402

INFORMS Journal on Computing
Vol. 8, No. 4, Fall 1996

0899-1499/ 96 /0804-0402 $01 25
© 1996 INFORMS

A Branch-and-Bound Algorithm for Single-Machine
Earliness-Tardiness Scheduling with Idle Time

J. A. HOOGEVEEN / Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, Email address: slam@uwin.tue.nl

S.L. VAN DE VELDE / Department of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands, Email address: s.l.vandevelde@wb.utwente.nl

(Received: February 1992; revised: September 1995; accepted: October 1995)

We address the NP-hard single-machine problem of scheduling
n independent jobs so as to minimize the sum of « times total
completion time and B times total earliness with B > «, which
can be rewritten as an earliness-tardiness problem. Postponing
jobs by leaving the machine idle may then be advantageous.
The allowance of machine idle time between the execution of
jobs singles out our problem from most concurrent research on
problems with earliness penalties. Solving the problem to opti-
mality poses a computational challenge, since the possibility of
leaving the machine idle has a major effect on designing a
branch-and-bound algorithm in general, and on computing
lower bounds in particular. We present a branch-and-bound
algorithm which is based upon many dominance rules and
various lower bound approaches, including relaxation of the
machine capacity, data manipulation, and Lagrangian relax-
ation. The algorithm is shown to solve small instances with up
to 20 jobs.

Recently, we have seen much interest in machine schedul-
ing models that penalize both early and tardy completions
of jobs. We refer to Baker and Scudder™ for an overview.
These types of models are supposed to capture the just-in-
time concept, whose basic premise is to reduce costly inven-
tories by enforcing on-time deliveries throughout the entire
manufacturing process. In theory, on-time deliveries may be
achieved by allowing machine idle time. In practice, how-
ever, idle time is highly controversial, because of lost pro-
duction capacity, for instance.

In this paper, we consider an NP-hard single-machine
earliness—tardiness problem in which the insertion of ma-
chine idle time is allowed, and present a branch-and-bound
algorithm for its solution. As we will see later, the possibility
to leave the machine idle poses a computational challenge
and affects significantly the design of a branch-and-bound
algorithm.

We consider the following problem. Aset $ = {J;, ..., ]}
of n independent jobs has to be scheduled on a single ma-
chine that is continuously available from time zero onward.
The machine can handle at most one job at a time. Job ], (j =
1,..., n) requires a positive integral uninterrupted process-
ing time p, and should ideally be completed exactly on its
due date d,. A schedule specifies for each job ], a completion

Subject classifications: Single-machine scheduling.
Other key words.

time C, such that the jobs do not overlap in their execution.
The order in which the machine processes the jobs is called
the job sequence. For a given schedule, the earliness of J, is
defined as E, = max{0, 4, - C]} and its tardiness as T, =
max{0, C] - d]}. In addition, we define maximum earliness as
Epax = MaXy<,<, E, and maximum tardiness as Tna, =
max; <, I, Accordingly, J, is called early, just-in-time, or
tardy if C, <d, C,=d, or C, > d, respectively. The cost of a
schedule o is the weighted sum of total completion time and
total earliness, that is,

flo)=a X, C,+B X E,

=1 =1

where a and B are given positive weights with g > a.
Without loss of generality, we also assume a and 8 to be
integral and relatively prime. We are interested in the case
B > q, since insertion of machine idle time may be advan-
tageous only in this case. The cost function f(co) arguably
measures inventory costs in a machine scheduling environ-
ment: total completion time measures the work-in-process
inventories, and total earliness measures the storage inven-
tories due to early completions. The problem, referred to as
problem (P), is to find a feasible schedule o that minimizes
f(a).

Problem (P) is NP-hard. By definition we have that T, =
C,+E —dforj=1,...,n and the cost function can
therefore alternatively be written as

(@—y) 2 C+(B-a) X E+y

=1

2 T, +y Z d,
=1 =1 7=1
for any 0 < vy < a. Garey, Tarjan, and Wilfong' prove that
minimizing this cost function with y = « and 8 > a is
NP-hard.

Problem (P) was identified by Kanet and Christie"® and
studied by Fry and Leong.!® They formulated it as an inte-
ger linear problem and used a standard code to find an
optimal schedule. Not surprisingly, this method already
requires excessive computation times for small instances.

Earliness, tardiness, machine idle-time, branch and bound algorithm, Lagrangian relaxation.

copyright © 2001 All Rights Reserved



403

Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling

Their formulation is ‘weak’ in that the linear programming
relaxation gives weak lower bounds, which seriously im-
pairs the performance of any standard integer linear pro-
gram solver. Also, a general code does not take advantage of
the problem structure. Fry, Leong, and Rakes!*! compare the
performance of the integer linear programming approach
with the performance of a rudimentary branch-and-bound
algorithm for the problem 1|2, (aC, + BE, + vT)) in which
idle time is allowed; indeed, they find that their branch-and-
bound algorithm is much faster. Inspecting the alternative
rendition of the cost function we see that their problem is
equivalent with ours.

Both our algorithm and the branch-and-bound algorithm
by Fry, Leong, and Rakes hinge upon the observation that
the search for an optimal schedule can be reduced to a
search over the n! different job sequences. This is possible,
since there is a clear-cut method to insert machine idle time
to minimize total cost for any given sequence. This method,
which requires O(#%) time, is described in Section 1. In
Section 2, we discuss the design of the branch-and-bound
algorithm, including the upper bound, the branching rule,
the search strategy, and the dominance rules. The derivation
of lower bounds is significantly complicated by the possi-
bility of machine idle time. The range of the due dates in
proportion to the processing times mainly determines how
much idle time is desired. To cope with the different prob-
lem instances, we present five approaches for lower bound
computation, including Lagrangian relaxation, in Section 3.
The branch-and-bound algorithm is based upon many dom-
inance rules and various lower bound approaches. Unfortu-
nately, it can handle only small problem sizes; the computa-
tional results presented in Section 4 exhibit that we can solve
instances with up to 20 jobs. Conclusions are given in Section 5.

Throughout the paper, we follow the three-field notation
of Graham, Lawler, Lenstra, and Rinnooy Kan!® to classify
scheduling problems.

