R M 102 ND

2101 M 6.2 167 Relapse, 4 47,XY,+?6[4]/48,idem,+mar[2]/46,XY[30]

2105_D M 5 140 Relapse, 12 46,XY[30]

2105_R M 25 46,XY[25]

2640 M 6.2 68 Relapse, 9 46,XY[10]

2720 M 15.4 200 Relapse, 13 46,XY,t(1;14)(p32;q11)[20]/47,idem,+mar[5]

2721 M 2 580 Relapse, 12 ND
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carried both genetic abnormalities simultaneously. FISH analysis on diagnosis and 

relapse material of patient 1179 using the ABL1- and a NOTCH1 probes simultane-

ously confirmed that the ABL1 amplification and the 9q34 duplication were present 

in separate leukemic cells (data not shown). Analysis using array-CGH (Figure 3a) 

and FISH (not shown) on the relapse material of patient 1179 further confirmed that 

NUP214-ABL1 amplification and 9q34 duplication occur in independent leukemic 

subclones.

identification of novel NOTCH1 mutations in pediatric t-aLL

We then screened part of our pediatric T-ALL cohort (30/36) for the presence of 

mutations in the three hot spot regions of NOTCH1 involving exon 26 (HD-N), 

exon 27 (HD-C) and exon 34 (PEST). Seventeen NOTCH1 mutations were identified 

in 16 out of 30 T-ALL samples (53%; Table 2). The majority of mutations were 

located in exon 26. Only 1 patient had a mutated exon 27 and 4 patients showed 

a mutation in exon 34. Ten out of 17 mutations were novel mutations, whereas 7 

were identical to mutations previously described23,33. Leucine to proline conversions 

were observed most frequently (5/17 mutations (29%)) at residues 1586, 1594, 1601 

and 1679. Deletion of (GTG) at residue 1579 was observed in 2 patient samples. 

One patient showed two NOTCH1 mutations, both in the HD-N and PEST domains 

ID Sex Age* WBC
(x 109 / l)

Relapse
CCR, (#months)

Karyotype

2722 M 11.3 192 CCR, 87+ 46,XY,t(1;7)(p31;q32)[13]/46,XY[12]

2723 F 6.4 98 Relapse, 6 45,XX,dic(7;8)(p12;p12)[7]

2735 F 4.7 212 Relapse, 7 46,XX[32]

2736 M 10.1 13 Relapse, 15 46,XY,t(2;9)(q21;q34),?t(8,8)(?q22;q?24)[18]

2737 M 11.2 53 Relapse, 36 46,XY,t(10;14)(q24;q11)[24]

2738 F 12.3 34 CCR, 11+ 46,XX,del(9)(p2?1)[9]/46,XX,add(9)(p12)[6]

2748 M 1.3 177 Relapse, 7 46,XY[31]

2759 M 3.3 590 CCR, 56+ 46,XY[30]

2773 M 5.3 31 CCR, 41+ 46,XY[32]

2792 M 7.5 56 CCR, 62 47,XY,+del(9)(p1?1)[11]

2846 M 2.3 124 CCR, 51+ 46,XY[20]

2852 M 13.8 128 Relapse, 10 46,XY,t(8;14)(q24;q11)[14]

2854 M 6.4 188 CCR, 54+ 46,XY[30]

3244_D M 3.7 13,9 Relapse, 16 47,XY,+X[7]/47,idem,del(6)(q21)[35]

3244_R M 4,3 47,XY,+X,del(6)(q21)[13]

3246_D M 12.2 292 Relapse, 72 46,XY[10]/47,XY,+mar[10]

3246_R M 45 47,XY,+8,t(11;14)(p13;q11)[29] / 46,XY[3]

CCR, continue complete remission; WBC, white blood cell count; _D, diagnosis; _R, relapse; *, years at 
diagnosis

Table 1 continued
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(patient 2738). Unfortunately, lack of patient material hampered confirmation 

whether both mutations occurred in cis. Since only 5 out of 10 T-ALL samples with 

evidence for the 9q34 duplication, carried mutations in the NOTCH1 gene (Table 2), 

no significant correlation between NOTCH1 mutations and the presence of a 9q34 

duplicated subclone could be proven. Patients with or without a NOTCH1 mutation 

had comparable relapse rates (44% vs. 53%, respectively).

Quantitative real-time PCR was used to measure the mRNA expression levels of 

NOTCH1 in pediatric T-ALL samples (Table 2). No evidence for altered NOTCH1 

expression levels in 9q34 duplicated patient samples were obtained (Table 2). Based 

upon raw fluorescent intensities from micro-array data, we then tested whether 

other genes located in the 9q34 region were deregulated as consequence of the 

9q34 duplication. For 21 pediatric T-ALLs, including 7 patients with a subclonal 

Figure 9.3 Episomal NUP214-ABL1 amplification and 9q34 duplication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Episomal NUP214-ABL1 amplification and 9q34 duplication.

(a) Chromosome ideogram and corresponding array-CGH plot of chromosome 9, as described in the 

legend of figure 1, for patient 1179 at relapse. The 9q34 duplication remains subclonal at relapse. 

The del(9)(p12q33) (12P15 to 451E16) is only detected in the relapse material. Interphase dual-color 

FISH analysis on (b) diagnostic material and (c) relapse material using the LSI BCR-ABL ES probes 

showing episomal ABL1 amplification at diagnosis and relapse, respectively.
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9q34 duplication, the expression levels for 78 probesets reflecting 53 genes located 

in the 9q33-34 region were calculated relative to the median GAPDH expression 

level. Three genes were identified, all located in the common region of duplication, 

that significantly expressed higher levels (less than 2-fold) in patients with a 9q34-

duplication, i.e. MRPL41 (Mann-Whitney; p=0.004), SSNA1 (Mann-Whitney; p=0.009) 

and PHPT1 (Mann-Whitney; p=0.01).

DiscussioN

Pediatric T-ALL is characterized by a high diversity of chromosomal abnormalities 

involving helix-loop-helix proteins, HOX-genes or other genes involved in various 

cellular processes. Most of these abnormalities seem to affect the complete leukemic 

cell population. However, new abnormalities like the NUP214-ABL1 episomal am-

plification, affect only a minor leukemic subpopulation probably as consequence of 

clonal evolution.

In the present study, 36 pediatric T-ALL samples were screened by array-CGH 

analysis. The most frequently abnormality detected was a 9q34 duplication, present 

in a subpopulation of the leukemic cells in 33% of our patients. A recent polymor-

phism study29 used the same array-CGH slides as our study, and hybridized against 

the same reference DNA. In that study, the 9q34 duplication was never observed 

in over 200 healthy individuals (Personal communication, Dr. Charles Lee, Dr, John 

Iafrate), excluding the fact that this 9q34 duplication could be constitutional.

The high incidence makes this chromosomal aberration one of the most frequent 

cytogenetic abnormalities in pediatric T-ALL. The critical genomic region covers 

several genes previously linked to leukemogenesis, i.e. NOTCH1, VAV2 and TRAF2. 

As a consequence of the duplication, some or all of these genes are potentially 

subject to deregulation of gene expression.

The NOTCH1 gene has previously been implicated with human T-ALL, due to its 

involvement in a rare translocation coupling NOTCH1 to the TCR-β locus24. Recently 

a broader role for NOTCH1 was suggested as 50 percent of T-ALL cases carry an 

activating mutation in any of the three hot-spots23. This is confirmed in our inde-

pendent cohort of T-ALL patients of whom 53% had NOTCH1 mutations. Ten of the 

observed mutations were not previously described23,33. Two NOTCH1 mutations (in 

exon 26 and exon 34) were simultaneously present in one patient (2738). This is of 

particular interest because mutations in cis may lead to an enhanced NOTCH1 activity 

20- to 40-fold23. Patients, harboring NOTCH1 mutations, were randomly distributed 

throughout our pediatric T-ALL cohort, showing no specific relationship with the 
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other abnormalities at the 9q34 region. No enhanced expression level of NOTCH1 

could be measured by real-time PCR in the 9q34 duplicated cases.

In our cohort, the presence of a leukemic subclone containing the 9q34 duplica-

tion did not seem to affect clinical outcome. On the other hand, of the 6 patients that 

carried this 9q34 duplication and had relapsed, 4 patients showed the presence of 

leukemic cells at relapse that retained this duplication. This suggests that this leuke-

mic subclone present at diagnosis, had actually survived intensive chemotherapeutic 

treatment, and may be associated with resistance to chemotherapeutic agents. Since 

leukemic cells with the 9q34 duplication reflected a leukemic subclone at relapse in 

all 4 patients analyzed, it obviously does not provide a survival and/or proliferation 

advantage, or only provides a limited survival advantage but the subclone was just 

being overgrown by another subclone with a stronger survival/proliferation advan-

tage as may be the case for patient 1179.

We also investigated a possible relationship with the newly identified NUP214-

ABL1 episomal amplification and our 9q34 duplication. In two patients with the 

9q34 duplication who relapsed, evidence was found for the presence of an episomal 

NUP214-ABL1 amplification at diagnosis in a low percentage of leukemic cells as 

well. In patient 1179, the leukemic subclone having the episomal ABL1 amplification 

had increased its representation in the total leukemic cell population from 5% to 

~80%, implying that the episomal NUP214-ABL1 amplification may indeed be a poor 

prognostic marker as previously suggested21.

Molecular cytogenetic analysis of material from patient 1179 demonstrates the 

presence of a HOX11L2 translocation, t(5;14)(q35;q32), as well as deletions involv-

ing chromosome 11 (del(11)(q14.1q22.3)) and 9 (add(9)(p21) next to an add(9)

(q11); Table 1). In this patient, HOX11L2, del(11)(q14.1q22.3) and loss of p15INK4B 

and p16INK4A, presumably represent early genetic events during leukemogenesis, 

as they are present in the leukemic cells at diagnosis as well as at relapse (Table 3). 

This ancestral leukemic clone initially represented about 60% of the total leukemic 

population, from which two independent subclones evolved bearing additional ge-

netic aberrations, one having an episomal NUP214-ABL1 amplification (5%) and the 

other having a 9q34 duplication (35%). Following treatment, both of these subclones 

survived, with the NUP214-ABL1 bearing clone having increased representation in 

the total leukemic cell population at relapse. The genetic abnormalities, as detected 

for patient 1179, suggests that T-ALL is a genetically unstable disease that readily 

forms complex subclones as a consequence of clonal evolution.

