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ABSTRACT. – We propose a semi-parametric method for unconditional
Value-at-Risk (VaR) evaluation. The largest risks are modelled parametri-
cally, while smaller risks are captured by the non-parametric empirical dis-
tribution function. A comparison of methods on a portfolio of stock and
option returns reveals that at the 5 % level the RiskMetrics analysis is best,
but for predictions of low probability worst outcomes, it strongly underpre-
dicts the VaR while the semi-parametric method is the most accurate.

Valeurs-à-Risque et les rendements extrêmes

RÉSUMÉ. – Nous présentons une méthode semi-paramétrique pour
évaluer la valeur-à-risque (VaR). Les risques les plus grands sont modéli-
sés paramétriquement, alors que les petits risques sont approchés par la
distribution empirique. Une comparaison des méthodes sur les rendements
d’un portefeuille d’actions et options montre qu’au niveau de confiance de
5 %, la méthode proposée par J. P. MORGAN (RiskMetrics) est la meilleure,
mais que pour les prédictions pour les plus grandes pertes à des bas
niveaux de probabilité, la méthode semi-paramétrique est supérieure, la
méthode RiskMetrics sous-évalue la VaR.
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1 Introduction

A major concern for regulators and owners of financial institutions is catas-
trophic market risk and the adequacy of capital to meet such risk. Well
publicized losses incurred by several institutions such as Orange County,
Procter and Gamble, and NatWest, through inappropriate derivatives pricing
and management, as well as fraudulent cases such as Barings Bank, and
Sumitomo, have brought risk management and regulation of financial institu-
tions to the forefront of policy making and public discussion.

A primary tool for financial risk assessment is the Value-at-Risk (VaR)
methodology where VaR is defined as an amount lost on a portfolio with a
given small probability over a fixed number of days. The major challenge in
implementing VaR analysis is the specification of the probability distribution
of extreme returns used in the calculation of the VaR estimate.

By its very nature, VaR estimation is highly dependent on good predictions
of uncommon events, or catastrophic risk, since the VaR is calculated from
the lowest portfolio returns. As a result, any statistical method used for VaR
estimation has to have the prediction of tail events as its primary goal.
Statistical techniques and rules of thumb that have been proven useful in
analysis and prediction of intra-day and day-to-day risk, are not necessarily
appropriate for VaR analysis. This is discussed in a VaR context by e.g.
DUFFIE and PAN [1997] and JORION [2000].

The development of techniques to evaluate and forecast the risk of
uncommon events has moved at a rapid rate, and specialized methods for VaR
prediction are now available. These methods fall into two main classes: para-
metric prediction of conditional volatilities, of which the J. P. MORGAN

RiskMetrics method is the best known, and non-parametric prediction of
unconditional volatilities such as techniques based on historical simulation or
stress testing methods.

In this paper, we propose a semi-parametric method for VaR estimation
which is a mixture of these two approaches, where we combine non-parame-
tric historical simulation with parametric estimation of the tails of the return
distribution. These methods build upon recent research in extreme value-
theory, which enable us to accurately estimate the tails of a distribution.
DANIELSSON and DE VRIES [1997a] and DANIELSSON and DE VRIES [1997b]
propose an efficient, semi-parametric method for estimating tails of financial
returns, and this method is expanded here to the efficient estimation of “port-
folio tails”.

We evaluate various methods for VaR analysis, and compare the traditional
methods with our tail distribution estimator using a portfolio of stocks. First,
we construct a number of random portfolios over several time periods, and
compare the results of one step ahead VaR predictions. Second, we investi-
gate multi-day VaR analysis. Third, we study the implications of adding an
index option to the portfolio. Fourth, the issues relating to the determination
of capital are discussed. Finally, we discuss the practical implementations of
these methods for real portfolio management, with special emphasis on the
ease of implementation and computational issues.
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2 The Methodology
of Risk Forecasting

2.1 Dependence

Financial return data are characterized by (at least) two stylized facts. First,
returns are non-normal, with heavy tails. Second, returns exhibit dependence
in the second moment. In risk forecasting, there is a choice between two
general approaches. The risk forecast may either be conditioned on current
market conditions, or can be based on the unconditional market risk. Both
approaches have advantages and disadvantages, where the choice of methodo-
logy is situation dependent.

2.1.1 Unconditional Models

A pension fund manager has an average horizon which is quite the opposite
from an options trader. It is well known that conditional volatility is basically
absent from monthly return series, but the fat tail property does not fade. For
longer horizon problems, an unconditional model is appropriate for the calcu-
lation of large loss forecasts. Furthermore, even if the time horizon is shorter,
financial institutions often prefer unconditional risk forecast methods to avoid
undesirable frequent changes in risk limits for traders and portfolio managers.
For more in this issue, see DANIELSSON [2000]. For a typical large portfolio
(in terms of number of assets), the conditional approach may also just not be
feasible since this requires constructing and updating huge conditional
variance-covariance matrices.

2.1.2 Conditional Models

Building on the realization that returns exhibit volatility clusters, condi-
tional volatility forecasts are important for several applications. In many
situations where the investment horizon is short, conditional volatility models
may be preferred for risk forecasting. This is especially the case in intra-day
risk forecasting where predictable patterns in intra-day volatility seasonality
are an essential component of risk forecasting. In such situations both
GARCH and Stochastic Volatility models have been applied successfully. In
general, where there are predictable regime changes, e.g. intra-day patterns,
structural breaks, or macroeconomic announcements, a conditional model is
essential. In the case of intra-day volatility, DANIELSSON and PAYNE [2000]
demonstrate that traders in foreign exchange markets build expectations of
intra-day volatility patterns, where primarily unexpected volatility changes
are important.

2.1.3 Conditionality versus Unconditionality
in Risk Forecasting

Neither the conditional nor the unconditional approach is able to tell when
disaster strikes, but GARCH type models typically perform worse when
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disaster strikes since the unconditional approach structures the portfolio
against disasters, whereas GARCH does this only once it recognizes one has
hit a high volatility regime. Per contrast, GARCH performs better in signal-
ling the continuation of a high risk regime since it adapts to the new situation.
The conditional GARCH methodology thus necessarily implies more volatile
risk forecasts than the unconditional approach; see e.g. DANIELSSON [2000]
who find that risk volatility from a GARCH model can be 4 times higher than
for an unconditional model. Because the GARCH methodology quickly
adapts to recent market developments, it meets the VaR constraint more
frequently than the unconditional approach. But this frequency is just one
aspect, the size of the misses also counts. Lastly, conditional hedging can be
self defeating at times it is most needed due to macro effects stalling the
market once many market participants receive sell signals from their condi-
tional models, cf. the 1987 crash and the impact of portfolio insurance.

In the initial version of this paper, DANIELSSON and DE Vries [1997c],
unconditional risk forecasts were recommended over the conditional type. At
the time, empirical discussion of risk forecasting was in its infancy, and our
purpose was primarily to introduce and demonstrate the uses of semi-parame-
tric unconditional Extreme Value Theory (EVT) based methods. This
approach was subsequently criticized, in particular by MCNEIL and FREY

[1999], who propose a hybrid method, where a GARCH model is first esti-
mated and EVT is applied to the estimated residuals. It is our present position
that the choice of methodology should depend on the situation and question at
hand, and that both the conditional and unconditional approach belong in the
toolbox of the risk manager. In this paper, without prejudice, we focus only
on the unconditional methods.

