
Mathematical Programming 70 (1995) 173-190

Stronger Lagrangian bounds by use of slack
variables: applications to machine

scheduling problems

J.A. Hoogeveen a,*, S.L. van de Velde b
a Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, Netherlands
b Department of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede,

Netherlands

Received September 1992; revised manuscript received 27 July 1994

A b s t r a c t

Lagrangian relaxation is a powerful bounding technique that has been applied successfully to
many / /9-hard combinatorial optimization problems. The basic idea is to see an ./K~-hard
problem as an "easy-to-solve" problem complicated by a number of "nasty" side constraints.
We show that reformulating nasty inequality constraints as equalities by using slack variables
leads to stronger lower bounds. The trick is widely applicable, but we focus on a broad class of
machine scheduling problems for which it is particularly useful. We provide promising computa-
tional results for three problems belonging to this class for which Lagrangian bounds have
appeared in the literature: the single-machine problem of minimizing total weighted completion
time subject to precedence constraints, the two-machine flow-shop problem of minimizing total
completion time, and the single-machine problem of minimizing total weighted tardiness.

Keywords: Lagrangian relaxation; Slack variables; Scheduling

1. I n t r o d u c t i o n

Lagrangian relaxation is a powerful bounding technique that has been successfully

embedded in branch-and-bound algorithms for a gamut of J g - h a r d combinatorial

optimization problems. By now, it is already considered a conventional technique, dating

back to the work by Held and Karp [10,11]. Excellent introductions to Lagrangian

relaxation are given in [5,8,26]; an overview of its applications is given in [5,6].

* Corresponding author, e-mail: slam@win.tue.nl.

0025-5610 © 1995 - The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(94)00061-1

174 J.A. Hoogeveen, S.L. van de Velde /Mathematical Programming 70 (1995) 173-190

The main idea behind Lagrangian relaxation is to see an J/<~-hard combinatorial
optimization problem as an "easy-to-solve" problem complicated by a number of
"nas ty" side constraints. Consider the typical combinatorial optimization problem (P)
of determining

z = min{ cx I Ax >>. b, x ~ X} ,

where A is a given m × n matrix, b a given m X 1 vector, and c a given 1 X n vector;
x is an n X 1 vector of decision variables. It is assumed that X is a nonempty finite set
and that X has some computationally convenient structure not shared by the entire
problem; in this sense, Ax >~ b are the nasty constraints. We remove them from the set
of constraints and put them into the objective function, each weighted by a given
non-negative Lagrangian multiplier; this is known as the dualization or Lagrangian
relaxation of the nasty constraints. Using a given vector of Lagrangian multipliers

h = (h 1 h m) >~ O, we obtain the Lagrangian problem (L A) of determining

L()t) = m i n ((c - 3,A)x + Abl x ~ X } .

Clearly, we have that L(A) ~< z for any A/> 0. The application of Lagrangian relaxation
is problem-specific, as it tries to exploit the underlying structure of the problem.
Choosing an appropriate formulation of the problem, identifying the nasty constraints,

and finding or approximating the vector A* of Lagrangian multipliers that solves the
Lagrangian dual problem max[L(A) t A ~> 0} are traditionally seen as the key issues.

Lagrangian relaxation is an alternative bounding technique to linear programming
relaxation, which proceeds by formulating an J ~ - h a r d problem as an integer linear
program, dropping the integrality conditions on the variables, and then solving the linear
programming relaxation. The trade-off between the quality of the lower bounds and the

speed in which they are computed is essential in designing branch-and-bound algorithms
and therefore in choosing a lower bounding technique. As to quality, we have that, if the

relaxations are applied to the same formulation, then L(A*) is at least as large as the
optimal solution value of the linear programming relaxation of problem (P). In fact, the
bounds are equal if the Lagrangian problem (La) is solvable as a linear program, i.e., if
X is equal to the set of integral vectors of a system Dx >~ e of linear inequalities in
which the integrality constraints are redundant [8]. In this case, however, L(A*) may be
computed faster, since the easy-to-solve Lagrangian problem often allows a fast
tailor-made algorithm. Another agreeable feature of Lagrangian relaxation is that
solutions to the Lagrangian problem often induce good approximate solutions to the
original problem; see, e.g., [12].

In this paper, we show that reformulating nasty inequalities as equalities by using

slack variables can lead to better Lagrangian bounds. We work this idea out in Section
2. For the case that the Lagrangian problem possesses the integrality property, we give
an interpretation of the slack variable approach in terms of linear programming theory in
Section 3.

The slack variable approach is widely applicable, but we focus on a class of machine
scheduling problems for which it is particularly useful. In Section 4, we identify this

J_4. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 175

class, and we apply the reformulation trick to three representative problems for which
Lagrangian bounds have appeared in the literature: the single-machine problem of
minimizing total weighted completion time, the two-machine flow-shop problem of
minimizing total completion time, and the single-machine weighted tardiness problem.
For each problem we obtain promising computational results in the sense that the new
Lagrangian bound shows a significant improvement relative to the extra time needed to
compute it. We draw some conclusions in Section 5.

2. Stronger Lagrangian bounds by slack variables

We now reformulate the nasty inequality constraints of problem (P) as equality
constraints by use of a nonnegative vector y of slack variables. This gives

z = m i n { c x l A x - y = b , x ~ X , y ~ Y } ,

where Y_ ~ is the unspecified set of all slack vectors that correspond to feasible
solutions to problem (P). If we again dualize the nasty constraints with a given vector
A/> O, we get the Lagrangian problem (L' A) of finding

L ' (A) = m i n { (c - A Z) x + A b + A y l x ~ X , y ~ Y } .