The subclonal 9q34 duplication seems not associated with mutations in NOTCH1, 

elevated NOTCH1 expression or episomal NUP214-ABL1 amplification. Analysis of 

microarray data for expressed genes located in the 9q33-34 region revealed signifi-

cant overexpression of MRLP41, SSNA1 and PHPT1 in 9q34 duplicated T-ALL cases. 
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All three genes are situated in the common region of amplification. SSNA1 encodes 

a nuclear autoantigen which is detected in patients with the Sjogren’s syndrome, a 

chronic autoimmune disorder34. PHPT1 encodes a phosphohistidine phosphatase, 

whereas MRLP41 is translated into a mitochondrial ribosomal protein. None of these 

genes have been implicated in leukemogenesis before. Since the 9q34 duplication 

represent a minor leukemic clone, it is technical almost impossible to prove activa-

tion of specific genes located in the common duplicated region. It is therefore at 

present unclear whether these 3 genes are specifically activated or that also other 

genes in this region like VAV2 or TRAF2 are activated as well.

In conclusion, we report the identification of a novel recurrent 9q34 duplication 

in 33 percent of pediatric T-ALL The exact size of the amplified region differed 

slightly among patients, but the critical region encloses VAV2, TRAF2 and NOTCH1. 

This duplication appears to be an independent genetic event from both the episomal 

NUP214-ABL1 amplification21 and the NOTCH1 mutations23, but leads to the activa-

tion of at least MRLP41, SSNA1 and PHPT1. The 9q34 duplicated leukemic subclone 

was still present at relapse in four patients analyzed, indicating that the 9q34 may 

provide cellular resistance towards chemotherapy.
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to tHe eDitor

Activating mutations in the FMS-like tyrosine kinase 3 gene (FLT3) including internal 

tandem duplications (ITD) in the juxtamembrane (JM) domain or point mutations 

(PM) in the activation loop are the most common genetic aberration in acute myeloid 

leukemia (AML).1 Recently, Paietta et al investigated the presence of FLT3 mutations 

in 69 adult T-ALL patients.2 Three positive cases (2 ITDs and 1 PM) were identi-

fied sharing a similar early pro-thymocytic T-cell developmental state exclusively 

expressing cKIT/CD117, and a trial to test the efficacy of FLT3 inhibitors for this 

T-ALL subset was suggested.

To validate the incidence of FLT3 mutations and to investigate a relation to out-

come and other parameters, we screened 72 diagnostic pediatric T-ALL samples for 

FLT3 mutations, as previously described.3,4 We identified FLT3/ITD mutations in 2 

pediatric T-ALL (Figure 1a), whereas no point mutations in the kinase domain were 

detected. Sequence analysis confirmed a 51 base pair insertion in patient 2112 and a 

57 base pair insertion in patient 1179 (Figure 1b). Moreover, no wild-type FLT3 was 

identified in patient 2112, suggesting loss of the wild-type allele.1

Immunophenotypic analyses revealed a similar profile for both FLT3 mutated 

patient samples, i.e. TdT+, CD2+, CD5+, CD7+, CD4+/CD8-, cytoplasmic CD3+, surface 

CD3- and CD10-. CD34 expression was detected in 24% and 21% of the leukemic 

blasts in patient 2112 and 1179, respectively. Only patient 2112 weakly expressed 

CD13 (24%) but not CD33. Although representing early T-cell differentiation stages 

for both patient samples, the maturation stage seems more advanced compared 

to the FLT3 mutated adult T-ALL cases (CD34+, CD4-/CD8-).2 Since no additional 

patient material was left for flowcytometry, cKIT/CD117 expression was determined 

by RQ-PCR on isolated blasts5 (>90% leukemic cells) from all pediatric T-ALL samples 

(figure 1d). Whereas only the 3 FLT3-mutated adult T-ALL patients highly expressed 

cKIT2, most pediatric T-ALL samples expressed cKIT mRNA to some extend. Patient 

2112 highly expressed cKIT, whereas patient 1179 showed a weak cKIT expression 

that was about 26 fold lower. Since various non-FLT3 mutated T-ALL samples highly 

expressed cKIT/CD117 at levels comparable to patient 2112, we conclude that cKIT/

CD117 expression is not exclusively associated with FLT3 mutations. Nevertheless, 

transcript levels do not necessarily correlate with protein expression levels2. In line 

with previous observations2, leukemic blasts of FLT3 mutated samples highly ex-

pressed LYL1 and LMO2. Both pediatric samples carried a HOX11L2 translocation in 

contrast to the FLT3 mutated adult T-ALL cases 2.

Patient 1179 relapsed 13 months after initial diagnosis, whereas patient 2112 is 

in continued complete remission (CCR, 61+). Interestingly, patient 1179 showed no 

FLT3/ITD mutation at relapse (Figure 1c), possibly due to loss of the mutated allele 
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Figure 10.1  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. Activating FLT3 mutations in pediatric T-ALL.

(a) Genomic PCR analysis for the FLT3 gene. PCR results for 6 pediatric T-ALL patient samples are 

shown. T-ALL patient 1179 shows a heterozygous FLT3/ITD mutation. No wild-type FLT3 is detected 

in T-ALL patient 2112, probably due to loss of heterozygosity of the wild-type allele. (b) Overview 

of the functional domains in the FLT3 tyrosine kinase receptor. Genomic position of the FLT3/ITD 

mutations detected in patients 1179 and 2112 are shown. Mutation position annotation is based 

on the FLT3 reference sequence NM_004119. (c) FLT3 mutation analysis of diagnosis and relapse 

material of T-ALL patient 1179. The FLT3/ITD mutation was present at diagnosis, but absent at 

relapse. (d) Relative cKIT/CD117 mRNA expression indicated as percentage of GAPDH expression 

for the investigated pediatric T-ALL cohort (FLT3 wt vs. FLT3 mut). For both groups the median FLT3 

mRNA expression is shown.

WT; wild-type; mut; mutated; dx; at diagnosis; R; at relapse; *, genomic position of the recently 

identified FLT3/ITD mutations in adult T-ALLs2.
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during therapy, or alternatively, the FLT3/ITD positive clone was eliminated during 

chemotherapy with a subsequent relapse from a non-FLT3-mutated parental clone.

In conclusion, we confirm the presence of FLT3 mutations in pediatric T-ALL 

(2/72, 2.7%). Although both immature, the immunophenotypes of the FLT3 mutated 

pediatric and adult2 T-ALL cases differed. In addition, a link between mRNA expres-

sion of cKIT/CD117 and FLT3 mutations could not be demonstrated. Since patient 

2112 is in CCR and relapse material of patient 1179 did not show evidence for 

FLT3 mutation, the FLT3 mutated T-ALL subclone seem to be effectively eradicated 

by current chemotherapy. This suggests that the application of FLT3 inhibitors for 

FLT3-mutated T-ALL, as suggested by Paietta2, may not further improve treatment 

outcome in pediatric T-ALL.
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Pediatric T-cell ALL is an aggressive malignancy of thymocytes that accounts for about 

15 percent of ALL cases and for which treatment outcome remains inferior compared 

to B-lineage acute leukemias. About 30 percent of childhood T-ALL patients relapse 

within 4 years after diagnosis and ultimately die1. Despite its complexity on the 

genetic level, genetic abnormalities are clinically not used for therapy stratifica-

tion. Further improvement of treatment in this high-risk disease will require the 

development of drugs that target specific pathways involved in the pathogenesis and 

maintenance of the malignant cells. Therefore, studies focusing on the molecular and 

genetic characterization of pediatric T-ALL are crucial to improve T-ALL treatment 

schedules and eventually switch towards treatment stratification based upon genetic 

T-ALL subtypes.

In T-ALL, leukemic transformation of maturating thymocytes is caused by a 

multistep pathogenesis involving numerous genetic abnormalities that drive normal 

T-cells into uncontrolled cell growth and clonal expansion2-5. A wide variety of 

genetic events affecting various cellular processes like the cell cycle, differentiation 

and survival have thus far been identified. In general, specific aberrations can be 

subdivided into type A and type B abnormalities. Type A abnormalities occur in a 

mutually exclusive manner and mainly function by facilitating differentiation arrest at 

specific stages of T-cell development. These type A mutations may delineate distinct 

molecular-cytogenetic T-ALL subgroups. Type B abnormalities are found in all major 

T-ALL subgroups and may synergize with type A mutations during T-cell pathogen-

esis. Various micro-array studies performed over the last years6,7 indeed confirmed 

that specific expression profiles for various T-ALL subgroups are characterized by 

the presence of the type A mutations. Since some of these type A mutations affect 

genes that function in similar cellular processes, a number of type A abnormalities 

share similar gene expression profiles and can be recognized as one single T-ALL 

subgroup. Currently, we distinguish 5 different genetic subgroups in T-ALL: TAL/

LMO, TLX1, TLX3, HOXA and MYB. The current knowledge on the genetics of T-ALL 

is extensively reviewed in chapter 2.

LMO2 is a well known oncogene in T-ALL due to its involvement in the transloca-

tions t(11;14)(p13;q11) and t(7;11)(q35;p13), in which the TCR-LMO2 fusion results 

in a constitutive activation of the LMO2 gene8. High LMO2 expression levels have 

also been reported in the absence of translocations, suggesting that alternative 

mechanisms may exist in T-ALL resulting in the activation of LMO2. In chapter 3, we 

identified such a new LMO2 activation mechanism, ie. the cryptic deletion, del(11)

(p12p13)9. A FISH-based screening revealed the presence of this deletion in 6 out 

of 138 pediatric T-ALL patients (4%). In most patients, this deletion resulted in the 

loss of a negative regulatory element located just upstream of the LMO2 oncogene. 

Loss of this domain results in the aberrant activation of an otherwise silent promoter 
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region that is present in intron 3 of the LMO2 gene. Since the protein coding domain 

of LMO2 starts in exon 4, this deletion results in aberrant activation of wildtype LMO2 

in most of the del(11)(p12p13) positive patients. LMO2 rearrangements, including this 

del(11)(p12p13), t(11;14)(p13;q11) and t(7;11)(q35;p13), were found in the absence 

of other recurrent cytogenetic abnormalities involving TLX3, TLX1, CALM-AF10, 

TAL1, MLL or MYC. This study showed that LMO2 abnormalities (translocations and 

cryptic deletions), which represented about 9% of pediatric T-ALL, are more frequent 

than appreciated up till now, and represent a distinct cytogenetic T-ALL subgroup.

Our initial screening for cryptic LMO2 deletions using FISH on 138 childhood T-

ALL cases may have been unsuccessful to detect relatively small deletions upstream 

of LMO2. For this reason, we developed a Multiplex Ligation Probe Amplification 

(MLPA) assay with multiple probes located in or just flanking the negative regulatory 

region to detect such smaller deletions upstream of LMO2. Using this approach, 

we identified one additional T-ALL case with an LMO2 deletion that had remained 

undetected in our previous FISH analysis (chapter 4). This deletion, del(11)(p13p13), 

was about 400 kb in size and included the genes CAPRIN1, NAT10 and ABTB2. 