2.2 Data Features

In finance, it is natural to assume normality of returns in daily and multi-
day conditional and unconditional volatility predictions, in applications such
as derivatives pricing. As the volatility smile effect demonstrates, however,
for infrequent events the normal model is less useful. Since returns are known
to be fat tailed, the conditional normality assumption leads to a sizable under-
prediction of tail events. Moreover, the return variances are well known to
come in clusters. The popular RiskMetrics technique, in essence an IGARCH
model, is based on conditional normal analysis that recognizes the clustering
phenomenon and comes with frequent parameter updates to adapt to changing
market regimes. The price one has to pay for the normality assumption and
frequent parameter updating is that such model is not well suited for analy-
zing large risks. The normality assumption implies that one under estimates
the chances of heavy losses. The frequent updating implies a high variability
in the estimates and thus recurrent costly capital adjustments. For this reason,
RiskMetrics focuses on the 5 % quantile, or the probability of losses that
occur once every 20 days. These losses are so small that they can be handled
by any financial institution. We argue below that RiskMetrics is ill suited for
lower probability loses.

Furthermore, conditional parametric methods typically depend on condi-
tional normality for the derivation of multi-period VaR estimates. Relaxation
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of the normality assumption leads to difficulties due to the “square-root-of-
time” method, i.e. the practice of obtaining multi-period volatility predictions
by multiplying the one day prediction by the square root of the length of the
time horizon. As CHRISTOFFERSEN and DIEBOLD [2000] argue, conditional
volatility predictions are not very useful for multi-day predictions. We argue
that the appropriate method for scaling up a single day VaR to a multi-day
VaR is the alpha-root rule, where alpha is the number of finite bounded
moments, also known as the tail index. We implement the alpha-root method
and compare it with the square-root rule.

As an alternative to the fully parametric approach to (unconditional) VaR
forecasts, one can either use the historical returns as a sampling distribution
for future returns as in Historical Simulation (HS) and stress testing, or use a
form of kernel estimation to smooth the sampling distribution as in  BUTLER

and SCHACHTER [1996]. The advantages of historical simulation have been
well documented by e.g. JACKSON, MAUDE, and PERRAUDIN [1997], MAHONEY

[1996], and HENDRICKS [1996]. A disadvantage is that the low frequency and
inaccuracy of tail returns leads to predictions which exhibit a very high
variance, i.e. the variance of the highest order statistics is very high, and is in
some cases even infinite. As a result, the highest realizations lead to poor esti-
mates of the tails, which may invalidate HS as a method for stress testing. In
addition, it is not possible to do out-of-sample prediction with HS, i.e. predict
losses that occur less frequently than are covered by the HS sample period.

2.3 Properties of Extreme Returns

Value-at-Risk analysis is highly dependent on extreme returns or spikes.
The empirical properties of the spikes, are not the same as the properties of
the entire return process. A major result from empirical research of returns, is
the almost zero autocorrelation and significant positive serial correlation in
the volatility of returns. As a result volatilities can be relatively well predicted
with a parametric model such as ARCH. If, however, one focuses only on
spikes, the dependency is much reduced. This is due to the fact that the
ARCH process is strong mixing (in combination with another technical
condition). In DE HAAN, RESNICK, ROOTZEN, and DE VRIES [1989] it was
demonstrated that the ARCH process satisfies these conditions so that if the
threshold level, indicating the beginning of the tails, rises as the sample size
increases, the spikes eventually behave like a Poisson process. In particular,
for the ARCH(1) process DE HAAN, RESNICK, ROOTZEN, and DE VRIES [1989]
obtain the tail index and the extremal index by which the mean cluster size
has to be rescaled to obtain the associated independent process, see below.

Some evidence for the reduced dependency over larger thresholds is given
in Table 1, which lists the number of trading days between the daily extremes
for the SP-500 index along with the rank of the corresponding observation.
Figure 1 shows the 1 % highest and lowest returns on the daily SP-500 index
in the 1990’s along with the 7 stocks used below in testing the VaR estimation
techniques. No clear pattern emerges for these return series. In some cases we
see clustering, but typically the extreme events are almost randomly scattered.
Furthermore, there does not appear to be strong correlation in the tail events.
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There were 2 days when 5 assets had tail events, no days with 4 tail events, 
5 days with 3 events, 21 days with 2 events, 185 days with 1 event, and 1,558
days with no tail events. For the SP-500, two of the upper tail observations
are on adjacent days but none of the lower tailed observations, and in most
cases there are a number of days between the extreme observations. One does
not observe market crashes many days in a row. There are indications of some
clustering of the tail events over time. However, the measurement of a spike
on a given day, is not indicative of a high probability of a spike the following
few days. The modelling of the dependency structure of spikes would there-
fore be different than in e.g. GARCH models.

Another important issue is pointed out by DIMSON and MARSH [1996] who
analyze spikes in 20 years of the British FTSE All Share Index, where they
define spikes as fluctuations of 5 % or more. They find 6 daily spikes,
however they also search for non-overlapping multi day spikes, and find 4 2-
day spikes, 3 3-day, 3 4-day, 8 weekly, and up to 7 biweekly. Apparently, the
number of spikes is insensitive to the time span over which the returns are
defined. This is an example of the fractal property of the distribution of
returns and the extremes in particular, and is highly relevant for spike forecas-
ting when the time horizon is longer than one day.

On the basis of the above evidence, we conclude that for computing the
VaR, which is necessarily concerned with the most extreme returns, the
ARCH dependency effect is of no great importance. One can show, moreover,
that the estimators are still asymptotically normal, albeit with higher variance
due to the ARCH effect. Hence, it suffices to assume that the highest and
lowest realizations are i.i.d. This is corroborated by the evidence from
CHRISTOFFERSEN and DIEBOLD [2000] that when the forecast horizon is several
days, conditional prediction performs no better than using the unconditional
distribution as predictive distribution. The reason is that most current history
contains little information on the likelihood that a spike will occur, especially
in the exponential weighting of recent history by RiskMetrics.

3 Modelling Extremes

3.1 Tail Estimation

Extreme value theory is the study of the tails of distributions. Several
researchers have proposed empirical methods for estimation of tail thickness.
The primary difficulty in estimating the tails is the determination of the start
of the tails. Typically, these estimators use the highest/lowest realizations to
estimate the parameter of tail thickness which is called the tail index. HILL

[1975] proposed a moments based estimator for the tail index. The estimator
is conditional on knowing how many extreme order statistics for a given
sample size have to be taken into account. HALL [1990] suggested a bootstrap
procedure for estimation of the start of the tail. His method is too restrictive to
be of use for financial data, e.g., it is not applicable to the Student-t distribu-
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tion, which has been used repeatedly to model asset returns. Recently,
DANIELSSON and DE VRIES [1997a] and DANIELSSON, DE HAAN, PENG, DE

VRIES [2000] have proposed general estimation methods for the number of
extreme order statistics that are in the tails, but presuppose i.i.d. data.1 This
method is used here to choose the optimal number of extreme order statistics.
A brief formal summary of these results is presented in Appendix A.

It is known that only one limit law governs the tail behavior of data drawn
from almost any fat tailed distribution.2 The condition on the distribution
F(x) for it to be in the domain of attraction of the limit law is given by (7) in
Appendix A. Since financial returns are heavy tailed, this implies that for
obtaining the tail behavior we only have to deal with this limit distribution.
By taking an expansion of F(x) at infinity and imposing mild regularity
conditions one can show that for most heavy tailed distributions the second
order expansion of the tails is:

(1) F(x) � 1 − ax−α
[
1 + bx−β

]
, α,β > 0

for x large, while a, b, α, and β are parameters. In this expansion, the key
coefficient is α, which is denoted as the tail index, and indicates the thickness
of the tails. The parameter a determines the scale, and embodies the depen-
dency effect through the extremal index; the other two parameters b and β are
the second order equivalents to a and α. For example, for the Student-t or the
non-normal stable densities, α equals the degrees of freedom or the characte-
ristic exponent. For the ARCH process α equals the number of bounded
moments of the unconditional distribution of the ARCH innovations.