Since Y also depends on the constraints on x, problem (U x) does not reveal any
agreeable structure. Observe, however, that

E(A) 1 > m i n { (c - A A) x + A b l x ~ X } + m i n { A y l y ~ Y }

= L (A) + m i n { A y l y ~ Y } .

In the remainder, we refer to the problem of finding

SV(A) = min{ Ay I Y ~ Y}

as the slack variable problem. Note that we have that SV(A) > 0 for all A > 0 if the null
vector is not in Y. The slack variable problem has the same computational complexity as
problem (P), as it is alternatively formulated as min{h(Ax-b)[Ax>~ b, x~X} . We
must therefore try to compute a positive lower bound on SV(A); if we succeed, then we
add it to the traditional Lagrangian lower bound L(A). Using this alternative formulation
of the slack variable problem and computing a lower bound on it by Lagrangian
relaxation of the constraints Ax >~ b will give no real improvement, as we will show
next. Suppose we apply Lagrangian relaxation. Using a given vector /x ~> 0 of La-
grangian multipliers, we get the Lagrangian problem of finding

F(A, /x) = min{ (A - / z) A x + (/ ~ - A)b] x ~X}.

For any A >~ 0 and /x ~> 0 we have that

L(A) + F (A , /z) = m i n { (c - AA)x+ Abl x ~X}

+ min{ (A- p,)Ax+ (I x - A)bl x ~ X }

~<min{(c- A A) x + Ab+ (A - ~)Ax+ (tz--A)bt x ~X}
=

176 J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190

and consequently we have that F(A*, /x) < 0 for all /x > 0. Hence, we must develop
alternative methods to find a positive lower bound on SV(A).

Beforehand, it can be expected that SV(A) is small relative to L(A). The effort to
compute a lower bound on SV(A) must therefore be small relative to the effort to
compute L(A) to make it worthwhile in a branch-and-bound algorithm.

For example, suppose that problem (P) is a general 0-1 linear programming problem.
An obvious lower bound on the slack variable problem is then obtained by solving a
series of m subset-sum problems of the type min{a(i)x - bi[a(i)x > /b i , x E {0, 1}}, for

i = 1 , . . . , m, where a (i) denotes the ith row of the matrix A. This follows from the
observation that

min{Ayl y ~ Y} = m i n { A (A x - b)[Ax> b, x ~X}

> ~ m i n { A (A x - b) [A x > b , x~{O, 1}}

>~ ~ a i min{a(i)x-b i la(i)x>bi ,x~{O, 1}).
i=1

The subset-sum problem is J 3 - h a r d in the ordinary sense, but in practice it is a
relatively easy problem (see, e.g., [19]).

There exists a broad class of machine scheduling problems that can be formulated in
such a way that the slack variables have strong intuitive interpretations. In Section 4, we
show that these interpretations are helpful for developing lower bounding procedures for
the slack variable problems.

3. Relation between the slack variable problem and valid inequalities

For the case that problem (P) is an integer linear program and the Lagrangian
problem (L A) possesses the integrality property, we can explain in terms of linear
programming theory where the bound improvement comes from. This explanation is
based upon a suggestion by Miiller [20].

Since the integrality conditions on x are assumed to be redundant, we may replace
the set X by X' = {x > 0 L Cx > d}. For any 1 > 0 we then have that

L(A) = m i n { (c - AA)x + AblCx >~ d, x > 0},

and since the Lagrangian problem can be solved as a linear program, that

L(A) = max{ min{ (c - AA - / x C) x + Ab + /xd l x > 0} I /x > 0}

= m a x { A b + / z d l / x > 0 , c - A A - / z C I > 0 }

= Ab +/~*d,

where /~* is the vector of optimal values for the dual variables corresponding to the
conditions Cx > d. Accordingly, (A, /~*) is a feasible but not necessary optimal dual
solution to the linear programming relaxation of problem (P).

Now suppose that there exists an m × 1 vector u and a real constant b 0 > 0 such that

uAx >~ ub + bo, forall x ~ X w i t h Ax >~ b;

J~A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 177

in other words, uAx >~ ub + b o is a valid inequality for problem (P). Consider the linear
program (LP) of finding

v(LP) = min{(c - AA) x + Ab I Cx ~ d, x >~ O, uAx >~ ub + b0}.

Obviously, we have that L(A) ~< v(LP) ~< z. By linear programming duality we have that

v (LP) = max{Ab + tzd + p (ub + bo) l tz >~ O, p >~ O, c - AA - ~ C - puA >1 0},

where p is the dual variable corresponding to the valid inequality uAx >~ ub + b o. Note
that for any p >t 0 with A - p u >~ O, we have that

p. , p)

is a feasible dual solution to problem (LP). The feasible dual solutions of the type
(A - pu , Ix*, p) are interesting, since

D (A , u) = m a x { (A - p u) b + l z * d + p (u b + b 0) l p ~ 0 , A - p u > ~ 0 }

= max{ Ab + t~* d + p b o] p >~ O, A - p u ~ > 0 }

= L (A) + m a x { p b o l p >~ O, A - p u >~ O} ~> L (A) .

In fact, strict inequality holds if some p > 0 gives rise to a feasible dual solution.
The question of course is how to find such a u and b 0. If we now choose u to be

u = A, then the problem of determining

D(A, A) = L(A) + max{ pb o[p>tO, A-RA>~O}

is solved by simply assigning p = 1, and hence, by the feasible dual solution (0, /z*, 1).
The dual solution value is then equal to

D(A, A) = L (A) + b 0 ,

and we have then improved our Lagrangian lower bound by b 0. Of course, we would
like to specify a b 0 as large as possible. If u = A, then the valid inequality is
alternatively written as

A(Ax - b) >/b 0 ,

and hence the largest feasible value of b 0 is found by determining

SV(A) -- min{ A(Ax - b)] x ~ X , A x >~ b} .