Therefore, smaller deletions, del(11)(p13p13), compared to the del(11)(p12p13) 

deletions, as described in chapter 3, occur in pediatric T-ALL.

LMO2 is highly expressed in the most immature stages of normal T cell develop-

ment and is down regulated upon further T cell maturation in the thymus10,11. There-

fore, most immature T-ALL samples display high LMO2 expression levels, possibly 

reflecting their cell of origin rather than pointing to a genomic defect at the LMO2 

locus. Our combined FISH and MLPA analysis (chapter 3 and 4) provided us with 

an overview of all genomic LMO2 rearrangements (translocations and deletions) 

in pediatric T-ALL. Because bi-allelic LMO2 expression has been suggested as an 

alternative mechanism for oncogene activation in T-ALL10, we investigated if biallelic 

LMO2 expression could act as an oncogenic event in our pediatric T-ALL cohort. All 

LMO2 rearranged cases (translocations and deletions) had mono-allelic expression of 

LMO2. In addition, all patients who showed high LMO2 gene levels (comparable to 

LMO2 rearranged cases) in combination with biallelic LMO2 expression had an im-

mature phenotype and were frequently characterized by other type A abnormalities, 

including an MLL-AF6 or a CALM-AF10 translocation. These data support our hy-

pothesis that biallelic activation of LMO2 in immature T-ALL cases reflects their early 

T-cell development stage rather than representing a true oncogenic mechanism.

Our gene expression profiling study in T-ALL (chapter 5) showed that del(11)

(p12p13) positive and LMO2 translocated T-ALL patients have highly similar gene 

expression signatures, indicating that LMO2 rearranged T-ALL patients trigger com-

mon oncogenic mechanisms. In addition, these LMO2 rearranged T-ALL patients 

were part of a larger cluster of T-ALL cases with a uniform expression profile which 
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also included samples with TAL1, TAL2 and LMO1 rearrangements. This is likely 

due to the fact that these genes encode for proteins that normally participate in the 

same transcriptional complex11,12. Therefore, TAL- or LMO-like abnormalities seem 

to trigger a common pathogenic mechanism in T-ALL. In total, this TAL/LMO cluster 

of patients included about half of all pediatric T-ALL samples. Future identification 

of a common target within this TAL/LMO gene expression signature could open the 

way towards targeted therapy within this specific T-ALL subtype comprising a large 

proportion (∼50%) of pediatric T-ALL patients.

Another genetic subgroup consists of T-ALL patients who share an expression 

profile characterized by the activation of the HOXA cluster of genes. This subgroup 

consists of CALM-AF10 translocations, MLL-rearrangements or inversions of chromo-

some 7, i.e. the inv(7)(p15q35)7. A previous microarray study7 identified patients with 

such a HOXA expression signature that lacked all genetic lesions mentioned above, 

indicating that alternative HOXA activation mechanisms exist in T-ALL. A potential 

strategy to identify such novel HOXA activation mechanisms is the combined analyses 

of gene expression profiling, in which patients lacking known genetic abnormalities, 

cluster together with genetically characterized samples, and genomic profiling by 

array-CGH (chapter 5). Using such an approach, we identified an identical interstitial 

deletion, del(9)(q34.11q34.13), in 3 out of 5 cases that clustered together with HOXA 

activated samples having CALM-AF10 translocations or an inv(7)(p15q34)13. This 

deletion gave rise to a SET-NUP214 fusion gene, identical to the SET-NUP214 fusion 

described 15 years ago for a single acute undifferentiated leukemia patient with a re-

ciprocal t(9;9)(q34;q34)14 and most recently for a single case of acute myeloid leuke-

mia15. The SET-NUP214 gene fusion was also identified in the T-ALL cell line LOUCY, 

providing an opportunity to functionally test the role of SET-NUP214. We discovered 

that SET-NUP214 binds in the promoter regions of specific HOXA genes, i.e. HOXA9 

and HOXA10. Here, it interacts with 2 proteins, CRM1 and DOT1L. The interaction 

with DOT1L, a histone H3 methyltransferase, supports a role for local epigenetic 

regulation of gene expression through the modification of the histone backbone. 

We demonstrated that the histones that interact with the promoter regions of various 

HOXA gene members were acetylated on histone H4, representing a local “open 

genomic state” of the HOXA gene cluster. Methylation and acetylation of histones 

on specific amino acid residues may open the chromosomal structure enabling the 

binding of transcription factors to the promoter regions of genes in that region. This 

way, recruitment of DOT1L by SET-NUP214 may enable activation of all HOXA gene 

members. Targeted inhibition of SET-NUP214 by siRNA in LOUCY cells abolished 

expression of HOXA genes further confirming the direct link between SET-NUP214 

and HOXA activation. In addition, SET-NUP214 knockdown induced differentiation 

in the T-ALL cell line LOUCY, whereas this effect could not be demonstrated in 
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SET-NUP214 negative T-ALL lines. From this study, we concluded that SET-NUP214 

contributes to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest 

through induction of HOXA gene expression. It is likely that other HOXA activating 

mechanisms await identification in T-ALL, since additional T-ALL cases with a HOXA 

gene signature lacked any of the HOXA related rearrangements mentioned above.

From a therapeutical point of view, the recruitment of DOT1L by SET-NUP214 is 

of particular interest since this methyltransferase has previously been implicated in 

HOXA activation by CALM-AF1016, MLL-ENL17 and MLL-AF1018 mediated leukemias. 

Since DOT1L seems to be the common factor in the leukemogenic HOXA activation 

for these different fusion genes, further research could focus on a potential role of 

DOT1L as a therapeutic target in the treatment of SET-NUP214, MLL-AF10, MLL-

ENL and CALM-AF10 mediated leukemias. The oncogenic potential of SET-NUP214 

could further be investigated by studying the proliferation kinetics of hematopoietic 

progenitor cells infected with a retrovirus encoding SET-NUP214, and compare these 

data with the oncogenic potential of other HOXA activating fusion genes including 

CALM-AF10 or MLL-ENL. In addition, the in vivo leukemogenic potential of SET-

NUP214 could be investigated by injection of these retrovirally infected murine pro-

genitor cells into recipient mice. Furthermore, the domains of SET-NUP214 that are 

specifically required for HOXA gene activation could be identified using SET-NUP214 

deletion/mutation constructs. For the identification of additional SET-NUP214 down-

stream targets (besides HOXA), gene expression profiles before and after siRNA 

mediated SET-NUP214 knockdown could be combined with a ChIP-on-ChIP analysis 

of SET-NUP214 in the cell line LOUCY.

The MYB gene encodes a nuclear transcription factor that is critically required 

during T-cell development. Until recently, overexpression of MYB had only been 

implicated in murine leukemogenesis. No recurrent rearrangements involving the 

MYB locus had thus far been reported in human leukemia. Using an array-CGH 

platform with an overall resolution of 1 Mb, and with additional probes cover-

ing candidate oncogenes, we identified copy number changes in the chromosomal 

region covering the MYB locus (6q23) in both T-ALL cell lines and primary patient 

samples19 (chapter 6, collaboration with Prof. J. Cools and Dr. I. Lahortiga, Leuven, 

Belgium). Approximately at the same time, others identified the translocation, t(6;7)

(q23;q34), as a novel recurrent abnormality in T-ALL resulting in the activation of 

MYB through rearrangement with the TCRβ locus20. The MYB duplication was as-

sociated with a 3-fold increase in MYB expression, and siRNA-mediated knockdown 

of MYB expression initiated T-cell differentiation in a T-ALL cell line model without 

affecting cell survival. These results identified the MYB duplication as an oncogenic 

event in T-ALL and suggest that MYB activation contributes to the pathogenesis of T-

ALL by enforcing T-cell differentiation arrest. Synergistic effects on cell proliferation 
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and survival were identified in T-ALL cell lines by combined inhibition of MYB and 

NOTCH1, suggesting that MYB could act as a novel target for therapy in T-ALL. For 

NOTCH1 mutated T-ALL cell lines that are resistant to γ-secretase inhibitors, com-

bined inhibition of MYB and the PI3K-AKT pathway could possibly lead to similar 

synergistic effects. To further explore the therapeutic potential of MYB inhibition, 

additional studies should focus on mechanisms that could interfere with the function 

of the MYB oncogene in T-ALL.

About 20% of pediatric T-ALL cases are characterized by TLX3 expression due to 

a cryptic translocation t(5;14)(q35;q32). Although a number of collaborating genetic 

events have been identified in TLX3 rearranged T-ALL patients (NOTCH1 mutations, 

CDKN2A/CDKN2B deletions, NUP214-ABL1 amplifications), further elucidation of 

additional genetic lesions could provide a better understanding of the pathogenesis 

of this specific T-ALL subtype. Therefore, we performed array-CGH analysis on a 

TLX3 rearranged T-ALL patient cohort and identified new genetic defects that may 

cooperate with TLX3 gene expression in the leukemic transformation of thymocytes 

(chapter 7). The recurrent genomic deletions included a del(1)(p36.31), del(5)(q35), 

del(13)(q14.3), del(16)(q22.1) and del(19)(p13.2). From these, the cryptic deletion 

del(5)(q35) was exclusively identified in about 25% of TLX3 rearranged T-ALL cases. 

Since these 5q35 deletions differed in size, a potential tumor suppressor gene could 

be present in the minimal deleted area at 5q35 specifically cooperating with TLX3 

expression in the leukemogenesis of T-ALL. A potential candidate gene in this 5q35 

genomic region is NSD1. Mutations or deletions of the NSD1 gene are the major 

cause of Sotos syndrome, a constitutional overgrowth disorder21, and patients with 

this syndrome have a higher risk for the development of leukemia22-24. Therefore, a 

future mutation screening of NSD1 in TLX3 rearranged T-ALL is mandatory to evaluate 

a potential role for NSD1 inactivation in T-ALL. Nevertheless, about 30 other genes 

are also present in the minimal deleted 5q35 region and further expression and/or 

mutational analysis will be required to identify other potential target genes in this 

chromosomal region. Some of the other recurrent deletions identified in this study 

were previously identified in other cancer malignancies and could point to interest-

ing genes with potential involvement in T-ALL pathogenesis. The CHD5 gene (1p36) 

has been shown to be a tumor suppressor that controls proliferation and apoptosis 

via the p19Arf/p53 pathway25 and similar 1p36.31 deletions have been identified in 

neuroblastoma, colorectal cancer and a variety of hematological malignancies26-28. 

