Single-machine Scheduling with Release
Dates, Due Dates and Family Setup Times

J. M.J. Schutten » S. L. van de Velde « W. H. M. Zijm

Faculty of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

e address the NP-hard problem of scheduling » independent jobs with release dates, due

dates, and family setup times on a single machine to minimize the maximum lateness.
This problem arises from the constant tug-of-war going on in manufacturing between efficient
production and delivery performance, between maximizing machine utilization by batching
similar jobs and maximizing customers’ satisfaction by completing jobs before their due dates.
We develop a branch-and-bound algorithm, and our computational results show that it solves
almost all instances with up to about 40 jobs to optimality. The main algorithmic contribution
is our lower bounding strategy to deal with family setup times. The key idea is to see a setup
time as a setup job with a specific processing time, release date, due date, and precedence
relations. We develop several sufficient conditions to derive setup jobs. We specify their param-
eters and precedence relations such that the optimal solution value of the modified problem
obtained by ignoring the setup times, not the setup jobs, is no larger than the optimal solution
value of the original problem. One lower bound for the modified problem proceeds by allowing
preemption. Due to the agreeable precedence structure, the preemptive problem is solvable in
O(n log n) time.
(Scheduling; Maximum Lateness; Family Setup Times; Branch-and-bound; Setup Jobs; Preemption)

1. Introduction

In the last two decades, we have seen dramatic
changes of the conditions under which manufactur-
ing organizations have to operate and the objectives
they have to meet. Next to efficiency, quality and de-
livery reliability have become key performance crite-
ria (cf. Deming 1982, and Blackburn 1991). In partic-
ular, the ability to cut manufacturing lead times and
to meet tight due dates determines a company’s com-
petitive position.

In machining environments, such as a part manufac-
turing shop, the combined goal of efficient and effective
production may lead to complex control problems. Ef-
ficient production in such an environment is achieved
by minimizing the loss of capacity due to setups and
thus by combining jobs with similar setup characteris-
tics. Effective production in an order-driven environ-
ment is achieved by completing jobs before their due
dates, or at least by minimizing lateness. Clearly, these

0025-1909/96/4208/1165$01.25
Copynight © 1996, Institute for Operations Research
and the Management Sciences

two objectives may be conflicting: Clustering jobs with
similar setup characteristics may lead to the lateness of
others. Any solution to these problems should therefore
be based on a combination of batching and sequencing
considerations. These problems are often dealt with hi-
erarchically. On a higher level, batch sizes (or run
lengths) of jobs of the same or similar nature are deter-
mined; sequencing these batches is then a lower level,
short term decision. Maintaining this hierarchical ap-
proach under the current market conditions with in-
creasing product diversity and decreasing product life
cycles, however, may lead to unacceptable results, in-
cluding a poor delivery performance and obsolete
stocks. This creates the need to cluster the jobs dynam-
ically, depending on the workload.

This paper addresses the combined setup/due date
problem in a relatively simple but, in our experience,
highly relevant setting. We consider the following prob-
lem, in which a set J of n independent jobs [, ...,],

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996 1165

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZiJ]M

L Single-machine Scheduling

ad
i

need to be processed on a single-machine. Each],
(j =1,...,n) needs uninterrupted processing during
a given positive time p,, becomes available for pro-
cessing at its release date r,, and should be completed
by its due date d,. The machine is available from
time 0 onwards and can process no more than one job
at a time. The jobs are partitioned into families %, . . .,
., and f(j) is the index of the family to which job],
belongs. If we schedule two jobs that belong to dif-
ferent families contiguously, then we need a given
nonnegative setup time s, in between that is com-
pletely specified by the family & to which the second
job belongs. We also assume that we need a setup for
the first job of each family. No setup is needed when
jobs of the same family are scheduled contiguously.
During a setup time no processing of jobs is possible.
The machine may be set up for a particular job prior
to its release date. The set of jobs between two sub-
sequent setups are said to be scheduled in the same
batch. . 4 ‘

Without loss of generality, we assume that all
data are integral. A feasible schedule o satisfies all
these conditions and specifies for each], a completion
time C,(¢). For a given schedule o, we compute the
lateness of], as L(0) = C,(0) — d,. If L(0) =< 0, then
], is early; otherwise it is tardy. The maximum lateness
of o is defined as Lp.(0) = max;<,<, L,(0). The prob-
lem is to find a schedule with the smallest maximum
lateness L}..x among all feasible schedules. This prob-
lem is NP-hard, even in the case of no family setup
times (Lenstra, Rinnooy Kan and Brucker 1977) and
in the case of equal release dates (Bruno and Downey
1978). In the remainder, we follow the three-field no-
tation proposed by Graham, Lawler, Lenstra and
Rinnooy Kan (1979) to classify machine scheduling
problems; our problem is accordingly denoted as
17,, 5| Liax-

The presence of release dates is consistent with
MRP-controlled environments. Also, the problem 1}|7r,,
S:| Lmax appears as a subproblem in decomposition-
based approaches for job-shop scheduling with setup
times, such as the shifting bottleneck approach of Ad-
ams et al. (1988). The extension of this approach to
hybrid job shops, including parallel machines at sev-
eral stages, family setup times and additional re-
source constraints, like operators, cutting tools, and

1166

1

fixtures, is the focus of a research project at the

University of Twente in cooperation with the part
manufacturing shops of several industrial companies;
see for instance Meester and Zijm (1993). The choice
of minimizing maximum lateness is again motivated
by industrial experiences.

