Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells

Graphical Abstract

Highlights
- Crypt cell proliferation following small intestinal damage is IL-22 independent
- ILC3s amplify the magnitude of epithelial YAP1 signaling following damage
- Crypt cell proliferation and Lgr5 cell maintenance are independently regulated

Authors
Mónica Romera-Hernández, Patricia Aparicio-Domingo, Natalie Papazian, ..., Remco M. Hoogenboezem, Janneke N. Samsom, Tom Cupedo

Correspondence
t.cupedo@erasmusmc.nl

In Brief
Intestinal repair is driven by epithelial stem cells, but how these stem cells are instructed to initiate repair was unknown. Here, Romera-Hernández et al. report that epithelial proliferation after damage is independent of the stem cell-protective signal IL-22 but requires ILC3-dependent amplification of regenerative YAP1 signaling in stem cells.
Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells

Mónica Romera-Hernández, 1,3 Patricia Aparicio-Domingo, 1,4 Natalie Papazian, 1 Julien J. Karrich, 1,5 Ferry Cornelissen, 1 Remco M. Hoogenboezem, 1 Janneke N. Samsom, 2 and Tom Cupedo 1,6,*

1Department of Hematology, Erasmus University Medical Center, 3000CA Rotterdam, the Netherlands
2Department of Pediatrics, Division of Gastroenterology, Erasmus University Medical Center, 3000CA Rotterdam, the Netherlands
3Present address: Terry Fox Laboratory, University of British Columbia, Vancouver, BC, Canada
4Present address: Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
5Present address: Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands
6Lead Contact
*Correspondence: t.cupedo@erasmusmc.nl
https://doi.org/10.1016/j.celrep.2019.11.115

SUMMARY

Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined. Here we report that ILC3-driven epithelial proliferation and tissue regeneration are independent of IL-22. In contrast, ILC3s amplify the magnitude of Hippo-Yap1 signaling in intestinal crypt cells, ensuring adequate initiation of tissue repair and preventing excessive pathology. Mechanistically, ILC3-driven tissue repair is Stat3 independent, but it involves activation of Src family kinases. Our findings reveal that ILC3-driven intestinal repair entails distinct transcriptional networks to control stem cell maintenance and epithelial regeneration, which implies that tissue repair and crypt proliferation can be influenced by targeting innate immune cells independent of the well-established effects of IL-22.

INTRODUCTION

The intestinal epithelium forms a physical barrier that prevents translocation of commensal microorganisms, and defects in intestinal barrier integrity or maintenance have severe clinical impact (König et al., 2016; Peterson and Artis, 2014). Barrier loss activates deleterious immune responses and can lead to transmural ulcers and the need for parenteral nutrition (Sonis, 2004). Such complications are major dose-limiting side effects of high-dose chemotherapy for head-and-neck cancers or during myeloablative conditioning for hematopoietic stem cell transplantation as part of leukemia treatment (Keefe, 2007; Sonis, 2004). Insufficient intestinal barrier repair is a pathological feature underlying inflammatory bowel disease (IBD) (Hollander et al., 1986; Odenwald and Turner, 2013). Continuous bacterial translocation fuels reactivation of microbiota-specific T cells and subsequent disease recurrence in up to 40% of IBD patients in remission (Munkholm et al., 1994). Enhancing intestinal epithelial repair, also coined mucosal healing, has become a sought-after result in experimental and clinical IBD research, yet the cells and signals that enhance epithelial regeneration are still ill defined (Dulai et al., 2015; Florholmen, 2015; Neurath, 2014; Shah et al., 2016).

In contrast to the potentially deleterious consequences of overt antibacterial immune activation following barrier loss, innate immune cell-derived signals positively regulate intestinal regeneration (Aparicio-Domingo et al., 2015; Lindemans et al., 2015). Through production of interleukin (IL)-22, group 3 innate lymphoid cells (ILC3s) safeguard epithelial stem cells after acute small intestinal damage (Aparicio-Domingo et al., 2015). IL-22 is constitutively produced by small intestinal ILC3s (Savage et al., 2017), is important for homeostatic production of antimicrobial peptides (Liang et al., 2006), and drives stem cell proliferation in organoid cultures ex vivo (Lindemans et al., 2015).