HILL [1975] proposed a moments based estimator of the tail index which is
estimated conditional on a threshold index M where all values xi > X M+1
are used in the estimation. The Xi indicate the decreasing order statistics,
X1 � X2 � ... � X M � ... � Xn, in a sample of returns x. DANIELSSON and
DE VRIES [1997] discuss the following estimator for the tail probabilities,
given estimates of α and the threshold:

(2) F̂(x) = p = M

n

(
X M+1

x

)α̂

, x > X M+1

where n is the number of observations, and p is the probability. This applies
equally to the lower tails. By taking the inverse of F̂(x) we obtain an extreme
quantile estimator:

(3) x̂p = F̂−1(x) = X M+1

(
M

np

) 1
α̂

.

Note that F̂(x) is always conditional on a given sample. In order to use the
distribution F̂(x) we need to specify the parameters α and the random
variables M and X M+1, before we can obtain a quantile estimate for a proba-
bility. The empirical and estimated distribution functions of the SP-500 index
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are presented in Figure 3. Some practical issues of the tail estimation are
discussed below.

3.2 Multi-Period Extreme Analysis

The method for obtaining multi-period predictions follows from the work of
FELLER [1971, VIII.8]. FELLER shows that the tail risk for fat tailed distribu-
tions is, to a first approximation, linearly additive. Assume that the tails of the
distribution are symmetric in the sense that for a single period return
Pr [|X | > x] ≈ ax−α when x is large.3 For the T-period return we then have

(4) Pr [X1 + X2 + ... + Xn > x] ≈ T ax−α.

The implication for portfolio analysis of this result has been discussed in
the specific case of non-normal stable distributions by FAMA and MILLER

[1972, p. 270]. In that case α < 2 and the variance is infinite. DACOROGNA,
MULLER, PICTET, and DE VRIES [1995] are the first to discuss the finite
variance case when α > 2. It is well known that the self-additivity of normal
distributions implies that the T 1/2 scaling factor for multi-period VaR, i.e. the
“square-root-of-time rule” implemented in RiskMetrics. But for heavy tailed
distributions this factor is different for the largest risks. Heavy tailed distribu-
tions are self-additive in the tails, see e.g. (4). This implies a scaling factor
T 1/α for VaR in a T-period analysis. With finite variance where α > 2 and
hence T 1/2 > T 1/α, i.e. the scaling factor for heavy tailed distributed returns
is smaller than for normal distributed returns. In comparison with the normal
model, there are two counter balancing forces. If daily returns are fat tailed
distributed, then there is a higher probability of extreme losses and this
increases the one day possible loss vis-à-vis the normal model. This is a level
effect. But there is also a slope effect. Due to the above result, the multiplica-
tion factor (slope) used to obtain the multi-day extreme is smaller for fat
tailed distributed returns than for normal returns. For this reason, extreme
predictions from the two models cross at different probability levels if we
consider different time horizons. This is demonstrated in Table 5.

3.3 Monte Carlo Evidence

In order to evaluate the performance of the estimated tail distribution in (2)
DANIELSSON and DE VRIES [1997a] do extensive Monte Carlo experiments to
evaluate the properties of the estimator. In Table 2, a small subset of the
results is presented. We generate repeated samples of size 2000 from a
Student-t distribution with 4 degrees of freedom and compare the average
maxima, denoted here as the sample maxima by historical simulation (HS),
from the samples with the average predicted value by F̂(x), denoted as
extreme value (EV). The specific distribution was chosen since its tail beha-
vior is similar to a typical return series. The Monte Carlo results are reported
in Table 2.
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Out-of-sample predictions were obtained by using the estimated tail of the
distribution to predict the value of the maxima of a sample of size 4,000 and
6,000, the true values are reported as well. We can see that the tail estimator
performs quite well in predicting the maxima while the sample averages yield
much lower quality results. Note that the variance of HS approach is much
higher than the variance by EV method. Moreover, HS is necessarily silent on
the out of sample sizes 4,000 to 6,000, where EV provides an accurate esti-
mate. Obviously, if one used the normal to predict the maximums, the result
would be grossly inaccurate, and would in fact predict values about one third
of the theoretical values. See also Figures 3 and 4 in Section 5 below for a
graphical illustration of this claim.

4 Value-at-Risk
and Common Methods

Value-at-Risk form the basis of the determination of market risk capital (see
Section 6.1.3). The formal definition of Value-at-Risk (VaR) is easily given
implicitly:

(5) Pr [�P�t � V a R] = π,

where �P�t is a change in the market value of portfolio P over time horizon
�t with probability π. Equation (5) states that a loss equal to, or larger than
the specific VaR occurs with probability π. Or conversely, (5) for a given
probability π losses, equal to or larger than the VaR, happen. In this latter
interpretation the VaR is written as a function of the probability π. Let
F(�P�t ) be the probability distribution of �P�t, then

(6) F−1(π) = V a R;
where F−1(·) denotes the inverse of F(·). The major problem in implemen-
ting VaR analysis is the specification of the probability distribution F(·)
which is used in the calculation in (5).

Two methods are commonly used to evaluate VaR:

1. Historical Simulation (Non Parametric, Unconditional Volatility)
2. Parametric Methods (Fully Parametric, Conditional Volatility)

Both these methods are discussed in this section. The semi-parametric
extreme value (EV) method falls in between these two methodologies.

4.1 Historical Simulation

A popular method for VaR assessment is historical simulation (HS). Instead
of making distributional assumptions about returns, past returns are used to
predict future returns.
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The advantage of historical simulation is that few assumptions are required,
and the method is easy to implement. The primary assumption is that the
distribution of the returns in the portfolio is constant over the sample period.
Historical simulation has been shown to compare well with other methods,
see e.g. MAHONEY [1996], however past extreme returns can be a poor
predictor of extreme events, and as a result historical simulation should be
used with care. The reason for this is easy to see. By its very nature HS has
nothing to say about the probability outcomes which are worse than the
sample minimum return. But HS also does not give very accurate probability
estimates for the borderline in sample extremes, as is demonstrated below.
Furthermore, the choice of sample size can have a large impact on the value
predicted by historical simulation. In addition, the very simplicity of HS
makes it difficult to conduct sensitivity experiments, where a VaR is
evaluated under a number of scenarios.

A major problem with HS is the discreteness of extreme returns. In the
interior, the empirical sampling distribution is very dense, with adjacent
observations very close to each other. As a result the sampling distribution is
very smooth in the interior and is the mean squared error consistent estimate
of the true distribution. The closer one gets to the extremes, the longer the
interval between adjacent returns becomes. This can be seen in Table 3 where
the 7 largest and smallest returns on the stocks in the sample portfolio and
SP-500 Index for 10 years are listed.

These extreme observations are typically the most important for VaR
analysis, however since these values are clearly discrete, the VaR will also be
discrete, and hence be either underpredicted or overpredicted. We see that this
effect is somewhat more pronounced for the individual assets, than for the
market portfolio SP-500, due to diversification. Furthermore, the variance of
the extreme order statistics is very high; and can be infinite. As a result, VaR
estimates that are dependent on the tails, will be measured discretely, with a
high variance, making HS in many cases a poor predictor of the VaR. Results
from a small Monte Carlo (MC) experiment demonstrating this are presented
in Section 3.3. In Figure (2) we plot the 99th percentile of the S&P for the
past 500 and 1,000 days, i.e. the 5th and 10th largest and smallest observations
for the past 500 and 1,000 days respectively. It is clear from the figure that the
window length in assessing the probability of spikes is very important, and
this creates a serious problem. Note how rapidly the percentile changes when
new data enter and exit the window. In VaR prediction with HS, the inclusion
or exclusion of one or two days at the beginning of the sample can cause large
swings in the VaR estimate, while no guidelines exist for assessing which
estimate is the better.