Although the interest in combined batching and
scheduling approaches in manufacturing is growing
(see e.g. Potts and Van Wassenhove 1992), we are not
aware of any research addressing this particular prob-
lem. We feel therefore that this paper fills an impor-
tant gap in that it addresses a fundamental practical
problem. Also, it makes a contribution in terms of al-
gorithmic design for solving this type of NP-hard
problem by branch-and-bound, in general, and in
terms of lower bound computing for problems with
setup times, in particular. The lower bounds that
work well for the problem without family setup
times, 1|7,| Lyax, including. Carlier's bound (Carlier
1982) and the preemptive lower bound obtained by
allowing the interruption of the processing of a job
and resumption later on, can be applied to our prob-
lem only if we ignore the setup times completely,
which of course may result in weak lower bounds. For
instance, the preemptive lower bound obtained by
solving the 1|r, pmin|Ly., problem is found by
Horn's algorithm in O(n log n) time (Horn 1974); in
contrast, the preemptive problem 1|7, s,, pmtn| Ly
is NP-hard, since 1|s,|Lyax is (Bruno and Downey
1978). ,

Our key observation is that we may regard any setup
as the processing of an imaginary setup job of length
equal to the setup time of the family associated with it.
We will develop sufficient conditions for establishing
that certain jobs belonging to the same family are not
processed in the same batch. The implication is that
these jobs are separated by a setup job for which we can
specify precedence relations, a release time, and a due
date. In §2, we describe how the derivation and speci-
fication of the setup jobs takes place. Let § be the set of
setup jobs that are derived in this way. For any instance
I of 1|7, 5;| Lmax, We can then construct an instance I’ of
1|7, prec| Lnax with job set § U 8, where prec indicates
the presence of precedence relations between the jobs.
In fact, the precedence canstraints have a specific struc-
ture in our application and induce instances of what we

MANAGEMENT SCIENCE /Vol. 42, No. 8, August 1996

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIJM
Single-machine Scheduling

term the 1]r,, setup-prec| Ly, problem. The crux is that
for any instance I and I’ constructed in this way, we
have that L}..(D) = L}...(I'), with L%, (D) and L%, (I")
the optimal solution values for these instances. Hence,
a lower bound on L, (I) can be computed by comput-
ing a lower bound on L% (I'). In §3, we compute a
lower bound on L3..(I') by solving the preemptive
problem 1|7;, setup-prec, pmin|L,,,,. We show that this
problem is solvable in O(n log 1) time due to the agree-
able precedence structure. Section 4 reports on our im-
plementation of the branch-and-bound algorithm and
on our computational experiments; our results show
that we can solve instances up to 40 jobs to optimality.
In §5, we draw some conclusions and point out future
research directions. ’

2. Derivation of the Setup Jobs

We derive two types of setup jobs: Separating setup jobs
that have precedence relations, and unrelated setup jobs
that have no precedence relations. We call the jobs in §
the real jobs to distinguish them from the setup jobs. In
the remainder, we let § be the set of setup jobs. Also, we
let > and < mean “has to follow” and “has to precede,”
respectively.

In §2.1, we discuss the prerequisites of our approach
to derive setup jobs, including a proof that a setup can
indeed be seen as a setup job with a specific processing
time, release date, due date, and precedence relations.
We point out that the setup jobs should be consistent
with each other and introduce a measure for the
strength of a setup job. Finally, we also derive the so-
called initial setup jobs. In §2.2, we discuss the logic
behind the derivation of separating setup jobs and our
two strategies to actually derive them. In §2.3, we derive
a different type of setup jobs which do not involve prec-
edence relations.

2.1. Preliminaries '

Consider any instance I of 1|7/, 5,| Lyax and let I’ be the
instance of 1|r;, setup-prec| Lim.x obtained from I by ig-
noring the family setup times. Hence, we have that
L3a(I') = Lia(D). Suppose now that we have estab-
lished, one way or the other, that in every optimal
schedule for I all jobs in .4 C ¥ precedeall jobs in BC ¥,
(B+ &) and no job from 4 and no job from Bare sched-
uled in the same batch. This then means that there must

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

be at least one separating setup associated with family ¥,
between the last job belonging to 4 and the first job
belonging to B. Theorem 1 validates our key idea that
this setup can be viewed as a separating setup job with a
specific processing time, release date, due date, and
precedence relations. ‘

THEOREM 1. We still have that L%, (I') < L, (D), if
we add a setup job |, to I' withp, =s,,], > [}, forall], € 4,
<], foral] € %Br =min,legi\,, 1, — s, and d,
= min],ea (d; - P])-