Intestinal repair is driven by epithelial stem cell differentiation and subsequent proliferation of progenitor cells in crypts of Lieberkühn (Barker, 2014). Crypt regeneration is regulated by signaling pathways activated by signals from local niche cells (Kabiri et al., 2014; Medema and Vermeulen, 2011; Sato et al., 2011). Wnt and Notch signals control stem cell self-renewal (Cleurs et al., 2014); in addition, Wnt favors Paneth cell (PC) differentiation (van Es et al., 2005), and Notch controls absorptive versus secretory lineage choices (Tian et al., 2015). Hedgehog signaling drives progenitor cell proliferation (van Dop et al., 2010), while bone morphogenetic proteins (BMPs) activate the peri-cryptal mesenchyme to support the epithelial stem cell niche (He et al., 2004). The Hippo-YAP1 pathway is mostly active in response to damage, inhibiting Wnt and Notch signaling to drive early differentiation (Gregorieff et al., 2015; Imajo et al., 2015). IL-22 was also postulated to be a stem cell niche factor, derived not from structural cells but from intestinal ILC3s, and involved in intestinal repair (Hanash et al., 2012; Pickert et al., 2009).

In this study, we set out to define the role of ILC3-derived IL-22 during epithelial repair and to mechanistically interrogate this process. We show that in response to acute small intestinal damage, the stem cell protective cytokine IL-22 is dispensable for crypt cell proliferation and that in contrast, ILC3s modulate...
intestinal repair by controlling the amplitude of Hippo-YAP1 signaling. These findings unveil a unique layer of epithelial regulation, in which evolutionary conserved regenerative pathways are amplified by cells of the innate immune system, independent of the well-established effects of IL-22 (Hanash et al., 2012; Lindemans et al., 2015).

RESULTS AND DISCUSSION

Crypt Cell Proliferation after Stem Cell Damage Is IL-22 Independent

The ILC3-derived cytokine IL-22 positively affects recovery of Lgr5+ intestinal stem cells from small intestinal crypts after acute damage and induces epithelial proliferation in vitro (Aparicio-Domingo et al., 2015; Lindemans et al., 2015). Epithelial repair is independent of adaptive immunity, because proliferation of epithelial cells in response to damage is normal in Rag2−/− mice (Aparicio-Domingo et al., 2015). To determine the importance of IL-22 for small intestinal regeneraion, we compared pathology and crypt cell proliferation after methotrexate (MTX)-induced damage in IL-22-deficient mice and ILC3-deficient RORγt−/− mice. As we have shown before, absence of ILC3s increased tissue pathology in response to MTX (Aparicio-Domingo et al., 2015). In contrast, pathology in IL-22-deficient mice was similar to pathology of IL-22-sufficient littermate controls (Figure 1A). As a measure of crypt regeneration, we enumerated proliferating crypt cells during the regenerative phase of the response (day 4). This revealed that the severely reduced proliferation, characteristic of ILC3 deficiency (Aparicio-Domingo et al., 2015), was absent from IL-22−/− animals, in which crypt proliferation was indistinguishable from littermate controls (Figure 1B). We validated the IL-22 deficiency in our colony by generating Th17 cells from spleens and lymph node of naive mice and by isolating total T cells from lamina propria followed by restimulation with IL-23 and transcript analysis of IL-22 (Figure S1A). This led us to hypothesize that small intestinal crypt proliferation after acute MTX-induced damage can occur in an IL-22-independent manner, uncoupled from IL-22-dependent epithelial stem cell maintenance.
Figure 2. YAP1 Activation Drives Acute Small Intestinal Regeneration

(A) Fragments per kilobase of exon per million fragments mapped (FPKM) values of Yap1 target genes in LGR6-GFP^{hi} crypt cells analyzed by RNA sequencing at steady state (SS), one and four days after MTX.
To test this hypothesis directly, we neutralized IL-22 by antibody treatment in Lgr5-GFP stem cell-reporter mice during exposure to MTX. This allowed combined analyses of stem cell maintenance and crypt proliferation. Inhibition of IL-22 signaling was confirmed by downregulation of transcripts encoding prototypic IL-22 target genes Reg3g and Reg3b (Figure S1B). Upon neutralization of IL-22 signaling with antibodies during tissue damage, maintenance of Lgr5-GFP-expressing cells was impaired (Figure 1D). In contrast, crypt proliferation was unaffected (Figure 1D) and was similar to that found in control animals. Altogether, these data reveal that ILC3-dependent stem cell maintenance and crypt proliferation are mechanistically distinct responses to insult and that the early proliferative response following small intestinal injury is IL-22 independent.