Deletion of the miR-15/miR-16a cluster (13q14) could lead to the activation of anti-

apoptotic BCL2, and has been detected in CLL and B-ALL patients29,30. Inactivation 

of the CTCF gene (16q22.1), which is a conserved transcriptional repressor of the 

MYC oncogene31, could represent an alternative mechanism for MYC activation in 

T-ALL. Therefore, these data provide a rationale for a future mutational/FISH/protein 



C
h
ap

te
r 

11

206

screening study of CHD5, miR-15/miR-16a and CTCF in order to evaluate their 

potential role in T-ALL. A number of other genetic lesions were detected in single 

TLX3 rearranged T-ALL cases and could also point towards interesting candidate 

genes in T-ALL. In this respect, FBXW7 (4q31) and WT1 (11p13) were identified as 

potential tumor suppressor genes in T-ALL.

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused 

by mutations in the NF1 gene32. NF1 patients have a higher risk to develop juvenile 

myelomonocytic leukemia33 (JMML) and AML34. In NF patients, these malignancies 

are associated with loss of the wild-type allele, either through NF1 deletions or the 

acquisition of NF1 point mutations. Previously, it was shown that bi-allelic inac-

tivation of NF1 is also found as a somatic abnormality in JMML patients that lack 

clinical evidence of NF135. In our array-CGH based screening of pediatric T-ALL, 

we identified a recurrent cryptic deletion, del(17)(q11.2q11.2), in 3 T-ALL patients 

that did not have any clinical evidence of NF1 (chapter 8). This same deletion 

was previously described as a microdeletion of the NF1 region in congenital NF1 

patients32. Subsequent mutation analysis of these T-ALL cases revealed that mutations 

in the remaining NF1 allele were present, confirming the role of NF1 as a bona fide 

tumor-suppressor gene in cancer. In addition, NF1 inactivation was confirmed at 

the RNA expression level in the patients tested. Since the NF1 protein is a negative 

regulator of the RAS pathway32, NF1 inactivation could represent a new proliferative 

hit in the development of T-cell leukemia. Cooperative aberrations detected in these 

NF1-inactivated T-ALL samples included NOTCH1 mutations, a TLX3 translocation 

and CALM-AF10 translocation. Simultaneous array-CGH screening studies on other 

leukemia subtypes in our laboratory reported similar NF1 microdeletions in both B-

lineage ALL and MLL-rearranged AML patients, indicating that RAS activation through 

NF1 inactivation probably reflects a general oncogenic mechanism in both myeloid 

and lymphoid leukemias. These leukemia patients could potentially benefit from ad-

ditional treatment with RAS inhibitors like farnesylthiosalicylic acid36 or downstream 

inhibitors.

In T-ALL, a number of genetic defects are only detected in a limited percentage of 

leukemic cells, indicating that they probably reflect a progression marker, rather than 

an initiating leukemogenic event, in the development of T-cell leukemia. For example, 

we identified a new and recurrent 9q34 duplication in 33 percent of pediatric T-ALL 

samples37 (chapter 9). This duplication was identified in 17–39 percent of leukemic 

cells at diagnosis and cells carrying this duplication were still present at relapse. The 

minimal amplified region of these 9q34 duplications contained NOTCH1, the main 

mutational target in T-ALL38. Although no clear relationship between the presence of 

NOTCH1 mutations and this 9q34 abnormality could be determined, duplication of 
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this genomic region could induce subtle changes in NOTCH1 gene expression levels 

and contribute to global NOTCH1 activation in T-ALL.

FLT3 mutations are another example of a progression marker in T-ALL. Previously, 

FLT3 mutations were identified in adult T-ALL patients39. We identified FLT3/ITD 

mutations in 2/72 pediatric T-ALLs (2.7%), whereas 0/72 showed point mutations 

in the kinase domain40 (chapter 10). Immunophenotypic analysis revealed a similar 

profile for both pediatric FLT3 mutated patient samples, i.e. CD4+/CD8-. Although 

representing early T-cell differentiation stages for both patient samples, the immuno-

phenotype was more maturated than the FLT3 mutated adult T-ALL cases, previously 

described (CD34+, CD4-/CD8-)39. Both pediatric FLT3 mutated T-ALL patients showed 

high levels of LYL1 and LMO2 expression and contained a TLX3 translocation, which 

was not present in the FLT3 mutated adult T-ALL cases. The first FLT3 mutated 

patient had a relapse 13 months after initial diagnosis. Interestingly, the relapse 

material showed no FLT3/ITD mutation, indicating that the FLT3 mutated T-ALL 

subclone seems to be effectively eradicated by current chemotherapy. The other 

patient was still in continued complete remission 5 years after diagnosis and can 

be considered cured. We therefore conclude that the application of FLT3 inhibitors 

for FLT3 mutated T-ALL, as suggested by Paietta et al.39, may not further improve 

treatment outcome in pediatric T-ALL.

In conclusion, this thesis on molecular-cytogenetic insights in T-ALL confirms that 

T-cell leukemia is not a single disease entity, but rather reflects a genetically diverse 

malignancy. In addition, our work shows that genome wide copy number screening 

using array-CGH is a valuable tool for the identification of new chromosomal imbal-

ances in T-ALL and provides further insight in the pathogenesis of T-cell leukemia. 

One of the main shortcomings of our array-CGH analysis compared to copy number 

screening studies using SNP arrays, is that array-CGH is unable to detect uniparental 

disomy (chapter 1) as an alternative mechanism for gene (in)activation. For example, 

NF1 inactivation (chapter 8) could also result from duplication of the mutated NF1 

allele at the expense of the remaining wild-type allele. Therefore, it is possible that 

we are currently underestimating the incidence of such genetic defects in T-ALL. 

Our complete overview of new copy number changes in T-ALL (chapter 2) offers 

great new challenges for the identification of new target genes that may play a role 

in the pathogenesis of T-ALL. Even the genetic defects that only occurred at low 

frequency could reveal new and important genes with a broader role in T-ALL, as 

illustrated for FBXW7 and PTEN (chapter 2 and 7). Therefore, a large number of 

genetic abnormalities, as described in this thesis, are probably still hiding genes 

that could help us further understand the biology of this disease. Future analysis 

on the mutational status, epigenetics and protein level of all these genes of interest 

will probably guide us to new candidate genes involved in T-ALL pathogenesis. 
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Hopefully, these future research efforts will further improve our knowledge on the 

molecular genetic characteristics of this aggressive malignancy, and will eventually 

lead to better treatment results and/or target therapy that could partially replace or 

diminish the use of aggressive chemotherapeutics.
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De GeNetiscHe coDe VaN De meNs

Elke cel van het menselijk lichaam bevat een genetische code die de specifieke 

functie van elke lichaamscel bepaald. Deze genetische informatie is opgeslagen in 

het desoxyribonucleïnezuur van elke cel, kortweg het DNA. Het DNA is onderver-

deeld in genen die ieder zorgen voor de aanmaak van één specifiek eiwit. Complexe 

regulatie mechanismen zorgen er vervolgens voor dat vanuit dit DNA op het juiste 

ogenblik specifieke eiwitten worden aangemaakt die in een bepaalde fase van het 

cellulaire leven noodzakelijk zijn. Chemische eigenschappen zorgen ervoor dat het 

DNA als twee strengen in een dubbele helix structuur samengehouden wordt. Het 

DNA en de menselijke genen zijn op hun beurt opgeslagen in 23 chromosoomparen. 

Hiervan zijn er 22 genummerd, min of meer in volgorde van grootte, en bepaald het 

laatste chromosoompaar het geslacht (twee X-chromosomen bij de vrouw; een X- en 

een Y-chromosoom bij de man).

BLoeD

Het bloed kan beschouwd worden als een vloeibaar orgaan in het menselijk lichaam 

en is opgebouwd uit verschillende soorten bloedcellen (rode en witte bloedcellen, 

bloedplaatjes) die door een geelachtige vloeistof (het bloedplasma) doorheen het 

lichaam getransporteerd worden. Het bloed dankt zijn rode kleur aan de aanwezig-

heid van hemoglobine in de rode bloedcellen. De verschillende types bloedcellen 

hebben maar een beperkte levensduur en dienen daarom voortdurend opnieuw 

aangemaakt te worden. Vorming van nieuwe bloedcellen (hematopoëse) gebeurt in 

een sponsachtige, rode substantie (beenmerg) die zich bevindt in het binnenste van 

onze beenderen. In het beenmerg bevinden zich hematopoëtische stamcellen die de 

mogelijkheid in zich dragen om uit te groeien tot elk van de verschillende bloedcel-

len. Via complexe uitrijpingsprocessen zorgen deze hematopoëtische stamcellen voor 

de aanmaak van functionele rode bloedcellen (zuurstof transport), witte bloedcellen 

(afweer tegen ziekte) en bloedplaatjes (bloedstolling) en handhaven zodoende het 

gezonde evenwicht tussen de verschillende bloedcelsoorten. De witte bloedcellen 

worden nog verder onderverdeeld in lymfatische cellen (B- en T-lymfocyten) en 

niet-lymfatische (of myeloïde) cellen (monocyten en granulocyten).
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Leukemie

Leukemie of bloedkanker wordt gekenmerkt door het ongecontroleerd vermenig-

vuldigen van onrijpe witte bloedcellen. Deze niet-functionele witte bloedcellen 

(leukemiecellen) stapelen zich op in het beenmerg en verdringen de functionele 

bloedcellen uit het bloedbeeld. Wanneer de leukemiecellen vervolgens ook de 

aanmaak van nieuwe gezonde bloedcellen verhinderen, ontstaat er bloedarmoede 

(tekort aan gezonde rode bloedcellen), verhoogde kans op infecties (tekort aan 

gezonde witte bloedcellen) en bloedingen (tekort aan gezonde bloedplaatjes). 

Wanneer de leukemiecellen ten slotte infiltreren in de bloedsomloop kunnen ook 

andere organen, zoals milt, lever en nieren, aangetast worden. Zonder behandeling 

is leukemie een dodelijke ziekte.

Leukemieën worden op basis van het type witte bloedcel, dat in het beenmerg is 

beginnen woekeren, onderverdeeld in lymfatische en myeloïde leukemieën. Binnen 

de lymfatische leukemieën wordt nog een onderscheid gemaakt tussen B- en T-cel 

leukemie, en ook myeloïde leukemieën worden nog verder onderverdeeld afhanke-

lijk van de myeloïde cel van oorsprong. Tot slot worden zowel de lymfatische als de 

myeloïde leukemieën nog verder onderverdeeld in acute en chronische leukemieën. 