This is exactly the slack variable problem we introduced in the previous section. As

pointed out there, this problem is iVY-hard, and computing a lower bound on SV(A) by
Lagrangian relaxation is not meaningful. This derivation shows that the slack variable
approach is also useful for polyhedral approaches for M/~-hard problems, if we can

compute a positive lower bound on the slack variable problem.

4. Application to machine scheduling problems

The usual setting of a job shop is as follows. There are m machines available for

executing a set of n jobs J = {J1 J,}. Each job Jj, j -- 1 n, consists of an

178 J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190

ordered list of operations, each of which requires processing during a certain uninter-
rupted period of time on some machine. Each machine can process at most one job at a
time and is continuously available from time 0 onwards. A job can be processed by at
most one machine at a time. Each Jj is available for processing during a prespecified
period: it becomes available at its release date rj and must be completed at its deadline
Jj. A schedule specifies for each job when and by which machine it is executed. Also,
there may be precedence constraints between the jobs, i.e., for each job a number of jobs
may have been specified that have to precede this job in any feasible schedule. In
addition, each Jj may have a weight wj, expressing its importance, and a due date dj, at
which it ideally should be completed; the weights and due dates are typically used to
define the objective function, which is usually a function of the job completion times Cj,
j = 1 , n. Such a job-shop situation gives rise to a myriad of problems; for an
overview, see, e.g., [16].

An elementary single-machine problem that fits in with the description is the
following: schedule n independent jobs, each consisting of one operation and having
rj = 0 and dj = ~, so as to minimize total weighted completion time ET= lwjCj. This
problem is solvable in polynomial time: sequence the jobs in order of nonincreasing
ratios wJpj, where pj denotes the processing time of Jj, and process them consecu-
tively from time 0 to time E~ i= l Pj. This priority rule is easily validated by a simple
interchange argument [28].

In this paper, we show the merits of the slack variable problem for the class of
JY~.~-hard single-machine and multiple-machine scheduling problems for which the
Lagrangian problem is solvable through Smith's ratio rule or an analogon of it. This
broad class contains essentially three types of problems; in the subsequent subsections,
we consider a problem of each type. The first type concerns the single-machine
problems of minimizing ~nj= lwjCj subject to nasty constraints on the job completion
times, including general release dates, deadlines and precedence constraints; as an
example, we examine in Section 4.1 the problem of minimizing total weighted comple-
tion time subject to precedence constraints. The second type concerns the multiple-ma-
chine problems; as an example of this type, we consider in Section 4.2 the two-machine
flow-shop problem of minimizing total completion time. The last type concerns prob-
lems with step-wise linear objective functions of the job completion times; as an
example, we examine in Section 4.3 the single-machine problem of minimizing total
weighted tardiness.

In our formulations of these problems, the completion times of the operations of the
jobs are the decision variables. Such compact formulations, requiring only O(n) decision
variables, give weaker Lagrangian bounds than the formulations based upon time-discre-
tization, in which 0-1 variables xit are introduced that indicate whether Jj is executed
at time t or not [4]. Formulations of the latter type, however, require a pseudo-poly-
nomial number of variables and constraints; the time and space required to solve the
associated Lagrangian problems limit the applicability considerably; see e.g., [29].

In the next subsections, we provide computational evidence that the so-called weak
formulations can be significantly strengthened by use of slack variables.

J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 179

4.1. Scheduling with precedence constraints

In this subsection, we consider the single-machine problem of minimizing total
weighted completion time ET= ~wjCj subject to precedence constraints. The precedence
constraints are represented by an acyclic precedence graph G with vertex se t {J1 , Jn}

and arc set A, which equals its transitive reduction; i.e., no arc in A can be removed on
the basis of transitivity. A path in G from Jj to Jk implies that Jy has to be executed
before Jk; Jj is a predecessor of Jk, and J~ is a successor of Jj. In case there is an arc
(Jj, Jk)~A, Jj is said to be an immediate predecessor of Jk; Jk is then an immediate
successor of Jj. We define g j and ~ as the set of immediate predecessors and
immediate successors of Jj, j = 1 n, in A.

For special classes of precedence constraints, including tree-like and series-parallel
precedence constraints, the problem is still solvable in O(n log n) time [2,13,15,27], but
the general problem is •9-hard in the strong sense [15,17].

Potts [21] presents a branch-and-bound algorithm that solves instances up to 100 jobs.
He employs a Lagrangian lower bound obtained from a 0-1 linear programming
formulation of the problem, in which variables xjk are introduced that indicate whether
Jj is executed before Jk or not. It requires, however, f l (n 4) time to compute this bound.
Strong lower bounds are also proposed by Van de Velde [32] and by Queyranne and
Wang [25]. Van de Velde's bound is based upon Lagrangian relaxation, and we will
show here that this bound can be improved significantly at the cost of little additional
computational effort. Queyranne and Wang obtain their bound by solving the problem as
a linear program to which they add two types of facet-defining inequalities. At the end
of this section, we discuss the relationship between their bound and ours.

We proceed from the following formulation of the problem: determine job comple-
tion times C~ C n that minimize

~ wjCj
j = l

subject to

C k >~ Cj +p~, for each (Jj, Jk) ~ A , (1)

the machine capacity and availability constraints. (2)

Conditions (1), stipulating the precedence constraints, are regarded as the nasty con-
straints. Accordingly, we introduce a vector A ~ ~A that contains a Lagrangian multi-
plier Ajk for each arc (Jj, Jk) ~ A and put the constraints (1), each weighted by its
multiplier, into the objective function. For a given vector A >~ 0, the Lagrangian
relaxation problem is to find L(A), which is the minimum of

j= i j:~ J . j~ ~]

subject to conditions (2).