YAP1 Signaling Drives Small Intestinal Regeneration

Given that small intestinal crypt proliferation occurred in an IL-22-independent manner, we set out to identify the epithelial repair programs activated by acute small intestinal damage. To this end, we analyzed changes in the epithelial stem cell transcriptome evoked by MTX immediately following induction of damage (day 1) and during regeneration (day 4). RNA sequencing of purified Lgr5-GFP

(YAP1) crypt cells revealed rapid transcriptional upregulation of target genes of the regeneration-associated Hippo-YAP1 pathway at one and four days after damage (Figure 2A and PCR validation in Figure S2A). Activation of YAP1 involves protein de-phosphorylation and subsequent nuclear translocation. Under homeostatic conditions, YAP1 localization in villus epithelium was exclusively cytoplasmic, while in crypt epithelial cells, both cytoplasmic and faint nuclear localization were observed, suggestive of continuous low-grade YAP1 activation (Figure 2B). MTX exposure induced YAP1 nuclear translocation in crypt epithelial cells (Figure 2B), in line with the increased transcription of YAP1 target genes. Concomitant to YAP1 activation, transcription of genes indicative of WNT (Figures 2C and S2B) and Notch (Figures 2D and S2C) signaling were reduced, in agreement with YAP1-dependent temporal repression of stem cell self-renewal, favoring rapid differentiation at the expense of stemness (Barry et al., 2013; Gregorieff et al., 2015; Yui et al., 2018). Indeed, transcription of genes associated with stem cell identity were reduced (Figure 2E), while transcription of genes associated with mature secretory cells, including goblet cells (GCs), PCs, and enteroendocrine cells (EECs) were all increased (Figures 2F and S2D–S2F), as was the proportion of phenotypic EECs in isolated crypts (Figures 2G and S2G).

YAP1 activates target gene transcription by binding to nuclear TEAD transcription factors (Zhao et al., 2008). The interaction between YAP1 and TEADs can be inhibited by verteporfin, a U.S. Food and Drug Administration-approved drug used for treatment of macular degeneration (Battaglia Parodi et al., 2016). To resolve the importance of YAP1 activation for small intestinal regeneration after MTX-induced damage, we blocked YAP1-TEAD interactions during MTX exposure. YAP1 inhibition increased tissue pathology, characterized by severe crypt abnormalities (Figure 2H) and a significant loss of crypt cell proliferation (Figure 2I), similar to the loss of regeneration in ILC3-deficient RORγt−/− mice. Altogether, these findings identify YAP1 activation as a dominant driver of early small intestinal crypt regeneration following acute damage.

YAP1 Activation Is Blunted in the Absence of ILC3s

Based on the importance of YAP1 activation and ILC3 presence for small intestinal regeneration, we hypothesized that activation of the Hippo-YAP1 pathway is controlled by ILC3s. To test this hypothesis, we analyzed YAP1 activation in mice lacking ILC3s. In RORγt−/− mice, YAP1 nuclear translocation was strongly reduced (Figure 3A), leading to a decrease in the percentage of crypts containing at least one cell per transverse section with nuclear YAP1 (Figure 3B) and thus an increase in crypts failing to activate YAP1. To molecularly define crypt responses in the absence of ILC3s, we crossed Lgr5-GFP reporter mice to ILC3-deficient RORγt−/− mice and analyzed the epithelial stem cell transcriptome after small intestinal damage by RNA sequencing. YAP1 activation in LGR5-GFP

(YAP1) epithelial cells from mice lacking ILC3s was severely blunted, and relative to homeostasis, no significant changes could be detected in most YAP1 target genes (Figures 3C and S3A). Diminished YAP1 activation was concomitant with failure to reduce WNT (Figure 3D) and Notch (Figure 3E) target genes and signaling components and an absence of both loss of stemness (Figure 3F) and induction of transcripts involved in mature secretory cell differentiation (Figure 3G). Similarly, the transient increase in EEC differentiation seen in control crypts (Figure 2G) was absent from crypts from RORγt−/− mice (Figure 3H), highlighting the functional consequences of reduced YAP1 activation. In line with our previous findings on crypt proliferation, transcription of YAP target genes was independent of adaptive immunity and occurred normal in RAG1−/− mice exposed to MTX. In contrast, pretreatment of RAG1−/− mice with Th1-depleting antibodies to broadly delete innate lymphoid cells (ILCs) hampered induction of YAP targets (Figure S3B). Altogether, these data reveal that the magnitude of Hippo-YAP1 signaling is amplified by presence of small intestinal ILC3s.
Activation of YAP1 Signaling in Intestinal Crypts Is Independent of IL-22