Acute leukemieën worden gekenmerkt door een snel en agressief ziekteverloop, 

terwijl chronische leukemieën een tragere ziekteontwikkeling vertonen.

Leukemie BiJ kiNDereN

Leukemie omvat ongeveer 30% van alle kanker diagnoses bij kinderen en is daar-

mee de meest voorkomende vorm van kanker en de belangrijkste doodsoorzaak 

bij kinderen. De meest voorkomende variant van leukemie bij kinderen is acute 

lymfatische leukemie (ALL), die wordt gediagnosticeerd in 80-85% van alle kinderen 

met leukemie. De prognose voor kinderen met ALL is gedurende de afgelopen 

decennia sterk verbeterd en de huidige behandelingsprotocollen, die vooral zijn 

opgebouwd uit combinaties van verschillende chemotherapeutica, zorgen voor een 

overlevingskans van ongeveer 80%. Hoewel de genezingskans voor kinderen met 

ALL met de huidige behandelingsprotocollen dus relatief gunstig is, treden er nog 

vaak complicaties op vanwege de neveneffecten van de chemotherapie. Ook wordt 

het langzaam duidelijk dat een chemotherapie behandeling op kinderleeftijd op 

lange termijn belangrijke implicaties kan hebben. Naast de zoektocht naar nieuwe 

behandelingsmogelijkheden voor patiënten die ziekteherval vertonen, moet het we-

tenschappelijk onderzoek zich dan ook toespitsen op de ontwikkeling van alterna-

tieven voor chemotherapie in de behandeling van ALL. In Nederland wordt jaarlijks 
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bij ongeveer 150 kinderen leukemie geconstateerd, van wie de meeste kinderen 

tussen drie en vijf jaar oud zijn.

t-ceL acute LYmFatiscHe Leukemie (t-aLL)

T-ALL bij kinderen komt voor in ongeveer 15% van ALL patiënten en ontstaat door 

ongeremde groei van een uitrijpende T-cel. Deze T-cellen ontwikkelen zich echter, 

in tegenstelling tot andere bloedcellen, niet in het beenmerg maar in de thymus 

(zwezerik). In dit orgaan, dat zich tussen het borstbeen en de luchtpijp bevindt, 

worden onrijpe T-cellen als het ware opgeleid om lichaamsvreemde stoffen (zoals 

virussen of bacteriën) te herkennen. Tijdens dit proces wordt een groot deel van 

de ontwikkelende T-cellen vernietigd, bijvoorbeeld vanwege reactiviteit tegen li-

chaamseigen stoffen. Een minderheid van cellen slaagt er echter toch in om zich 

te ontwikkelen tot een functionele T-cel die via een unieke T-cel receptor op zijn 

celoppervlak kan interageren met één specifiek lichaamsvreemd antigeen. Deze 

opgeleide T-cellen zullen vervolgens de thymus verlaten en een functie vervullen als 

afweercel in het lichaam.

Om te zorgen voor de enorme diversiteit aan T-cel receptoren die nodig is om de 

grote variatie aan lichaamsvreemde stoffen te kunnen herkennen, treden er tijdens 

de T-cel ontwikkeling herschikkingen op van de T-cel receptor genen. Deze genher-

schikkingen, die ervoor zorgen dat miljarden verschillende T-cellen kunnen gevormd 

worden, zijn echter erg gevoelig voor recombinatie fouten, waardoor T-cel receptor 

gemedieerde translocaties kunnen ontstaan. Het is dan ook niet verwonderlijk dat T-

cel receptor genen vaak betrokken zijn bij genetische afwijkingen die geïdentificeerd 

worden in de leukemische cellen van T-ALL patiënten. Deze translocaties zorgen 

ervoor dat bepaalde T-cel specifieke proto-oncogenen onder de regulatie komen van 

actieve DNA elementen van de T-cel receptor genen. T-cel receptor gemedieerde 

translocaties komen voor in ongeveer 35% van T-ALL patiënten.

Intensief wetenschappelijk onderzoek heeft gedurende de laatste jaren ook nog 

geleid tot de identificatie van een hele reeks nieuwe, niet-T-cel receptor geme-

dieerde, genetische afwijkingen in T-ALL, waaronder chromosomale translocaties, 

inversies, deleties, duplicaties, amplificaties en mutaties. Het NOTCH1 gen vormt het 

belangrijkste doelwit voor mutaties in T-ALL, dewelke voorkomen in meer dan 50% 

van de T-ALL patiënten.
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tYPe a eN tYPe B GeNetiscHe aFWiJkiNGeN iN t-aLL

In T-ALL zorgen verschillende genetische afwijkingen er samen voor dat een nor-

male T-cel zal transformeren tot een acute leukemie door ontspoorde celgroei en 

ongecontroleerde celdeling. In dit uit meerdere stappen bestaande proces werken 

genetische afwijkingen samen die ingrijpen op verschillende cellulaire processen 

zoals de celcyclus, T-cel differentiatie en celoverleving. Een ontwikkelde T-cel zal 

bijvoorbeeld een genetisch defect oplopen waardoor de onrijpe T-cel niet verder kan 

differentiëren. Dit arrest in de T-cel ontwikkeling maakt die specifieke cel vatbaar 

voor het oplopen van additionele gendefecten die uiteindelijk zullen zorgen voor 

de ontwikkeling van de leukemie. In Hoofdstuk 2 geven we een overzicht van de 

verschillende genetische afwijkingen en hun potentiële doelwit genen die op dit 

moment geassocieerd worden met de ontwikkeling van T-ALL. Verder maken we 

een onderscheid tussen twee klassen van genetische abnormaliteiten in T-ALL. Type 

A afwijkingen zijn mutueel exclusief en bepalen het onderscheid tussen verschil-

lende genetische T-ALL subgroepen. Andere genetische afwijkingen komen voor in 

alle genetische T-ALL subgroepen en worden type B afwijkingen genoemd. Op dit 

moment onderscheiden we 5 verschillende genetische subgroepen in T-ALL op basis 

van de genherschikkingen die in deze patiënten teruggevonden worden: TAL/LMO, 

TLX1, TLX3, HOXA en MYB.

aLterNatieVe LMO2 actiVatie iN t-aLL

LMO2 is een bekend oncogen in T-ALL omdat bepaalde T-ALL patiënten een T-cel 

receptor gemedieerde translocatie vertonen die zorgt voor constitutieve activatie van 

het LMO2 gen. Verhoogde expressie van het LMO2 gen, gelegen op chromosoom 11, 

is echter ook beschreven in afwezigheid van bovengenoemde translocatie, zodat er 

in T-ALL waarschijnlijk alternatieve LMO2 activatie mechanismen bestaan. In Hoofd-

stuk 3 beschrijven we een nieuwe deletie op chromosoom 11 die voorkomt in on-

geveer 4% van T-ALL patiënten. Het genetisch materiaal van chromosoom 11 dat in 

deze patiënten verloren is gegaan ligt vlakbij het LMO2 gen en zorgt er normaal voor 

dat de expressie van het LMO2 gen onderdrukt wordt. Door het verlies van dit kleine 

stukje chromosoom 11 wordt in deze T-ALL patiënten de LMO2 expressie echter 

continu geactiveerd. Deze cryptische chromosoom 11 deleties vormen dan ook een 

nieuw LMO2 activatie mechanisme in de ontwikkeling van T-ALL. In Hoofdstuk 4 

hebben we met een hogere resolutie gekeken of het mogelijk is dat er in T-ALL nog 

kleinere deleties optreden in de buurt van het LMO2 gen op chromosoom 11. Door 

deze analyses hebben we nog 1 additionele T-ALL patiënt geïdentificeerd bij wie de 
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chromosoom 11 deletie ongeveer 6 keer kleiner was dan de deleties die in hoofdstuk 

3 werden beschreven. Naast LMO2 translocaties vormen de LMO2 deleties, dewelke 

in grootte kunnen verschillen tussen patiënten, dus een nieuw mechanisme voor 

LMO2 genactivatie in T-ALL. Hoewel het LMO2 gen zowel door een translocatie als 

door een deletie geactiveerd kan worden, hoeft een verhoogde LMO2 expressie 

niet per definitie een oncogene rol te hebben in de ontwikkeling van T-ALL. LMO2 

komt immers tot hoge expressie gedurende de vroegste ontwikkelingsstadia van de 

normale T-cel ontwikkeling, waarna de expressie afneemt bij het verder uitrijpen van 

de T cellen in de thymus. Wanneer een T-cel leukemie zich ontwikkelt vanuit een 

heel onrijpe T-cel, reflecteert een verhoogde LMO2 expressie waarschijnlijk eerder 

de cel van oorsprong dan dat er daadwerkelijk een genetisch defect ten grondslag 

ligt aan de LMO2 gen activatie.

Gen expressieprofilering is een relatief recente technologie waarbij in één analyse 

de expressie van een groot aantal genen in kaart kan worden gebracht. Onze gen 

expressieprofileringstudie in T-ALL (Hoofdstuk 5) toont aan dat T-ALL patiënten 

met een LMO2 translocatie of een LMO2 deletie een zeer gelijkend patroon van 

gen expressie vertonen. LMO2 herschikte T-ALL patiënten blijken dus gemeen-

schappelijke oncogene signaalpaden te activeren. Bovendien vormen deze LMO2 

herschikte T-ALL patiënten een onderdeel van een nog grotere reeks patiënten met 

een gelijkaardig expressieprofiel die afwijkingen vertoonden aan het TAL1, TAL2 en 

LMO1 gen. Dit zou mogelijk verklaard kunnen worden door het feit dat deze genen 

normaal participeren in eenzelfde transcriptiecomplex en dus gelijklopende functies 

vervullen. Blijkbaar is er dus een belangrijke overlap tussen de leukemie ontwik-

keling in TAL- en LMO-gemedieerde T-ALL patiënten. De patiënten binnen dit TAL/

LMO gen expressiecluster vertegenwoordigen ongeveer de helft van alle kinderen 

met T-ALL. De identificatie van een gemeenschappelijk doelwit gen in dit TAL/LMO 

gen expressieprofiel zou daarom de weg kunnen effenen naar een doelgerichte 

therapie die geïmplementeerd zou kunnen worden in een groot gedeelte (∼50%) 

van kinderen met T-ALL.

Het SET-NUP214 FusieGeN iN t-aLL

In de genetica van leukemieën komen een hele reeks verschillende fusiegenen voor. 