PROOF. It only remains to be shown that the speci-
fication of r, and d, is correct. Consider any optimal
schedule o for I and any setup for family & that suc-
ceeds all jobs from 4 and precedes all jobs from B in
this schedule. We associate the setup job J, with this
setup. We may assume that this setup occurs immedi-
ately before the execution of the job it is needed for.
Since this may be any job in & \4, the release date of J,
follows. Let o’ be the feasible schedule for I’ obtained
from o in the following way: Let the sequence of the
real jobs in o' concur with the sequence in o, and re-
place the setups with their associated setup jobs, if they

“have one. Note that C,(¢') = C(o) for all], € §, and

therefore L(o') = L(o) = L. (D. If we assign d, as
proposed, we have thatd, = d; — p,and J; <], for some
J; € B, and hence that

L(o') = C(o') - d, = C(o') -

=Clo) —d =L(o) = Lt..(D.

Thus, we proved that L (6') =< L.(D) for every job in
I’, and therefore L:,ax(I') = Lpa(o’) < L (D. O

The crux is that the addition of this separating setup
job may improve the value L%, (I'), and thus the lower
bound on Ly, (]). In the remainder, if we add a setup
job to I separating some sets 4 and B, then we implicitly
assume that it has the release date, due date and prec-
edence relations as specified in Theorem 1.

It is not sensible, even if it were possible, to consider
all possible <4 and 8. The following subsets enable sys-
tematic procedures for deriving setup jobs. Let Ji; € ,
denote the job with the jth smallest release date in fam-

-d-p)

llyg Foranyfamllygandanya =1...,|%9| and b
I‘.VI define
Por =i+ - -, Jimh
1167

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIJM
Single-machine Scheduling

From now on, we restrict our attention to subsets 4
= P}, and subsets B = P} 5, with 1 = k'< |¥]| and k
< 1=]9|, for deriving setup jobs. .

We may not just derive setup jobs as we please. We
have to make sure that the setup jobs are consistent with
each other. For instance, if we have already derived a
setup job between job sets .4 and B, then we may not
add another setup job between the subsets <4’ + (J and
B if A’ € 4 and B’ < B. To ensure the derivation of
consistent setup jobs, we introduce the notion of induc-
tion. We say that the jobs in 4 left-induce J;, the jobs in
Bright-induce J,, and the setup job J, is induced by family
%, We construct a so-called induction graph § = (JU §,
J0), in which there is an arc (J;, J) in & with J, € §and
], € #if and only if], right-induces J,. Similarly, there is
an arc (J,, J,) in % if and only if], left-induces J,.

OBSERVATION 1. If we only consider subsets A=, and
B = P{|s, for deriving setup jobs, then the induction graph
corresponds to a set of consistent setup jobs if in its transitive
reduction, obtained from & by removing all arcs that are
implied by transitivity, each |, € J has at most one
ingoing and at most one outgoing arc in X.

Accordingly, we may add a setup job to I" if this con-
dition remains satisfied. Throughout this section, we as-
sume that this is so. ‘

The rank of a setup job is defined as the number of
jobs it separates. If .4 U B = &, then the separation, and
thereby the setup job J;, is the strongest possible: We
then say that J, has full rank. If |.A U B| < |%], then in
fact J, separates at least the job sets 4 and B: We do not
know yet on which side of J; the other jobs in & will be
scheduled. The rank of J, is then equal to |4 U B|. In-
tuitively, we prefer setup jobs of high rank. The aim of
this section is to derive such setup jobs in the root node
of the branch-and-bound tree.

One particular type of setup job of full rank is a sitting
duck: For every family ¥, we need a setup job just be-
fore the processing of its first job. Accordingly, we may
introduce an initial setup job J; for family & with p, = s,,
d, = minjes, @, — p), Ji’< Jj, for all J, € %, and I,
= min]’eg 1, — 8.

2.2, Deriving Separating Setup Jobs

The separating setup jobs are derived through sufficient
conditions for having an optimal schedule in which par-
ticular jobs of the same family are not scheduled in the

1168

same batch. Wé stipulate these conditions in terms of a
lower bound Ib and an incumbent upper bound ub on
L% (), each proceeding from the assumption that
L*..(D < ub. 1t is irrelevant how these Ib and ub are
obtained. However, the tighter Ib and ub are, the more
effective ‘these conditions will be. In fact, there is a
strong interaction between deriving setup jobs and com-
puting lower bounds; after all, the more setup jobs are
derived, the stronger the lower bound is likely to be.

The logic behind the derivation of separating setup jobs
is the following, Suppose we want to put two jobs in the
same batch. If the release and due dates of these jobs pro-
hibit that these jobs are scheduled contiguously, then the
machine is idle in between their processing, if no other job
belonging to the same family is available for processing.
If this idle time period T is too long, then saving a single
setup does not make up for what is essentially a loss of machine
capacity. We have two strategies to conclude that T is ef-
fectively too long: (i) If T is so long that we can perform
a setup for family % in the meantime, and (ii) If a lower
bound for the case that we leave the machine idle during
period T is equal to or larger than the incumbent upper
bound. We formalize these strategies below.