Our findings indicate that crypt proliferation and Lgr5 cell maintenance are independently regulated, fueled by YAP1 and IL-22, respectively. To assess whether IL-22 has a role in epithelial YAP1 activation after small intestinal damage, we quantified YAP1 activation in epithelial stem cells from mice exposed to MTX in the presence of IL-22-neutralizing antibodies. Lgr5-GFP hi crypt cells were analyzed by RNA sequencing one day after MTX. The efficacy of IL-22 neutralization was controlled by analysis of Reg3g and Reg3b transcription in purified PCs (Figure S3C).

IL-22 neutralization did not alter transcripts associated with YAP1 target genes, Wnt-related genes, Notch-related genes, intestinal stem cell genes, and secretory cell genes. (H) Percentages of EECs determined by flow cytometry in duodenal crypts at the indicated time points from RORγt−/− mice (red bars). Control mice (as in Figure 2G) are shown for comparison (black bars). EECs were gated as Live()+CD45−/−/Ter119−/−/CD31−/−/EpCAM1+Lgr5-GFP+CD24hiSSC− cells. Log2 fold change (DESeq2 analysis of count data) with **adjusted p < 0.01, *adjusted p < 0.05, or statistically not significant (not indicated) (C–F). FPKM values are plotted for transcripts that have statistically significant log2 fold change (DESeq2 analysis of count data) with **adjusted p < 0.01, *adjusted p < 0.05, or statistically not significant (not indicated). Unpaired Mann-Whitney test, *p < 0.01; statistically not significant (not indicated) (B and H). Error bars: SEM. n = 4–8 mice per group (A, B, and H), n = 3 mice per group (C–G). See also Figure S3.
YAP1 Activation Requires gp130 Dimerization and Src Family Kinase Activation

Damage-induced epithelial YAP1 activation can occur in response to various stimuli, including signaling through the IL-6 family receptor gp130 and mechanotension in response to altered extracellular matrix composition (Taniguchi et al., 2015). Mechanotension-induced YAP1 activation occurs during the later stages of tissue repair and involves activation of a discrete set of genes (Yui et al., 2018). Analyses of these mechanotension-associated genes in Lgr5-GFPhi stem cells after MTX-induced damage showed that these genes are either not transcribed or transcribed at similar levels in ILC3-deficient and control mice (Figures S4A and S4B), making it unlikely that this pathway is important during the initial ILC3-dependent activation of epithelial YAP1.

