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A b s t r a c t  

Lagrangian relaxation is a powerful bounding technique that has been applied successfully to 
many / /9-hard  combinatorial optimization problems. The basic idea is to see an ./K~-hard 
problem as an "easy-to-solve" problem complicated by a number of "nasty" side constraints. 
We show that reformulating nasty inequality constraints as equalities by using slack variables 
leads to stronger lower bounds. The trick is widely applicable, but we focus on a broad class of 
machine scheduling problems for which it is particularly useful. We provide promising computa- 
tional results for three problems belonging to this class for which Lagrangian bounds have 
appeared in the literature: the single-machine problem of minimizing total weighted completion 
time subject to precedence constraints, the two-machine flow-shop problem of minimizing total 
completion time, and the single-machine problem of minimizing total weighted tardiness. 
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1. I n t r o d u c t i o n  

Lagrangian relaxation is a powerful bounding technique that has been successfully 

embedded in branch-and-bound algorithms for a gamut of J g - h a r d  combinatorial 

optimization problems. By now, it is already considered a conventional technique, dating 

back to the work by Held and Karp [10,11]. Excellent introductions to Lagrangian 

relaxation are given in [5,8,26]; an overview of its applications is given in [5,6]. 
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The main idea behind Lagrangian relaxation is to see an J/<~-hard combinatorial 
optimization problem as an "easy-to-solve" problem complicated by a number of 
"nas ty"  side constraints. Consider the typical combinatorial optimization problem (P) 
of determining 

z = min{ cx I Ax >>. b, x ~ X} ,  

where A is a given m × n matrix, b a given m X 1 vector, and c a given 1 X n vector; 
x is an n X 1 vector of decision variables. It is assumed that X is a nonempty finite set 
and that X has some computationally convenient structure not shared by the entire 
problem; in this sense, Ax >~ b are the nasty constraints. We remove them from the set 
of constraints and put them into the objective function, each weighted by a given 
non-negative Lagrangian multiplier; this is known as the dualization or Lagrangian 
relaxation of the nasty constraints. Using a given vector of Lagrangian multipliers 

h = (h 1 . . . . .  h m) >~ O, we obtain the Lagrangian problem (L A) of determining 

L()t)  = m i n ( ( c -  3,A)x + Abl x ~ X } .  

Clearly, we have that L(A) ~< z for any A/> 0. The application of Lagrangian relaxation 
is problem-specific, as it tries to exploit the underlying structure of the problem. 
Choosing an appropriate formulation of the problem, identifying the nasty constraints, 

and finding or approximating the vector A* of Lagrangian multipliers that solves the 
Lagrangian dual problem max[L(A) t A ~> 0} are traditionally seen as the key issues. 

Lagrangian relaxation is an alternative bounding technique to linear programming 
relaxation, which proceeds by formulating an J ~ - h a r d  problem as an integer linear 
program, dropping the integrality conditions on the variables, and then solving the linear 
programming relaxation. The trade-off between the quality of the lower bounds and the 

speed in which they are computed is essential in designing branch-and-bound algorithms 
and therefore in choosing a lower bounding technique. As to quality, we have that, if the 

relaxations are applied to the same formulation, then L(A*) is at least as large as the 
optimal solution value of the linear programming relaxation of problem (P). In fact, the 
bounds are equal if the Lagrangian problem (La) is solvable as a linear program, i.e., if 
X is equal to the set of integral vectors of a system Dx >~ e of linear inequalities in 
which the integrality constraints are redundant [8]. In this case, however, L(A* ) may be 
computed faster, since the easy-to-solve Lagrangian problem often allows a fast 
tailor-made algorithm. Another agreeable feature of Lagrangian relaxation is that 
solutions to the Lagrangian problem often induce good approximate solutions to the 
original problem; see, e.g., [12]. 

In this paper, we show that reformulating nasty inequalities as equalities by using 

slack variables can lead to better Lagrangian bounds. We work this idea out in Section 
2. For the case that the Lagrangian problem possesses the integrality property, we give 
an interpretation of the slack variable approach in terms of linear programming theory in 
Section 3. 

The slack variable approach is widely applicable, but we focus on a class of machine 
scheduling problems for which it is particularly useful. In Section 4, we identify this 
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class, and we apply the reformulation trick to three representative problems for which 
Lagrangian bounds have appeared in the literature: the single-machine problem of 
minimizing total weighted completion time, the two-machine flow-shop problem of 
minimizing total completion time, and the single-machine weighted tardiness problem. 
For each problem we obtain promising computational results in the sense that the new 
Lagrangian bound shows a significant improvement relative to the extra time needed to 
compute it. We draw some conclusions in Section 5. 

2. Stronger Lagrangian bounds by slack variables 

We now reformulate the nasty inequality constraints of problem (P) as equality 
constraints by use of a nonnegative vector y of slack variables. This gives 

z = m i n { c x l A x - y = b ,  x ~ X ,  y ~ Y } ,  

where Y_  ~ is the unspecified set of all slack vectors that correspond to feasible 
solutions to problem (P). If we again dualize the nasty constraints with a given vector 
A/> O, we get the Lagrangian problem (L' A) of finding 

L ' ( A ) = m i n { ( c - A Z ) x + A b + A y l x ~ X ,  y ~ Y } .  

Since Y also depends on the constraints on x, problem (U x) does not reveal any 
agreeable structure. Observe, however, that 

E(A) 1 > m i n { ( c - A A ) x + A b l x ~ X }  + m i n { A y l y ~ Y }  

= L ( A ) + m i n { A y l y ~ Y } .  