1. The Insertion of Idle Time for a Given Sequence
In this section, we describe a procedure to insert machine
idle time so as to minimize total cost for a given sequence.
This procedure is not new. Similar methods have been pre-
sented (cf. Baker and Scudder!")), including those presented
by Fry, Leong, and Rakes' for the 1|2, (aC, + BE, + vT))
problem and by Garey, Tarjan, and Wilfong™' for the 1|2/_,
(E, + T,) problem. This is not surprising: as we have already
noted, T, =C, + E, - d, for all j; for specific choices for a and
B, our problem is equivalent with theirs. Since the basis of the
procedure is well known, we just present our implementation.
For a proof of correctness, see Hoogeveen and van de Velde!*"\.
Suppose that the scheduling order is ¢ = (J,, ..., J1)-
Since no job can start before time zero, we need the con-
straint that C, = 3, p forl = 1,..., n. We use an inductive
procedure for finding an optimal schedule for o. It finds an
optimal schedule for the subsequence (], ..., J;), given an
optimal schedule for the subsequence (J;_y, ..., J;), forl =
2, ..., n; we initiate the procedure by scheduling J, to be
completed at time max{d,, 2/, p,). When adding ], to the
subsequence (J,_y, ..., J;), we first check whether 2", p, <

d, < C,_; — p;—q; if so, then putting C; = d, yields an optimal
schedule for (J, ..., J,)- Ifd, < 2L, p, then we obtain an
optimal schedule for (], ..., J,,) by putting C, = X p I
d, > C,_; — p,_1, then we tentatively put C, = C,_; — p;_1.
Define 9, as the set containing J, and its immediate followers,
that is, the group of jobs that are executed after J, with no
machine idle time in between. We now compute the optimal
delay of the jobs in 2, disregarding the jobs not in 2,. A
delay of one unit of time increases the completion time of
each job in 2, by one and decreases the earliness of each
early job in 2, by one; the total effect on the cost is equal to
the primitive directional derivative g, = a|2,| — Bn, where
|2,| denotes the number of jobs in 2, and n; denotes the
number of early jobs in 2,. Obviously, we defer the jobs in 2,
until g, becomes nonnegative, that is, as long as n; < al2,|/B.
Define a = a|2,|/ 8] k = |2,] — a, and Ey; as the kth smallest
value of the earliness of the jobs in 2,. If the jobs in 2, are
deferred by & = Ej, then at most a jobs in 9, remain early
and, due to the choice of 4, g, then becomes nonnegative.
Deferring the jobs by & is only feasible if 8 is no larger than
the length 8., of the period of idle time immediately after
the last job in 9,. If § < 8,,,,, then we get an optimal schedule
for (J,, ..., J1) by deferring the jobs in 2, by 8. If 8 > 5,
then we defer the jobs in &, by 8., At this point, we repeat
the process for J;: we update 2, and evaluate if additional
delay of the jobs in 2, is advantageous. We now give a
step-wise description of the idle time insertion algorithm.

Idle Time Insertion Algorithm

Stepl. C; <~ max{d;, 2, ph 1 < 2.

Step 2. If I = n + 1, then go to Step 10.

Step 3. If d, <=, p, then C, < 27, p; otherwise, put C, <
min{d, C,_; — p,_,}. f C, = d,, then go to Step 9.

Step 4. Determine 9, and evaluate g,. If g, = 0, then go to
Step 9.

Step 5. Compute E, for each job ], € ;.

Step 6. Compute 8,,,, i.e., the length of the period of idle
time immediately after the last job in 2,.

Step 7. Leta < L|9]a/B), and k < |2,| = 4. Determine 8 as
the kth smallest earliness value for the jobs in 9,.

Step 8. Defer the jobs in 2, by min{$, 8,,,,.}. If 8 > §,,,.,, then
go to Step 4.

Step9. I <1 + 1; go to Step 2.

Step 10. Stop: an optimal schedule for the sequence (J,,, . .
has been determined.

'/]l)

Theorem 1: The idle time insertion algorithm generates an op-
timal schedule for a given sequence.

For a proof, see [10]. As to the complexity of the algorithm,
we have that a complete run through the main part of the
algorithm, i.e., Steps 4 through 8, takes O(n) time: this is
needed to identify the set 2, to compute the primitive
directional derivative g, the values 8,,,, and 8, and to defer
the jobs, if necessary. The value & is determined in O(n) time
through a median-finding technique. After each run through
the main part of the algorithm, a gap between two succes-
sive jobs is closed. As at most n — 2 such gaps exist, the
algorithm runs in O(n*) time. For the case 2a = B, i.e., for the
problem 1|7, (E, + T)), Garey, Tarjan, and Wilfong® show

Copyright © 2001 All Rights Reserved



404

Hoogeveen and van de Velde

that the idle time insertion procedure can be implemented to
run in O(n log n) time. The problem of inserting machine
idle time can also be solved by a symmetric procedure
starting with the first job in 0. Because of our specific
branching rule, however, we choose to start at the end.

In the remainder, we use the terms sequence and schedule
interchangeably. Unless stated otherwise, o also refers to the
optimal schedule for the sequence o and to the set of jobs in
the sequence o. From now on, we let p(o) = E},EU p,

2. Dominance Criteria

We adopt a backward sequencing branching rule: each node at
level k of the search tree corresponds to a sequence  with k
jobs fixed in the last k positions. At level k, there are n — k
descendant nodes: one for each unscheduled job. By branch-
ing from a node corresponding to some m, we add some
unscheduled job J, to m, thereby obtaining the sequence J,m.
We explore the tree by a depth-first strategy, and we employ
an active node search: at each level we choose one node to
branch from, and we consistently choose an unfathomed
node whose job has the largest due date,

The completion times of the jobs in r are only temporary:
when we add some ], to m, we determine the optimal sched-
ule for [ by possibly deferring some jobs in . Before
entering the search tree, we determine an upper bound on
the optimal solution value; it is obtained by sequencing the
jobs in order of nondecreasing d, — p, to get an initial solution,
and by then trying to reduce its cost by swapping adjacent jobs.

Let f(w) denote the minimal cost for . Let f{(7r) denote the
minimal cost for = if the first job may be started before time
p($ — m). For any partial schedule m, we have f(7) = f(n). A
node is discarded if its associated partial schedule 7 cannot
lead to a complete schedule with cost less than the incum-
bent upper bound value UB. Let LB($ — 7) be some lower
bound on the minimal cost of scheduling the jobs in the set
$ — m. Obviously, we discard a node if f(7) + LB($ — =) =
UB. The following rules are due to our backward sequencing
branching strategy. Let g(oy, o,) be a lower bound on the cost
for scheduling the jobs in o given the final partial schedule o,.

Theorem 2: The partial schedule w can be discarded if there
exists a |, € $ — r for which fUm) + 8% — 7w - I, m) = UB.

Proof: Consider a complete sequence o that has 7 as final
subsequence. Thus, o can be written as o = ],y Accord-
ingly, we have

(o) = f(m] m,m) 3]_((]]77) + g(mmy, )= UB. =

It is essential that g($ — @ — ], @) depends only on 7 and not
on J,m, and that we use f(] ) instead of f( J,m). We derive two
corollaries from Theorem 2.

Corollary 1: If for a given partial schedule m we have that}(]]]kw)
+8$ —m—J oy m)y=UBforsome] €% — mwand J, €
$ — m, then [, precedes ], in any complete schedule om with
flom) < UB.