To define whether ILC3-driven YAP1 involved gp130 signaling, we first analyzed the transcriptome of Lgr5-GFPhi small intestinal crypt cells for the presence of gp130 and the cytokine-specific receptor chains that multimerize with gp130 to form functional receptor units. Under homeostatic conditions, as well as after damage, Lgr5-GFPhi crypt cells transcribed gp130, the il11ra1 chain, and low levels of Cntfr (Figures 4A and S4C). IL-6 can...
also signal via a soluble IL-6R that complexes with gp130, thereby precluding the necessity for cell-autonomous IL-6R transcription (Novick et al., 1989). Second, we determined transcription of reciprocal ligands for gp130 receptors by intestinal ILC3s. To this end, we purified CCR6+ ILC3s from the small intestine and performed transcriptional analyses by RNA sequencing and qPCR (Figure 4B). This revealed that small intestinal ILC3s transcribe Lif, Osm, and likely Il6, although there was discrepancy in Il6 detection by RNA sequencing and PCR (Figure 4B). The IL-6 and IL-11 pathways have been associated with multiple aspects of tissue regeneration, and alterations in these pathways are linked to IBD susceptibility and intestinal cancer progression (Garbers and Scheller, 2013; Katsanos and Papadakis, 2017; Taniguchi and Karin, 2014). Even though ILC3s do not transcribe IL-11, stromal cells can produce IL-11, indicating the possible involvement of a stromal cell relaying ILC3 signals to epithelial cells, a mechanism that we cannot exclude based on our current data. The IL-6 and IL-11 receptors homo-dimerize to form a specific receptor with a single IL-6R or IL-11R chain. To analyze possible involvement of gp130 homo-dimerization in Yap1 activation, we used a small molecule inhibitor of this process (LMT-28) (Hong et al., 2015). LMT-28 application during the induction of small intestinal damage with MTX reduced nuclear translocation of YAP1 in crypt epithelial cells, reduced the percentage of crypts containing at least one cell with nuclear YAP1 per transverse section, and thus increased the number of crypts that failed to activate YAP1-driven regeneration (Figure 4C). Downstream of gp130-associated receptors signals are transduced either by STAT3 signaling or by activation of Src family kinases (SFKs) (Taniguchi et al., 2015). To assess the importance of these two pathways, we inhibited STAT2/3 signaling with the small molecule inhibitor STATTIC and SFK activity with the pharmacological inhibitor PP2. Efficiency of STAT inhibition was controlled by analyses of known STAT3 target genes (Figure S4D). Inhibition of STAT3 signaling also blocks IL-22 receptor signaling, highlighted by the failure of Lgr5+ stem cell maintenance following MTX damage (Figure 4D). In contrast, the YAP1-dependent proliferative response at day 4 after MTX was not affected by STAT2/3 inhibition (Figure 4E), indicating that STAT molecules are not involved in this process. Administration of the SFK inhibitor PP2 prevented nuclear translocation of YAP1 in small intestinal crypt cells (Figure 4F) and resulted in increased crypt pathology and loss of crypt proliferation (Figure 4G), reminiscent of the regenerative defects in ILC3-deficient RORyt−/− mice. These findings again highlight the dichotomy between stem cell maintenance, which is both ILC3 and IL-22 dependent, and crypt proliferation, which is ILC3 dependent yet IL-22 independent.

Collectively, our findings reveal that the evolutionary conserved, regeneration-associated Hippo-YAP1 signaling pathway is amplified by presence of ILC3s, independent of the stem cell-protective effect of IL-22. This implies that immune cell-driven tissue regeneration is the sum of multiple parallel pathways, including the well-established IL-22R signaling pathway, as well as ILC3-dependent YAP1 activation, as shown in this report. The mechanistic uncoupling of stem cell protection and crypt regeneration could suggest that ILC3s act not only on LGR5-expressing intestinal progenitors but also on additional damage-associated epithelial precursor subsets (Ayyaz et al., 2019; Tian et al., 2011).

Our study does not discriminate between direct and indirect epithelial activation by ILC3s. ILC3s may be activating a cell population that functions as an intermediate between ILC3s and epithelial cells, such as crypt-associated mesenchymal stromal cells. Altering the stromal cells adjacent to the intestinal crypts could be part of the mechanistic underpinnings of ILC3-driven tissue repair. Further work is needed to elucidate the exact ILC3- and YAP1-dependent epithelial repair mechanisms.

YAP1-driven intestinal regeneration is critical for epithelial proliferation after intestinal damage in insects (Karpowicz et al., 2010; Ren et al., 2010; Shaw et al., 2010). Nevertheless, ILC3s are present only in mammals and fish (Hernandez et al., 2018) and are lacking from more primitive organisms (Lane et al., 2009). Combined with our findings, this implies that evolution favored a complementary layer of crypt regulation driven by specialized innate immune cells. This paves the way for future design of novel targeting strategies aimed at activating ILC3-driven tissue repair in IBD or reducing side effects of anticancer therapies, independent of IL-22.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **LEAD CONTACT AND MATERIALS AVAILABILITY**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Small intestinal damage
 - Cytokine modulation during MTX treatment
 - Cryopreservation
 - Flow cytometry and cell sorting
 - RNA sequencing
 - Histology
 - Immunohistochemistry
 - Transcript analysis
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
- **DATA AND CODE AVAILABILITY**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2019.11.115.