Dit zijn “nieuwe” genen die specifiek in de leukemische cel van een patiënt voorko-

men en gecreëerd worden door een bepaalde genetische afwijking die ervoor zorgt 

dat 2 verschillende genen aan elkaar gekoppeld worden en een nieuw samengesteld 

gen vormen. Zulk fusiegen zorgt dan voor de aanmaak van een fusie eiwit dat 

bijdraagt tot de ontwikkeling van de leukemie.
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Een andere genetische subgroep in T-ALL bestaat uit patiënten die gekarakteri-

seerd worden door activatie van de HOXA genen. Deze activatie kan gebeuren via 

een chromosoom 7 inversie of translocatie waarin de HOXA genen direct betrokken 

zijn, alsook indirect via de fusiegenen MLL-ENL of CALM-AF10. In een voorgaande 

gen expressie studie werd echter aangetoond dat bepaalde T-ALL patiënten ook 

een geactiveerd HOXA gen expressieprofiel kunnen vertonen in afwezigheid van 

bovengenoemde genetische herschikkingen.

In Hoofdstuk 5 beschrijven we 5 T-ALL patiënten bij wie het op genetisch niveau 

onduidelijk is waarom ze een geactiveerde HOXA genexpressie vertonen. Verdere 

analyses tonen aan dat in de leukemische cellen van drie van deze patiënten een-

zelfde stuk genetisch materiaal op chromosoom 9 verloren is gegaan. Op de respec-

tievelijke uiteinden van het verdwenen stuk DNA liggen de genen SET en NUP214. 

Verdere moleculaire analyses tonen aan dat het SET en NUP214 gen door deze 

chromosoom 9 deletie aan elkaar gezet worden waardoor een nieuw SET-NUP214 

fusiegen ontstaat wat mogelijk bijdraagt tot de ontwikkeling van de T-cel leukemie. 

Wanneer het SET-NUP214 fusie eiwit geïnactiveerd wordt, neemt de expressie van 

de HOXA genen af, wat de link tussen de aanwezigheid van SET-NUP214 en HOXA 

genactivatie bevestigt. Verder bleek dat bij SET-NUP214 inactivatie de leukemiecel-

len langzaam opnieuw gingen uitrijpen. Het is dus aannemelijk dat SET-NUP214 

bijdraagt tot de pathogenese van T-ALL door ervoor te zorgen dat een ontwik-

kelende T-cel wordt gearresteerd in een bepaald stadium van zijn ontwikkeling. 

Ook in onze studie bleven er nog twee patiënten over voor wie het HOXA expressie 

signatuur niet verklaard kon worden. Er blijven dus nog alternatieve HOXA activatie 

mechanismen in T-ALL die nog dienen geïdentificeerd te worden.

mYB, eeN NieuW oNcoGeN iN t-aLL

Hoewel MYB een belangrijke rol speelt in het T-cel ontwikkelingsproces, was er tot 

dusver slechts in muismodellen een verband aangetoond tussen MYB overexpres-

sie en leukemie ontwikkeling. Vooralsnog waren er geen voorbeelden van MYB 

genherschikkingen in de leukemische cellen van T-ALL patiënten. In Hoofdstuk 6 

(samenwerking met Prof. J. Cools en Dr. I. Lahortiga, Leuven, België) tonen we echter 

aan dat zowel primaire T-ALL patiënten als T-ALL cellijnen vaak extra chromosoom 

6 materiaal vertonen corresponderend met de genetische regio waar het MYB gen 

gelegen is. Deze MYB duplicaties zijn geassocieerd met een verhoogde MYB expres-

sie. Ongeveer gelijktijdig werd in een andere studie aangetoond dat bepaalde T-ALL 

patiënten ook T-cel receptor gemedieerde translocaties vertonen waarbij het MYB 

gen verhoogd tot expressie wordt gebracht. Wanneer in een T-ALL cellijn model het 
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MYB gen wordt uitgeschakeld, gaan de leukemische cellen opnieuw differentiëren. 

Deze resultaten wijzen erop dat MYB duplicaties een nieuwe oncogene hit vormen 

in T-ALL en dat verhoogde MYB expressie bijdraagt tot de ontwikkeling van T-ALL 

door het initiëren van een T-cel differentiatie arrest.

GeNetiscHe DeFecteN iN TLX3 PositieVe t-aLL

Een volgende genetische T-ALL subgroep, die bestaat uit ongeveer 20% van kinderen 

met T-ALL, wordt gekarakteriseerd door de expressie van het TLX3 gen. Gedurende 

de normale T-cel ontwikkeling komt TLX3 niet tot expressie, maar in de leukemische 

cellen van deze patiënten zorgt een niet-T-cel receptor gemedieerde translocatie 

voor de activatie van dit oncogen. In Hoofdstuk 7 kijken we specifiek in deze 

T-ALL subgroep naar nieuwe deleties die mogelijk kunnen samenwerken met TLX3 

overexpressie in de ontwikkeling van T-cel leukemie. Op de chromosomen 1, 5, 13, 

16 en 19 blijken regio’s te liggen die in meerdere TLX3 positieve T-ALL patiënten 

verloren zijn gegaan. Daarnaast worden nog een hele reeks andere deleties geïden-

tificeerd die slechts in de leukemische cellen van één enkele patiënt teruggevonden 

werden. Omdat voor de recurrente afwijkingen de hoeveelheid DNA materiaal die 

per patiënt verloren is gegaan sterk verschilt, is het aannemelijk dat de minimaal 

gedeleteerde gebieden van deze chromosomale regio’s één of meerdere genen 

bevatten die als tumor supressor kunnen fungeren. Tumor supressor genen zorgen 

er in niet maligne cellen voor dat de tumorontwikkeling onderdrukt wordt. Wanneer 

de functie van deze genen echter verloren gaat, door mutatie en/of deletie, kan dit 

mogelijk bijdragen tot de ontwikkeling van een welbepaald kankertype. Sommige 

deleties die in deze studie opgepikt werden, zijn vroeger reeds geassocieerd met 

bepaalde kankertypes. Het CHD5 gen, dat gelegen is op chromosoom 1 in één van 

de recurrent gedeleteerde gebieden, is bijvoorbeeld voorheen reeds beschreven als 

tumor supressor gen in neuroblastoom en darm kanker. Analoog worden in dit 

hoofdstuk het CTCF gen (chromosom 16), het FBXW7 gen (chromosoom 4) en het 

WT1 gen (chromosoom 11) naar voren geschoven als potentiële tumor supressor 

genen in T-ALL.

NF1 iNactiVatie iN t-aLL

Neurofibromatose (NF1) is een erfelijke aandoening die vooral de huid en het ze-

nuwstelsel aantast. Deze ziekte wordt veroorzaakt door mutaties in het NF1 gen, 

gelegen op chromosoom 17. Bij NF1 patiënten is in alle cellen van het lichaam 
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1 kopie van het NF1 gen geïnactiveerd door mutatie. Afhankelijk van het celtype 

waarin ook de andere kopie van het NF1 gen geïnactiveerd wordt, zullen bepaalde 

NF1 geassocieerde symptomen optreden. Café-au-lait vlekken op de huid zijn bij-

voorbeeld een kenmerkend NF1 symptoom. In de huidcellen die deze specifieke 

vlekken veroorzaken zijn beide NF1 genen aangetast, terwijl de omliggende huidcel-

len slechts inactivatie van één NF1 gen vertonen. NF1 patiënten vertonen eveneens 

een verhoogde kans op het ontwikkelen van bepaalde types leukemie. Hierbij 

vertonen de leukemiecellen, analoog aan de huidcellen, verlies van het 2de NF1 gen 

door mutatie of deletie. Omdat het NF1 eiwit een negatieve regulator is van RAS, een 

bekend leukemogeen eiwit, zorgt het verlies van beide NF1 kopieën voor leukemie 

geassocieerde RAS activatie. In Hoofdstuk 8 tonen we aan dat in de leukemiecellen 

van bepaalde T-ALL patiënten, die geen specifieke klinische NF1 symptomen ver-

tonen, een verlies van de NF1 gen regio op chromosoom 17 kan optreden. Verdere 

genetische analyse toont inderdaad aan dat in de niet-leukemische bloedcellen van 

deze patiënten geen NF1 gen inactivatie voorkomt. Specifieke mutatie analyse van 

deze patiënten toont echter wel aan dat het overgebleven NF1 gen in de leukemische 

cellen daadwerkelijk geïnactiveerd is door een mutatie. Specifiek in de leukemische 

cellen is het NF1 gen dus compleet uitgeschakeld, wat, analoog als bij NF1 patiënten 

die secundair een leukemie ontwikkelen, uiteindelijk zal leiden tot een leukemie 

geassocieerde RAS activatie. Simultane analyses in andere types leukemie tonen 

echter aan dat dit fenomeen niet enkel voorkomt in T-ALL patiënten maar eerder een 

algemeen leukemogeen mechanisme is in zowel lymfoïde als myeloïde leukemieën. 

Een aanvullende behandeling met RAS inhibitoren kan in deze leukemie patiënten 

mogelijk leiden tot een verbeterde therapie.

ProGressie merkers iN t-aLL

In T-ALL worden bepaalde genetische defecten slechts teruggevonden in een be-

perkt percentage van de leukemische cellen. Waarschijnlijk treden deze genetische 

afwijkingen dan ook op als een progressie merker tijdens het ziekteverloop van de 

leukemie en hebben ze slechts een beperkte rol in de initiële ontwikkeling van de 

T-cel leukemie. In Hoofdstuk 9 identificeren we bijvoorbeeld een nieuwe duplicatie 

van een klein deel van chromosoom 9 die voorkomt in 33% van de kinderen met 

T-ALL. Deze duplicatie komt echter slechts voor in 17-39% van de leukemische 

cellen bij diagnose. Het NOTCH1 gen is gelegen in de minimaal geamplificeerde 

regio van dit genetisch defect, zodat deze duplicatie zou kunnen leiden tot subtiele 

verschillen in NOTCH1 expressie en zodoende bijdragen aan de algemene NOTCH1 

activatie in T-ALL.
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Mutaties in het FLT3 gen zijn een ander voorbeeld van een progressie merker 

in T-ALL die voordien reeds in volwassenen met T-ALL geïdentificeerd werd. In 

hoofdstuk 10 hebben we de frequentie van FLT3 mutaties bij kinderen met T-ALL 

nagekeken. In een cohort van 72 kinderen met T-ALL werden slechts 2 patiënten 

gevonden waarin de leukemische cellen een FLT3 mutatie vertoonden. Beide FLT3 

positieve patiënten werden gekarakteriseerd door een hoge LMO2 expressie, maar 

dit was mogelijk te wijten aan de erg onrijpe T-cellen waaruit deze leukemieën 

ontstonden. De eerste FLT3 gemuteerde patiënt vertoonde ziekte herval 13 maan-

den na initiële diagnose. Het leukemisch materiaal van deze patiënt ten tijde van 

herval vertoonde echter geen FLT3 mutatie meer. De FLT3 gemuteerde leukemische 

subpopulatie bleek dus efficiënt verwijderd te zijn door de chemotherapie behande-

ling. De tweede FLT3 gemuteerde patiënt vertoonde 5 jaar na initiële diagnose nog 

steeds geen herval en kan als genezen beschouwd worden. Op therapeutisch gebied 

kunnen we daarom concluderen dat het gebruik van specifieke FLT3 inhibitoren 

naar alle waarschijnlijkheid de overlevingskansen van kinderen met T-ALL niet zal 

verhogen.