Corollary 2: The partial schedule 1 can be discarded if two jobs
€S —mand ], €9 — wexistwith g($ — 7 — ], — J, w) +

If a partial schedule #* # = exists comprising the same jobs
as m and having flon*) < f(om) for any sequence o for the
remaining jobs, then we can also discard . If f(on*) < f(am)
for some o, then m is dominated by =*. If f(on*) = f(o) for
every o, then we discard either #* or m. The dominance
condition above can be narrowed by the requirement that
f(#*) < f(w) and that the circumstances to add the remaining
jobs to 7* are at least as good as the circumstances to add the
remaining jobs to . The question whether such a sequence
7" exists is of course NP-complete. We strive therefore to
identify sufficient conditions to discard . The temporary
nature of the job completion times for 7 complicates the
achievement of this goal. We have to be careful with dom-
inance conditions that are based on interchange arguments:
the conditions must remain valid if the jobs in  are deferred.

Suppose that the jobs in 7 have been reindexed in order of
increasing completion times. In each of the following theo-
rems, stating the dominance rules, the sequence #* is ob-
tained from by swapping two jobs, say, ], and J,. We do not
compute the optimal completion times for the sequence *.
Instead, we determine the job completion times for the se-
quence 7* as follows. Let C, and C; denote the completion
timee of J, in the schedule 7 and #*, respectively. Then we let

C =C, for i=1,...,j-Li=k+1,...,|n,
C=C-p+p,for i=j+1,..., k-1,

G =C -p+pe

C =G

Let F(7*) be the cost associated with the completion times C?
fori = 1, ..., |n]. Hence, F(7*) = f(#*). To validate the
following dominance rules, we must verify that f(7) = F(#*),
even if the jobs are deferred. Due to the relation between
and 7%, this comes down to verifying that for each set of
nonnegative values A, (i = 1, ..., n) we have

k k
aZC,+BZmax{O,d,—C,—A,}

=7 1=y

k k
=>a ) Cr+ B D max{0, d, - C*— A}. (1)

1=} 1=}

We derive a number of sufficient conditions under which (1)
holds; some are obvious, some are quite involved. The
proofs proceed by interchange arguments and are found in
Hoogeveen and van de Velde.['?

Theorem 3: There is an optimal schedule with |, preceding ], if
p; = peand d, < d;.

S
Theorem 4: The partial sequence m can be discarded if there are
two jobs ], and J, with C = C, + Zi_ ,, p; and p, > p, for which

k k
a Y C,+B D max{0,d - C}

1=y 1=5+1

k k
=a 2 Cr+p E max{0, d, — C’}.

1=y 1=y+1

Copyright © 2001 All Rights Reserved



Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling

Note that the possible increase of E, is excluded from the
condition in Theorem 4. The following theorem shows that if
no idle time exists between two adjacent jobs, then we only
have to check whether condition (1) holds for the current set
of completion times to obtain dominance.

Theorem 5: The partial sequence i can be discarded if there are
two jobs ], and ], with C, = C, + p, and p, > p, for which

a(P] - pk) + B max{ol d] - C]} t+ B max{O, dk - Ck}
(2)

In Corollary 3, explicit conditions for the existence of dom-
inance are derived from Theorem 5. We use this corollary in
our derivation of lower bounds in Section 3.

= B max{0, d, — Ci} + B max{0, di, — C, + p}.

Corollary 3: The partial sequence 7 can be discarded if there are
two adjacent jobs |, and J, with C, = C, + p, and p, > p, that
satisfy one of the following conditions:

C—p =4,
Ce—p, <d, C,=d,

C,=d, and a(p,—p) = Bldi— Ci +p),

Ce — p, < dy

Ci<dy

Ce = p, < do, &=dy

C,=d, and a(p,— pd = Bp,

C,<d, and a(p,— po) = B(di—d,— p+ p)-

Theorem 6: The partial sequence  with [, scheduled last is
dominated if there is a |, such that p, > p, and C, — p, + py = d;.

Theorem 7: There is an optimal schedule in which |, is not
scheduled in the last position, if there is some |, with p, > p, and
d — p, = di — Pr

]

Corollary 4: There is an optimal schedule in which ], is scheduled
last if p, = py and d, — p, = d — p, for each |, € 9.

3. Lower Bounds
We present five lower bound procedures, as it seems to be
impossible to develop a lower bound procedure that copes
satisfactorily with all conceivable due date patterns. Each
procedure is effective for a specific class of instances. None-
theless, we use them in a supplementary rather than a
complementary fashion. We partition the job set $ into
subsets, apply each lower bound method to each subset, and
aggregate the best lower bounds. The success of this ap-
proach depends on the partitioning strategy. The jobs in a
subset should be conflicting, that is, they should overlap
when completed at their due date. If they are not, then we
get the weak lower bound « E]';l d]. In this sense, we prefer
subsets such that the executions of the jobs in the same
subset interfere with each other, but not with the execution
of the jobs in the other subsets. We propose two partitioning
strategies that pursue this effect.

The first strategy is motivated by the structure of any
optimal schedule. The jobs that are consecutively processed
between two periods of idle time interfere with each other,

but not with the other jobs. Such a partitioning is hard to
obtain. To mimic such a partitioning, we specify clusters. A
cluster is a set of jobs such that for each job ], in the cluster
there is another job J, in the cluster such that the intervals
[d, - p, d}and [d; — p;, d;] overlap; hence, for each job in the
cluster there exists a conflict with at least one other job in the
cluster. However, clusters may interfere with each other in
any optimal schedule. Intuitively, we like to have as few
clusters as possible. We try to achieve this by a simple
greedy algorithm. In fact, if there is only one cluster, then we
can solve the problem in either O(n”) or O(n* =], p,) time,
depending on whether the d, — p, are large or small relative
to the sum of the processing times (Hoogeveen and van de
Velde!'!).