In the remainder, we refer to the problem of finding 

SV(A) = min{ Ay I Y ~ Y} 

as the slack variable problem. Note that we have that SV(A) > 0 for all A > 0 if the null 
vector is not in Y. The slack variable problem has the same computational complexity as 
problem (P), as it is alternatively formulated as min{h(Ax-b)[ Ax>~ b, x~X} .  We 
must therefore try to compute a positive lower bound on SV(A); if we succeed, then we 
add it to the traditional Lagrangian lower bound L(A). Using this alternative formulation 
of the slack variable problem and computing a lower bound on it by Lagrangian 
relaxation of the constraints Ax >~ b will give no real improvement, as we will show 
next. Suppose we apply Lagrangian relaxation. Using a given vector /x ~> 0 of La- 
grangian multipliers, we get the Lagrangian problem of finding 

F(A, /x) = min{ (A - / z ) A x  + ( / ~ -  A)b] x ~X}.  

For any A >~ 0 and /x ~> 0 we have that 

L(A) + F ( A ,  /z) = m i n { ( c -  AA)x+ Abl x ~X} 

+ min{ (A-  p,)Ax+ ( I x -  A)bl x ~ X }  

~<min{(c-  A A ) x +  Ab+ ( A -  ~)Ax+ ( tz--A)bt x ~X} 
= 
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and consequently we have that F(A*, /x) < 0 for all /x > 0. Hence, we must develop 
alternative methods to find a positive lower bound on SV(A). 

Beforehand, it can be expected that SV(A) is small relative to L(A). The effort to 
compute a lower bound on SV(A) must therefore be small relative to the effort to 
compute L(A) to make it worthwhile in a branch-and-bound algorithm. 

For example, suppose that problem (P) is a general 0-1  linear programming problem. 
An obvious lower bound on the slack variable problem is then obtained by solving a 
series of m subset-sum problems of the type min{a(i)x - bi[ a( i )x  > /b i ,  x E {0, 1}}, for 

i = 1 , . . . ,  m, where a (i) denotes the ith row of the matrix A. This follows from the 
observation that 

min{Ayl y ~ Y} = m i n { A ( A x -  b)[ Ax> b, x ~X}  

> ~ m i n { A ( A x - b ) [ A x > b ,  x~{O,  1}} 

>~ ~ a i min{a( i )x-b i la( i )x>bi ,x~{O,  1}). 
i=1 

The subset-sum problem is J 3 - h a r d  in the ordinary sense, but in practice it is a 
relatively easy problem (see, e.g., [19]). 

There exists a broad class of machine scheduling problems that can be formulated in 
such a way that the slack variables have strong intuitive interpretations. In Section 4, we 
show that these interpretations are helpful for developing lower bounding procedures for 
the slack variable problems. 

3. Relation between the slack variable problem and valid inequalities 

For the case that problem (P) is an integer linear program and the Lagrangian 
problem (L A) possesses the integrality property, we can explain in terms of linear 
programming theory where the bound improvement comes from. This explanation is 
based upon a suggestion by Miiller [20]. 

Since the integrality conditions on x are assumed to be redundant, we may replace 
the set X by X'  = {x > 0 L Cx > d}. For any 1 > 0 we then have that 

L(A) = m i n { ( c -  AA)x  + AblCx >~ d, x >  0}, 

and since the Lagrangian problem can be solved as a linear program, that 

L(A) = max{ min{ (c  - AA - / x C )  x + Ab + /xd l  x > 0} I /x > 0} 

= m a x { A b + / z d l / x > 0 ,  c - A A - / z C I > 0 }  

= Ab +/~*d,  

where /~* is the vector of optimal values for the dual variables corresponding to the 
conditions Cx > d. Accordingly, (A, /~*) is a feasible but not necessary optimal dual 
solution to the linear programming relaxation of problem (P). 

Now suppose that there exists an m × 1 vector u and a real constant b 0 > 0 such that 

uAx >~ ub + bo, forall  x ~ X w i t h  Ax >~ b; 
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in other words, uAx >~ ub + b o is a valid inequality for problem (P). Consider the linear 
program (LP) of finding 

v(LP)  = min{(c  - AA) x + Ab I Cx  ~ d, x >~ O, uAx >~ ub + b0}. 

Obviously, we have that L(A) ~< v(LP) ~< z. By linear programming duality we have that 

v (LP)  = max{Ab + tzd  + p (  ub + bo) l tz >~ O, p >~ O, c -  AA - ~ C  - puA  >1 0}, 

where p is the dual variable corresponding to the valid inequality uAx >~ ub + b o. Note 
that for any p >t 0 with A - p u  >~ O, we have that 

p. ,  p) 

is a feasible dual solution to problem (LP). The feasible dual solutions of  the type 
(A - pu ,  Ix*, p )  are interesting, since 

D ( A , u ) = m a x { ( A - p u ) b + l z * d + p ( u b + b 0 ) l p ~ 0 ,  A - p u > ~ 0 }  

= max{  Ab + t~* d + p b  o ] p >~ O, A - p u ~ > 0 }  

= L ( A ) + m a x { p b  o l p >~ O, A - p u  >~ O} ~> L (  A ) . 

In fact, strict inequality holds if some p > 0 gives rise to a feasible dual solution. 
The question of course is how to find such a u and b 0. If we now choose u to be 

u = A, then the problem of determining 

D(A, A) = L( A) + max{ pb o[p>tO, A-RA>~O} 

is solved by simply assigning p = 1, and hence, by the feasible dual solution (0, /z*, 1). 
The dual solution value is then equal to 

D(A,  A ) = L ( A ) + b 0 ,  

and we have then improved our Lagrangian lower bound by b 0. Of  course, we would 
like to specify a b 0 as large as possible. If u = A, then the valid inequality is 
alternatively written as 

A( Ax - b) >/b  0 , 

and hence the largest feasible value of b 0 is found by determining 

SV(A) -- min{ A(Ax - b )  ] x ~ X ,  A x  >~ b} .  

This is exactly the slack variable problem we introduced in the previous section. As 

pointed out there, this problem is iVY-hard,  and computing a lower bound on SV(A) by 
Lagrangian relaxation is not meaningful. This derivation shows that the slack variable 
approach is also useful for polyhedral approaches for M/~-hard problems, if we can 

compute a positive lower bound on the slack variable problem. 