In any optimal schedule, each J, is scheduled some-
where in the interval [r,, d, + LEx(D1 (=1, ..., n).
Accordingly, if L}, () < ub then the largest p0331ble
completion time of J,is d, = d, + ub — 1. We call job],
safely scheduled if r, + p, = C, =< d, + Ib; note that if each
job is safely scheduled, then we have an optimal solu-
tion o, since Ly (o) = Ib = L§,. (D). For any job set 4,
let r(4) = min;c,1,, and d(A) = max;e., d,, note that a
necessary condition for having L%, (I) < ub is that all
jobs in <4 are completed by time d(cA).

We are now ready to make the following observation,
which plays a key role in the derivation of the setup jobs.

OBSERVATION 2. Consider disjoint subsets .4 C & and

BC F with d(A) < r(B). If there exists a schedule o with
Liax(0) < ub that puts jobs from both .4 and Bin the same
batch, then it has the following properties:
. ® The machine is idle during the period T = [d(A), 1(B)],
if there is no job J; € #\(A U B) available for processing
during period T. This means that the machine is definitely
idle during period T if AU B= 9.

e The batch spans at least the interval [max;c, d -p),
mm],es (r; + p,)] ;

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE ‘'VELDE, AND ZI]M
Single-machine Scheduling

As pointed out before, a long idle time period T
makes it unlikely that there indeed exists an optimal
schedule in which some job from .4 and some job from
B are scheduled in the same batch. Or equivalently, a
long period T makes it likely that there exists an optimal
schedule in which no job from 4 and no job from B are
scheduled in the same batch.

The following theorem gives an effective means for
deriving setup jobs. It says that if T is large enough to
accommodate a setup for family %, then we may al-
ready introduce a setup job of full rank.

THEOREM 2. Suppose Ly (D) < ub. If thereis a fumzly
F(i=1,..., mandanindexk (k=1,...,|%| — 1), for
which

d(Pip) + 5, = 1(Phsas)s (1)

then we may introduce a setup job |, of full rank that sepa-
rates Piy from Pisy,js,)-

PROOF. Let o be any optimal schedule. There are two
cases to consider:

(i) There is no batch in o that contains a job from
P1.x as well as a job from P.1,;5,. In this case, there is a
setup between Py, and %i.q,s,.

(ii) There is a batch in o that contains a job from
Py as well as a job from P;,1,;5,. In this case, the ma-
chine is idle between (%}) and r(P}.1,s,); see Obser-
vation 2. We can then transform o into an equivalent
schedule in which a setup, performed during period

[d (Pi2), 7(Pir1,151)], splits this batch into two con-
secutlve batches of the same family.

Therefore, we may assume that in every optimal so-
lution a setup separates ?;; and Pi,q,5. O

The next theorem is a generalization of Theorem 2 to
derive setup jobs of smaller rank. If we cannot separate
the sets P;x and Pi.1,5,, then we may try to separate the
sets 1« and Pi.1s, for some I = 2. After all, the larger
lis, the longer the idle time period T gets if we want to
put some jobs belonging to these sets in the same batch.
The condition for testing if T gets too long is similar to
condition (1), albeit period T should also have room to

accommodate the “in-between jobs” Jixs1y, - - - , Jiksi-1-

THEOREM 3. Suppose Ly (I) < ub. If there is a family
F(G=1...,m,anindexkk=1,...,|%| — 1), and
anindex1 (1 =1,..., |9 | — k) such that the interval

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

[d(Pis), 1(Phsrs))] ()

is large enough to safely schedule each of the jobs Jis.1y, . . .,
Jix+1—1) and a setup for family 7, in it, then we may introduce
a setup job |, of rank || — 1 + 1 that separates the job sets
?1,1(and ‘Pk+l AR O

- We now come to our second strategy to derive setup
jobs. Suppose Ib(c4, B) is a lower bound for the case that
some unspecified job from 4 and some unspecified job
from Bare scheduled in the same batch. If Ib(.4, B) = ub,
then the sets -4 and B are obviously separated in any
optimal schedule if L},..(I) < ub. In §3, we show how
we compute such a bound.