ACKNOWLEDGMENTS

Neutralizing IL-22 antibodies and IL-22-deficient mice were provided by Genentech. This work was supported by ZonMW Innovational Research Incentives Vidi grant 91710377 to T.C., Veni grant 91615128 to F.C., and by the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007–2013 under REA grant agreement 289720.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 25, 2019
Revised: October 8, 2019
Accepted: November 27, 2019
Published: January 7, 2020

REFERENCES

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti IL22 (8E11)</td>
<td>Genentech</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse IgG1 isotype control (MOPC-21)</td>
<td>BioXCell</td>
<td>Cat#BE0083; RRID:AB_1107784</td>
</tr>
<tr>
<td>Anti-mouse CD45 (30F11)</td>
<td>Invitrogen</td>
<td>Cat: MCD4517; RRID:AB_10392557</td>
</tr>
<tr>
<td>Rat anti-mouse EpCAM1 (G8.8)</td>
<td>Biolegend</td>
<td>Cat# 118218; RRID:AB_2098648</td>
</tr>
<tr>
<td>Rat anti-mouse CD24 (M1/69)</td>
<td>Biolegend</td>
<td>Cat# 101814; RRID:AB_439716</td>
</tr>
<tr>
<td>Rat anti-mouse CD31 (390)</td>
<td>Biolegend</td>
<td>Cat# 102424; RRID:AB_2650892</td>
</tr>
<tr>
<td>Rat anti-mouse Ter119 (TER-119)</td>
<td>Biolegend</td>
<td>Cat# 116234; RRID:AB_2562917</td>
</tr>
<tr>
<td>Mouse anti-mouse/rat Ki-67 (MIB-5)</td>
<td>Agilent (Dako)</td>
<td>Cat# M7248; RRID:AB_2142378</td>
</tr>
<tr>
<td>Anti-mouse Yap1 (D8H1X)</td>
<td>Cell signaling</td>
<td>Cat# 14074; RRID:AB_2650491</td>
</tr>
<tr>
<td>Anti-mouse CD16/CD32 (2.4G2)</td>
<td>BD Biosciences</td>
<td>Cat # 553142; RRID:AB_394657</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staticc</td>
<td>Sigma</td>
<td>Cat# S7947</td>
</tr>
<tr>
<td>Verteporfin</td>
<td>Selleck Chemicals</td>
<td>Cat # S1786</td>
</tr>
<tr>
<td>PP2</td>
<td>Sigma</td>
<td>Cat # P0042</td>
</tr>
<tr>
<td>LMT-28</td>
<td>Sigma</td>
<td>Cat# SML1628</td>
</tr>
<tr>
<td>XMU-MP-1</td>
<td>Tocris</td>
<td>Cat # 6482</td>
</tr>
<tr>
<td>DMSO</td>
<td>Sigma</td>
<td>Cat# 276855-100ML</td>
</tr>
<tr>
<td>3',3'-diaminobenzidine tetrahydrochloride</td>
<td>Sigma</td>
<td>Cat# D5905</td>
</tr>
<tr>
<td>Tissue-Tek O.C.T compound</td>
<td>Sakura Finetek Europe B.V.</td>
<td>Cat # 4582</td>
</tr>
<tr>
<td>Pro-long Gold with DAPI</td>
<td>Invitrogen</td>
<td>Cat# P36935</td>
</tr>
<tr>
<td>Clinical grade Methotrexate (Emthexate PF) Pharmachemie (TEVA group)</td>
<td>Cat # 51,245,305</td>
<td></td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectastain Elite ABC Kit</td>
<td>Vector Laboratories</td>
<td>Cat# PK-6100</td>
</tr>
<tr>
<td>NucleoSpin RNA XS kit</td>
<td>Machery Nagel</td>
<td>Cat# 740.902.250</td>
</tr>
<tr>
<td>Ovation PicoSL WTA System V2</td>
<td>NuGen</td>
<td>Cat# 3312-48</td>
</tr>
<tr>
<td>SensiFAST SYBR Lo-Rox kit</td>
<td>BioLine</td>
<td>Cat# BIO-94050</td>
</tr>
<tr>
<td>SMARTer Ultra Low RNA kit</td>
<td>Clontech Laboratories</td>
<td>Cat# 634891</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lgr5-GFPi stem cells; +/- MTX; +/- Rorgt</td>
<td>ArrayExpress</td>
<td>E-MTAB-6639</td>
</tr>
<tr>
<td>CCR6+ ILC3 from small intestine</td>
<td>ArrayExpress</td>
<td>E-MTAB-8387</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: C57BL/6JOlaHsd</td>
<td>Envigo</td>
<td>https://www.envigo.com/products-services/research-models-services/models/research-models/mice/inbred/c57bl-6-inbred-mice/c57bl-6olahsd/</td>
</tr>
<tr>
<td>Mouse: B6.129P2(Cg)-Rorc tm1Litt/J mice</td>
<td>Jackson</td>
<td>https://www.jax.org/strain/007572</td>
</tr>
<tr>
<td>Mouse: IL-22 +/-</td>
<td>Genentech</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: Lgr5-GFP-iRES-creERT2</td>
<td>Jackson</td>
<td>https://www.jax.org/strain/008875</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For primer sequences see Table S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASAVA</td>
<td>Illumina</td>
<td>https://www.illumina.com/</td>
</tr>
<tr>
<td>Flowjo v10</td>
<td>Becton Dickinson</td>
<td>https://www.flowjo.com/</td>
</tr>
<tr>
<td>Prism 8</td>
<td>GraphPad</td>
<td>https://www.graphpad.com/scientific-software/prism/</td>
</tr>
</tbody>
</table>
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tom Cupedo (t.cupedo@erasmusmc.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C57BL/6, B6.129P2(Cg)-Rorc^{tm2Litt}/J (ROR^{gt-GFP}), IL-22^{/C0}/C0 (Kindly provided by Genentech, South San Francisco, CA), Lgr5-GFP-IRE^s-creERT2 (Lgr5-GFP) and Lgr5-GFP/ROR^{gt-GFP} mice were bred at the animal facility of the Erasmus University Medical Center Rotterdam. Animal experiments were approved by the institutional review board of the Erasmus University Medical Center in the context of animal experiment license# AVD101002016692. A mix of male and female age-matched mice were used for all experiments.