The second strategy is the following. Given a partial
schedule 7, we try to identify the jobs not in 7 that will be
early in any optimal complete schedule of the form om. We
call these jobs surely early. The idea is to derive an upper
bound T on the completion times of the unscheduled jobs;
accordingly, J, € $ — mis surely early if d, > T. For instance,
let ¢ be the primitive directional derivative for deferring the
first job in 7 by one unit. If we have that [$ — #|(B — ) <
g, then we know that the current set of completion times for
the jobs in  is optimal for any schedule o7r; an upper bound
T is then the start time of the first job in . Other upper
bounds are derived from the dominance rules. Suppose J,
and J, are adjacent in 7 with p, > p, and ], preceding J;. The
first condition of Corollary 3 indicates that 7 is dominated if
Ci = dy + p, hence, an upper bound is givenby d, +p, — 1~
2 en c<c, P From the other criteria in Corollary 3 and from
Theorem 7, similar upper bounds are derived. They can also
be derived from Theorem 4, but this requires an intricate
procedure. Finally, we set T equal to the minimum of all
upper bounds. If no upper bound is specified, then we let
T = maxjgn d, + 2L, ;-

3.1 Lower Bound 1: Relax the Objective Function
Let € denote the set of surely early jobs; let R be the set of
remaining jobs. Observe that

min f(o) = min 2 aC, + min 2 [aC, + BE)],

ocEQR oc€ENn JER oENs =3

where g, and (), denote the set of feasible schedules for the
jobs in & and €. The problem of minimizing %; o [aC, +
BE,] is solvable in polynomial time: we have E, = d, — C, for
each J,E%, and hence, the scheduling cost comes down to
E,legg [(a — B)C, + Bd)]. Applying an analog of Smith’s rule
(Smith™*]), we minimize this cost component by scheduling
the jobs in ¢ in the interval [T — p(€), T] in order of
nonincreasing processing times; the correctness of this rule
is easily verified by an interchange argument. The other
subproblem is solved by Smith’s rule: simply schedule the
jobs in R in nondecreasing order of their processing times in
the interval [0, p(R)].

A slight improvement of the lower bound is possible. Let
E} .. be the minimum maximum earliness for the jobs in ®
if they are processed in the interval [0, p(R)]. We compute
E* . from the minimum-slack-time sequence, that is, the

Copyright © 2001 All Rights Reserved



406

Hoogeveen and van de Velde

sequence in which the jobs appear in order of nondecreasing
values d, — p,. Avoiding E,,, requires at least Ey,,, units of
machine idle time. The lower bound can therefore be im-
proved by aE, ... This lower bound approach can only be
applied in conjunction with Theorem 2 if ¢ = .

Since all jobs in ® are scheduled in the interval [0, p(R)],
and since only one early job in R is taken into account, this
lower bound is only effective if the due dates are small

relative to the sum of the processing times.

3.2 Lower Bound 2: Relax the Machine Capacity

Recall that we can rewrite the objective function alterna-
tivelyasf(o) = (B - )2 E, + a T T, + a Z_, d,. Since
the job earlinesses and tardinesses are nonnegative by defi-
nition, we have that f(o) = « 3, d, for each o € Q.

We gain more insight if we derive this bound in the
following way. Suppose the machine can process any num-
ber of jobs at the same time; this is a relaxation of the limited
capacity of the machine. As a < g, the optimal schedule has
C, = d, for each J; this gives rise to the lower bound « =,
d,. If no jobs overlap in their execution, then this schedule is
feasible and hence optimal for the original problem.

We can improve on the lower bound « = ; 4, by taking
the overlap between jobs into consideration. Overlap of J,
and Jy (J, # Ji) occurs if the intervals [d, — p, d ] and [d; — p,,
d,] overlap. Simple computations show that ¢, = y max{0,
d, — (dx — p)} is the minimal additional cost to execute ],
immediately before J,, where vy = min{e, 8 — «}. Let o(i) =
j denote that ], occupies the ith position in the sequence o.
For any schedule o, we have that f(0) = « 37, d, + 27}
Copyois+1y the last term is the length of the Hamiltonian path
a(1) -+ o(n). The following procedure shows that in our
application the Hamiltonian path problem of finding a se-
quence ¢ with minimum 277! ¢,,,+1) is solvable in
O(n log n) time.

Partition the set of jobs into a set of clusters Qy, ..., Q,,
such that each overlapping pair of jobs belongs to the same
cluster. Since each conflict between two jobs that are not in
the same cluster is settled at zero cost, we have that the
length of the optimal Hamiltonian path is equal to the sum
of the lengths of the optimal Hamiltonian paths within each
cluster. Consider any cluster Q,; let H, denote the optimal
Hamiltonian path within Q, and let ¢(H,) denote its cost. It is
readily checked that ¢(H,)) = y(p(Q,) — MaX;,; e 0+, G
from which we obtain the lower bound o« ¥, d, +
Sm o(H)).

3.3 Lower Bound 3: Relax the Due Dates

Suppose the due dates have been replaced by a due date d
common to all jobs. Consider the following common due date
problem, referred to as problem (CD): for a given d, deter-
mine a schedule that minimizes

(B-a) 2 E,+a > T,+and— B > max{0, d — d}.

=1 =1 =1

For any d, the optimal solution value is a lower bound for

the original problem, since

f(o) =a C,+B Y max{0, d—-C}

1=1 =1

2a2C,+BEmax{0,d—C,}

1=1 =1

~- B > max{0,d —d}

J=1

Z(B_Q)EE1+"ZT)

1=1 =1

+ and — B 2 max{0, d — d }.

j=1

There are two issues involved: (i) how to solve problem
(CD)?, and (ii) how to find the value d maximizing the lower
bound?

Problem (CD) consists of two parts. The first part is the
problem of minimizing (8 — @) 2, E, + a ¥, T, If the
machine is only available from time 0 onward and if 4 is
given, then this problem is NP-hard (Hall, Kubiak, and
Sethi”); Hoogeveen and van de Velde!®!). However, a strong
lower bound L(d) is derived by applying Lagrangian relax-
ation (see Hoogeveen, Qosterhout, and van de Velde'™). The
second part is the problem of maximizing the function G: d
— and — B Z7_; max{0, d — d}; this problem is solvable in
polynomial time. Rather than solving problem (CD) to op-
timality and finding the best d, we maximize the lower
bound L(d) + G(d) over d.

The function L: d — L(d) is continuous and piecewise
linear, with at most min{n? na} breakpoints. The function G:
d — G(d) is also continuous and piecewise linear; the break-
points correspond to the values d = d, forj =1,..., n. The
lower bound L(d) + G(d) is therefore also continuous and
piecewise linear in d; the value d maximizing this lower
bound is found at a breakpoint. Hence, maximizing L(d) +
G(d) over d is achieved in O(n?) time,

There are two ways to implement this lower bound pro-
cedure in a node of the search tree, depending on whether
we take the possible overlap between , the partial schedule
associated with the node, and the optimal schedule for the
common due date problem into account. If we do not, then
we get the lower bound f(m) + «($ — ), where ¢($ — )
denotes the optimal solution value for the common due date
problem for the jobs in $ — . If we take the overlap into
account, then we need to specify which part of = is affected
by the optimal schedule for the common due date problem;
let this be m, that is, # = mm,. Given the part m, that we
want to include, we compute this restricted common due
date problem in the following way. First of all, we require
that d is common to each ], & ,. Subsequently, we solve the

wvwkicrbE - H-Riaadawdd |
Cprnyuu @'2%1 AII NS MTSTTVeU



407

Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling

common due date problem under the condition that the jobs
in 7, retain their positions in the sequence. This problem is
solved using the concept of positional weights; see Em-
mons? and Hoogeveen and van de Velde.[*"!