BUTLER and SCHACHTER [1996] propose a variation of HS by use of a kernel
smoother to estimate the distribution of returns, which is in essence an esti-
mation of the distribution of returns. This type of methodology has both
advantages and draw backs. The advantage is that a properly constructed
kernel distribution provides a smooth sampling distribution. Hence sensitivity
experiments can be readily constructed, and valuable insight can be gained
about the return process. Furthermore, such distribution may not be as sensi-
tive to the sample length as HS is. Note that these advantages are dependent
on a properly constructed kernel distribution. In kernel estimation, the
specific choice of a kernel and window length is extremely important. Almost
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all kernels are estimated with the entire data set, with interior observations
dominating the kernel estimation. While even the most careful kernel estima-
tion will provide good estimates for the interior, there is no reason to believe
that the kernel will describe the tails adequately. Tail bumpiness is a common
problem in kernel estimation. Note especially that financial data are thick
tailed with high excess kurtosis. Therefore, a Gaussian kernel, which assumes
that the estimated distribution has the same shape as the normal, is unsuitable
for financial data.

A referee suggested that an optimal window length might be obtained from
economic rather than statistical considerations. This is an appropriate recom-
mendation for those who plan to apply kernel estimation to risk problems. In
addition, we feel that a similar suggestion could also apply to the choice of
number of extreme order statistics in EVT estimation, specifically that a
money metric may be an appropriate side constraint; cf. PENG [1998].

4.2 Parametric Forecasting

In parametric forecasting, the predicted future volatility of an asset is an
explicit function of past returns, and the estimated model parameters. The
most common models are the unconditional normal with frequently updated
variance estimate, or explicit models for conditional heteroscedasticity like
the GARCH model, with normal innovations. The popular RiskMetrics
approach which uses the frequently updated normal model is asymptotically
equivalent to an IGARCH model. This implies a counterfactual hypothesis of
an unconditional infinite variance. However, since in most cases, only short
horizon conditional forecasts are made, this does not affect the results signifi-
cantly. GARCH models with normal innovations have proved valuable in
forecasting common volatilities, however they perform poorly in predicting
extreme observations, or spikes, in returns. Furthermore, while the GARCH
normal model unconditionally has heavy tails, conditionally, they are thin.
The normality assumption is primarily a matter of convenience, and a
GARCH model with non-normal innovations can easily be estimated, with
the most common specification being the Student-t. The advantage of
Student-t innovations is that they are thick tailed and hence will in general
provide better predictive densities; note that the Student-t contains Gaussian
errors as a special case. The disadvantages of non-normal innovations for the
VaR exercise are several, e.g. multivariate versions of such models are typi-
cally hard to estimate and recursive forecasts of multi-step ahead VaR levels
are difficult to compute, since the GARCH process is not self additive.

There are several reasons for the failure of RiskMetrics to adequately
capture the tail probabilities. For example, the normal likelihood function
weight values close to zero higher than large values, so the contribution of the
large values to the likelihood function is relatively small. Since most observa-
tions are in the interior, they dominate the estimation, especially since tail
events are may be 1-2 % of the observations. While a GARCH model with
normal innovations preforms poorly, it does not imply that parametric fore-
casting will in general provide biased VaR estimates, however such a model
would have to be constructed with the tails as the primary focus. See
JACKSON, MAUDE, and PERRAUDIN [1997] for discussion on this issue.
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There is yet another problem with the way RiskMetrics implements the
GARCH methodology. Instead of going by the GARCH scheme for predicting
future volatilities, RiskMetrics ignores GARCH and simply uses the square-root-
of-time method which is only appropriate under an i.i.d. normal assumption. If
the predicted next day volatility is σ̂ 2

t+1, then the predicted T day ahead volatility
is T σ̂ 2

t+1 in the RiskMetrics analysis. This implies that for the next T days,
returns are essentially assumed to be normally distributed with variance T σ̂ 2

t+1.
The underlying assumption is that returns are i.i.d., in which case there would be
no reason to estimate a conditional volatility model. Note that this problem can
be by passed by using T day data to obtain T day ahead predictions as suggested
in the RiskMetrics manual. But the methodology of entertaining different
GARCH processes at different frequencies lacks internal consistency.

In Table 4, we show the six highest and lowest returns on the daily SP-500
index from 1990 to 1996, or 1,771 observations. We used the normal GARCH
and Student-t GARCH models to predict the conditional volatility, and show,
in the table, the probability of an outcome equal to or more extreme than the
observed return, conditional on the predicted volatility for each observation.
In addition, we show the probability as predicted by the extreme value esti-
mator, and values of the empirical distribution function. We see from the table
that the normal GARCH model performs very poorly in predicting tail events,
while the Student-t GARCH model gives some what better results. Both
methods are plagued by high variability and inaccurate probability estimates,
while the extreme value estimator provides much better estimates.

5 Extreme Value Theory and VaR

Accurate prediction of extreme realizations is of central importance to VaR
analysis. VaR estimates are calculated from the lower extreme of a portfolio
forecast distribution; therefore, accurate estimation of the lower tail of port-
folio returns is of primary importance in any VaR application. Most available
tools, such as GARCH, are however designed to predict common volatilities,
and therefore have poor tail properties. Even historical simulation (HS) has
less than desirable sampling properties out in the tails. Therefore, a hybrid
technique that combines sampling from the empirical distribution for common
observations with sampling from a fitted tail distribution has the potential to
perform better than either HS or fully parametric methods by themselves.

In Figure 3, the empirical distribution of the SP-500 index is plotted along
with the fitted power tail distribution F(x) and the estimated normal distribu-
tion. We see the problems with HS in the tails from Figure 3, e.g. discreteness
of observations and the inability to provide out-of-sample low probability
predictions. The normal distribution clearly under estimates the probability of
the highest returns. On the other hand, the fitted distribution is a smooth func-
tion through the empirical distribution, both in and out of sample. For
comparison, in figure 4 we plot the fitted distribution along with the normal
distribution estimated from the sample mean and variance, and the distribu-
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tion obtained from the normal GARCH(1,1) process if one conditions on the
maximum observed past volatility. This means that the normal distribution,
with the variance of the largest of the one day GARCH volatility predictions,
is plotted. This gives the normal GARCH the maximum benefit of the doubt.
Since this conditional distribution is still normal, it underestimates the
extreme tails. There are several advantages in using the estimated power tail
in VaR estimation. For example:

• In HS, the presence of an event like the ‘87 crash in the sample,will cause
a large VaR estimate. However, since a ‘87 magnitude crash only occurs
rarely, say once every 60 years, the presence of such an event in the
sample will produce upward biased VaR estimates. And, hence, imposes
too conservative capital provisions. By sampling from the tail distribu-
tion, the probability of a ‘87 type event will be much smaller, leading to
better VaR estimates.

• The empirical distribution is sampled discretely out in the tails, with the
variance of the extreme order statistics being very high. This implies that
a VaR that relies on tail realizations will exhibit the same properties, with
the resulting estimates being highly variable. A Monte Carlo example of
this is given in Table 2.

• By sampling from the tail of the distribution, one can easily obtain the
lowest return that occurs at a given desired probability level, say 0.1 %,
greatly facilitating sensitivity experiments. This is typically not possible
with HS by itself.

• The probability theory of tail observations, or extreme value theory, is well
known, and the tail estimator therefore rests on firm statistical foundations.
In contrast, most traditional kernel estimators have bad properties in the tails.