coNcLusies eN PersPectieVeN

T-cel ALL is een agressieve maligniteit die voorkomt in ongeveer 15% van kinde-

ren met ALL en die in vergelijking met B-cel leukemieën een duidelijk slechtere 

prognose heeft. Ongeveer 30% van de kinderen met T-ALL vertonen herval van 

ziekte binnen 4 jaar na initiële diagnose, waarna de meeste overlijden. Ondanks de 

genetische complexiteit van deze ziekte, worden in de kliniek genetische afwijkin-

gen op dit moment niet gebruikt voor therapie stratificatie. Verder werd gedurende 

de laatste jaren slechts een beperkte vooruitgang geboekt met op chemotherapie 

gebaseerde behandelingen. Dit alles toont aan dat voor de verdere verbetering van 

de behandeling van dit ziektebeeld, nieuwe geneesmiddelen ontwikkeld zullen 

moeten worden die specifiek ingrijpen op de signaalwegen die betrokken zijn in de 

pathogenese van de leukemie. Daarom zijn studies die zich bezig houden met de 

genetische en moleculaire karakterisering van T-ALL van cruciaal belang om T-ALL 

behandelingsprotocollen verder te optimaliseren en uiteindelijk over te schakelen 

naar behandeling stratificatie gebaseerd op genetische T-ALL subtypes.

Dit proefschrift bevestigt dat T-ALL niet kan gezien worden als één uniform 

ziektebeeld, maar dat het eerder een verzamelnaam is van genetisch erg diverse 

aandoeningen die ontstaan uit eenzelfde type voorlopercel. Verder biedt het com-

pleet overzicht van nieuwe deleties en amplificaties in T-ALL (Hoofdstuk 2) nieuwe 

uitdagingen voor de identificatie van doelwit genen die mogelijk een rol kunnen 
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spelen in de ontwikkeling van T-ALL. Zelfs wanneer deze genetische defecten slechts 

in een beperkt aantal patiënten geïdentificeerd konden worden, leiden ze ons toch 

naar nieuwe en belangrijke genen die mogelijk een bredere rol vervullen in de 

T-cel leukemogenese, zoals aangetoond voor FBXW7 en PTEN (Hoofdstuk 2 en 7). 

Daarom is het erg waarschijnlijk dat een groot aantal van de genetische afwijkingen 

die in dit proefschrift beschreven worden nog belangrijke genen verbergen die ons 

verder kunnen helpen in het ontrafelen van de biologie van T-ALL. Verdere analyses 

naar de mutatiestatus en de eiwit expressie van deze mogelijke doelwit genen zijn 

dan ook van cruciaal belang om de rol van deze genen in de ontwikkeling van T-ALL 

verder te karakteriseren. Hopelijk zullen deze toekomstige onderzoeksinitiatieven 

onze kennis van de moleculair genetische karakteristieken van deze agressieve 

ziekte verder verbeteren, wat uiteindelijk zal leiden tot een verbeterde prognose 

en/of nieuwe doelwit gerichte therapieën die gedeeltelijk het gebruik van agressieve 

chemotherapie zouden kunnen vervangen of verminderen.
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Juni 2003. Vanop een zolderkamer in de Maria-theresia straat te Leuven surf ik naar 

de website van de afdeling kinderoncologie/hematologie van het Erasmus Medisch 

Centrum in Rotterdam. Een zekere Dr. Jules Meijerink zoekt een promovendus voor 
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vreemde beslissing heeft doen nemen, ben ik eeuwig dankbaar, want het zijn 4 FAN-

TASTISCHE jaren geworden. Iedereen die, in wel opzicht dan ook, heeft bijgedragen 

tot deze leuke tijd, zou ik graag van harte willen bedanken.

Wanneer je besluit om te gaan promoveren zijn er een aantal mensen die zich 

engageren om je hierbij te helpen, begeleiden en, zowel in goede als in slechte 
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Nochtanes was het even schrikken toen op mijn eerste werkdag (1 september 

2003) een promovendus uit de T-ALL onderzoeksgroep van Dr. Meijerink doodleuk 

kwam vertellen dat ze per direct stopte met haar baan. “Oeioei”, bedacht ik, “als dat 

maar goed komt met die Meijerink”. En of het goed kwam…
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ben. Al snel wist je me te besmetten met jou passie en enthousiasme voor het project 

waar ik de komende 4 jaar aan moest gaan werken. Ook al hadden we een wekelijks 

overlegmoment op maandag, we liepen continue ideeën uit te wisselen waardoor 

we vaak tijdens de lunch een “zijn jullie nu weeral over het werk (T-ALL) bezig” om 

de oren kregen van één van de collega’s. Net iets te vaak zag ik interessante pistes 

opduiken in het project waardoor ik enkele tientallen deelprojectjes wel “snel even 

zou gaan afwerken”. Gelukkig had jij de gave om het groter geheel niet uit het oog 

te verliezen en enige focus te leggen in dit kluwen van onderzoeksideeën. Ook al 

hield je er een intensieve vorm van begeleiding op na, het zegt genoeg dat onze 

enige ruzie in de afgelopen jaren een lachwekkende discussie betrof over enkele 

uitroeptekens in een gecorrigereerde versie van een manuscript... Met de glimlach 
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Figure 2.4  

Figure 4. Genome-wide copy number analysis of 107 pediatric T-ALL patients in relation to 

T-ALL subgroups.

Overview of array-CGH data on 107 genetically well-characterized T-ALL patients including TAL1 

(n=11), LMO2 (n=8), LMO1/TAL2 (n=3), MYC (n=2), TLX3 (n=21), TLX1 (n=8), CALM-AF10 (n=5), 

SET-NUP214 (n=3), MLL (n=2), inv(7) (n=1) and unknown (=43) cases. Deletions are visualized in 

red, whereas amplifications are shown in blue.
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CHAPTER 3 
 
FIGURES 
 
Figure 3.1 New recurrent deletion, del(11)(p12p13), in pediatric T-ALL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. New recurrent deletion, del(11)(p12p13), in pediatric T-ALL.

(a) Chromosome 11 ideogram and corresponding BAC array-CGH plot of test DNA:control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patients 1950 (left 

panel) and 2720 (right panel). (b) Overview of BAC array-CGH results for the 11p12-11p13 region 

for the 4 DCOG and the 2 COALL T-ALL patients with del(11)(p12p13). The BAC clones present on 

the DNA array and located on chromosome bands 11p12-11p13 are shown. Specific genes located 

in this region are indicated. Depicted genome positions are based on the UCSC Genome Browser at 

http://genome.ucsc.edu/.
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Figure 2. Molecular characterization of deletion, del(11)(p12p13), in 6 pediatric T-ALL 
patients.

Chromosome 11 ideogram and corresponding oligo array-CGH plot of test DNA:control DNA ratios 

(blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patient 1950 (a) and patient 

2104 (d). Hybridization signals in the absence of amplifications or deletions scatter around the 

“zero”line, indicating equal hybridization for patient and reference DNA. Hybridization signals around 

the –2X or +2X lines represent loss of the corresponding region in the patient DNA. Detailed analysis 

of the telomeric breakpoints in patients 1950 (b) and 2104 (e) and the centromeric breakpoints in 

patients 1950 (c) and 2104 (f) of the deletion, del(11)(p12p13). (g) Overview of oligo array-CGH 

results in the potential breakpoint regions for 4 DCOG and the 2 COALL T-ALL patients with del(11)

(p12p13). The 60-mer oligos present on the DNA array and located in the telomeric and centromeric 

breakpoint regions, as well as the specific genes located in this region with their transcription 

direction, are shown. Abbreviations: N; normal, L; loss, U; non-informative.
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Figure 3.3 FISH analysis confirms the presence of del(11)(p12p13) in T-ALL patient 1950. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. FISH analysis confirms the presence of del(11)(p12p13) in T-ALL patient 1950.

(a) Chromosome ideogram and overview of the genomic position of the BAC clones used for FISH 

analysis, located in the telomeric and centromeric breakpoint regions. (b) Dual-color FISH analysis 

on metaphase spreads of patient 1950 using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-

98C11 (Red). The wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on 

the mutated allele the red signal is lost and both green signals fuse. The extrachromosomal red signal 

represents background. (c) Dual-color FISH analysis on metaphase spreads of the same patient using 

RP11-465C16 (Green) and RP11-603J2 (Red). The intensity of the red signal is lower compared to the 

wild-type allele of chromosome 11, suggesting that only part of RP11-603J2 is deleted. (d) Dual-color 

FISH analysis on metaphase spreads using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-

36H11 (Red). The wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on 

the mutated allele the red signal is lost and both green signals fuse. (e) Dual-color FISH analysis on 

metaphase spreads using RP11-465C16 (Green), RP11-646J21 (Green) and RP11-769M16 (Red). The 

wild-type allele of chromosome 11 shows 2 green and 1 red signal, whereas on the mutated allele 

the red signal is lost and both green signals fuse.
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Figure 2. A novel cryptic deletion, del(11)(p13p13), targeting LMO2 in T-ALL.

(a) Detailed overview of the centromeric and telomeric breakpoints of the del(11)(p13p13) deletion 

based upon oligo array-CGH micro-array results (44K oligo array, Agilent) for T-ALL case #2845. 

Patient DNA versus control DNA ratios are indicated in Blue whereas the reciprocal experiment is 

shown in red. Hybridization signals around the –2X or +2X lines represent loss of the corresponding 

region in the patient DNA. (b) FISH analysis using a BAC clone situated just upstream (RP11-98C11, 

Red) and downstream (RP11-646J21, Green) of LMO2 confirming loss of a genomic region upstream 

of LMO2 in case 2845. (c) Overview of the deletion areas for del(11)(p12p13) positive cases as 

previously described3 as well as the del(11)(p13p13) of case #2845 characterized by the activation of 

the LMO2 gene. RP11-98C11 is situated just upstream of LMO2, whereas RP11-646J21 is positioned 

telomeric of LMO2.
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CHAPTER 5 
 
Figure 5.1 

Figure 1. Gene expression profiles of 92 T-ALL patients.