4. Application to machine scheduling problems 

The usual setting of a job shop is as follows. There are m machines available for 

executing a set of n jobs J =  {J1 . . . . .  J,}. Each job Jj, j -- 1 . . . . .  n, consists of an 



178 J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 

ordered list of operations, each of which requires processing during a certain uninter- 
rupted period of time on some machine. Each machine can process at most one job at a 
time and is continuously available from time 0 onwards. A job can be processed by at 
most one machine at a time. Each Jj is available for processing during a prespecified 
period: it becomes available at its release date rj and must be completed at its deadline 
Jj. A schedule specifies for each job when and by which machine it is executed. Also, 
there may be precedence constraints between the jobs, i.e., for each job a number of jobs 
may have been specified that have to precede this job in any feasible schedule. In 
addition, each Jj may have a weight wj, expressing its importance, and a due date dj, at 
which it ideally should be completed; the weights and due dates are typically used to 
define the objective function, which is usually a function of the job completion times Cj, 
j = 1 . . . .  , n. Such a job-shop situation gives rise to a myriad of problems; for an 
overview, see, e.g., [16]. 

An elementary single-machine problem that fits in with the description is the 
following: schedule n independent jobs, each consisting of one operation and having 
rj = 0 and dj = ~, so as to minimize total weighted completion time ET= lwjCj. This 
problem is solvable in polynomial time: sequence the jobs in order of nonincreasing 
ratios wJpj, where pj denotes the processing time of Jj, and process them consecu- 
tively from time 0 to time E~ i= l Pj. This priority rule is easily validated by a simple 
interchange argument [28]. 

In this paper, we show the merits of the slack variable problem for the class of 
JY~.~-hard single-machine and multiple-machine scheduling problems for which the 
Lagrangian problem is solvable through Smith's ratio rule or an analogon of it. This 
broad class contains essentially three types of problems; in the subsequent subsections, 
we consider a problem of each type. The first type concerns the single-machine 
problems of minimizing ~nj= lwjCj subject to nasty constraints on the job completion 
times, including general release dates, deadlines and precedence constraints; as an 
example, we examine in Section 4.1 the problem of minimizing total weighted comple- 
tion time subject to precedence constraints. The second type concerns the multiple-ma- 
chine problems; as an example of this type, we consider in Section 4.2 the two-machine 
flow-shop problem of minimizing total completion time. The last type concerns prob- 
lems with step-wise linear objective functions of the job completion times; as an 
example, we examine in Section 4.3 the single-machine problem of minimizing total 
weighted tardiness. 

In our formulations of these problems, the completion times of the operations of the 
jobs are the decision variables. Such compact formulations, requiring only O(n) decision 
variables, give weaker Lagrangian bounds than the formulations based upon time-discre- 
tization, in which 0-1 variables xit are introduced that indicate whether Jj is executed 
at time t or not [4]. Formulations of the latter type, however, require a pseudo-poly- 
nomial number of variables and constraints; the time and space required to solve the 
associated Lagrangian problems limit the applicability considerably; see e.g., [29]. 

In the next subsections, we provide computational evidence that the so-called weak 
formulations can be significantly strengthened by use of slack variables. 
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4.1. Scheduling with precedence constraints 

In this subsection, we consider the single-machine problem of minimizing total 
weighted completion time ET= ~wjCj subject to precedence constraints. The precedence 
constraints are represented by an acyclic precedence graph G with vertex se t  {J1 . . . .  , Jn} 

and arc set A, which equals its transitive reduction; i.e., no arc in A can be removed on 
the basis of transitivity. A path in G from Jj to Jk implies that Jy has to be executed 
before Jk; Jj is a predecessor of Jk, and J~ is a successor of Jj. In case there is an arc 
(Jj, Jk )~A,  Jj is said to be an immediate predecessor of Jk; Jk is then an immediate 
successor of Jj. We define g j  and ~ as the set of immediate predecessors and 
immediate successors of Jj, j = 1 . . . . .  n, in A. 

For special classes of precedence constraints, including tree-like and series-parallel 
precedence constraints, the problem is still solvable in O(n log n) time [2,13,15,27], but 
the general problem is •9-hard  in the strong sense [15,17]. 

Potts [21] presents a branch-and-bound algorithm that solves instances up to 100 jobs. 
He employs a Lagrangian lower bound obtained from a 0-1 linear programming 
formulation of the problem, in which variables xjk are introduced that indicate whether 
Jj is executed before Jk or not. It requires, however, f l (n  4) time to compute this bound. 
Strong lower bounds are also proposed by Van de Velde [32] and by Queyranne and 
Wang [25]. Van de Velde's bound is based upon Lagrangian relaxation, and we will 
show here that this bound can be improved significantly at the cost of little additional 
computational effort. Queyranne and Wang obtain their bound by solving the problem as 
a linear program to which they add two types of facet-defining inequalities. At the end 
of this section, we discuss the relationship between their bound and ours. 

We proceed from the following formulation of the problem: determine job comple- 
tion times C~ . . . . .  C n that minimize 

~ wjCj 
j = l  

subject to 

C k >~ Cj +p~, for each (Jj, Jk) ~ A ,  (1) 

the machine capacity and availability constraints. (2) 

Conditions (1), stipulating the precedence constraints, are regarded as the nasty con- 
straints. Accordingly, we introduce a vector A ~ ~A that contains a Lagrangian multi- 
plier Ajk for each arc (Jj, Jk) ~ A and put the constraints (1), each weighted by its 
multiplier, into the objective function. For a given vector A >~ 0, the Lagrangian 
relaxation problem is to find L(A), which is the minimum of 

j= i j:~ J . j~ ~ ] 

subject to conditions (2). 
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For j = 1 . . . .  , n, let w~(A) = (wj + F, jk ~ 9)Ajk -- E I~ s j jAk j ) /p j ;  we call w5(A) the 
relative weight of job "/i' Using Smith 's  ratio rule, we solve the Lagrangian problem by 
sequencing the jobs in order of nonincreasing relative weights. Van de Velde [32] 
presents a fast iterative ascent direction algorithm, running in 0 ( I  I A I + n log n) time, 
where I denotes the number of iterations, to approximate the vector A* of Lagrangian 
multipliers that solves the Lagrangian dual problem. 

