To the Editor—Ronald et al [1] present an analysis using data from individuals who migrated to British Columbia, Canada. They show that the application of World Health Organization recommendations on screening close tuberculosis (TB) contacts or individuals with specific medical risk factors for latent tuberculosis infection (LTBI) would have a minimal impact on the number of TB cases in migrants, and conclude that other risk groups must be targeted for LTBI screening to progress towards TB elimination: that is, migrants from countries with high TB incidences.

Recently, the European Centre for Disease Prevention and Control published its guidance on the programmatic management of LTBI [2]. Although this guidance was developed to support European Union and European Economic Area Member States in the decision-making process underlying the implementation of LTBI programmatic management, we consider that the identified options for LTBI screening are applicable to other countries with low TB incidences. A deterministic mathematical model was developed to support the guidance development. It included various at-risk populations [3, 4]—people who inject drugs, homeless people, prisoners, and migrants from countries with high TB incidences (>50/100 000 population)—to study the effect of LTBI screening and treatment strategies on TB incidences. The model was used with data from the Netherlands, the Czech Republic, Portugal, and Spain: four countries with different epidemiological settings. Screening migrants at entry for LTBI was predicted to result in a 17–20% decrease in the pulmonary TB incidence after 20 years in the Netherlands; in the other countries, the decreases were projected to be less than 10% [3].

Our threshold for defining countries of origin with high TB incidences was substantially lower than the threshold of 200/100 000 used by Ronald et al [1]. Also, we included the suboptimal sensitivity and specificity of diagnostic tests for LTBI in our model calculations, assumed that only 80–95% of the persons diagnosed with LTBI would complete preventive treatment, and considered averted secondary cases (through decreased transmission), thus arriving at a more realistic estimate of the effect of screening for LTBI.

Just as Roland et al [1] did, we concluded that screening at entry is a more feasible option, compared to screening of migrants already residing in the country, as has been applied in other modelling studies [5, 6]. In the United Kingdom, expanded entry screening was tested by screening migrants from high-incidence countries that had entered the United Kingdom within the prior 5 years [7]. In this study, only 40% of migrants were tested by interferon-gamma release assay. Overall, screening directly after migration resulted in a higher coverage [8] and is probably easier to implement, compared to screening migrants that are already in the country. As TB often develops shortly after a migrant’s arrival in their host country, it might also be more cost-effective to focus on new entrants to the country [9].

Next to other studies, the data analysis by Ronald et al [1] provides insights to further decision making on the best LTBI screening strategy. However, real breakthroughs in the management of LTBI will require better tests and continued work on shorter treatment regimens [10].

References

Chagas Disease Endemism in the United States

To the Editor—We read with interest the article “Prevalence of Chagas Disease Among Family Members of Previously Diagnosed Patients in Los Angeles, California” by Hernandez et al [1]. As noted by the authors, in the absence of systematic screening or surveillance, Chagas disease (CD) will continue to be underdiagnosed in the United States and its prevalence underestimated.

By screening relatives of CD patients, Hernandez et al were able to identify family members as a high-risk group, with CD infection confirmed in 7.4% of the individuals screened. Only 4 of the 14 cases identified were maternal offspring (likely congenital transmission). CD prevalence was more than 7 times higher in close relatives, emphasizing the importance of family members as a high-risk group, with CD infection confirmed in 7.4% of the individuals screened. Only 4 of the 14 cases identified were maternal offspring (likely congenital transmission). CD prevalence was more than 7 times higher in close relatives, emphasizing the importance of family members as a high-risk group.

Thus far, a limited number of human CD cases have been proven to be US-acquired. However, the coexistence of competent disease vectors and numerous mammalian reservoirs serve as important eco-epidemiological contributors for risk of human transmission and infection in the United States.

Note

Potential conflicts of interest. R. M. and A. E. P. M. report a US patent application no. 14/990031, regarding composition and method for treating Chagas’ Disease, pending. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Alberto E. Paniz Mondolfi,1,2 Roy Madigan,4 Luis Perez-Garcia,3 and Emilia M. Sordillo6
1Laboratorio de Sensibilización Celular y Bioquímica de Parásitos Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Sartenejas, Caracas; 2Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clínica IDB Cabudare, Lara; and 3The Venezuelan National Academy of Medicine, Caracas; 4The Animal Hospital of Smithson Valley, Texas; 5Infectious Diseases Research Branch, Venezuelan Science Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Barquisimeto, Venezuela; and 6Department of Pathology, Molecular and Cell-based Medicine Icahn School of Medicine at Mount Sinai, New York

References