(a) Differentially expressed genes among the major molecular cytogenetic T-ALL subgroups (TAL1, 

LMO2, HOXA, TLX1, and TLX3, n=67). The significance level (Wilcoxon p-value) and FDR corrected 

p-value for the top100 gene in each T-ALL subgroup is indicated. TAL1, TLX1 and TLX3 subgroups 

show significant differentially expressed probesets. (b) Cluster analysis of 92 T-ALL patients (67 

known, 25 unknown) based upon the top25 most significant probesets for the TAL1, TAL1/LMO2, 

TLX1 and TLX3 subgroups combined with 15 HOXA probesets as previously described8. (c) Principal 

component analyses shows clustering of the unknown T-ALL cases along the molecular cytogenetic 

known cases: 1 TLX3-like, 19 TAL1/LMO2-like and 5 HOXA-like patients.
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Figure 5.2  

  

Figure 2. Submicroscopic del(9)(q34.11q34.13) in T-ALL.

(a) Chromosome 9 ideogram and corresponding oligo array-CGH plots of test DNA:control DNA 

ratios (blue tracing) versus the dye-swap experiment (red tracing) for patient #126. Detailed analyses 

of the centromeric and telomeric breakpoints show involvement of SET and NUP214. (b) Similar 

array-CGH plot for patient #120. Centromeric and telomeric breakpoints show involvement of SET 

and ABL1. (c) Overview of oligo array-CGH results in the potential breakpoint regions for 3 T-ALL 

patients with del(9)(q34.11q34.13). The 60-mer oligonucleotide probes present on the array-CGH 

slide and located in the telomeric and centromeric breakpoint regions, as well as the specific genes 

located in this region with their transcription direction, are shown. Dual-color FISH analysis of 

patient #125 (d) and #120 (e) using the LSI BCR-ABL ES translocation probe.
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Figure 5.3  

Figure 3. SET-NUP214 fusion transcript in T-ALL.

(a) RT-PCR analysis using SET and NUP214 specific primers and GAPDH primers as internal control, 

reveals a specific SET-NUP214 fusion gene in T-ALL patients #125, #126, #120, the AUL patient and 

the T-ALL cell line LOUCY. NUP214-ABL1 fusion was detected in patients #120, #88 and in the T-ALL 

cell line PEER (b) Sequence analysis confirmed an identical fusion between exon 7 of SET and exon 

18 of NUP214 in all SET-NUP214 positive T-ALL patients, the AUL case and the LOUCY cell line, (c) 

Western blot analysis of T-ALL cell lines revealed a SET-NUP214 fusion in the cell line LOUCY. (d) 

At the protein level, the breakpoints are situated in the acidic tail of SET and the coiled-coil domain 

of NUP214.
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Figure 5.4  

Figure 4. HOXA activation in SET-NUP214 positive T-ALL.

(a) Relative HOXA9 expression levels by RQ-PCR for MLL rearranged, CALM-AF10 positive, inv(7)

(p15q34), TAL1, LMO2, TLX3 or TLX1 rearranged patients and T-ALL cell lines including LOUCY, 

MOLT13, SKW3, HPB-ALL, HSB2 and PEER. (b) Comparison of HOXA9 expression levels between 

the HOXA T-ALL subgroup (MLL, CALM-AF10, inv(7)(p15q34), SET-NUP214, n=10) and other T-ALL 

subgroups (TAL1, LMO2, TLX3 or TLX1). (c) Relative expression levels of HOXA genes by RQ-PCR 

for the 3 SET-NUP214 positive T-ALL patients, the LOUCY cell line, the AUL patient and SKW3. (d) 

Heatmap of the 20 significant and differentially expressed probesets with a FDR rate lower than 5% 

for the HOXA cluster compared to the other T-ALL cases.



C
o
lo

r 
fi
gu

re
s 

250

cHaPer 7

CHAPTER 7 
 
 

Figure 7.1  

 

Figure 1. The recurrent cryptic deletion, del(5)(q35), in TLX3 rearranged pediatric T-ALL.
(a) Chromosome 5 ideogram and corresponding oligo array-CGH plot of case DNA:control DNA 
ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL cases 2112. Hybridization 
signals around the –2X or +2X lines represent loss of the corresponding region in the case DNA. (b) 
Detailed analysis of the centromeric breakpoint of the deletion in case 2112. (c) Dual-color FISH 
analysis on interphase cells of case 9858 (left panel) and case 2640 (right panel) using the TLX3-U 
(Red) and TLX3-D (Green) translocation probe set. Case 9858 showed a split signal, indicative for 
a TLX3 translocation, whereas case 2640 showed loss of the TLX3-D (Green) signal. (d) Similar 
chromosome 5 ideograms as in (a) for T-ALL cases 9012 and 222. (e) Schematic overview of the 
minimal deleted region on chromosomal band 5q35 for the 5 TLX3 rearranged T-ALL cases showing 
a del(5)(q35). Depicted genome positions and gene locations are based on the UCSC Genome 
Browser at http://genome.ucsc.edu/. (f) quantitative PCR analysis of NSD1, present in the minimal 
deleted region, on 26 TLX3 rearranged T-ALL cases and 27 TLX3 negative cases.
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 Figure 7.2  
 

Figure 2. FBXW7 deletion in pediatric T-ALL
(a) Schematic overview of the chromosomal deletion, del(4)(q31.3q32.1), as detected in case 2786. 
Genomic positions of genes situated in this chromosomal region and BAC clones used for FISH 
analysis are depicted. (b) FISH analysis using RP11-650G8 (green) and RP11-300I24 (red) confirms 
the presence of the del(4)(q31.3q32.1) in case 2786.
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Figure 7.3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. WT1 inactivation in pediatric T-ALL
(a) Chromosome 11 ideogram and oligo array-CGH plot for the deletion, del(11)(p13), as detected 
in case 2723 (left panel). The right panel shows a detailed overview of the deleted region for this 
11p13 deletion. (b) FISH analysis using RP11-98C11 (green) and RP11-299P16 (red, covering WT1) 
confirms the presence of the del(11)(p13) in case 2723. (c) Sequence analysis shows a truncating 
WT1 exon 7 mutation on the remaining allele of case 2723. (d) Similar FISH analysis as in (b) on 
TLX3 wildtype T-ALL cases identified one additional case showing a biallelic WT1 deletion. (e) 
Array-CGH analysis confirmed the presence of a large mono-allelic deletion, del(11)(p13p14.3), in 
combination with an additional loss of the genomic region surrounding the WT1 gene on the other 
allele.
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Figure 8.1  
 

 Figure 1. NF1 microdeletions in pediatric acute leukemias.
(a) Chromosome 17 ideogram and corresponding oligo array-CGH plot of patient DNA/control 
DNA ratios (blue tracing) versus the dye-swap experiment (red tracing) for T-ALL patient #2736.
(b) Detailed visualization of the NF1 microdeletion at chromosomal band 17q11 in T-ALL patient 
#2736. Hybridization signals around the –2X or +2X lines represent loss of the corresponding region 
in the patient DNA.
(c) Detailed analysis of the centromeric (left panel) and telomeric (right panel) breakpoint of the 
NF1 microdeletion in patient #2736.
(d) Overview of oligo array-CGH results in the chromosomal region 17q11.2 for 3 T-ALL and 2 
AML patients with del(17)(q11.2). The 60-mer oligos present on the DNA array and located in this 
genomic area, as well as the specific genes located in this region with their transcription direction, 
are shown. Arrows above the indicated genes represent the direction of transcription
Abbreviations: N; normal, L; loss, cen: centromere, tel: telomere.
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Figure 8.3  
 

Figure 3. Truncating NF1 mutations in pediatric T-ALL and AML.
(a) Sequence analysis of patient #4389 (AML) showing a c.2849_2850insTT mutation in the 
remaining NF1 allele
(b) Sequence analysis of patient #2736 (T-ALL) showing a c.3734delCinsGGTTTATGGTTT mutation 
in the remaining NF1 allele
(c) Sequence analysis of patient #2780 (T-ALL) showing a c.333dupA mutation in the remaining 
NF1 allele
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Figure 9.1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Subclonal 9q34 amplification in pediatric T-ALL
(a) Chromosome 9 ideogram and corresponding array-CGH plot of test DNA:control DNA ratios 
(blue tracing), and the dye-swapped control DNA:test DNA ratios (red tracing), for T-ALL patients 
2852 (left panel) and 1950 (middle panel). (b) Overview of array-CGH results for the 9q34 region 
for each of the 12 pediatric T-ALL patients with the 9q34 duplication. The BAC clones present on 
the DNA array and located on chromosome bands 9q33.3-q34.3 are shown. The BAC clones within 
the region of genomic gain are shown as black boxes, clones giving a 1:1 ratio are shown as white 
boxes. Specific genes located in this region that regulate important cellular processes or that were 
previously linked to leukemogenesis, are indicated below. Depicted genome positions are based on 
the UCSC Genome Browser.35

cHaPter 9
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Figure 9.2 FISH analysis showing subclonal 9q34 duplication in T-ALL patients 1950 and  2775. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2. FISH analysis showing subclonal 9q34 duplication in T-ALL patients 1950 and 

2775. (a) FISH analysis on interphase cells of patient 1950, using RP11-707o3 (NOTCH1) in green 
and RP11-576c12 (9q32) in red. Example of an interphase cell showing a normal hybridization 
pattern. (b) Amplification of RP11-707o3 (NOTCH1) is identified in a minority (32%) of the leukemic 
cell population. (c) Single-color FISH analysis on metaphase spreads of patient 2775, showing an 
enlarged hybridization signal on one of the chromosomes 9 (white arrow), indicating duplication of 
9q34 in one of the chromosomes 9.Figure 9.3 Episomal NUP214-ABL1 amplification and 9q34 duplication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Episomal NUP214-ABL1 amplification and 9q34 duplication.

(a) Chromosome ideogram and corresponding array-CGH plot of chromosome 9, as described in the 

legend of figure 1, for patient 1179 at relapse. The 9q34 duplication remains subclonal at relapse. 

The del(9)(p12q33) (12P15 to 451E16) is only detected in the relapse material. Interphase dual-color 

FISH analysis on (b) diagnostic material and (c) relapse material using the LSI BCR-ABL ES probes 

showing episomal ABL1 amplification at diagnosis and relapse, respectively.
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