180 J.A. Hoogeveen, XL. van de Velde / Mathematical Programming 70 (1995) 173-190

For j = 1 , n, let w~(A) = (wj + F, jk ~ 9)Ajk -- E I~ s j jAk j) /p j ; we call w5(A) the
relative weight of job "/i' Using Smith 's ratio rule, we solve the Lagrangian problem by
sequencing the jobs in order of nonincreasing relative weights. Van de Velde [32]
presents a fast iterative ascent direction algorithm, running in 0 (I I A I + n log n) time,
where I denotes the number of iterations, to approximate the vector A* of Lagrangian
multipliers that solves the Lagrangian dual problem.

Since the nasty constraints are inequalities, there is room for improving the La-
grangian lower bound. Introducing a nonnegative vector y ~ Y of slack variables Yjk,
where Y denotes the set of all slack vectors that correspond to a feasible solution to the
primal problem, we rewrite the precedence constraints as

C k = C j + p k +y}~, for e a c h (S j , S t) ~ A .

Note that Yjk is the waiting time of Jk after its virtual release by Ji, i.e., after Cj. If Ji
has two immediate successors Jk and Jl, then one of these cannot be started immedi-
ately after Jj has been finished. As a result, yj~ or Yj/ will be positive. Similarly, if Jl
has two immediate predecessors Jj and J~, then Yjl or Yk~ will be positive. Hence, the
null vector is in Y only if each job has no more than one predecessor and one successor,
in which case the problem is solvable in polynomial time. We now compute a lower
bound on the slack variable problem min{~(j~, jD E a hjkYjk]Y ~ Y}.

Define g / and ~ as the set of jobs with at least two successors and two predecessors,
respectively. For any J , ~ ?Z, consider the problem

F'(h, u)=min{ ~ A . j y . j , y ~ Y) .

The variables y. j may be interpreted as the start times of a feasible schedule restricted
to the job set SP. and subject to no precedence constraints. It follows that F'(A, u) is
obtained by using Smith 's ratio rule. Namely, if .5'~. = {Jh' Jh , Jjq} with

Auj~ Auj2 Aujq
- - >~ >7... >~ - - ,
PJ~ Ph PJq

then

F ' (A , u) = h.jl0 + A.j2pjl + . . . - ~ h l g j q (p j l J i - , . , ~ - p j q _ l) ,

For any J~. ~ ~ , consider the problem

F"(h, v)=min{ Y'~ hj~yj~[y~Y}.

The variables Yjo may be interpreted as the start times of a feasible schedule
restricted to the job set ~ . and subject to no precedence constraints. Therefore, if
9~ = {Jk,, Jk2, Jkr}, we have that

F"(A, v) = Ak~vO + hk2vpkl + "." +akq~(pk ' + . . . +P~r-,),

J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 181

where

A/qv Ak2v Ak~ - - >~ > . . . > ~ - -
P~ P~ P~

Theorem 1. For any h > O, we have that

E F'(A, u)+ E F"(A, v)

is a valid lower bound for the slack variable problem.

Proofi Consider an arbitrary feasible schedule o-, and let y be the corresponding slack
vector. For each pair of jobs Jj and Jk with ark scheduled after Jj, define ~¢jjk as the set
of jobs scheduled in-between, define Tjk(~j) as the sum of the processing times of the
jobs in ~ that are not in ~ , and let Tj~(~.~) be the sum of the processing times of the
jobs in ~j~ that are not in ~ . We have that

F'(A, u) ~< E huj[Y<~- T~I (~)]

and

+j+90

Summing over all J. ~ ~' and all J,, ~ ~ yields the inequality

E F'(A, u) + E F"(A, v) <~ E E A=jYuj+ E E aj~yj~

- E E aj j(9;)

- E E ajoS, (9).

The first two terms of the right-hand side sum up to

E Ai, E
(Jk,Jl)•A (Ju,Jv)c.4

where A is the subset of A containing all arcs (J, , Jr) with J , ~ f f and Jr ~ Y.
Hence, we are done if we prove that

E A~ ,y~< E E A.jT~j(.Yu)+ E E AivTjv(9~,)"

To that end, consider an arbitrary arc (J . , J ~ ,) ~ We have that y.~ = ~y,e..%pj =
Egje j~n~opj + Tu~(Sf,,) and that y.~ = EJje./,,~,n~.Pi + T~(~.@~), Since A equals its
transitive reduction, the sets ~ . and gv are disjoint, implying that the sets .J.~, AS"~

182 J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190

and J . v f ~ are disjoint. Hence, we have that

2 y , v = T,~(SP,) + T ~ v (~) + ~'~ pj + ~ pj

= ruo() + ruo(9) + pj
JjeJ.o n{~o u~o}

implying that for each arc (J.. J,,)~Xwe have that

Using this inequality, we obtain

E h , , y , , ~< E A. ,[T, , (SP,) + T ,~ (~ ,)]
(Ju, Jr) s 2 (Ju, J,,)c.4

< E E + E E
Su ¢~L JjeSa. Jve ~Y'Sje~o

Mrjv(o). []

Note that this lower bound on the slack variable problem is computed in O(n log n)
time. We evaluated its merits in the following way. For any instance of the problem, we
first applied Van de Velde's ascent direction method to find a good Lagrangian
multiplier ~. and its corresponding lower bound L(h); we then computed the improved
lower bound LB(h) = L(-h) + ~ , ~ ~F'(-h, u) + ~ j , ~ ~F"(-A, v). We feel that finding a
good approximate solution h for the problem max{LB(h) I h >~ 0} and comparing it with
L(h) is not meaningful. This problem has not the same agreeable properties as the
original Lagrangian dual problem max{L(h)] h >~ 0}, which makes it much more expen-
sive to find such a h. We tested LB(h) against L(h) on instances that were generated in
the way Potts [21] proposes; i.e., the processing times were drawn from the discrete
uniform distribution [1, 100] and the weights were drawn from the discrete uniform
distribution [1, 10]. The precedence graph was induced by the probability p by which