THEOREM 4. Suppose Lt (D) < ub. If AP0
< r(?;H»I,lS,I) — s, and i
(P14, Pirris)) = ub, 3

forsomei, kandlwithl =i=m,1=k< |F|and1 =<1
= |F,| = k, then we may introduce a setup job of rank |F,|
— 1 + 1 that separates Py from Pi.y 5. O

2.3. Deriving Unrelated Setup Jobs

The derivation of unrelated setup jobs, which have no
precedence relations, proceeds by the premise that
batches of different families cannot overlap in time. Sup-
pose that d(Pi;) < r(Piur5) and d(P,) < r(Phyy,5,)) and
the intervals [d(P}), r(Pis15)] and [d(#},), r(Phis)]
overlap in time; that is, there is a point in time # such that
d_(?‘l,k) =si=< r(?;(+l,|9,|) and ‘T(?’l',a) =t=< r(ﬁ+b,|9,,|), with
at least one of these = signs holding as a strict inequality.
The conclusion must then be that we may at least sepa-
rate either P} and Pi.y, 15, or Pi, and Pr.pys,;, since the
machine can process no more than one batch at a time.
We may therefore introduce a setup job, but it has no
precedence relations, since we cannot associate the setup
job with either family. For the same reason, these unre-
lated setup jobs are quite weak. They have rank 0, and
their release and due dates are not very tight either.

THEOREM 5. If there are two families % and %, and in-
dices k, 1, a and_b for which the time intervals [d(; x)
(Pisr)s))] and [d(PL), 1(Phy,5,)] overlap, then we may
introduce a setup job], of rank 0 with

ps = min {s;, s,},
7, = min {r(?;:ﬂ,(y,() - 8 r(ﬁﬂ |9;,|) — si},

d,=max{ min (d, —
JE Phatis)

p])r mm (d - P,)}

P ivbim

1169

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIjJM
Single-machine Scheduling

Obviously, any number of families may be involved
in this type of derivation, but the resulting setup jobs
will then be even weaker.

3. Lower Bounds

In this section, we present first the preemptive lower
bound for the 1]|r,, setup-prec| Lya, problem. Then, we
show how we compute the bound Ib(Pix, Pisris)
needed in condition (3) to derive setup jobs.

First of all, however, we characterize the acyclic di-
rected precedence graph G induced by any set § of con-
sistent setup jobs. We assume that S contains for each
family at least the initial setup job. Let &, be the set of
separating setup jobs induced by the jobs in %. We have
as vertex set V = § U § and there is an arc (J, Ji) if and
only if J, < Ji. If there is an arc (J;, Jo), then], is an
immediate predecessor of J, and Ji is an immediate successor
of J,. If there is a path in G from], to Ji, then], is a
predecessor of Ji; Ji is then a successor of J;. There are
no arcs between the unrelated setup jobs and the real
jobs.

Let G' = (V, A) be the transitive reduction of this
graph, where A denotes the remaining arc set. The re-
lease dates may not be consistent with the precedence
constraints; i.e.,, we may have that r, < r; for some],
< J,. We therefore modify the release dates in the fol-
lowing way:

7; + max {r,, max (r, + pk)} forall ;e JUS.
Je<ly

This modification does not affect the optimal solutxon

The graph G’ then has the following properties:

¢ It decomposes into m arc-disjoint connected sub-
graphs, one for every family, on the one hand, and iso-
lated vertices representing the unrelated setup jobs, on
the other hand.

« For any arc (Jj, Ji) € A, we have that n+p=rt.

* For any arc (J,, Ji) € A, we have that if], € §, then
Jx € 8, and, conversely, if J; € S, then J; € §.

e Each job in § has at most one immediate successor
and at most one immediate predecessor.

¢ There are O(n) arcs; this means that the release date
modification can be carried out in O(n) time.

The following lemma stipulates a most agreeable

property of G'.
LEMMA 1. If], <], then we have that d, < di — p;.

1170

PROOF. Suppose J, is a setup job; i is then a real job.
Then, due to the way the separating setup jobs are spec-
ified, we have that d, = d; — pi; see Theorem 1. Now,
suppose J, is a real job; Ji is then a separating setup job.
Let J; € J be a successor of J; in G’ with d, = d, — pi.
Such a successor always exists; see Theorem 1. Due to
the way the separating setup jobs are derived, we have
that d, < 7, — s;q). Since r; + p; = d; + ub and pi = s¢q),
we have thatd, + ub — 1 < d,; — p; — p + ub, and hence
thatd, < di —p. U

3.1. The Preemptive Bound

The 1|#;, prec, pmin| L. problem is solvable by Horn’s
rule (Horn 1974) after release and due date modification
in O(n?) time. For the 1|r,, setup-prec, pmin| L, prob-
lem, the modification of the release dates takes O(n)
time only; modification of the due dates is not neces-
sary, since we have that d; =< d; — p; if], < Ji. Hence,
we have the following result, the proof of which is in-
cluded for the sake of completeness.

THEOREM 6. The 1|r,, setup-prec, pmin| L, is solvable
in O(n log n) time by the following rule: At any time sched-
ule an available job with the smallest due date.

ProOOF. First of all, note that Horn’s rule generatés a
feasible schedule for the problem 1|r, setup-prec,
pmin| Lo, This is true, since if J; < J;, then we have that
t, + p, = reand d, < d; — p;; see the proof of Lemma 1.