Since the nasty constraints are inequalities, there is room for improving the La- 
grangian lower bound. Introducing a nonnegative vector y ~ Y of slack variables Yjk, 
where Y denotes the set of all slack vectors that correspond to a feasible solution to the 
primal problem, we rewrite the precedence constraints as 

C k = C j + p k  +y}~, for e a c h ( S j ,  S t ) ~ A .  

Note that Yjk is the waiting time of Jk after its virtual release by Ji, i.e., after Cj. If  Ji 
has two immediate successors Jk and Jl, then one of these cannot be started immedi- 
ately after Jj  has been finished. As a result, yj~ or Yj/ will be positive. Similarly, if Jl 
has two immediate predecessors Jj and J~, then Yjl or Yk~ will be positive. Hence, the 
null vector is in Y only if each job has no more than one predecessor and one successor, 
in which case the problem is solvable in polynomial time. We now compute a lower 
bound on the slack variable problem min{~(j~, jD E a hjkYjk]Y ~ Y}. 

Define g / and  ~ as the set of jobs with at least two successors and two predecessors, 
respectively. For any J ,  ~ ?Z, consider the problem 

F'(h, u)=min{ ~ A . j y . j , y ~ Y ) .  

The variables y. j  may be interpreted as the start times of a feasible schedule restricted 
to the job set SP. and subject to no precedence constraints. It follows that F'(A, u) is 
obtained by using Smith 's  ratio rule. Namely, if .5'~. = {Jh' Jh  . . . .  , Jjq} with 

Auj~ Auj2 Aujq 
- -  >~ >7... >~ - -  , 
PJ~ Ph PJq 

then 

F ' ( A ,  u) = h.jl0 + A.j2pjl + . . .  - ~ h l g j q ( p j l J i  - , . ,  ~ - p j q _ l ) ,  

For any J~. ~ ~ ,  consider the problem 

F"(h, v)=min{ Y'~ hj~yj~[y~Y}. 

The variables Yjo may be interpreted as the start times of a feasible schedule 
restricted to the job set ~ .  and subject to no precedence constraints. Therefore, if 
9~ = {Jk,, Jk2, . . . .  Jkr}, we have that 

F"(A, v) = Ak~vO + hk2vpkl + "." +akq~(pk ' + . . .  +P~r-,), 
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where 

A/qv Ak2v Ak~ - -  >~ > . . .  > ~ - -  
P~ P~ P~ 

Theorem 1. For any h > O, we have that 

E F'(A, u)+ E F"(A, v) 

is a valid lower bound for the slack variable problem. 

Proofi Consider an arbitrary feasible schedule o-, and let y be the corresponding slack 
vector. For each pair of jobs Jj and Jk with ark scheduled after Jj, define ~¢jjk as the set 
of jobs scheduled in-between, define Tjk(~j) as the sum of the processing times of the 
jobs in ~ that are not in ~ ,  and let Tj~(~.~) be the sum of the processing times of the 
jobs in ~j~ that are not in ~ .  We have that 

F'(A, u) ~< E huj[Y<~- T~I (~ ) ]  

and 

+j+90 

Summing over all J.  ~ ~' and all J,, ~ ~ yields the inequality 

E F'(A, u) + E F"(A, v) <~ E E A=jYuj+ E E aj~yj~ 

- E E aj j(9;) 

- E E ajoS, (9 ). 

The first two terms of the right-hand side sum up to 

E Ai, E 
(Jk,Jl)•A (Ju,Jv)c.4 

where A is the subset of A containing all arcs (J, ,  Jr) with J ,  ~ f f  and Jr ~ Y.  
Hence, we are done if we prove that 

E A~ ,y~<  E E A.jT~j(.Yu)+ E E AivTjv(9~,)" 

To that end, consider an arbitrary arc (J . ,  J ~ , ) ~  We have that y.~ = ~y,e..%pj = 
Egje j~n~opj  + Tu~(Sf,,) and that y.~ = EJje./,,~,n~.Pi + T~(~.@~), Since A equals its 
transitive reduction, the sets ~ .  and gv are disjoint, implying that the sets .J.~, AS"~ 
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and J . v  f ~  are disjoint. Hence, we have that 

2 y ,  v = T,~(SP,) + T ~ v ( ~ )  + ~'~ pj + ~ pj 

= ruo(  ) + ruo(9 ) + pj 
JjeJ.o n{~o u~o} 

implying that for each arc (J.. J,,)~Xwe have that 

Using this inequality, we obtain 

E h , , y , ,  ~< E A. ,[T, , (SP,)  + T ,~ (~ , ) ]  
(Ju, Jr) s 2  (Ju, J,,)c.4 

< E E + E E 
Su ¢~L JjeSa. Jve ~Y'Sje~o 

Mrjv( o). [] 

Note that this lower bound on the slack variable problem is computed in O(n log n) 
time. We evaluated its merits in the following way. For any instance of the problem, we 
first applied Van de Velde's ascent direction method to find a good Lagrangian 
multiplier ~. and its corresponding lower bound L(h); we then computed the improved 
lower bound LB(h) = L(-h) + ~ ,  ~ ~F'(-h, u) + ~ j ,  ~ ~F"(-A, v). We feel that finding a 
good approximate solution h for the problem max{LB(h) I h >~ 0} and comparing it with 
L(h)  is not meaningful. This problem has not the same agreeable properties as the 
original Lagrangian dual problem max{L(h) ] h >~ 0}, which makes it much more expen- 
sive to find such a h. We tested LB(h) against L(h) on instances that were generated in 
the way Potts [21] proposes; i.e., the processing times were drawn from the discrete 
uniform distribution [1, 100] and the weights were drawn from the discrete uniform 
distribution [1, 10]. The precedence graph was induced by the probability p by which 

Table 1 
Computational results for n = 40 

p Median value of Median value of 
100 × L(-h)/z 100 × LB(~O/z 

0.01 100.00 100.00 
0.02 100.00 100.00 
0.04 99.87 100.00 
0.06 99.77 99.95 
0.08 99.66 99.89 
0.10 99.37 99.72 
0.15 98.72 99.23 
0.20 98.34 98.90 
0.30 97.65 98.41 
0.50 97.22 98.15 
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each arc (Jj, Jk) with j < k was included. The resulting graph was then replaced by its 
transitive reduction. 