Table 1
Computational results for n = 40

p Median value of Median value of
100 × L(-h)/z 100 × LB(~O/z

0.01 100.00 100.00
0.02 100.00 100.00
0.04 99.87 100.00
0.06 99.77 99.95
0.08 99.66 99.89
0.10 99.37 99.72
0.15 98.72 99.23
0.20 98.34 98.90
0.30 97.65 98.41
0.50 97.22 98.15

J.A. Hoogeueen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 183

each arc (Jj, Jk) with j < k was included. The resulting graph was then replaced by its
transitive reduction.

In Table 1, we show the computational results for n = 40 for various values of p.
The entries show the median values of 100 × L (A) / z and 100 X LB(A)/z over 40
instances, where z denotes the optimal solution value. Table 1 shows that reformulating
the problem by using slack variables gives a considerable reduction of the duality gap
for any value of p. Potts [21] reports that the value p = 0.15 generates the most difficult
class of instances. For small values of p, the duality gap is small, since few constraints
are involved. As can be expected, the duality gap is considerably bigger for large values
of p; nonetheless, large values of p generate the relatively easiest instances, because the
solution space is not so big.

Our branch-and-bound algorithm is too rudimentary to provide complete results for
n >~ 40. Our limited computational experience with larger instances, however, indicates
that the results for n = 40 are typical, since the performance of L(A) and LB(A) does
not significantly vary with n.

We now comment on the relationship between our bound and the polyhedral bound
by Queyranne and Wang [25]. Queyranne and Wang proceed from the same formulation
as we did. They first add the so-called parallel inequalities. This class of inequalities
forms a complete description of the facets of the polytope of the feasible solutions for
the 1 [q E~= lwjCj problem; see [24,33]. In fact, these inequalities are just the explicit
rendering of condition (2), that is, the machine capacity and availability constraints.
Queyranne [23] gives an O(n log n) separation algorithm for these inequalities. Accord-
ingly, the Lagrangian problem (L~) is solvable as a linear program and hence the best
Lagrangian bound L(A*) is equal to the linear programming bound lifted by these
parallel inequalities. Then, the so-called simple-series inequalities are added. The
simple-series inequalities along with the parallel inequalities form a complete descrip-
tion of the facets of the polytope of the feasible solutions for the problems F'()t, u) and
F"(A, v). Queyranne and Wang [25] give an O(n 2) separation algorithm for these
inequalities and proved that the best improved Lagrangian bound max{LB(A)[A >i 0},
which can be found by the subgradient method, is equal to the polyhedral bound.
Accordingly, the bound LB(A) is generally weaker than the polyhedral bound. It is
computed much faster, however.

4.2. Scheduling multi-operation jobs

In this section, we consider the following two-machine flow-shop problem. There are
two machines, M 1 and M 2, each handling no more than one job at a time and
continuously available from time 0 onwards. There is a set of n jobs f = {J1 J,},
each consisting of a chain of two operations. The hth operation of .lj has to be executed
on M h during a positive uninterrupted period of time Phi, h = 1, 2, j = 1 n; hence,
each job passes first through M 1, then through M 2. A job can be executed by at most
one machine at a time, implying that the operations of the same job may not overlap in
their execution. A schedule specifies a completion time Chj for the hth operation,

1 8 4 J.A. Hoogeveen, S.L. can de Velde / Mathematical Programming 70 (1995) 173-190

h = 1, 2, of each Jj, j = 1 ,n , such that the above conditions are met. The
completion time of Jj is then simply C2j.

We consider the problem of minimizing E'!j= 1C2j, which is ./V=@-hard in the strong
sense [7]. It is well known that for this problem it suffices to optimize over all
permutation schedules with no machine idle time on M 1 before the execution of jobs;
see e.g., [3]; a permutation schedule is a schedule in which every machine has the same
job sequence. The best optimization algorithm is due to Van de Velde [31] and solves

instances up to twenty jobs. This branch-and-bound algorithm employs a Lagrangian
lower bound that is obtained from the following formulation. Determine completion
times Ch/ that minimize

~ C z j
j = 1

subject to

the precedence constraints between the operations of the jobs, (3)

the capacity and availability constraints of the machines, (4)

and to the condition that

the Chj form a permutation schedule with no idle time on M 1. (5)

Condition (5) is redundant for the primal problem, but it is not redundant for the
Lagrangian problem and the slack variable problem. The conditions (3) are formulated
a s

C2j>~Cu+p2j, for j = 1 n. (3 ')

A nonnegative vector of multipliers A = (A1, . . . , A n) is introduced for dualizing condi-
tions (3'). This gives the Lagrangian problem of finding L(A), which is the minimum of

[AjCIj ~- (1 - t~j)C2j ~- AjP2j]
j= l

subject to conditions (4) and (5). In order to prevent that L(A) becomes arbitrarily small,
we require that A ~< 1.

This Lagrangian problem is a linear ordering problem, which in general is J 3 ' - h a r d .
In this application, however, it is solvable in polynomial time if we choose Aj = c for
each j, j = 1 n, for some constant 0 ~< c ~< 1. The Lagrangian problem is then
solved by an analogon of Smith 's rule which schedules the jobs in order of nondecreas-
ing values cpl j + (1 - c)p2 j.

