De Houdbaarheid van Kurt Gödels Wiskundige Intuïtie

Hugo Hogenbirk

Inleiding

Dit paper zal zich richten op de houdbaarheid van wiskundige intuïtie zoals ingezet door Kurt Gödel, namelijk als een epistemologisch vermogen om ons inzicht in wiskunde en haar axioma’s mee te verschaffen. Dit paper bestaat uit vijf onderdelen. Ten eerste zal ik uiteenzetten wat wiskundige intuïtie bij Gödel inhoudt en hoe deze positie zich verhoudt tot het wiskundig platonisme. Gödel achte deze stroming binnen de ontologie van de wiskunde zeer nauw verbonden met wiskundige intuïtie. Ten tweede zal ik twee kritieken op Gödels opvatting over wiskundige intuïtie behandelen. De auteurs van deze twee kritieken, Paul Benacerraf en Charles Chihara, zetten argumenten in die in hun ogen niet alleen de plausibiliteit maar ook de houdbaarheid van wiskundige intuïtie aantasten. Hoewel er andere kritieken mogelijk zijn, wil ik me in dit paper tot deze twee kritieken beperken. Ten derde zal Gödels eigen argument voor wiskundige intuïtie uiteen worden gezet. Dit argument sluit aan op de praktijk van het ontdekken van nieuwe axioma’s in de wiskunde, geïllustreerd aan de hand van de continuumshypothese. Ten vierde beschouw ik een mogelijk filosofisch gevolg van Gödels eerste incompleetheidsstelling. Dit gevolg heeft te maken met de aard van wiskundige kennis. In dit verband zal ik tevens de kenmerken van Immanuel Kant en David Hume bespreken. Ten slotte beschouw ik een argument voor wiskundige intuïtie op basis van de functie die wiskundige afbeeldingen zouden moeten innemen in de wiskundige praktijk.

Een aantal van de argumenten die ik doorheen dit paper zal geven zijn directe argumenten voor wiskundige intuïtie. Het doel van dit paper is echter niet de lezer te overtuigen van de correctheid of het bestaan van wiskundige intuïtie. Ik wil wel pleiten voor de geldigheid, maar voor de houdbaarheid van wiskundige intuïtie.

§1 Waar hebben we het over?

1.1 Platonisme

Om de functie en werking van Gödels wiskundige intuïtie te begrijpen is het van belang om eerst zijn positie binnen de ontologie van de wiskunde te bezoeken. Deze positie, die van het wiskundig platonisme, defineert Gödel als volgt.
Platonism is the view that mathematics describes a non-sensual reality, which exists independently both of the acts and [of] the dispositions of the human mind and is only perceived, and probably perceived very incompletely, by the human mind. (Gödel, 1951a, p. 333)

What we see here is that by Gödel platonism is a number of claims. The first, wiskundige objecten (objects that are described by their wiskundige nature) are non-sensual. Daarnaast bestaan deze objecten onafhankelijk van onze eigen geest. Ten slotte zien we dat Gödel hier vooruit blickt op het probleem waar dit paper over gaat, namelijk de toegang tot deze objecten door middel van de menselijke geest. In het artikel uit de Stanford Encyclopedia of Philosophy (SEP) over wiskundig platonisme zien we de drie belangrijkste delen van de platonistische theorie ook op een dergelijke manier opgenoemd:

Mathematical platonism can be defined as the conjunction of the following three theses:

- **Existence.** There are mathematical objects.
- **Abstractness.** Mathematical objects are abstract.
- **Independence.** Mathematical objects are independent of intelligent agents and their language, thought, and practices. (Linnebo, 2013a)

What stands out in this definition, but what we well remember in Gödel's definition, is the need to determine the manner in which knowledge is derived. Echter, scherp bezien is dit geen onderdeel der definitie van wiskundig platonisme, aangezien er nog gediscussierd wordt over wat deze toegang tot wiskundige objecten zou moeten inhouden. Vandaar dat we ons richten houden aan de definitie van het artikel uit de SEP.

De eerste van de drie claims van de wiskundig platonist behoeft nauwelijks verdere uitleg. Wiskunde gaat over wiskundige objecten en deze wiskundige objecten bestaan. De tweede claim kan uiteengezet worden in een tweetal andere eigenschappen. De eerste is dat iets pas abstract kan zijn als het niet ruimtelijker is, en de tweede is dat iets pas abstract kan zijn als het niet causaal effectief is (Linnebo, 2013a). Dat wil zeggen, de objecten waar de wiskundig platonist het over heeft hebben geen causale effecten in de wereld en hebben geen omvang, locaties, moment en tijdduur. De derde claim van de wiskundig platonist is de onafhankelijkheid van onze geest. Dit betekent dat de abstracte, wiskundige, objecten bestaan ongeacht of er mensen zijn of niet. Met andere woorden, als er niemand iets zou weten over wiskunde (als er bijvoorbeeld niemand zou zijn die inziet dat één en één twee maakt) maken één en één alsnog twee, ondanks ons gebrek aan inzicht daarin.

Aangezien wiskundig platonisme het bestaan van een merkwaardig soort objecten veronderstelt, doet het epistemologische vraag of hoe het dat wij kennis van deze objecten hebben. De vraag naar hoe we kennis van wiskundige objecten hebben blijkt een moeilijkheid te zijn waar de platonist heden ten dage nog steeds mee worstelt (Linnebo, 2013a). Het is als antwoord op dit probleem dat Gödel's wiskundige intuïtie zijn intrede doet.