METHOD DETAILS

Small intestinal damage
8-12 weeks old mice were injected i.p. with 120 mg/kg clinical grade Methotrexate PCH at day-1 and with 60 mg/kg at day 0. Tissues were collected at day 1 and day 4 after the last MTX injection.

Cytokine modulation during MTX treatment
150 µg anti-IL-22 antibody (8E11, kindly provided by Genentech, South San Francisco, CA) or mouse IgG1 isotype control (MOPC-21, BioXCell) were administered i.p to Lgr5-GFP^{/C0} mice every 2 days, starting 4 days before the first MTX dose, until day 2 after the last MTX dose. Static (Sigma) was injected at day –1 and day 0 at 0.5 mg/ml in 2.5% DMSO. Control mice were injected with 2.5% DMSO. Verteporfin (Selleckchem) and PP2 (Sigma) were administered at day –1, day 0 and day 1 and mice were analyzed at day 4. Verteporfin was dissolved at a final concentration of 10 mg/injection and PP2 at 1 mg/injection. Both were dissolved in 10% DMSO. Control mice received 10% DMSO. LMT-28 was injected i.p at 5 mg/kg, at days –1, 0 and 2. Control mice were given the same volume of saline containing 10% ethanol.

Crypt isolation
Isolation of intestinal crypts was performed as previously described (Sato et al., 2009). Briefly, isolated small intestines were opened longitudinally and washed with cold PBS. 5 mm pieces were washed with cold PBS, incubated in EDTA (2 mM) at 4°C for 30 min and resuspended in PBS. Crypt-enriched sediments were passed through a 70 µm cell strainer and centrifuged at 200 g for 2 min to separate the crypts from single cells. Crypts were incubated with 1 mL of TrypLE Express (GIBCO) + Dnase I (Merk Millipore) at 37°C for 10-15 min until crypt dissociation was observed. Single cell suspensions were filtered through 40 µm cell strainer and labeled with conjugated antibodies.

Antibodies
The following antibodies were used for flow cytometry: CD45 (30F11; Invitrogen); EpCAM-1 (G8.8), CD24 (M1/69), CD31 (390), Ter119 (TER-119;); all from BioLegend. Dead cells were excluded with 7AAD (Beckman coulter). Antibodies used for paraffin immunostaining were: rat anti-mouse Ki67 monoclonal antibody (MIB-5, Dako) and rabbit anti-mouse Yap1 antibody (D8H1X, Cell signaling).