In Table 1, we show the computational results for n = 40 for various values of p. 
The entries show the median values of 100 × L ( A ) / z  and 100 X LB(A)/z over 40 
instances, where z denotes the optimal solution value. Table 1 shows that reformulating 
the problem by using slack variables gives a considerable reduction of the duality gap 
for any value of p. Potts [21] reports that the value p = 0.15 generates the most difficult 
class of instances. For small values of p, the duality gap is small, since few constraints 
are involved. As can be expected, the duality gap is considerably bigger for large values 
of p; nonetheless, large values of p generate the relatively easiest instances, because the 
solution space is not so big. 

Our branch-and-bound algorithm is too rudimentary to provide complete results for 
n >~ 40. Our limited computational experience with larger instances, however, indicates 
that the results for n = 40 are typical, since the performance of L(A) and LB(A) does 
not significantly vary with n. 

We now comment on the relationship between our bound and the polyhedral bound 
by Queyranne and Wang [25]. Queyranne and Wang proceed from the same formulation 
as we did. They first add the so-called parallel inequalities. This class of inequalities 
forms a complete description of the facets of the polytope of the feasible solutions for 
the 1 [q E~= lwjCj problem; see [24,33]. In fact, these inequalities are just the explicit 
rendering of condition (2), that is, the machine capacity and availability constraints. 
Queyranne [23] gives an O(n log n) separation algorithm for these inequalities. Accord- 
ingly, the Lagrangian problem (L~) is solvable as a linear program and hence the best 
Lagrangian bound L(A*) is equal to the linear programming bound lifted by these 
parallel inequalities. Then, the so-called simple-series inequalities are added. The 
simple-series inequalities along with the parallel inequalities form a complete descrip- 
tion of the facets of the polytope of the feasible solutions for the problems F'()t, u) and 
F"(A, v). Queyranne and Wang [25] give an O(n 2) separation algorithm for these 
inequalities and proved that the best improved Lagrangian bound max{LB(A)[ A >i 0}, 
which can be found by the subgradient method, is equal to the polyhedral bound. 
Accordingly, the bound LB(A) is generally weaker than the polyhedral bound. It is 
computed much faster, however. 

4.2. Scheduling multi-operation jobs 

In this section, we consider the following two-machine flow-shop problem. There are 
two machines, M 1 and M 2, each handling no more than one job at a time and 
continuously available from time 0 onwards. There is a set of n jobs f =  {J1 . . . . .  J,}, 
each consisting of a chain of two operations. The hth operation of .lj has to be executed 
on M h during a positive uninterrupted period of time Phi,  h = 1, 2, j = 1 . . . . .  n; hence, 
each job passes first through M 1, then through M 2. A job can be executed by at most 
one machine at a time, implying that the operations of the same job may not overlap in 
their execution. A schedule specifies a completion time Chj for the hth operation, 
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h = 1, 2, of  each Jj,  j =  1 . . . .  ,n ,  such that the above conditions are met. The 
completion time of Jj  is then simply C2j. 

We consider the problem of minimizing E'!j= 1C2j, which is ./V=@-hard in the strong 
sense [7]. It is well known that for this problem it suffices to optimize over all 
permutation schedules with no machine idle time on M 1 before the execution of jobs; 
see e.g., [3]; a permutation schedule is a schedule in which every machine has the same 
job sequence. The best optimization algorithm is due to Van de Velde [31] and solves 

instances up to twenty jobs. This branch-and-bound algorithm employs a Lagrangian 
lower bound that is obtained from the following formulation. Determine completion 
times Ch/ that minimize 

~ C z j  
j =  1 

subject to 

the precedence constraints between the operations of  the jobs, (3) 

the capacity and availability constraints of the machines, (4) 

and to the condition that 

the Chj form a permutation schedule with no idle time on M 1. (5) 

Condition (5) is redundant for the primal problem, but it is not redundant for the 
Lagrangian problem and the slack variable problem. The conditions (3) are formulated 
a s  

C2j>~Cu+p2j, for j =  1 . . . . .  n. (3 ' )  

A nonnegative vector of multipliers A = (A1, . . . ,  A n) is introduced for dualizing condi- 
tions (3'). This gives the Lagrangian problem of finding L(A), which is the minimum of 

[ AjCIj ~- (1 - t~j)C2j ~- AjP2j ] 
j= l  

subject to conditions (4) and (5). In order to prevent that L(A) becomes arbitrarily small, 
we require that A ~< 1. 

This Lagrangian problem is a linear ordering problem, which in general is J 3 ' - h a r d .  
In this application, however, it is solvable in polynomial time if we choose Aj = c for 
each j, j = 1 . . . . .  n, for some constant 0 ~< c ~< 1. The Lagrangian problem is then 
solved by an analogon of Smith 's  rule which schedules the jobs in order of nondecreas- 
ing values cpl j + (1 - c)p2 j. 

Let L(c) denote the optimal solution value of the Lagrangian problem with Aj = c 
for each j, j = 1 . . . . .  n. The restricted Lagrangian dual problem max{L(c)[0  ~< c ~< 1} is 
solvable in O(n 2 log n) time, but a linear-time approximation algorithm based upon 
binary search over the interval [0, 1] performs sufficiently well. For details, we refer to 
[31]. 