5.1 Estimated Tails and Historical Simulation

We propose combining the HS for the interior with the fitted distribution from
(1) along the lines of DANIELSSON and DE VRIES [1997a]. Recall from above that
the fitted distribution, F̂(x), is conditional on one of the highest order statistics
X M+1. Therefore, we can view X M+1 as the start of the tail, and use F̂(x) as
the sampling distribution for extreme returns. Below this threshold X M+1 we
can see the empirical distribution for interior returns. This can be implemented
in the following algorithm, where X Mupper+1 and X M lower−1 are the thresholds
for the upper and lower tail respectively, and T is the window size.

Draw xs from {xt }T
t=1 with replacement

if xs < X M lower−1 then
draw xs from F̂(x) for the lower tail

else
if xs > X Mupper+1then

draw xs from F̂(x) for the uper  tail
else

keep xs

end if
end if
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Note that this guarantees that the combined density integrates out to one.We
can then view x as one draw from the combined empirical and extreme value
distributions, and we denote the method as the combined extreme value esti-
mator and historical simulation method.

5.2 Tails of Portfolios

In general, multiple assets are used to construct a portfolio. We can imple-
ment simulations of portfolio returns with one of two methods, post fitting or
pre-sampling. Results from implementing both methods are presented in
Table 11 and discussed below. Note that while we would not necessarily
expect strong interdependency between the tails of stock returns, strong tail
“correlation” is often expected in exchange rates, e.g. in the EMS, large
movements often occur at the same time for several countries.

5.2.1 Post-Fitting

In post-fitting, one proceeds along the lines of the combined extreme value
and historical simulation procedures and applies the current portfolio weights
to the historical prices to obtain a vector of simulated portfolio returns. This is
exactly as in historical simulation. Subsequently, the tails of the simulated
returns are fitted, and any probability-VaR combination can be read from the
fitted tails. This procedure has several advantages. No restrictive assumptions
are needed, the method can be applied to the largest of portfolios, and does
not require significant additional computation time over HS. The primary
disadvantage is that it carries with it the assumption of constant correlation
across returns, while systematic changes in correlation may occur over time.
However, in the results below this does not seem to cause any significant
problems.

5.2.2 Presampling

In the presampling method, each asset is sampled independently from the
hybrid extreme value estimator and empirical distribution, and subsequently
scaled to obtain properly correlated returns. Then the value of the portfolio is
calculated. The scaling is achieved as follows. Let �t be the covariance matrix
of the sample, and Lt L ′

t = �t be the Cholesky transformation. The number of
assets in the portfolio is K and the number of simulations is N. We then draw a
K N matrix of simulated returns, denoted as X̃n. Let the covariance matrix of
X̃n be denoted by �n, with the Cholesky transformation Mn M ′

n = �n. Scale
X̃n to an identity covariance matrix by M−1

n X̃n, which can then be scaled to
the sample covariance by Lt. The matrix of simulated returns X is:

Xn = Lt M−1
n X̃n.

If w = {wi }K
i=1 is the vector of portfolio weights, the simulated return

vector R is:

Rn =
K∑

i=1

wi Xt,n,i n = 1,N .
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By sorting the simulated portfolio returns R, one can read off the tail proba-
bilities for the VaR, in the same manner as in HS. By using this method, it is
possible to use a different covariance matrix for sub samples than for the
whole sample. This may be desirable when the covariance matrix of returns
changes over time where it may yield better results to replace the covariance
matrix � with the covariance matrix of the last part of the sample. If the
effects of a regime change can be anticipated by imputing the appropriate
changes in the covariance structure, such as in the case of monetary unifica-
tion, the presampling approach has an advantage over the post-fitting method.

6 Estimation

To test the performance of our VaR procedure, we selected 6 US stocks
randomly as the basis for portfolio analysis in addition to the JP Morgan bank
stock price. The stocks in the tables are referred by their ticker tape symbols.
The window length for HS and the combined extreme value-empirical distri-
bution procedure was set at 6 years or 1,500 trading days. Note this is much
larger than the regulatory window length of one year. The reason for this long
period is that for accurate estimation of events that happen once every
100 days, as in the 1 % VaR, one year is not enough for accurate estimation.
In general, one should try to use as large a sample as is possible. Using a
smaller sample than 1,500 trading days in the performance testing was not
shown to improve the results. Performance testing starts at Jan. 15. 1993, and
the beginning of the sample is 1,500 days before that on Feb. 12, 1987. It is a
stylized fact in empirical studies of financial returns, that returns exhibit
several common properties, regardless of the underlying asset. This extends to
the tails of returns. In Table 12, we present summary statistics on a wide
range of financial returns for the period 1987-1996, and it is clear that the
tails all have similar properties. Summary statistics for each stock return are
listed in Table 7 for the entire sample period, and in Table 8 for the 1990-1996
testing period. The corresponding correlation matrixes are presented in
Tables 9 and 10. The sample correlations drop in the 1990’s. Given this
change in correlation, we tested changing correlations in the pre-fitting
method, but it did not have much impact for our data, and therefore we do not
report those results here.

6.1 VaR Prediction

6.1.1 Interpretation of Results

Results are reported in Table 11. The VaR return estimates for each method
are compared with the realized returns each day. The number of violations of
the VaR estimates were counted, and the ratio of violations to the length of the
testing period was compared with the critical value. This is done for several
critical values. This is perhaps the simplest possible testing procedure. Several
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authors, most recently DAVÉ and STAHL [1997], propose much more elaborate
testing procedures, e.g. the likelihood based method of DAVÉ and STAHL which
is used to test a single portfolio. However by using a large number of random
portfolios one obtains accurate measurements of the performance of the
various methods, without resorting to specific distributional assumptions, such
as the normality assumption of DAVÉ and STAHL. In addition, while the green,
yellow, and red zone classification method proposed by BIS may seem attrac-
tive for the comparison, it is less informative than the ratio method used here.

The test sample length was 1,000 trading days, and the window size in HS and
EV was 1,500. For the 1 % risk level, we expect a single violation of the VaR
every 100 days, or 10 times over the entire testing period. This risk level is given
in the eight column from the left in Table 11. At this risk level RiskMetrics yields
too many violations, i.e. 16.3, on average, while the other methods give too few
violations, or from 7.6 for HS to 9.3 for the presampling EV method, on average.
If the number of violations is higher than the expected value, it indicates that the
tails are underpredicted, thinner or lower than expected, and conversely too few
violations indicate that the estimated tail is thicker than expected. In addition to
the tail percentages, we show the implied number of days, i.e. how frequently
one would expect a tail event to occur. If the number of days is large, we trans-
form the days into years, assuming 260 trading days per year.

6.1.2 Comparison of Methods

For the 5th percentile, RiskMetrics performs best. The reason for this is that
at the 5 % level we are sufficiently inside the sample so that the conditional
prediction performs better than unconditional prediction. However, as we
move to the tails, RiskMetrics consistently underpredicts the tail, with ever
larger biases as we move farther into the tails. For example, at the 0.1 % level
RiskMetrics predicts 5 violations, while the expected number is one.
Therefore RiskMetrics will underpredict the true number of losses at a given
risk level. Historical simulation has in a way the opposite problem, in that it
consistently overpredicts the tails. Note that for HS we can not obtain esti-
mates for lower probabilities than one over the sample size, or in our case
probabilities lower than once every 1,500 days. Hence the lowest prediction,
0.75, is repeated in the last four columns in the table. Obviously for smaller
sample sizes HS is not able to predict the VaR for even relatively high proba-
bilities. Both EV estimators have good performance, especially out in the
tails. The presampling version of the EV estimator can not provide estimates
for the lowest probability. The simulation size was 10,000 and this limits the
lowest probability at 1/10,000. The post fitting version has no such problems.
It is interesting to note that the EV estimators do a very good job at tracking
the expected value of exceedances. Even at the lowest probability, the
expected value is 0.05 while the post fitting EV method predicts 0.06.