Flow cytometry and cell sorting
Fc receptors were blocked with appropriate sera or rat-anti-mouse CD16/CD32 (2.4G2; BD Biosciences). All labelings were performed in PBS containing 2% heat-inactivated fetal calf serum (FCS) at 4°C. Labeled cells were analyzed on a FACS LSRII (BD Biosciences) and data processed with FlowJo software (FlowJo, LLC).

RNA sequencing
cDNA was prepared using SMARTer Ultra Low RNA kit (Clontech Laboratories) for Illumina Sequencing following the manufacturer’s protocol. For intestinal stem cells and ILC3, sorted cells from 3 individual mice were pooled per data point. The Agilent 2100 Bioanalyzer and the High Sensitivity DNA kit were applied to determine the quantity and quality of the cDNA production. Amplified cDNA was further processed according to TruSeq Sample Preparation v.2 Guide (Illumina) and paired end-sequenced (2x75bp) on the HiSeq 2500 (Illumina). Demultiplexing was performed using CASAVA software (Illumina) and the adaptor sequences were trimmed with Cutadapt (https://cutadapt.readthedocs.io/en/stable/). Alignments against the mouse genome (mm10) and analysis of differential expressed genes were performed with DESeq2 in the R environment on the raw fragment counts extracted from the BAM files by HTSeq-count (Gröschel et al., 2014). Cufflinks software was used to calculate the number of fragments per kilobase of exon per million fragments mapped (FPKM) for each gene.
Histology
Small intestinal tissue pieces (5 mm) or Swiss rolls were fixed in 4% PFA (4h, room temperature), washed in 70% ethanol and embedded in paraffin. Four-μm sections were deparaffinized and stained with hematoxylin (Vector Laboratories) and eosin (Sigma-Aldrich). For Ki67 and YAP1 detection, endogenous peroxidases were blocked in 1% periodic acid in deionized water for 20 min, and antigen retrieval was achieved by microwave treatment in citrate buffer (10mM, pH 6.0). Prior to staining, Fc receptors were blocked in 10% normal mouse serum and 10% of normal serum matching the host species of the secondary antibody, 10 mM Tris buffer, 5 mM EDTA, 0.15 M NaCl, 0.25% gelatin, and 0.05% Tween-20 (pH 8.0). Tissue sections were incubated overnight at 4°C with primary antibodies in PBS supplemented with 2% normal mouse serum. Immunoreactions were detected using biotinylated donkey anti-rat (Dako) and goat-anti-rabbit (Vector Laboratories) and incubated with the Vectastain ABC Elite Kit (Vector Laboratories) and 3,3'-diaminobenzidine tetrahydrochloride (Sigma-Aldrich). Sections were counterstained with hematoxylin. Pathology scores and enumeration of Ki67 and Yap1 were performed blinded. Pathology was scored as previously described (de Koning et al., 2006) and Ki67-expressing cells were counted in 7 to 15 crypts per section.

Immunohistochemistry
Tissues were frozen in Tissue-Tek O.C.T compound (Sakura Finetek Europe B.V.) and stored at −80°C. Six μm cryosections were fixed for 5 min in ice-cold acetone and air-dried for 10 min, and subsequently blocked with 5% normal mouse serum and 5% normal donkey serum for 15 min. Sections were incubated with primary antibody for 1 hr. at room temperature, followed by a 30min incubation with secondary antibodies. Sections were embedded in Pro-long Gold with DAPI (Invitrogen) and analyzed on a Leica DMRXA.

Transcript analysis
RNA was extracted using the NucleoSpin RNA XS kit (Machery Nagel). RNA from sorted cells was amplified with the Ovation PicoSL WTA System V2 (NuGen) according to manufacturer’s protocol. For quantitative PCR, a Neviti Thermal Cycler (Applied Biosystems) and SensiFAST SYBR Lo-Rox kit (BioLine) were used, with the addition of MgCl2 to a final concentration of 4 mM. All reactions were performed in duplicate and normalized to the expression of Gapdh or Cyclophilin. Relative expression was calculated by the cycling threshold (CT) method as $2^{-\Delta CT}$. The primers sequences can be found in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS
Samples were analyzed using unpaired Mann-Whitney test or Unpaired t test as indicated in figure legends. P values < 0.05 were considered significant. Data are shown as mean ± SEM.

DATA AND CODE AVAILABILITY
The accession numbers for the RNA sequencing data reported in this study are ArrayExpress: E-MTAB-6639 and E-MTAB-8387.