Let now 7 be the schedule produced by Horn’s rule,
and let o be any optimal schedule. We shall prove that
we can transform o into 7 by rescheduling jobs while
preserving feasibility and optimality. Compare o with
7 from time 0 onwards, and let ¢ be the first time at
which the schedules start to differ: Suppose], is sched-
uled between time ¢ and £, in o and J; is scheduled be-
tween time t and t, in 7. Let 7 = min {#;, £,}. Find time
s > 7 that designates the smallest interval [#, s] in o in
which J; is processed for exactly 7 — t = p; units of time.
Let <4 be the set of successors of], in G that are sched-
uled between ¢ and s in 0. We then have that d, < 4, for
all Il €A

Also, since J; is scheduled at time ¢ in 7, not J,, we
have that d; = d,. Hence, the following transformation
of o retains both feasibility and optimality:

¢ Remove all portions of Jj, Ji and the jobs in <4 be-
tween time ¢ and s, but leave the other jobs intact.

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIjM
Single-machine Scheduling

¢ Schedule J; in the time slot [¢, 7]. e

¢ Schedule], and the jobs in 4 in the remaining avail--

able time slots between 7 and s in the same order as
before.

Now let t < 7, and repeat the argument until we reach

the end of the schedule; both schedules are then iden-
tical. O '

This rule can evidently be implemented in O(n log n)
time, since there are n real and no more than n setup
jobs, there are O(n) preemptions, and the release and
due dates of the available jobs need only to be main-
tained in a partial order.

3.2. Computing the Bound Ib(?, Pi+15,)

The bound Ib(®i,, Pi.1s,), needed for condition (3), is
a lower bound for scheduling some unspecified job in
%14 in the same batch, say, B, as some unspecified job
inPig (i=1..., m1=k<|%|,0=1=<]|9|-1).
We assume that some separating and unrelated setup
jobs already have been derived and that the setup job
that may be induced by this bound is consistent with
them.

If we decide to schedule some job from %}, and some
job from ?;.,s, in the same batch, say, B, then B spans
at least the interval T = [#,, t,], where

th= ;,m:): d~p) and t,= .. T:,\m (r, +p;
see Observation 2. We assume that £, > ¢,. If not, then
we let lb(?uv, ?k+l |g,|) = —00,

Let I' be any instance of the 1|r;, setup-prec| Ly, prob-
lem with the condition that we schedule those unspe-
cified jobs in the same batch. To compute a lower
bound, we construct an instance 1" with the additional
constraint that the machine is not available for process-
ing during the interval T = [4,, t,]. We initialize I" = I’
and then remove all jobs §, € %, U 8, from I" for which
the time intervals [t,, #,] and [r,, 4] overlap; we do this
to ensure that L}, (I") is a valid lower bound on
L. ().

Moreover, we try to derive more separating setup
jobs for each family other than %,. If the machine is not
available during the period T = [¢,, t,], then any two
jobs], and J; cannot be in the same batch if r, > #; — p,
andd, <t + ps; after all,], must then be processed after
period T and J; before period T. So, if &, = {], € %4,
<t +pland D, =1{J,€ %|r,>t —pland 6, + Fand

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

Dw # (), then we may add a setup job J, to I” that sep-
arates the sets @, and 9, for any family %, # %, if this
setup job is consistent with the other setup jobs.

We now compute the preemptive lower bound for I”
subject to the condition that the machine is not available
during period T. We can easily cope with this condition
by adding an independent dummy job J, to I” with r,
=t,po=1t —t,and dy = nun,,e,d 1. Horn’s rule
schedules J, then in period T, and we compute Ib(?,,
Pi+1,191) a8 maxg ey L

4. Implementation and
Computational Experiments

4.1. Implementation

We have developed a branch-and-bound algonthm that
uses a forward sequencing branching rule, in which a
node at level k (k = 1, ..., n) corresponds to an active
partial schedule consisting of k jobs. A node at level k has
n — k descendant nodes, one for each unscheduled job.
We branch from the nodes in order of non-decreasing
release dates of the jobs associated with the nodes.

In the root node of the tree, we run a two-phase ran-
domized local-search algorithm to find a good initial
upper bound ub; it uses simulated annealing first and
then tries to improve the solution by tabu search. The
neighborhood of a feasible sequence is in either phase
defined as the set of sequences obtained by either relo-
cating any single job, or swapping any two jobs in the
sequence. In fact, both the simulated annealing and the
tabu search subroutines are straightforward implemen-
tations of the basic principles, as outlined in for instance
Van Laarhoven and Aarts (1987) and Glover (1989).
Also, we use several simple but effective dominance cri-
teria to restrict the growth of the branch-and-bound
tree. Given this upper bound, we iteratively derive as
many and as strong as possible consistent setup jobs.
Deriving setup jobs is computationally expensive; for
this reason, it is carried out only in the root node of the
branch-and-bound tree. In the nodes of the tree, it is too
time-consuming to compute the preemptive bound, al-
though it takes only O(n log n). We have extended Car-
lier’s lower bound (1982) for the 1|7,| Ly, to deal with
precedence relations and compute this bound instead;
this bound requires only O(n) time in each node. For a

1171

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIJM
Single-machine Scheduling

Table 1 Performance of the Branch-and-bound Algorithm
n k # Opt # Nodes Seconds
30 0.8 * 401 35614 07

© 30 0.9 395 48,688 09
40 0.8 385 40,357 09
40 0.9 . 355 107,832 24
50 0.8 358 83,544 21

' 50 0.9 295 131,112 31

detailed description of our implementation, we refer to
Schutten, Van de Velde and Zijm (1993).