6.1.3 Implication for Capital Requirements

A major reason for the implementation of VaR methods is the determination
of capital requirements (CR). Financial regulators determine the CR accor-
ding to the formula

CR = 3 × VaR + constant
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Individual financial institutions estimate the VaR, from which the CR are
calculated. If the banks underestimate the VaR they get penalized by an
increase in the multiplicative factor or the additive constant. The multiplica-
tive constant may be increased to 4. If, however, the financial institution over
estimates the VaR, it presumably gets penalized by shareholders. Hence accu-
rate estimation of the VaR is important. The scaling factor 3 appears to be
somewhat arbitrary, and has come under criticism from financial institutions
for being too high. STAHL [1997] argues that the factor is justified by applying
Chebyshev’s inequality to the ratio of the true and model VaR distributions. In
this worst case scenario, STAHL calculates 2.7 as an appropriate scaling factor
at the 5 % level, 4.3 at the 1 % level, and increasing with lower probabilities.
But according to Table 11, this factor is much too high or conservative. By
comparing the RiskMetrics and the EV results at the 5 % level, we see that
they are very close to the expected number of violations, and in that case a
multiplicative constant close to one would be appropriate. At the 0.1 % level,
RiskMetrics has five times the expected number of violations and in that case
a large multiplicative constant may be appropriate, but the EV method gives
results close to the expected value, suggesting that the constant should be
close to one if EV is used for VaR. While a high scaling factor may be justi-
fied in the normal case, by using the estimate of the tails, as we do with the
EV method, the multiplicative factor can be taken much lower. Note that HS,
implies too high capital requirements in our case, while RiskMetrics implies
too low CR. The extreme value estimator method appears to provide accurate
tail estimates, and hence the most accurate way to set capital requirements.4

DANIELSSON, HARTMANN, and DE VRIES [1998] raise an issue regarding
implications for incentive compatibility. The banks want to keep capital
requirements as low as possible, and are faced with a sliding multiplicative
factor in the range from three to four. Given that using a simple normal model
implies considerably smaller capital requirements than the more accurate
historical simulation or extreme tail methods, or even RiskMetrics, and that
the penalty for under predicting the VaR is relatively small, i.e. the possible
increase from 3 to 4, it is in the banks best interest to use the VaR method
which provides the lowest VaR predictions. This will, in general be close to
the worst VaR method available. This may explain the current prevalence
among banks of using a moving average normal model for VaR prediction. It
is like using a protective sunblock, because one has to, but choosing the one
with lowest protection factor because its cheapest, with the result that one still
gets burned.

6.2 Multi-Day Prediction

While most financial firms use one day VaR analysis for internal risk
assessment, regulators require VaR estimates for 10 day returns. There are
two ways to implement a multi-day VaR. If the time horizon is denoted by T,
one can either look at past non-overlapping T day returns, and use these in the
same fashion as the one day VaR analysis, or extrapolate the one day VaR
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returns to the T day VaR. The latter method has the advantage that the sample
size remains as it is. Possibly for this reason, RiskMetrics implements the
latter method by the so called “square-root-of-time” rule which implies that
returns are normal with no serial correlation. However, for fat tailed data, a
T 1/α is appropriate. See section 3.1 for discussion on this issue.

It is not possible to backtest the T = 10 day VaR estimates because we
have to compare the VaR predictions with non-overlapping T day returns.
This implies that the sample available for testing is T times smaller than the
one day sample. Since we are looking at uncommon events, we need to back-
test over a large number of observations. In our experience, 1,000 days is a
minimum test length. Therefore, for 10 day VaR we would need 10,000 days
in the test sample.

In order to demonstrate the multi-day VaR methods, we use the one day
VaR at the last day of our sample, December 30, 1996 to obtain 10 day VaRs.
This is the VaR prediction on the last day of the results in Table 1, the number
of random portfolios was 500. In Table 5, we present the one day and 10 day
VaR predictions from RiskMetrics type and extreme value post-fitting
methods. The numbers in the table reflect losses in millions of dollars on a
portfolio of 100 million dollars. We see in Table 5 the same result as in
Table 11, i.e. RiskMetrics underpredicts the amount of losses vis-à-vis EV at
the 0.05 % and 0.005 % probabilities, while for the 10 day predictions
RiskMetrics over predicts the loss, relative to EV, even for very low risk
levels. Recall that EV uses the multiplicative factor T 1/α while RiskMetrics
uses T 1/2. Due to this, the loss levels of the two methods cross at different
probability levels depending on the time horizon. The average α was 4.6, with
the average scaling factor of 1.7 which is much smaller than T 1/2 = 3. 7. As
a result, at the 0.05 % level RiskMetrics predicts a 10 day VaR of $6.3m
while EV only predicts $5.1m, on average.

6.3 Options

The inclusion of liquid nonlinear derivatives like options in the portfolio
does not cause much extra difficulty. In general one has to price the option by
means of risk neutral probabilities. However, the risk neutral measure is not
observed, at least not directly. This is a generic problem for any VaR method,
and for this reason RiskMetrics proceeds under the assumption of risk neutra-
lity, and the assumption is followed here as well. The extreme value method
can be used to generate the data for the underlying asset, and these simulated
data can be used to price the option under risk neutrality. A structured Monte
Carlo method is easily implemented by the post fitting method.

For simulation of returns on an European option, the path of returns on the
underlying is simulated from the current day until expiration, sampling each
day return from the combined empirical and estimated distributions, as
described above, with the mean subtracted, and summing up the one day
returns to obtain a simulated return for the entire period, yi. If P F is the
future spot price of the asset, then a simulated future price of the underlying is
P F exp [yi ], and the simulated payoff follows directly. By repeating this N
times, we get a vector of simulated options payoffs, which is discounted back
with the rescaled three month t-bill rate, the vector is averaged, and the price
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of the option is subtracted. We then update the current futures price by one
day through an element from the historical return distribution of the under-
lying, and repeat the simulation. This is done for each realization in the
historical sample. Together this gives us the value of the option, and a vector
of option prices quoted tomorrow. Finally, we calculate the one day option
returns and can treat these returns as any other asset in the portfolio.

We used the same data as in the VaR exercise above, and added a European
put option on the SP-500 index to the portfolio. The VaR was evaluated with
values on September 4, 1997, the future price of the index was 943 and the
strike price was 950. We used random portfolio weights, where the option
received a weight of 4.9 %, and evaluated the VaR on the portfolio with and
without the option. The results are in Table 6, where we can see that the option
results in lower VaR estimates than if it is left out. Interestingly, the differences
in monetary value are the greatest at the two confidence levels in the middle.

7 Practical Issues

There are several practical issues in implementing the extreme value
method, e.g. the length of the data set, the estimation of the tail shape, and the
calculation of the VaR for individual portfolios.