Let L(c) denote the optimal solution value of the Lagrangian problem with Aj = c
for each j, j = 1 n. The restricted Lagrangian dual problem max{L(c)[0 ~< c ~< 1} is
solvable in O(n 2 log n) time, but a linear-time approximation algorithm based upon
binary search over the interval [0, 1] performs sufficiently well. For details, we refer to
[31].

We now formulate conditions (3') as equalities. Introducing a nonnegative vector

Y = (Yl yn) ~ Y of slack variables, we write

C2j=Clj+Paj+y], for j = 1 , n ,

J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 185

where Y denotes the set of all slack vectors corresponding to schedules that are feasible

with respect to the conditions (3)-(5). This leads to the slack variable problem

min{cy I y ~ Y}.
We compute a lower bound on the slack variable problem as follows. Note that yj

can be interpreted as the time that Jr spends waiting in a buffer between the two

machines. Let aij denote the minimal waiting time of Ji if it is immediately preceded

by Ji. Since idle time on M 1 is not allowed, we have that aij = max{p2 i - P u , 0}. For
any permutation schedule 7r, we have that

n - 1

Y~r(j) >/ E arr(j),rr(j+ l),
j= l j= l

where r r (j) denotes the index of the job that occupies the jth position in w. Hence, the

optimal solution value of the problem

where H is the set containing all permutations of {1 , . . . , n}, is a lower bound on the

slack variable problem. This is a Hamiltonian path problem with distances a o =

max{p2 i -p , j, 0} for i, j = 1 n. In general, the Hamiltonian path problem is

~/Kg-hard in the strong sense; this problem, however, is solvable in O(n log n) time,

since it can be transformed into the so-called Maximal Traveling Salesman Problem, for

which Van Dal et al. [30] show that it reduces to the Gi lmore-Gomory Traveling

Salesman Problem [9]. The transformation is achieved by adding a dummy job J0 with

processing times Pl.0 = oo and P2,0 = max{t2 - tl, 0}, where th, h = 1, 2 denotes the
earliest time that M h becomes available for processing.

We implement the improved Lagrangian lower bound in the following way. Note that

the solution to this Hamiltonian path problem does not depend on the Lagrangian

multiplier c. We therefore address the Hamiltonian problem first, and actually we
compute a lower bound on the Hamiltonian path problem rather than solving it to

optimality. The optimization algorithm proceeds by matching and patching. We only

did the former; this takes O(n) time once the jobs are prearranged and gives a strong

lower bound, say, B. For any c, we thus have that the improved Lagrangian bound

Table 2
Computational results for the flow-shop problem

n Median value of Median value of
IOOx L(c*)/z 100 X LB(~')/z

10 96.35 96.78
15 96.89 97.19
20 96.76 96.99
25 96.81 97.29
30 96.54 96.79

186 J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190

LB(c) = L (c) + cB. Subsequently, we conduct binary search over the interval [0, 1] to
find the best such bound LB(e).

We tested the quality of the improved lower bound LB(~) against the best "o ld"

bound L(c*), where c* is also obtained by binary search over the interval [0, 1], on
instances with 10, 15, 207 25 and 30 jobs. For each value of n, we generated 40
instances. The processing times for each job were drawn from the discrete uniform
distribution [1, 10].

In Table 2, we show the median values of 100 ×L(e*) / z and 100 × LB(~)/z ,
where z denotes the optimal solution value. We note that if a branch-and-bound
algorithm is used with a forward sequencing branching rule, then the value P2,0 tends
to increase if we go down the search tree; such an increase has a positive effect on the
performance of LB(?). A forward sequencing branching rule builds a search tree in
which nodes at level k correspond to an initial partial sequence in which jobs are
assigned to the first k positions.

4.3. The total weighted tardiness problem

The setting for the total weighted tardiness problem is as follows. A set of n
independent jobs f = {J1 , J~} has to be scheduled on a single machine that can
handle no more than one job at a time. The machine and the jobs are assumed to be
continuously available from time zero onwards. Each Jj, j = 1 n, requires process-
ing during an uninterrupted processing period of a given length Pi, has a weight wj, and
a due date dj by which it ideally should have been completed. Given a schedule, the
tardiness of J/ is defined as ~ = max{Cj - di, 0}. The objective is to find a schedule
that minimizes total weighted tardiness ~.j= lwjTj.

The total weighted tardiness problem is J g - h a r d in the strong sense [14,18]. It is a
challenging machine scheduling problem for which many optimization algorithms have
been developed; see [1] for a survey. The best branch-and-bound algorithm is due to
Potts and Van Wassenhove [22] and solves instances up to 40 jobs. They use the
following formulation to obtain a Lagrangian lower bound. Determine job tardinesses

and job completion times C1,. . . , C,, that minimize

i
j = l

subject to

wjTj

Tj>>.Cj-dj, for j = 1 n, (6)

Tj~>0, for j = 1 n, (7)

the capacity and availability constraints of the machine. (8)

Conditions (6) and (7) reflect the definition of job tardiness. Using a vector
A = (A 1 A n) >/0 of Lagrangian multipliers to dualize the conditions (6), Potts and

Jat. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 187

Van Wassenhove [22] obtain the following Lagrangian problem: determine the value
L(A), which is the minimum of

+ , , (c , - d,)
j = l j=l

subject to the conditions (7) and (8).
Since the conditions ('7) affect only the first component of the Lagrangian objective

function and the conditions (8) only the second one, the Lagrangian problem decom-
poses into two subproblems. If wy - Aj ~< 0 for some j, j = 1 , . . . , n, then we get Tj = %
resulting in L(A) = - ~ . We therefore require that wj - Aj >~ 0 for each j, j = 1 n,
and we minimize the first component by setting T/= 0 for each j. The second
component reduces to the problem of minimizing F."i=2 AjCj, which is simply solved by
scheduling the jobs in order of nondecreasing values A//p~ in the interval [0, .F__,~= l Pi]-

Ports and Van Wassenhove propose a linear-time heuristic algorithm to set the
Lagrangian multipliers. This algorithm generally gives a very good approximation of the
Lagrangian dual solution value, but for some classes of instances the Lagrangian dual
solution value is quite a weak lower bound. We propose an improvement by using slack
variables. We introduce a nonnegative vector y = (Yl,- . - , Yn) ~ Y of slack variables,
where Y is the set of all slack vectors corresponding to feasible schedules, and rewrite
the conditions (6) as

T j = C j - d j + y j , for j = 1 ,n.