We now formulate conditions (3') as equalities. Introducing a nonnegative vector 

Y = (Yl . . . . .  yn) ~ Y of slack variables, we write 

C2j=Clj+Paj+y],  for j =  1 . . . .  , n ,  
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where Y denotes the set of all slack vectors corresponding to schedules that are feasible 

with respect to the conditions (3)-(5). This leads to the slack variable problem 

min{cy I y ~ Y}. 
We compute a lower bound on the slack variable problem as follows. Note that yj 

can be interpreted as the time that Jr spends waiting in a buffer between the two 

machines. Let aij denote the minimal waiting time of  Ji if it is immediately preceded 

by Ji. Since idle time on M 1 is not allowed, we have that aij = max{p2 i - P u ,  0}. For 
any permutation schedule 7r, we have that 

n - 1  

Y~r(j) >/ E arr(j),rr(j+ l), 
j= l  j= l  

where r r ( j )  denotes the index of the job that occupies the jth position in w. Hence, the 

optimal solution value of  the problem 

where H is the set containing all permutations of  {1 , . . . ,  n}, is a lower bound on the 

slack variable problem. This is a Hamiltonian path problem with distances a o = 

max{p2 i -p ,  j, 0} for i, j =  1 . . . . .  n. In general, the Hamiltonian path problem is 

~/Kg-hard in the strong sense; this problem, however, is solvable in O(n log n) time, 

since it can be transformed into the so-called Maximal Traveling Salesman Problem, for 

which Van Dal et al. [30] show that it reduces to the Gi lmore-Gomory Traveling 

Salesman Problem [9]. The transformation is achieved by adding a dummy job J0 with 

processing times Pl.0 = oo and P2,0 = max{t2 - tl, 0}, where th, h = 1, 2 denotes the 
earliest time that M h becomes available for processing. 

We implement the improved Lagrangian lower bound in the following way. Note that 

the solution to this Hamiltonian path problem does not depend on the Lagrangian 

multiplier c. We therefore address the Hamiltonian problem first, and actually we 
compute a lower bound on the Hamiltonian path problem rather than solving it to 

optimality. The optimization algorithm proceeds by matching and patching. We only 

did the former; this takes O(n) time once the jobs are prearranged and gives a strong 

lower bound, say, B. For any c, we thus have that the improved Lagrangian bound 

Table 2 
Computational results for the flow-shop problem 

n Median value of Median value of 
IOOx L(c* )/z 100 X LB(~')/z 

10 96.35 96.78 
15 96.89 97.19 
20 96.76 96.99 
25 96.81 97.29 
30 96.54 96.79 
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LB(c) = L ( c ) +  cB. Subsequently, we conduct binary search over the interval [0, 1] to 
find the best such bound LB(e). 

We tested the quality of the improved lower bound LB(~) against the best "o ld"  

bound L(c* ), where c* is also obtained by binary search over the interval [0, 1], on 
instances with 10, 15, 207 25 and 30 jobs. For each value of n, we generated 40 
instances. The processing times for each job were drawn from the discrete uniform 
distribution [1, 10]. 

In Table 2, we show the median values of 100 ×L(e* ) / z  and 100 × LB(~)/z ,  
where z denotes the optimal solution value. We note that if a branch-and-bound 
algorithm is used with a forward sequencing branching rule, then the value P2,0 tends 
to increase if we go down the search tree; such an increase has a positive effect on the 
performance of LB(?). A forward sequencing branching rule builds a search tree in 
which nodes at level k correspond to an initial partial sequence in which jobs are 
assigned to the first k positions. 

4.3. The total weighted tardiness problem 

The setting for the total weighted tardiness problem is as follows. A set of n 
independent jobs f =  {J1 . . . .  , J~} has to be scheduled on a single machine that can 
handle no more than one job at a time. The machine and the jobs are assumed to be 
continuously available from time zero onwards. Each Jj, j = 1 . . . . .  n, requires process- 
ing during an uninterrupted processing period of a given length Pi, has a weight wj, and 
a due date dj by which it ideally should have been completed. Given a schedule, the 
tardiness of J/ is defined as ~ = max{Cj -  di, 0}. The objective is to find a schedule 
that minimizes total weighted tardiness ~.j= lwjTj. 

The total weighted tardiness problem is J g - h a r d  in the strong sense [14,18]. It is a 
challenging machine scheduling problem for which many optimization algorithms have 
been developed; see [1] for a survey. The best branch-and-bound algorithm is due to 
Potts and Van Wassenhove [22] and solves instances up to 40 jobs. They use the 
following formulation to obtain a Lagrangian lower bound. Determine job tardinesses 

and job completion times C1,. . . ,  C,, that minimize 

i 
j = l  

subject to 

wjTj 

Tj>>.Cj-dj, for j =  1 . . . . .  n, (6) 

Tj~>0, for j =  1 . . . . .  n, (7) 

the capacity and availability constraints of the machine. (8) 

Conditions (6) and (7) reflect the definition of job tardiness. Using a vector 
A = (A 1 . . . . .  A n) >/0 of Lagrangian multipliers to dualize the conditions (6), Potts and 
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Van Wassenhove [22] obtain the following Lagrangian problem: determine the value 
L(A), which is the minimum of 

+ , , ( c , -  d,) 
j = l  j=l  

subject to the conditions (7) and (8). 
Since the conditions ('7) affect only the first component of the Lagrangian objective 

function and the conditions (8) only the second one, the Lagrangian problem decom- 
poses into two subproblems. If wy - Aj ~< 0 for some j, j = 1 , . . . ,  n, then we get Tj = % 
resulting in L(A) = - ~ .  We therefore require that wj - Aj >~ 0 for each j, j = 1 . . . . .  n, 
and we minimize the first component by setting T/= 0 for each j. The second 
component reduces to the problem of minimizing F."i=2 AjCj, which is simply solved by 
scheduling the jobs in order of nondecreasing values A//p~ in the interval [0, .F__,~= l Pi]- 

Ports and Van Wassenhove propose a linear-time heuristic algorithm to set the 
Lagrangian multipliers. This algorithm generally gives a very good approximation of the 
Lagrangian dual solution value, but for some classes of instances the Lagrangian dual 
solution value is quite a weak lower bound. We propose an improvement by using slack 
variables. We introduce a nonnegative vector y = (Yl,- . - ,  Yn) ~ Y of slack variables, 
where Y is the set of all slack vectors corresponding to feasible schedules, and rewrite 
the conditions (6) as 

T j = C j - d j + y j ,  for j =  1 . . . .  ,n.  