The common due date lower bound can only be used in
conjunction with Theorem 2 if the lower bound is indepen-
dent from the partial sequence ja. It is effective if the due
dates are close to each other.

In the same spirit, we can consider the special case of 1|
3%, C, + B I, E, where all jobs have equal slack time s;
ie,d —p =sforeach] (j=1,...,n). This problem has the
same features as the common due date problem. The best
Lagrangian lower bound is also computed in O(r min{e, n})
time, and there are the same options to implement the lower
bound.

3.4 Lower Bound 4: Relax the Processing Times

Define py,, = min, - ., p,. The optimal solution value of the
relaxed problem 1lp, = p,Ja 27, C, + BE_, E, provides a
lower bound for the original problem: each set of job com-
pletion times that is feasible for the original problem is also
feasible for the relaxed problem and has equal cost. Theorem
3 indicates that this relaxed problem is solved by scheduling
the jobs in earliest-due-date order (i.e., the sequence with the
jobs in order of nondecreasing due dates); see also Garey,
Tarjan, and Wilfong.™!

Given a partial schedule =, let o be the earliest-due-date
sequence for the jobs in § — m, and let i(c) be the optimal
solution value for the relaxed problem. Disregarding =, we get
the lower bound f(7) + g(o). We can marginally improve on
this lower bound. Suppose we have reindexed the jobs in order
of nondecreasing due dates. Corollary 4 indicates that J,, is also
scheduled last if we put its processing time equal to min{p,,
Pran T 4, — d,_1}. An improved lower bound is therefore
given by f(m) + h(o) + e[min{p,, Prun + 4, — dyo1) — Perun)-

If the execution of jobs in ¢ overlaps with the execution of
jobs in r, then it pays to take = into account. The lower
bound is then equal to the cost for the sequence of o7 with
the jobs in = still having their original processing times.

Both bounds are computed in O(n?) time, the time
needed to compute the optimal schedule for a given se-
quence, and dominate the lower bound a 2, ;. Only the
first version can be used in conjunction with Theorem 2.
The bounds are only effective if the processing times are
close to each other.

3.5 Lower Bound 5: Lagrangian Relaxation

Our last lower bound approach is based on Lagrangian
relaxation. For the proofs of the theorems in this section,
we refer to Hoogeveen and van de Velde.[*®! The problem
of minimizing total cost, referred to as problem (P), can
be formulated as follows. Determine values C, and E, (j =
1, ..., n) that minimize

a> C+B>E
7=1 =1

subject to
E,=0, for j=1, ...,n, (3)
E=d-C, for j=1,...,n, (4)
C,=Citp, or C=C +py, (5)
for j,k=1,...,n,j # k,
C=p, for j=1,...,n (6)

The conditions (3) and (4) reflect the definition of job earli-
ness, while the conditions (5) ensure that the machine exe-
cutes at most one job at a time. The conditions (6) express
that the machine is available only from time 0 onwards.

We introduce a nonnegative vector A = (Ay, ..., A,) of
Lagrangian multipliers in order to dualize the conditions (3).
For any given vector A = 0, the Lagrangian problem, re-
ferred to as problem (L,) is to determine the value L(}),
which is the minimum of

@ C+ 2 (B A)E,

=1 =1
subject to the conditions (4), (5), and (6). We know that for
any given A = 0 the value L(A) provides a lower bound to
problem (P). If B — A, < 0 for some ], we get E, = «, which
disqualifies the lower bound. We therefore assume that

for j=1,...,n.

(7)

This, in turn, implies that there exist an optimal solution to
the Lagrangian problem in which conditions (4) hold with
equality: E, = d, — C, for each j (j = 1, ..., n). Hence, the
Langrangian problem, referred to as problem (L,), trans-
forms into the problem of minimizing

N<B

> (a=B+A)C,+ 2 (B—A)d,

J=1 =1

subject to the conditions (5) and (6). If « — 8 + A, < 0 for
some ], we get C, = %, which makes the lower bound rather
weak. As demonstrated at the beginning of Section 3, how-
ever, we can determine an upper bound T on the job com-
pletion times:

=T, for j=1,...,n.

(8)

Although the conditions (8) are redundant for the primal
problem (P), they are essential to admit values A, < 8 — e
We determine the sets of jobs $* = {J|]A, > B — a}, $~ =
{JJ,, <B — a), and $° = {J|A, = B — «a}. The following
theorem stipulates that problem (L,) with conditions (8) is
solved by a simple extension of Smith’s rule (Smith*) for
solving the 1|Zw,C, problem; the proof proceeds by an ele-
mentary interchange argument.

Theorem 8: Problem (L,) with the additional conditions (8) is
solved by scheduling the jobs in $* in nonincreasing order of
ratios (¢ — B + A)/p, in the interval [0, p($1)] and the jobs in $~
in nonincreasing order of ratios (¢ — B + A)/p, in the interval

Copyright © 2001 All Rights Reserved



408

Hoogeveen and van de Velde

[T — p($7), T]. The jobs in $° can be scheduled in any order in
the interval [p($7%), T — p($7)].

We are interested in determining the vector A* = (A, ..., AY)
of Lagrangian multipliers that gives the best Lagrangian
lower bound. The vector A* stems from solving the Lagrang-
ian dual problem, referred to as problem (D):

max{L(A)[0 <A <B, for j=1,...,n}

Problem (D) is solvable to optimality in polynomial time by
use of the ellipsoid method; see van de Velde.[* Since the
ellipsoid method is very slow in practice, we take our resort
to an approximation algorithm for problem (D).

First, we identify the primitive directional derivatives. In the
solution to the Lagrangian problem (L,), the position of ],
depends on the ratio (@ — B + A)/p,; we call this ratio the
relative weight of J. The larger this relative weight, the
smaller the completion time of ] . If other jobs have precisely
the same relative weight as ], then the exact position of , is
determined by settling ties. Let now C;"(A) denote the earli-
est possible completion time of ], in an optimal schedule for
problem (L,); let C;"(A) denote the latest possible completion
time of ], in an optimal schedule for problem (L,). If we
increase A, by € > 0, then we can choose € small enough to
make sure that at least one optimal schedule for problem
(L,) remains optimal; for a proof, see van de Velde.® In
fact, all such optimal schedules must have ], completed on
time C"(A). If we increase A, by such a sufficiently small € >
0, then the Lagrangian objective value is affected by
€(C,"(\) — d)). The primitive directional derivative for
increasing A, as denoted by I7()), is therefore simply

IF(A) =Cf(A) — 4,

for j=1,...,n.