Note that yj. is equivalent to the earliness of Jp which in machine scheduling theory is
defined as Ey = max{dj - Cp 0}. If we dualize the equality conditions, we get the
following Lagrangian problem: find L'(A), which is the minimum of

+ i ,,,n +/ :
j = l j = l j=1

subject to (7), (8) and (E 1 E n) ~ Y. Since the term E~=l(w;- A;)Tj does not
contribute to the bound L(A), we include it in the slack variable problem; as we will see,
we gain by it, since in no nontrivial problem we can have that both Tj = 0 and Ej = 0 for
all j. This gives the modified slack variable problem of minimizing

j = l

subject to (7), (8) and (E l , . . . , E,) ~ Y.
No tardiness or earliness penalties are incurred if it is feasible to execute each Jj in

the interval [d j - p p dj]; in this case, however, the original problem would be trivial.
Suppose that there are jobs Jk and J/ with 0 <)t k < w k and 0 < A t < w 1 for which the
ideal execution intervals [d k - p~ , d k] and [d z -P l , dl] overlap. We call Jk and Jl

conflicting jobs, since Jk or Jl will be early or tardy. The minimum penalty to settle the
conflict is obtained by evaluating four options: executing Jk and ,/1 in the interval
[d k - P k , dk +Pt] with Jk before .It, scheduling Jk and Jl in the interval [d z - P t -

188 J.A. Hoogeveen, S.L. van de Velde /Mathematical Programming 70 (1995) 173-190

Table 3
Computational results for difficult instances

n Median value of Median value of Median value of
100 × L(A)/z 100 × LB'(A)/z 100 × LB"(A)/z

20 62.37 67.47 69.92
30 58.53 62.35 64.84
40 59.14 63.65 65.93

pk, d l] with Jk before Jl, scheduling J~ and Jl in the interval [dl - P l , dt +Pk] with Jr
before Jk, and scheduling Jk and Jl in the interval [d k - p e - P l , d~] with Jl before Jk.
All other options are dominated by these four. The minimum penalty is readily

computed, since the cost of scheduling Jk before Jt is equal to min{A k, w l - At}(d ~ - d l

- P t) , and the minimum cost of scheduling Jl before Jk is equal to min{At, w, - hk}(d t

- d ~ - Pk)"

We compute a lower bound for the modified slack variable problem as follows. First,
we arrange the jobs in nondecreasing order of the due dates, and renumber them
accordingly. Then, we identify pairs of adjacent conflicting jobs; no job may appear in
more than one pair. Finally, we compute for each pair the minimum penalty to settle the
conflict. The sum of these penalties is a lower bound on the optimal solution value of
the modified slack variable problem; adding this sum to L(A) gives the improved

Lagrangian lower bound LB'(A). Like Potts and Van Wassenhove's lower bound,
LB'(A) is computed in O(n) time if the jobs are prearranged. In a similar fashion, we
can compute a lower bound on the slack variable problem by specifying triples of
adjacent conflicting jobs. To compute the minimum penalty for such a triple, we need to
evaluate twelve options. This gives rise to the alternative improved Lagrangian lower
bound LB"(A), which is also computed in O(n) time. Note that LB"(A) does not
dominate LB'(A), but LB"(A) will usually be greater in case of many conflicts.

We tested the improved lower bounds LB'(A) and LB"(-A) against the traditional
Lagrangian lower bound L(A), where A is the Lagrangian multiplier obtained by Potts
and Van Wassenhove's algorithm, on instances with 20, 30 and 40 jobs that were
generated in the same way as Potts and Van Wassenhove generated theirs. The
processing times were generated from the discrete uniform distribution [10, 100], and
the weights were generated from the discrete uniform distribution [1, 10]. The due dates

- ½ R) , - w e r e generated from the discrete uniform distribution [P(1 T - P(1 T + ½R)],

Table 4
Computational results for instances of average difficulty

n Median value of Median value of Median value of
100 × L(-A)/z 100 × LB'(A)/z 100 × LB"(A)/z

20 92.27 92.69 94.42
30 92.63 93.31 93.70
40 91.70 92.24 92.67

J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 189

where P = ET=~pj, and where R and T are parameters. For both parameters, we
considered the values 0.2, 0.4, 0.6, 0.8 and 1.0. In Table 3, we show the results for
T = 0.4 and R = 0.6; this choice generates the class of instances for which Potts and
Van Wassenhove's lower bound has its worst performance. Table 3 shows that the
improvement we achieve is substantial; it suggests that it may be worthwhile to consider
a more sophisticated lower bound procedure for the slack variable problem. In Table 4,
we give the results for instances of average difficulty, generated by choosing T = 0.2
and R = 0.8.

5. Conclusions

We have shown that better Lagrangian bounds can be obtained by addressing the slack
variable problem that results from reformulating nasty inequality constraints as equali-
ties. In each application, the computation of the improved Lagrangian lower bound
proceeded in two phases. In the first phase, we dealt with the Lagrangian dual problem
and computed the traditional Lagrangian lower bound. The Lagrangian multiplier found
here served as input for the second phase, in which we computed a lower bound on the
slack variable problem. The improved Lagrangian lower bound was then set equal to the
traditional bound plus the bound on the slack variable problem. In this way, we attained
for each application significant improvements.