For any application where we are concerned with extreme outcomes, or
events that happen perhaps once every 100 days or less, as is typical in VaR
analysis, the data set has to include a sufficient number of extreme events in
order to obtain an accurate prediction of VaR. For example, if we are
concerned with a 1 % VaR, or the worst outcome every 100 days, a window
length of one year, or 250 days is not very sensible. In effect the degrees of
freedom are around two, and the VaR estimates will be highly inaccurate.
This is recognized by the Basle Committee which emphasizes stress testing
over multiple tumultuous periods such as the 1987 Crash and the 1993 ERM
crisis. In this paper, we use a window length of 1,500 days, or about 7 years,
and feel that a much shorter sample is not practical. This is reflected when we
apply our extreme value procedure to a short sample in Monte Carlo experi-
ments. When the sample is small, say 500 days or two years, the estimate of
the tail index is rather inaccurate. There is no way around this issue, historical
simulation and parametric methods will have the same small sample
problems. In general the sample should be as large as possible. The primary
reason to prefer a relatively small sample size is if the correlation structure in
the sample is changing over time. However, in that case one can use the
presampling version of the tail estimator, and use a covariance matrix that is
only estimated with the most recent realizations in the sample. In general, one
would expect lower correlation in extremes among stocks than e.g. exchange
rates; and we were not able to demonstrate any benefit for our sample by
using a frequently updated covariance matrix. However, we would expect that
to happen for a sample that includes exchange rates that belong to managed
exchange rate systems like the EMS.
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It is not difficult to implement the tail estimation procedure. Using the
historical sample to construct the simulated portfolio is in general not
computer intensive for even very large portfolios, and in most cases can be
done in a spread sheet like Excel. The subsequent estimation of the tails may
take a few seconds at most using an add-in module with a dynamic linklibrary
(dll) to fit the tails. So the additional computational complexity compared
with historical simulation is a few seconds.

8 Conclusion

Many financial applications are dependent on accurate estimation of down-
side risk, such as optimal hedging, insurance, pricing of far out of the money
options, and the application in this paper, Value-at-Risk (VaR). Several
methods have been proposed for VaR estimation. Some are based on using
conditional volatilities, such as the GARCH based RiskMetrics method.
Others rely on the unconditional historical distribution of returns, such as
historical simulation. We propose the use of the extreme value method as a
semi-parametric method for estimation of tail probabilities. We show that
conditional parametric methods, such as GARCH with normal innovations, as
implemented in RiskMetrics, underpredict the VaR for a sample of US stock
returns at the 1 % risk level, or below. Historical simulation performs better in
predicting the VaR, but suffers from a high variance and discrete sampling far
out in the tails. Moreover, HS is unable to address losses which are outside
the sample. The performance of the extreme value estimator method performs
better than both RiskMetrics and historical simulation far out in the tails.

The reason for the improved performance of the EV method is that it
combines some of the advantages of both the non-parametric HS approach and
the fully parametric RiskMetrics method. By only modelling the tails parame-
trically, we can also evaluate the risk on observed losses. In addition, because
we know that financial return data are heavy tailed distributed, one can rely on
a limit expansion for the tail behavior that is shared by all heavy tailed distri-
butions. The importance of the central limit law for extremes is similar to the
importance of the central limit law, i.e. one does not have to choose a particular
parametric distribution. Furthermore, this limit law shares with the normal
distribution the additivity property, albeit only for the tails. This enables us to
develop a straightforward rule for obtaining multi-period VaR from the single
period VaR, much like the normal based square root of time rule. At a future
date, we plan to investigate the cross section implication of this rule, which
may enable us to deal in a single manner with very widely diversified trading
portfolios. We demonstrated that adding non-linear derivatives to the portfolio
can be implemented quite easily by using a structured Monte Carlo procedure.
We also observed that the present incentives are detrimental to implementing
these improved VaR techniques. The current Basle directives rather encourage
the opposite, and we would hope that, prudence nonwithstanding, positive
incentives will be forthcoming to enhance future improvements in the VaR
methodology and implementation thereof in practice. �
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APPENDIX A

Extreme Value Theory and Tail Estimators

This appendix gives an overview of the statistical methods used in obtai-
ning estimates of the tail of a distribution. The following is a brief summary
of results in DANIELSSON and DE VRIES [1997a] which also provide all the
proofs. Let x be the return on a risky financial asset where the distribution of
x is heavy tailed. Suppose the distribution function F(x) varies regularly at
infinity with tail index α:

(7) lim
t→∞

1 − F(t x)

1 − F(t)
= x−α, α > 0, x > 0.

This implies that the unconditional distribution of the returns is heavy tailed
and that unconditional moments which are larger than α are unbounded. The
assumption of regular variation at infinity as specified in (7) is essentially the
only assumption that is needed for analysis of tail behavior of the returns x.
Regular variation at infinity is a necessary and sufficient condition for the
distribution of the maximum or minimum to be in the domain of attraction of
the limit law (extreme value distribution) for heavy tailed distributed random
variables.

A parametric form for the tail shape of F(x) can be obtained by taking a
second order expansion of F(x) as x → ∞. The only non-trivial possibility
under mild assumptions is:

(8) F(x) = 1 − ax−α
[
1 + bx−β + o

(
x−β

)]
, β > 0 as x → ∞

The tail index can be estimated by the HILL estimator (HILL [1975]), where
M is the random number of exceedances over a high threshold observation
X M+1

(9)
1

α
= 1

M

n∑
i=M

log
Xi

X M+1
,

The asymptotic normality, variance, and bias, are known for this estimator
both for i.i.d. data and for certain stochastic processes like MA(1) and
ARCH(1). It can be shown that a unique AMSE minimizing threshold level
exists which is a function of the parameters and number of observations.5

This value is estimated by the bootstrap estimator of DANIELSSON and DE

VRIES [1997a] and DANIELSSON, DE HAAN, PENG and DE VRIES [2000], but
presumes independent observations.

It is possible to use (8) and (9) to obtain estimators for out of sample quan-
tile and probability (P,Q) combinations given that the data exhibit fat tailed
distributed innovations. The properties of the quantile and tail probability esti-
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5. Instead of minimizing the MSE of the tail index estimator, one can choose a different criterion and
minimize the MSE of the quantile estimator (10), see PENG [1998].



mators below follow directly from the properties of 1̂/α. In addition, the out
of sample (P,Q) estimates are related in the same fashion as the in sample
(P,Q) estimates.

To derive the out of sample (P,Q) estimator consider two excess probabili-
ties p and t with p < 1/n < t, where n is the sample size. Corresponding to p
and t are the large quantiles, xp and xt, where for xi we have 1 − F(xi ) = i,
i = t,p. Using the expansion of F(x) in (8) with β > 0, ignoring the higher
order terms in the expansion, and replacing t by M/n and xt by the (M + 1)-
th descending order statistic one obtains the estimator

(10) x̂p = X(M+1)

(
m

np

) 1
α̂

.

It can be shown that the quantile estimator x̂p is asymptotically normally
distributed. A reverse estimator can be developed as well by a similar manipu-
lation of (8)

(11) p̂ = M

n

(
xt

xp

)α̂

.

The excess probability estimator p̂ is also asymptotically normally distri-
buted.
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TABLE 1
Daily SP-500, 1990-96. Time Between Extreme Returns

Upper Tail Lower Tail

date days rank date days rank

90-08-27 74 2 90-01-23 6 6
90-10-01 24 4 90-08-07 136 3
90-10-18 13 8 90-08-17 8 12
90-10-19 1 10 90-08-22 3 15
90-11-09 15 14 90-08-24 2 4
91-01-17 46 1 90-09-25 21 14
91-02-06 14 16 90-10-10 11 5
91-02-11 3 5 91-05-13 148 17
91-03-05 15 13 91-08-20 69 10
91-04-02 19 9 91-11-18 63 1
91-08-21 99 3 93-02-17 315 9
91-12-23 86 6 93-04-05 33 16
91-12-30 4 11 94-02-07 214 11
93-03-08 300 17 96-03-11 527 2
94-04-05 273 12 96-07-08 82 13
96-12-19 686 15 96-07-16 6 7

TABLE 2
Predicted and Expected Maxima of Student-t (4)

In Sample Prediction, Theoretical Average Values
2000 observations

Sample Maxima by HS 8.610 10.67 (4.45) [4.90]
Forecast Maximas by EV 8.610 8.90 (1.64) [1.66]