4.2. Computational Experiments

The performance of the branch-and-bound algorithm
was evaluated for instances with up to 50 jobs. All pa-
rameters were randomly generated from discrete uni-
form distributions, except for the release times: jobs ar-
rive at the machine according to a Poisson process. The
processing times were drawn from the discrete uniform
distribution [1, 100], the number of families m from the
uniform distribution [2, Ln/5]], and the family indices

of the jobs from the uniform distribution [1, m]. Let

denote the average job processing time. In addition to
n, there are four input parameters:

¢ 5, defining the interval [1, s - p] from which the setup
times are uniformly drawn,

¢ a and k, defining the mean inter-arrival time (7

+ a-5)/k, where § is the average setup time, and

¢ d, defining the interval [r, + p,, r, + p, + d-p] from
which d, is uniformly drawn.

We generated instances for n = 30, 40, 50, s = 025
0.50,0.75, 4 = 0.25,0.33,0.5,k = 0.8,09and d = 2, 4, 6.
For each combination of 1, s, 4, k, and d, we generated
15 instances. Table 1 gives a summary of our compu-
tational results for varying values of n, the number of
jobs, and k, determining the arrival intensity. Crudely
speaking, we can say that k determines the workload in
the shop: The larger k, the higher the workload. We
found that the performance of the branch-and-bound
algorithm does not significantly vary with the other pa-
rameters. The column “#opt” gives the number of in-
stances out of 405 for which the branch-and-bound al-
gorithm found an optimal solution within one minute
on a HP 9000/710 workstation. It shows that we virtu-

1172

ally solve all instances with n = 30. The next two col-
umns give averages only for the instances solved to op-
timality within one minute. The column “#nodes” gives
the average number of nodes searched, and the column
“seconds” gives the average computing time in seconds
that the algorithm takes. The time for the preprocessing
phase, i.e,, for running the approximation algorithms
and deriving the setup jobs, is not included here. The
preprocessing phases typically take about 2 to 4 seconds
on the HP. Table 1 shows that the instances get more
difficult with increasing number of jobs, as expected,
and with increasing value of k. If the workload is high,
i.e., if there are many jobs available at the same time for
processing, then it is more difficult to derive setup jobs
of high rank, and consequently, our lower bounds get
less effective with increasing value of k. Table 1 also
shows that the instances that we can solve within the
time limit take little time on average. This suggests a
considerable watershed between computationally easy
and hard instances.

Table 2 gives for varying n and k the results of the
preprocessing step for those instances that were solved
to optimality within one minute. The column “Ib1”
gives the average preemptive lower bound in the root
node of the search tree without the addition of derived
setup jobs. The column “1b2" gives this lower bound,
but now with the addition of the setup jobs. The average
value of the initial solution found by our approximation
algorithm is found in the column “ub.” The average op-
timal solution value is given in the column “opt.” We
see that the gap between the initial lower bound b1 and
the optimal solution value opt is approximately halved
by the addition of the setup jobs. The average number
of derived setup jobs is given in the column “derived,”
whereas the average number of setups in the optimal

i 3

Table 2 Results of Preprocessing: Solvable Instances

n ki 2 ub Opt Derived Setups

30 08 964 1251 1540 1528 144 184
30 09 1208 1527 1881 1865 12.8 174
40 08 1183 1539 185.0 - 183.9 19.6 25.7
40 09 1505 1885 2267 2247 172 242
50 .08 1265 1713 2043 2026 255 335
50 09 1685 2001 2404 2377 224 31.2

MANAGEMENT SCIENCE/ Vol. 42, No. 8, August 1996

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZIJM
Single-machine Scheduling

solution we found is given in the column “setups.” Note
that in general there exist more than one optimal solu-
tion and each may have a different number of setups.

As far as possible, Table 3 gives the same information
for those instances for which the algorithm failed to find
an optimal solution within one minute. In comparison
to Table 2, we have added the column ub*, which gives
the average value of the incumbent upper bound after
one minute of computation time.

Our computational results did not reveal any relation
between the difficulty of an instance and the choices of
the parameters a, s, and d; the difficulty of an instance
primarily depends on how close the release dates are to
each other. Close release dates are most likely to occur
in case of a high workload parameter k. The perfor-
mance of the algorithm deteriorates in case of close re-
lease dates for two reasons. First, such release dates in
combination with the almost agreeable due dates lead
to a considerable lateness. This makes that d,, the latest
possible completion time of job], is relatively large; we
then may expect to have few sets for which d(?,,)
< 1(Pi11,9)), and as a result, fewer setup jobs and
thereby weaker lower bounds. Second, if the release
dates are close to each other, then certain dominance
criteria in our branch-and-bound algorithm are less ef-
fective. Indeed, Table 3 confirms our expectations: it
shows that difficult instances have larger L%, and per-
mit fewer setup jobs than the solvable instances.