The main conclusion of this paper is that the slack variable problem deserves to be
investigated if Lagrangian relaxation is used to compute bounds.

Acknowledgements

The authors like to thank Maurice Queyranne and the referees for their constructive
comments.

References

[1] T.S. Abdul-Razaq, C.N. Potts and L.N. Van Wassenhove, "A survey of algorithms for the single
machine total weighted tardiness scheduling problem," Discrete Applied Mathematics 26 (1990)
235-253.

[2] D. Adolphson and T.C. Hu, "Optimal linear ordering,"SIAMJournal of Applied Mathematics 25 (1973)
403-423.

[3] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading, MA,
1967).

[4] M.E. Dyer and L.A. Wolsey, "Formulating the single-machine sequencing problem with release dates as
a mixed integer program," Discrete Applied Mathematics 26 (1990) 255-270.

[5] M.L. Fisher, "The Lagrangian relaxation method for solving integer programming problems," Manage-
ment Science 27 (1981) 1-18.

[6] M.L. Fisher, "An applications oriented guide to Lagrangian relaxation," Interfaces 15 (1985) 10-21.
[7] M.R. Garey, D.S. Johnson and R. Sethi, "The complexity of flowshop and jobshop scheduling,"

Mathematics of Operations Research 13 (1976) 330-348.
[8] A.M. Geoffrion, "Lagrangian relaxation and its uses in integer programming," Mathematical Program-

ming Study 2 (1974) 82-114.

190 J~A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190

[9] P.C. Gilmore and R.E. Gomory, "Sequencing a one state-variable machine: a solvable case of the
traveling salesman problem," Operations Research 12 (1964) 655-679.

[10] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning trees," Operations
Research 18 (1970) 1138-1162.

[11] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning trees: Part II,"
Mathematical Programming 1 (1971) 6-25.

[12] J.A. Hoogeveen, H. Oosterhout and S.L. van de Velde, "New lower and upper bounds for scheduling
around a small common due date," Operations Research 42 (1994) 102-110.

[13] W.A. Horn,"Single-machine job sequencing with treelike precedence ordering and linear delay penalties,"
SIAM Journal of Applied Mathematics 23 (1972) 189-202.

[14] E.L. Lawler, " A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness," Annals
of Discrete Mathematics 1 (1977) 331-342.

[15] E.L. Lawler, "Sequencing jobs to minimize total weighted completion time subject to precedence
constraints," Annals of Discrete Mathematics 2 (1978) 75-90.

[16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, "Sequencing and scheduling:
algorithms and complexity," in: S.C. Graves, A.H.G. Rinnooy Kan and P. Zipkin, eds., Handbooks in
Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory (North-
Holland, Amsterdam, 1993) pp. 445-522.

[17] J.K. Lenstra and A.H.G. Rinnooy Kan, "Complexity of scheduling under precedence constraints,"
Operations Research 26 (1978) 22-35.

[18] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, "Complexity of machine scheduling problems,"
Annals of Discrete Mathematics 1 (1977) 343-362.

[19] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations (Wiley,
Chichester, 1990).

[20] R. Miiller, Personal communication (1993).
[21] C.N. Potts, "A Lagrangean based branch-and-bound algorithm for single machine sequencing with

precedence constraints to minimize total weighted completion time," Management Science 31 (1985)
1300-1311.

[22] C.N. Potts and LN. Van Wassenhove, "A branch and bound algorithm for the total weighted tardiness
problem," Operations Research 33 (1985) 363-377.

[23] M. Queyranne, "Structure of a simple scheduling polyhedron," Mathematical Programming 58 (1993)
263-286.

[24] M. Queyranne and Y. Wang, "Single-machine scheduling polyhedra with precedence constraints,"
Mathematics of Operations Research 16 (1991) 1-20.

[25] M. Oueyranne and Y. Wang, " A cutting plane procedure for precedence-constrained single machine
scheduling," Working Paper, University of British Columbia, Vancouver, Canada (1991).

[26] J.F. Shapiro, " A survey of Lagrangian techniques for discrete optimization," Annals of Discrete
Mathematics 5 (1979) 113-138.

[27] J.B. Sidney, "Decomposition algorithms for single-machine sequencing with precedence relations and
deferral costs," Operations Research 23 (1975) 283-298.

[28] W.E. Smith, "Various optimizers for single-stage production," Naval Research Logistics Quarterly 3
(1956) 59-66.

[29] J.P. Sousa and L.A. Wolsey, "A time indexed formulation of non-preemptive single machine scheduling
problems," Mathematical Programming 54 (1992) 353-367.

[30] R. van Dal, J.A.A. van der Veen and G. Sierksma, "Small and large TSP: Two polynomially solvable
cases of the traveling salesman problem," European Journal of Operational Research 69 (1993)
107-120.

[31] S.L. van de Velde, "Minimizing the sum of the job completion times in the two-machine flow shop by
Lagrangian relaxation," Annals of Operations Research 26 (1990) 257-268.

[32] S.L. van de Velde, "Dual decomposition of machine scheduling problems" in: Machine scheduling and
Lagrangian relaxation, Ph.D. Thesis, (Chapter 2) CWI, Amsterdam (1991); an earlier version appeared in:
Proceedings of the First Conference on Integer Programming and Combinatorial Optimization, Univer-
sity of Waterloo (Waterloo, 1990) pp. 495-507.

[33] A. von Arnim, U. Faigle and R. Schrader, "The permutahedron of series-parallel posets," Discrete
Applied Mathematics 28 (1990) 3-9.