Note that yj. is equivalent to the earliness of Jp which in machine scheduling theory is 
defined as Ey = max{dj - Cp 0}. If we dualize the equality conditions, we get the 
following Lagrangian problem: find L'(A), which is the minimum of 

+ i ,,,n +/ :  
j = l  j = l  j=1 

subject to (7), (8) and (E 1 . . . . .  E n) ~ Y. Since the term E~=l(w;-  A;)Tj does not 
contribute to the bound L(A), we include it in the slack variable problem; as we will see, 
we gain by it, since in no nontrivial problem we can have that both Tj = 0 and Ej = 0 for 
all j. This gives the modified slack variable problem of minimizing 

j = l  

subject to (7), (8) and ( E l , . . . ,  E,)  ~ Y. 
No tardiness or earliness penalties are incurred if it is feasible to execute each Jj in 

the interval [ d j - p p  dj]; in this case, however, the original problem would be trivial. 
Suppose that there are jobs Jk and J/ with 0 < )t k < w k and 0 < A t < w 1 for which the 
ideal execution intervals [d k - p~ ,  d k] and [d z -P l ,  dl] overlap. We call Jk and Jl 

conflicting jobs, since Jk or Jl will be early or tardy. The minimum penalty to settle the 
conflict is obtained by evaluating four options: executing Jk and ,/1 in the interval 
[ d k - P k ,  dk +Pt]  with Jk before .It, scheduling Jk and Jl in the interval [d z - P t -  
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Table 3 
Computational results for difficult instances 

n Median value of Median value of Median value of 
100 × L(A)/z  100 × LB'(A)/z 100 × LB"(A)/z 

20 62.37 67.47 69.92 
30 58.53 62.35 64.84 
40 59.14 63.65 65.93 

pk, d l] with Jk before Jl, scheduling J~ and Jl in the interval [dl - P l ,  dt +Pk] with Jr 
before Jk, and scheduling Jk and Jl in the interval [d k - p e  - P l ,  d~] with Jl before Jk. 
All other options are dominated by these four. The minimum penalty is readily 

computed, since the cost of scheduling Jk before Jt is equal to min{A k, w l - At}(d ~ - d l 

- P t ) ,  and the minimum cost of scheduling Jl before Jk is equal to min{At, w,  - hk}(d t 

- d ~  - Pk)"  

We compute a lower bound for the modified slack variable problem as follows. First, 
we arrange the jobs in nondecreasing order of the due dates, and renumber them 
accordingly. Then, we identify pairs of adjacent conflicting jobs; no job may appear in 
more than one pair. Finally, we compute for each pair the minimum penalty to settle the 
conflict. The sum of these penalties is a lower bound on the optimal solution value of 
the modified slack variable problem; adding this sum to L(A) gives the improved 

Lagrangian lower bound LB'(A). Like Potts and Van Wassenhove's lower bound, 
LB'(A) is computed in O(n) time if the jobs are prearranged. In a similar fashion, we 
can compute a lower bound on the slack variable problem by specifying triples of 
adjacent conflicting jobs. To compute the minimum penalty for such a triple, we need to 
evaluate twelve options. This gives rise to the alternative improved Lagrangian lower 
bound LB"(A), which is also computed in O(n) time. Note that LB"(A) does not 
dominate LB'(A), but LB"(A) will usually be greater in case of many conflicts. 

We tested the improved lower bounds LB'(A) and LB"(-A) against the traditional 
Lagrangian lower bound L(A), where A is the Lagrangian multiplier obtained by Potts 
and Van Wassenhove's algorithm, on instances with 20, 30 and 40 jobs that were 
generated in the same way as Potts and Van Wassenhove generated theirs. The 
processing times were generated from the discrete uniform distribution [10, 100], and 
the weights were generated from the discrete uniform distribution [1, 10]. The due dates 

- ½ R ) ,  - w e r e  generated from the discrete uniform distribution [P(1 T -  P(1 T + ½R)], 

Table 4 
Computational results for instances of average difficulty 

n Median value of Median value of Median value of 
100 × L(-A)/z 100 × LB'(A)/z 100 × LB"(A)/z 

20 92.27 92.69 94.42 
30 92.63 93.31 93.70 
40 91.70 92.24 92.67 



J.A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 189 

where P = ET=~pj, and where R and T are parameters. For both parameters, we 
considered the values 0.2, 0.4, 0.6, 0.8 and 1.0. In Table 3, we show the results for 
T = 0.4 and R = 0.6; this choice generates the class of instances for which Potts and 
Van Wassenhove's lower bound has its worst performance. Table 3 shows that the 
improvement we achieve is substantial; it suggests that it may be worthwhile to consider 
a more sophisticated lower bound procedure for the slack variable problem. In Table 4, 
we give the results for instances of average difficulty, generated by choosing T = 0.2 
and R = 0.8. 

5. Conclusions 

We have shown that better Lagrangian bounds can be obtained by addressing the slack 
variable problem that results from reformulating nasty inequality constraints as equali- 
ties. In each application, the computation of the improved Lagrangian lower bound 
proceeded in two phases. In the first phase, we dealt with the Lagrangian dual problem 
and computed the traditional Lagrangian lower bound. The Lagrangian multiplier found 
here served as input for the second phase, in which we computed a lower bound on the 
slack variable problem. The improved Lagrangian lower bound was then set equal to the 
traditional bound plus the bound on the slack variable problem. In this way, we attained 
for each application significant improvements. 