Hence, if [7(A) > 0, then increasing A, is an ascent direction:
we get an improved lower bound by moving some scalar
step size along this direction. In a similar fashion, we derive
that the primitive directional derivative for decreasing A,
denoted by [7(}), is
L(A)=d,-C/(A), for j=1,...,n.
If I () > O, then decreasing A, is an ascent direction. Note
that directional derivatives may not exist at the boundaries
of the feasible region of A; for instance, /(1) is undefined for
A=@,...,0),foranyj=1,...,n

Second, we determine an appropriate step size A > 0 to
move by along a chosen ascent direction. We compute the
step size that takes us to the first point where the corre-
sponding primitive directional derivative is no longer posi-
tive. If no such point exists, then we choose the step size as
large as possible while maintaining feasibility.

Suppose [(A) > 0: ], is tardy in any optimal schedule for
problem (L,). Increasing A, thereby putting ], earlier in the
schedule, is an ascent direction. We distinguish the cases
p,—4d;>0,p,—d =0 and p, — d, < 0. Consider the case
p, = d,> 0. Hence, ], is unavoidably tardy, and lf()\) > 0 for
all A = 0 with A, < B. Therefore, we take the step size A =
— A,. Accordingly, we must also have that A*= B; otherwise,
increasing )\; would be an ascent direction. If p, = dj, then

Copyright©2001 AltRightsReserved "~ -

there exists an optimal solution to problem (D) with =B
Find J = {]|p, < d;}. We have proven the following result.

Theorem 9: There is an optimal solution for problem (D) with
A= pBforeach] € 9.

Suppose now p, < d,. The step size A must satisfy A, + A <
B- We identify the first job in the schedule, say, J;, for which
Ce = px + p, < d,. Since p, < d,, such an J, always exists. If I
is scheduled in Ji’s position, then ], is not tardy. Hence, if
there were no upper bound on A, then increasing A, would
be an ascent direction up to the point where the relative
weight of ], becomes equal to the relative weight of J,.
Hence, the maximum step size along this ascent direction is
the largest value A such that

a—B+A/+A<a—B+)\k
P, Pk

Let now A = Ay -, A + A .., )\) Suppose, X] +A<B,.
Since the relative weights for all jobs but ], have remained
the same, optimal solutions for the problems (L;) and (L,)
exist with the same jobs scheduled before J,. Now J, and ],
have equal relative weights: in any optimal solution to prob-
lem (L), J, can be scheduled before J, or after . If ], is
scheduled before J;, then ], is not tardy; if ], is scheduled after
Ji» then ] is not early. Hence, we have that C(A) < 4, <
C, (A); the step size A has taken us to the first point where
the primitive directional derivative for increasing A, is no
longer positive. If A, = g, then the step size has been chosen
as large as possible.

Suppose now () < 0: ], is early in any optimal schedule
for problem (L,). Decreasing A, thereby deferring J, is an
ascent direction. We distinguish the cases d,>T,d =T, and
d, < T. Consider the case d >T, hence, J, is unavoidably
early, and I7(A) > 0 for all A with A > 0. Therefore, we
choose the step size as large as possible: A = A,. Accordingly,
we also must have that )\]* = 0; otherwise, decreasing /\]*
would be an ascent direction. If d, = T, then there exists an
optimal schedule to problem (D) with A’ = 0. Identify € =
{J|d, = T}. We have proven the following result.

, and A +A<gB.

Theorem 10: There is an optimal solution for problem (D) with
A= 0 for each ], € €.

Consider now the case d, < T. The procedure to compute the
appropriate step size A proceeds in a similar fashion as
above. We identify some ], as the first job in the schedule
with C; = d,. If ], is scheduled in J,’s position, then J, is not
early. Hence, if there were no lower bound on A, then
decreasing A, would be an ascent direction up to the point
where the relative weight of ], becomes equal to the relative
weight of J,. This implies that the maximum step size along
this ascent direction is the largest value A for which

a—B+)\l-—A2a—B+)\k

P P«
LetA = (A, ..., A, — A ..., A,). Suppose &, > 0. Since the
relative weights for all jobs but ], have remained the same,

optimal solutions for the problems (L;) and (L,) exist with
the same jobs scheduled after ;. Since J, and J, have now

, and A —A=0.




409

Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling

equal weights, ], can be scheduled after J or before J, in any
optimal schedule for problem (Ly). If ], is scheduled after Jj,
then J; is not early; if ], is scheduled before Ji» then ], is not
tardy. Hence, we find that C*()\) <d <C/ (A). If A = 0 then
the step was taken as large as p0331b1e

Termination of the ascent direction procedure occurs at
some A where all existing primitive directional derivatives
are nonpositive. If all primitive directional derivatives exist
at such a A, we have

C,*(X/)SC]‘(X) for j=1,...,n

These termination conditions also apply to A*, since they are
necessary for optimality. They are, however, not sufficient
for optimality; hence, termination may occur having A # A*,
i.e., before finding the optimal vector of Lagrangian multi-
pliers. Before implementing the ascent direction algorithm,
we make use of this fact to decompose the Lagrangian dual
problem (D) into two subproblems. This decomposition is
achieved by partitioning $ into four subsets, including the
sets J and € we already identified.

Consider some job |, € $ — € with d, > p($ — €). If A, >
B — «, then ], will be early in any optimal solution to
problem (L,). This means that /" (A) > 0, and hence we must
have that 0 < A'< 8 — a. The set & of jobs that share this
property is determmed by the following procedure.

Partitioning Algorithm 1

Step 1: F <, k < 1; reindex the jobs in $ — € in order of
nonincreasing due dates.

Step 2: Ifk >n — [é|orif d, < p($ — € — %), then stop. Else
F—F U}

Step 3: Put k < k + 1; go to Step 2.

Suppose some job ], € F exists with d, > T — p(¥). If we let
A=B-—q then Crny<d; hence, decreasing A, is an ascent
direction. Decreasing A, gives (¢ — B + A))/p, <0, as a result
of which the execution of ], interferes with the execution of
the jobs in €. We now partition the set ¥ into subsets %, and
F, (F =%, UF)suchthatd < T — p(¢ U %,) for each
J, € %, and such thatd, > T — p(€ U %,) for each |, € %,.
To achieve this, we use the following partitioning proce-
dure; it is similar to the first one.

Partitioning Algorithm 2

Step 1: Put F, < &, let P < T — p($), and reindex the jobs
in & according to nonincreasing due dates. Let k < 1.

Step 2: If k > |%|, then stop. f d, < P, thenlet &, < {J,, ...,
Jis}, and stop. Otherwise, F, < %, U {J,}, and set P < P —

Pr-
Step 3: Set k < k + 1; go to Step 2.

Theorem 11: For each ], € %;, we have that A= B — a.