Out of Sample Prediction

Forecast Maximas by EV 10.306 10.92 (2.43) [2.50]
for Sample of Size 4000
Forecast Maximas by EV 11.438 12.32 (3.02) [3.14]
for Sample of Size 6000

Sample size = 2,000, simulations 1,000, bootstrap iterations = 2,000. Standard errors in parenthesis,
RMSE in brackets. HS denotes estimation by historical simulation and EV estimation with the method
proposed by DANIELSSON and DE VRIES [1997b].
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TABLE 3
Extreme Daily returns 1987-1996

JPM 25 % 12 % 8.8 % 6.7 % 6.5 % 6.4 % 6.3 %
– 41 % – 6.7 % – 6.3 % – 6.1 % – 6.0 % – 5.8 % – 5.7 %

MMM 11 % 7.1 % 5.9 % 5.7 % 5.7 % 5.0 % 4.8 %
– 30 % – 10 % – 10 % – 9.0 % – 6.2 % – 6.1 % – 5.6 %

MCD 10 % 7.9 % 6.3 % 6.2 % 5.4 % 5.0 % 5.0 %
– 18 % – 10 % – 8.7 % – 8.5 % – 8.3 % – 7.3 % – 6.9 %

INTC 24 % 11 % 9.9 % 9.0 % 8.9 % 8.6 % 8.6 %
– 21 % – 21 % – 16 % – 15 % – 14 % – 12 % – 12 %

IBM 12 % 11 % 11 % 10 % 9.4 % 7.4 % 6.5 %
– 26 % – 11 % – 11 % – 9.3 % – 7.9 % – 7.5 % – 7.1 %

XRX 12 % 8.0 % 7.8 % 7.5 % 7.1 % 6.8 % 6.3 %
– 22 % – 16 % – 11 % – 8.4 % – 7.5 % – 6.9 % – 6.2 %

XON 17 % 10 % 6.0 % 5.8 % 5.8 % 5.6 % 5.4 %
– 27 % – 8.7 % – 7.9 % – 6.6 % – 6.3 % – 5.7 % – 5.4 %

SP-500 8.7 % 5.1 % 4.8 % 3.7 % 3.5 % 3.4 % 3.3 %
– 23 % – 8.6 % – 7.0 % – 6.3 % – 5.3 % – 4.5 % – 4.3 %

TABLE 4
Observed Extreme Returns of the daily SP-500, 1990-1996, and the
Probability of that Return as Predicted by the Normal GARCH, Student-t
GARCH Model, the Extreme Value Estimation Method, and the Empirical
Distribution. Due to Moving Estimation Windows Results Represent
Different Samples

Observed Probabilities

Return Normal Student-t EV Estimator Empirical

– 3.72 % 0.0000 0.0002 0.0007 0.0006
– 3.13 % 0.0000 0.0010 0.0015 0.0011
– 3.07 % 0.0002 0.0021 0.0016 0.0017
– 3.04 % 0.0032 0.0071 0.0016 0.0023
– 2.71 % 0.0098 0.0146 0.0026 0.0028
– 2.62 % 0.0015 0.0073 0.0029 0.0034

3.66 % 0.0000 0.0011 0.0004 0.0006
3.13 % 0.0060 0.0096 0.0009 0.0011
2.89 % 0.0002 0.0022 0.0013 0.0017
2.86 % 0.0069 0.0117 0.0014 0.0023
2.53 % 0.0059 0.0109 0.0025 0.0028
2.50 % 0.0007 0.0038 0.0026 0.0034
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TABLE 5
10 Day VaR Prediction on December 30, 1996 in Millions of US Dollars for
a $100 Million Trading Portfolio

Risk Level 5 % 1.0 % 0.5 % 0.10 % 0.05 % 0.005 %

EV
One day $0.9 $1.5 $1.7 $2.5 $3.0 $5.1
10 day $1.6 $2.5 $3.0 $4.3 $5.1 $8.9

RM
One day $1.0 $1.4 $1.6 $1.9 $2.0 $2.3
10 day $3.2 $4.5 $4.9 $5.9 $6.3 $7.5

TABLE 6
Effect of Inclusion of Option in Portfolio

Confidence Level VaR with Option VaR without Option Difference

95 % $895,501 $1,381,519 $486,019
99 % $1,474,056 $2,453,564 $979,508
99.5 % $1,823,735 $2,754,562 $930,827
99.9 % $3,195,847 $3,856,747 $669,900
99.99 % $7,130,721 $6,277,714 – $853,007

TABLE 7
Summary Statistics. Jan. 27, 1984 to Dec. 31, 1996

JPM MMM MCD INTC IBM XRX XON

Mean 0.05 0.04 0.07 0.09 0.01 0.04 0.05
S.D. 1.75 1.41 1.55 2.67 1.62 1.62 1.39
Kurtosis 100.28 68.07 8.36 5.88 25.71 16.44 49.23
Skewness – 2.70 – 3.17 – 0.58 – 0.36 – 1.08 – 1.06 – 1.74
Minimum – 40.56 – 30.10 – 18.25 – 21.40 – 26.09 – 22.03 – 26.69
Maximum 24.63 10.92 10.05 23.48 12.18 11.67 16.48

Note: JPM = J. P. Morgan; MMM = 3m; MCD = McDonalds; INTC = Intel; IBM = IBM;
XRX = Xerox; XON = Exxon.
Source: DATASTREAM



TABLE 8
Summary Statistics. Jan. 2, 1990 to Dec. 31, 1996

JPM MMM MCD INTC IBM XRX XON

Mean 0.05 0.04 0.05 0.15 0.03 0.06 0.04
S.D. 1.45 1.19 1.48 2.34 1.72 1.60 1.12
Kurtosis 1.83 3.78 1.51 2.86 6.67 9.46 1.10
Skewness 0.28 – 0.32 0.05 – 0.36 0.25 – 0.35 0.11
Minimum – 6.03 – 9.03 – 8.70 – 14.60 – 11.36 – 15.63 – 4.32
Maximum 6.70 4.98 6.27 9.01 12.18 11.67 5.62

TABLE 9
Correlation Matrix. Jan. 27, 1984 to Dec. 31, 1996

JPM MMM MCD INTC IBM XRX XON

JPM 1.00
MMM 0.49 1.00
MCD 0.42 0.44 1.00
INTC 0.30 0.36 0.29 1.00
IBM 0.38 0.42 0.34 0.40 1.00
XRX 0.35 0.39 0.34 0.32 0.35 1.00
XON 0.44 0.48 0.37 0.24 0.35 0.30 1.00

TABLE 10
Correlation Matrix. Jan. 2, 1990 to Dec. 31, 1996

JPM MMM MCD INTC IBM XRX XON

JPM 1.00
MMM 0.28 1.00
MCD 0.28 0.28 1.00
INTC 0.24 0.21 0.21 1.00
IBM 0.18 0.19 0.19 0.32 1.00
XRX 0.23 0.23 0.22 0.21 0.19 1.00
XON 0.20 0.25 0.21 0.12 0.10 0.12 1.00
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FIGURE 1
1 % Largest and Smallest Daily Returns on Stocks in Portfolio

(a) J. P. Morgan (b) 3M

(c) McDonalds (d) Intel

(e) IBM (f) Xerox

(h) SP-500(g) Exxon



FIGURE 2
1 % Largest and Smallest Returns on SP-500 over 500 and 1,000 Day
Windows

FIGURE 3
Distribution of SP-500 Returns 1990-1996 with Fitted Upper Tail

FIGURE 4
Distribution of SP-500 Returns 1990-1996 and Highest GARCH Prediction
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