The main conclusion of this paper is that the slack variable problem deserves to be 
investigated if Lagrangian relaxation is used to compute bounds. 

Acknowledgements 

The authors like to thank Maurice Queyranne and the referees for their constructive 
comments. 

References 

[1] T.S. Abdul-Razaq, C.N. Potts and L.N. Van Wassenhove, "A  survey of algorithms for the single 
machine total weighted tardiness scheduling problem," Discrete Applied Mathematics 26 (1990) 
235-253. 

[2] D. Adolphson and T.C. Hu, "Optimal linear ordering,"SIAMJournal of Applied Mathematics 25 (1973) 
403-423. 

[3] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading, MA, 
1967). 

[4] M.E. Dyer and L.A. Wolsey, "Formulating the single-machine sequencing problem with release dates as 
a mixed integer program," Discrete Applied Mathematics 26 (1990) 255-270. 

[5] M.L. Fisher, "The Lagrangian relaxation method for solving integer programming problems," Manage- 
ment Science 27 (1981) 1-18. 

[6] M.L. Fisher, "An applications oriented guide to Lagrangian relaxation," Interfaces 15 (1985) 10-21. 
[7] M.R. Garey, D.S. Johnson and R. Sethi, "The complexity of flowshop and jobshop scheduling," 

Mathematics of Operations Research 13 (1976) 330-348. 
[8] A.M. Geoffrion, "Lagrangian relaxation and its uses in integer programming," Mathematical Program- 

ming Study 2 (1974) 82-114. 



190 J~A. Hoogeveen, S.L. van de Velde / Mathematical Programming 70 (1995) 173-190 

[9] P.C. Gilmore and R.E. Gomory, "Sequencing a one state-variable machine: a solvable case of the 
traveling salesman problem," Operations Research 12 (1964) 655-679. 

[10] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning trees," Operations 
Research 18 (1970) 1138-1162. 

[11] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning trees: Part II," 
Mathematical Programming 1 (1971) 6-25. 

[12] J.A. Hoogeveen, H. Oosterhout and S.L. van de Velde, "New lower and upper bounds for scheduling 
around a small common due date," Operations Research 42 (1994) 102-110. 

[13] W.A. Horn,"Single-machine job sequencing with treelike precedence ordering and linear delay penalties," 
SIAM Journal of Applied Mathematics 23 (1972) 189-202. 

[14] E.L. Lawler, " A  pseudopolynomial algorithm for sequencing jobs to minimize total tardiness," Annals 
of Discrete Mathematics 1 (1977) 331-342. 

[15] E.L. Lawler, "Sequencing jobs to minimize total weighted completion time subject to precedence 
constraints," Annals of Discrete Mathematics 2 (1978) 75-90. 

[16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, "Sequencing and scheduling: 
algorithms and complexity," in: S.C. Graves, A.H.G. Rinnooy Kan and P. Zipkin, eds., Handbooks in 
Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory (North- 
Holland, Amsterdam, 1993) pp. 445-522. 

[17] J.K. Lenstra and A.H.G. Rinnooy Kan, "Complexity of scheduling under precedence constraints," 
Operations Research 26 (1978) 22-35. 

[18] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, "Complexity of machine scheduling problems," 
Annals of Discrete Mathematics 1 (1977) 343-362. 

[19] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations (Wiley, 
Chichester, 1990). 

[20] R. Miiller, Personal communication (1993). 
[21] C.N. Potts, "A  Lagrangean based branch-and-bound algorithm for single machine sequencing with 

precedence constraints to minimize total weighted completion time," Management Science 31 (1985) 
1300-1311. 

[22] C.N. Potts and LN. Van Wassenhove, "A branch and bound algorithm for the total weighted tardiness 
problem," Operations Research 33 (1985) 363-377. 

[23] M. Queyranne, "Structure of a simple scheduling polyhedron," Mathematical Programming 58 (1993) 
263-286. 

[24] M. Queyranne and Y. Wang, "Single-machine scheduling polyhedra with precedence constraints," 
Mathematics of Operations Research 16 (1991) 1-20. 

[25] M. Oueyranne and Y. Wang, " A  cutting plane procedure for precedence-constrained single machine 
scheduling," Working Paper, University of British Columbia, Vancouver, Canada (1991). 

[26] J.F. Shapiro, " A  survey of Lagrangian techniques for discrete optimization," Annals of Discrete 
Mathematics 5 (1979) 113-138. 

[27] J.B. Sidney, "Decomposition algorithms for single-machine sequencing with precedence relations and 
deferral costs," Operations Research 23 (1975) 283-298. 

[28] W.E. Smith, "Various optimizers for single-stage production," Naval Research Logistics Quarterly 3 
(1956) 59-66. 

[29] J.P. Sousa and L.A. Wolsey, "A time indexed formulation of non-preemptive single machine scheduling 
problems," Mathematical Programming 54 (1992) 353-367. 

[30] R. van Dal, J.A.A. van der Veen and G. Sierksma, "Small and large TSP: Two polynomially solvable 
cases of the traveling salesman problem," European Journal of Operational Research 69 (1993) 
107-120. 

[31] S.L. van de Velde, "Minimizing the sum of the job completion times in the two-machine flow shop by 
Lagrangian relaxation," Annals of Operations Research 26 (1990) 257-268. 

[32] S.L. van de Velde, "Dual decomposition of machine scheduling problems" in: Machine scheduling and 
Lagrangian relaxation, Ph.D. Thesis, (Chapter 2) CWI, Amsterdam (1991); an earlier version appeared in: 
Proceedings of the First Conference on Integer Programming and Combinatorial Optimization, Univer- 
sity of Waterloo (Waterloo, 1990) pp. 495-507. 

[33] A. von Arnim, U. Faigle and R. Schrader, "The permutahedron of series-parallel posets," Discrete 
Applied Mathematics 28 (1990) 3-9. 