At this stage, we can decompose the Lagrangian dual prob-
lem (D) into two subproblems. Let R = $ — J — € — &.
Since (@ — B + A')/p, = 0 for each ], € ,, the jobs in %, do
not interfere with the execution of the other jobs. We have,
however, that both J and & and ¢ and %, interfere with
each other. Hence, we have to solve the dual problem re-
stricted to the sets 7 and ® and the dual problem restricted
to the sets &%, and €. In each optimal schedule for problem

(D), the jobs in ' and R are scheduled in the interval [0,
p(T U R)], and the jobs in ¥ and € are scheduled in the
interval [T — p(% U %,), T]. We give step-wise descriptions
of the ascent direction algorithms for these two subprob-
lems. Both are based upon the primitive directional deriva-
tives and the step sizes we discussed earlier. The jobs in &,
are scheduled somewhere in the interval [p(T U R), T — p(¥é
U %,)]; they are left out of consideration. We introduce some
new notation. Let (L?“¥) and (L¥“#?) denote the Lagrangian
problem restricted to the set & U I and to the set € U %,; let
L®Y7(A) and L¥“*2(A) denote their optimal solution values.

Ascent Direction Algorithm for the Set R U
Step 1: For each ], € J, set A, < A*= B; for each ], € R, put
A, < B. Solve (Lg“"g) settlmg ties arbitrarily; compute the
)ob completion times.
Step 2: For each ], € R, do the following:
(a) If C;(A) < d,, identify J; as the first job in the schedule
with C, = d,. Compute the largest value A such that

a—B+)\k
Px

a—B+/\,—A>
2 .

, and A —A=B-a

Decrease A, by A, reposition ], according to its new rela-
tive weight, and update the job completion times.
(b) If C () > d,, identify J, as the first job in the schedule

w1th C — pk + p, < d,. Compute the largest value for
A such that
a—ﬁ+)\}+A_a—B+)tk

, and A +A<B
P, Px ! g
Increase A, by A, reposition ], according to its new rela-
tive weight, and update the job completion times.
Step 3: If no multiplier adjustment has taken place, then
compute L™“7(A) and stop. Otherwise, go to Step 2.

Theorem 12: The procedure described above generates a series of
monotonically increasing values L™97 (7).

Ascent Direction Algorithm for the Set € U &,

Step 1: Set A, < B — a for each ], € %, and A, <~ A'= 0 for
each] € % Solve (LEY%2), setthng ties arbltrarlly, compute
the job completion times.

Step 2: For each ], € &,, do the following:

(a) If C; (1) < d,, identify J; as the first job in the schedule
with C, < d. Compute the largest value A such that

a—B+)\]—A>a—B+/\k
P, Nz

Decrease A by A, reposition | i according to its new rela-
tive weight, and update the job completion times.

(b) IfC (A) > d,, identify ], as the first job in the schedule
with C; < d, + p, — p,. Compute the largest value for

, and AsA,.

A such that
a—-B+A+A -B+A
Bt h =2 B k, and A +As<sB-a
p} P

Increase A, by A, reposition ], according to its new
relative weight, and update the job completion times.

Copyright © 2001 All Rights Reserved



Hoogeveen and van de Velde

Table I. Properties of the Proposed Lower Bounds

partitioning
type of relaxation complexity effective when strategy
objective function O(n) little idle time surely early jobs
machine capacity O(n log n) conflicting jobs clustering
due dates O(n?) d, almost equal clustering
processing times O(n?) p, almost equal clustering
Lagrangian O(n log n + In) little idle time surely early jobs

Step 3: If no multiplier adjustment has taken place, then
compute L¥“¥2 (1) and stop. Otherwise, go to Step 2.

Theorem 13: The procedure described above generates a series of
monotonically increasing values L¥%2().

Foreach ], € $ — &, let C, and 7\] denote the completion
time and the Lagrangian multiplier upon termination of the
appropriate ascent direction algorithm. We note that )_\] =B,
foreach], € J, A, = B — aforeach ], € %, and A, = 0 for
each ], € €. Hence, the overall Lagrangian lower bound is
given by

LX) = 2 aC,+ 2, ad,+ > [(a« — B)C, + Bd)]

€T JEH JE®

+ > [a—B+X)C,—(B-X)d].

JIERUF

The Lagrangian lower bound performs well if little idle time
is involved. Either ascent direction algorithm is an iterative
non-polynomial method, taking O(n log n + In) time with I
the number of iterations.

3.6 Overview of the Bounds
In this subsection, we tabulate the lower bounds presented,
the time needed to compute them, the conditions under
which they are expected to be effective, and the partitioning
strategy they can be used in tandem with. Roughly speak-
ing, we may say that we have two types of bounds available:
those that perform well, if there is little idle time involved, or
if there are many surely early jobs, and those that perform
well, if all jobs are conflicting, or if the clusters hardly
overlap. Beforehand, it is impossible to tell whether the
aggregate bound outperforms the best individual bound.
Also, it is possible to be more conclusive as to which lower
bound will be strongest for a given cluster. First, it is hard to
tell in advance how much and when idle time will be in-
serted. Second, ‘conflicting jobs’ is a broad notion that is
only well-defined at the extremes: if all the ideal execution
intervals [d, — p, d,] overlap, then we have a relatively easy
problem; if there is no overlap, then the problem even be-
comes trivial.

On the basis of Table 1, we may anticipate that our best
lower bound will be weak for instances with overlapping
clusters in which there is a great deal of idle time involved.

4. Computational Results

The algorithm was coded in the computer language C; the
experiments were conducted on a Compaq-386/20 Personal
Computer. The algorithm was tested on instances with 8, 10,
12, 15, and 20 jobs. The processing times were generated
from the uniform distribution [10, 100]. The due dates were
generated from the uniform distribution [P(1 — T — R/2),
P(1 — T + R/2)], where P = 3/, p, and where R and T are
parameters. For both parameters, we considered the values
0.2, 0.4, 0.6, 0.8, and 1.0. This procedure to generate due
dates parallels the procedure described by Potts and van
Wassenhovel™! for the weighted tardiness problem. For
each combination of T, P, and n, we generated 5 instances.
Each instance was considered with @ = 1 and with 8 run-
ning from 2 to 5.

The general impression was that instances become more
difficult with smaller values of T and R. In view of the
discussion in Section 3.6, this could be expected. A small
value of T induces relatively large due dates, implying that
there is quite some idle time involved. A small value of R
induces due dates that are close to each other; it is then
harder to partition the jobs. We also found that the problems
get easier with larger B. This may seem anomalous: a large
value of B implies that earliness is severely penalized, that
many jobs therefore will be tardy, and that hence a lot of idle
time will be inserted. In this case, however, the dominance
rules in Section 3 become more effective. Summarizing, we
have that the instances with T = 0.2, R = 0.2, and small 8 are
the hardest, and that the instances with T = 1.0, R = 1.0, and
B = 5 are the easiest.