5. Conclusions

We have addressed a practical scheduling problem in
manufacturing arising from the fundamental contro-
versy between efficient production and due date per-

Table 3 Results of Preprocessing: Hard Instances

n k /1] b2 ub ub* Derived
30 0.8 3422 409.2 468.0 468.0 8.8
30 0.9 375.1 433.1 522.3 520.5 76
40 0.8 2924 374.2 471.7 470.1 13.2
40 0.9 3345 425.0 517.3 515.8 12.8
50 08 2844 3775 471.6 468.9 191
50 0.9 3328 4304 5335 532.1 17.8

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

formance. We have presented a branch-and-bound al-
gorithm that solves instances of reasonable size to op-
timality. Our major contribution is a lower bounding
strategy that proceeds by ignoring the setup times.and
replacing them by setup jobs. This strategy induces a
relaxed problem with specific precedence constraints
such that its preemptive version is solvable in O(n log
n) time. We are currently investigating to what extent
this strategy is useful for other scheduling problems
with family setup times, including the‘parallel machine
scheduling problem.

The algorithm described in this paper is now in-
cluded in JOBPLANNER, a commercial shop floor control
system, which resulted from the cooperation between
the Production and Operations Management Group of
the University of Twente and a consultancy firm. It is
presently operational at two companies that deal with
major setup times, including a manufacturer of printed
circuit boards (PCBs), where the production is orga-
nized as a reentrant flowshop. Each PCB has essentially
the same routing with about 25 operations. The base
material of a PBC is teflon or epoxy. JOBPLANNER has
proved to be specifically useful for scheduling machines
where large setup times occur when production is
switched from using one base material to the other. In
the past, the operators at the shop floor had little insight
when to switch from one base material to the other—
currently, the schedule is made at a higher level by the
production manager. The company is enthusiastic
about JOBPLANNER, because of the quality of the result-
ing schedules and the reduction in the effort to schedule
the shop. Scheduling used to be a full-time job; now, it
only takes one or two hours a day.!

! The authors thank Johann Hurink and the referees for their construc-
tive comments.

References

Adams, J., E. Balas, and D. Zawack, “The Shifting Bottleneck Proce-
dure for Job Shop Scheduling,” Management Sci., 34 (1988), 391-
401.

Blackburn, J. D., Time-Based Competition, The Next Battle Ground in
American Manufacturing, Richard D. Irwin, Homewood, IL, 1991.

Bruno, J. and P. Downey, “Complexity of Task Sequencing with Dead-
lines, Set-up Times and Changeover Costs,” SIAM J. Computing,
7 (1978}, 393-404.

Carlier, ., “The One-machine Sequencing Problem,” European J. Oper.
Res., 11 (1982), 42-47.

1173

Copyright © 2001 All Rights Reserved

SCHUTTEN, VAN DE VELDE, AND ZI]JM
Single-machine Scheduling

Deming, W. E., Quality, Productivity, and Competitive Position, MIT
Center for Advanced Engineering Study, Cambridge, MA,
1982.) o

Glover, F., “Tabu Search—Part I,” ORSA . Computing, 1 (1989), 190-
206. '

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
“Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey,” Ann. Discrete Math., 5 (1979), 287-
326.

Horn, W. A., “Some Simple Scheduling Algonthms !” Naval Res. Lo-
gistics Quaterly, 21 (1974), 177-185.

Lenstra, J. K., A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of
Machine Scheduling Problems,” Ann. Discrete Math., 1 (1977)
343-362.

Meester, G. J. and W. H. M. Zijm, “Multi-resource Scheduling for an
FMC in Discrete Parts Manufacturing,” in M. M. Ahmad and
W. G. Sullivan, (Eds.), Flexible Automation and Integrated Manufac-
turing, CRC Press Inc., Atlanta, 1993, 360-370.

Potts, C. N. and L. N. Van Wassenhove, “Integrating Scheduling thh
Batching and Lot-sizing: A Review of Algorithms and Complex-
ity,”]. Oper. Res. Soc., 43 (1992), 395-406.

Schutten, J. M.], S. L. van de Velde, and W. H. M. Zijm, “Single-
machine Scheduling with Release Dates, Due Dates and Family
Setup Times,” Technical Report LPOM-934, University of
Twente, Department of Mechanical Engineering, Enschede, The
Netherlands, 1993.

Van Laarhoven, P.J. M. and E. H. L. Aarts, Simulated Annealing: Theory
and Applications, Reidel, Dordrecht, The Netherlands, 1987.

Accepted by Luk Van Wassenhove; received September 20, 1993. This paper has been with the authors 13 months for 2 revisions.

4

1174

MANAGEMENT SCIENCE/Vol. 42, No. 8, August 1996

Copyright © 2001 All Rights Reserved