Table 2 exhibits a summary of our computational results;
we only report the results for the instances with T and R
equal. For each combination of n (n = 8, 10, 12, 15, 20), of T
and R (T = R = 02,04, 0.6, 0.8, 1.0), and of B (8 = 2, 3, 4, 5),
we present the average number of nodes and the average
number of seconds; the average was computed over 5 in-
stances. All averages were rounded up to the nearest inte-
ger. The sign ‘— indicates that not all instances of this
particular combination could be solved without examining
more than 100,000 nodes.

We conclude that instances with up to 10 jobs are easy.
For n = 12, the instances with T = R = 0.2 require already
considerable effort. For n = 20, only the choice T = R = 1.0
induces instances that are solvable within reasonable time
limits. It is likely, however, that the performance of the
algorithm can be considerably enhanced by fine-tuning the

Eopyrght©200tAltRights Reserved



Branch-and-Bound Algorithm for Single-Machme Earliness-Tardiness Scheduling

Table II. Computational Results

B=2 B=3 B=4 B=5

n T, R nodes sec nodes sec nodes sec nodes sec
8 0.2 417 2 406 2 301 2 58 1
8 04 131 1 198 1 185 1 31 1
8 0.6 34 1 48 1 29 1 5 1
8 0.8 23 1 37 1 14 1 8 1
8 1.0 20 1 36 1 33 1 15 1
10 0.2 2,438 8 2,525 9 2,088 7 484 2
10 04 266 2 689 3 570 3 202 2
10 0.6 123 1 110 1 88 1 52 1
10 08 126 1 122 1 107 1 64 1
10 1.0 109 1 140 1 78 1 40 1
12 0.2 30,182 103 26,676 106 18,358 78 10,487 48
12 0.4 15,176 66 20,756 100 15,613 75 10,391 50
12 0.6 212 2 262 2 53 1 10 1
12 0.8 380 2 576 4 300 2 170 1
12 1.0 432 2 527 3 226 2 96 1
15 0.2 — — — — — — — —
15 04 — — — — — — — —
15 0.6 1,414 10 2,407 17 927 7 339 2
15 0.8 1,665 13 1,865 15 1,647 14 540 5
15 1.0 493 6 402 17 2,063 17 1,082 9
20 0.2 — — — — — — — —
20 0.4 — — — — — — — —
20 0.6 7,991 80 13,169 136 5,529 62 2,048 24
20 0.8 8,183 85 7,244 84 4,016 55 1,318 21
20 1.0 5,127 49 5,243 41 2,191 32 651 12

algorithm to these instances. In our implementation, all
lower bounds are computed in each node of the tree, but,
Lagrangian relaxation, for instance, is useless for instances
with T = R = 0.2. For an arbitrary given instance, however,
it is an interesting issue if we can decide beforehand which
lower bound approach will not be effective.

We have made no attempt to compare the performance of
our algorithm with the performance of the algorithms of Fry
and Leong® and Fry, Leong, and Rakes.!*! As pointed out in
the introduction, a standard integer linear programming
code, in general, cannot compete with a specialized algo-
rithm, which holds particularly true in scheduling. The
branch-and-bound algorithm by Fry, Leong, and Rakes!!
uses two simple lower bounds: the one bound is based upon
the scheduling of a single job only, which gives weak
bounds; the other bound is based on minimizing = C, and
gives a weaker version of our bound presented in Section
3.1.

5. Conclusions

Theoretically, the insertion of machine idle time is a valid
instrument model to reduce earliness cost. We have consid-
ered an NP-hard machine scheduling problem in which the

insertion of idle time may be advantageous, and we have
presented a branch-and-bound algorithm for its solution.
The allowance of machine idle time complicates the design
of the algorithm substantially. Also, the performance of the
algorithm is quite bleak: this is because it is very difficult to
compute strong lower bounds.

Acknowledgment

The authors are grateful to Jan Karel Lenstra and the referees for
their helpful comments. The research of the first author was sup-
ported by a grant from Netherlands Organization for Scientific
Research (NWO).

References

1. K. BAKER and G. SCUDDER (1990). Sequencing with Earliness
and Tardiness Penalties: A Review. Operations Research 38, 22—
36.

2. H. EMMONS (1987). Scheduling to a Common Due Date on
Parallel Uniform Processors. Naval Research Logistics 34, 803
810.

3. T.D. FrY and G.K. LEONG (1987). A Bi-criterion Approach to
Minimizing Inventory Costs on a Single Machine when Early

Copyright © 2001 All Rights Reserved



12

Hoogeveen and van de Velde

Shipments are Forbidden. Computers and Operations Research 14,
363-368.

. T.D. FrRY, GK. LEONG, and T.R. RAKES (1987). Single Machine
Scheduling: A Comparison of Two Solution Procedures. Omega
15, 277-282.

. M.R. GAREY, RE. TARJAN, and G.T. WILFONG (1988). One-pro-
cessor Scheduling with Symmetric Earliness and Tardiness Pen-
alties. Mathematics of Operations Research 13, 330-348.

. RLL. GRAHAM, E.L. LAWLER, ].K. LENSTRA, and A.H.G. RINNOOY
KAN (1979). Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey. Annals of Discrete Math-
ematics 5, 287-326.

. N.G. HALL, W. KUBIAK, and S.P. SETHI (1991). Earliness-Tardi-
ness Scheduling Problems II. Deviation of Completion Times
about a Restrictive Common Due Date. Operations Research 39,
847-856.

. J.A. HOOGEVEEN, H. OOSTERHOUT, and S.L. VAN DE VELDE
(1994). New Lower and Upper Bounds for Scheduling around a
Small Common Due Date. Operations Research 42, 102-110.

. J.A. HOOGEVEEN and S.L. VAN DE VELDE (1991). Scheduling

11.

12

13.

14.

15.

Around a Small Common Due Date. European Journal of Opera-
tional Research 55, 237-242.

. J.A. HOOGEVEEN and S.L. VAN DE VELDE (1992). Minimizing Total

Inventory Cost on a Single Machine in Just-in-Time Manufacturing,
Memorandum COSOR 9220, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands.

J.A. HOOGEVEEN and S.L. VAN DE VELDE (1996). Earliness-tardi-
ness Scheduling Around Almost Equal Due Dates. INFORMS
Journal on Computing, to appear.

JJ. KANET and D.P. CHRISTY (1984). Manufacturing Systems
with Forbidden Early Order Departure. International Journal of
Production Research 22, 41-50.

C.N. POTTS and L.N. VAN WASSENHOVE (1985). A Branch-and-
Bound Algorithm for the Total Weighted Tardiness Problem.
Operations Research 33, 363-377.

W_.E. SMITH (1956). Various optimizers for single-stage produc-
tion. Naval Research Logistics Quarterly 1, 59—66.

S.L. VAN DE VELDE (1991). Machine Scheduling and Lagrangian
Relaxation, Doctoral Thesis, CWI, Amsterdam.

Copyright© 2001 Al RIghtsS Reserved