1.2 Gödel's wiskundige intuïtie

Een nadeel van Gödel's wiskundige intuïtie is dat Gödel zelf de positie weinig uitwerkt en uitlegt. Een van de meest expliciete verwoordingen van zijn positie vinden we in het herziene artikel What is Cantor's continuum problem. In het in 1964 toegevoegde addendum lezen we:

But, despite their remoteness from sense experience, we do have something like a perception also of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e. in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future...
sense perceptions will agree with them, and, moreover, to believe that a question not decidable now has meaning and may be decided in the future. (Gödel, 1935b, p. 268)

Hieruit kunnen we opmaken dat we wiskundige intuition moeten zien als een extra zintuig. Zoals fysieke objecten zich door middel van zintuigen aan ons opdringen en ons kennis over zich laten verschaffen, op dezelfde manier verkrijgen we kennis van wiskundige objecten. Direct hierna benadrukt Gödel dat we niet te maken hebben met een zintuig in de klassieke zin van het woord:

It should be noted that mathematical intuition need not be conceived of as a faculty giving an immediate knowledge of the objects concerned. Rather it seems that, as in the case of physical experience, we form our ideas also of those objects on the basis of something else which is immediately given. Only this something else here is not, or not primarily, the sensations. (...) but, as opposed to the sensations, their presence in us may be due to another kind of relationship between ourselves and reality. (Gödel, 1935b, p. 268)

Hier ontwaren we een probleem waar één van de commentaren zich ook op zal richten. Gödel heeft moeite om duidelijk over te brengen wat wiskundige intuition precies is. Het is een vermogen van ons denken dat ongeveer functioneert als een zintuig maar er geen is. Wiskundige intuition zorgt ervoor dat wij een relatie hebben met de wiskundige realiteit. Het is precies de verdere beschrijving van deze relatie die bij Gödel onuitgewerkt blijft. Desondanks zijn er wel een aantal eigen- schappen gegeven, bijvoorbeeld dat deze relatie analoge loopit aan zintuiglijke perceptie en dat het een band legt tussen ons denken en objecten. In dit paper zullen we zien dat de beperkte hoeveelheid informatie die Gödel verschafte een aantal concrete uitwerkingen kan opleveren, die ons ook weer meer zullen vertellen over de aard van wiskundige intuition.

Hiermee weten we ongeveer wat Gödel in gedachten heeft als hij spreekt over wiskundige intuition. Op deze positie van Gödel zijn verscheidene kritieken gekomen. Vaak zijn deze kritieken, zoals we zullen zien, zeer sterk, waarbij de plausibiliteit van wiskundige intuition wordt afgedaan als zeer klein en deze wordt weggezet als een (te) exotische filosofische positie.

§2 Aanvallen op de houdbaarheid

2.1 Benacerraf: kennisleer en wiskundige intuition

Zoals we hebben gezien geeft Gödel met zijn wiskundige intuition een verklaring voor onze kennis van wiskundige objecten. De eerste kritiek die we zullen bespreken speelt in op onze reguliere ideeën over kennis en hoe Gödel's wiskundige intuition niet op deze aansluit. Paul Benacerraf maakt dit punt in zijn artikel Mathematical Truth (1973). Benacerraf beargumenteert dat onze beste theorieën van kennis eisen dat tussen de persoon die ergens kennis over heeft en het ding waar hij kennis over heeft enig causaal verband bestaat. Zo schrijft hij:

(...) the principal defect of the standard [platonistic/Godelian] account is that it appears to violate the requirement that our account of mathematical truth be susceptible to integration into our over-all account of knowledge. (Benacerraf, 1973, p. 670)

1 favor a causal account of knowledge on which for X to know that S is true requires some causal relation to obtain between X and the referents of the names, predicates, and quantifiers of S. (Benacerraf, 1973, p. 671)

Benacerraf stelt dat kennis van een object veronderstelt dat er een causaal verband bestaat tussen de kenner en dat object. Dit onder- bouwt hij door aan te geven dat een dergelijke theorie van kennis goed aansluit bij onze intuities. Hij laat dit zien door middel van een analyse van de redenen waarom iemand ergens geen kennis van heeft (Benacerraf, 1973, pp. 671-672). Als we weten dat iets waar is, en we mogen aannemen dat iemand in staat is zaken uit elkaar af te leiden, hoe verklaart men dan als iemand gebrek heeft aan kennis van een bepaalde zaak? Benacerraf stelt dat we dit doen door duidelijk te maken dat de
betroffende persoon niet in causaal contact staat met het object waar de kennis over zou gaan. Oftewel, kennis is afhankelijk van een causaal verband tussen persoon en kennis.

Nu moet duidelijk worden gemaakt dat er geen sprake is van een causaal verband tussen de platonist en de wiskundige objecten waar hij meent kennis van te hebben. Hierop zegt Benacerraf:

If, for example, numbers are the kinds of entities they are normally taken to be, then the connection between the truth conditions for the statements of number theory and any relevant events connected with the people who are supposed to have mathematical knowledge cannot be made out. It will be impossible to account for how anyone knows any properly number-theoretical propositions. (Benacerraf, 1973, p. 673)

Met andere woorden, causaliteit gaat niet samen met een opvatting die stelt dat getallen platonische objecten zijn. De eerder gegeven definitie van wiskundig platonisme stelt dat wiskundige objecten niet tijdelijk, ruimtelijk of causal zijn. Stellen dat wiskundige objecten wel causaal effectief zijn, zal voor de gödeliaan die zich tegen de kritiek van Benacerraf wil verdedigen dus geen optie zijn.

Verderop zal duidelijk worden gemaakt hoe de gödeliaan deze doeldienst kan ontwikkelen. De aanname die door Benacerraf wordt gemaakt waar ik tegenargumenen voor zal formuleren vinden we in het volgende citaat terug:

(...) the principal defect of the standard [platonist/Gödelian] account is that it appears to violate the requirement that our account of mathematical truth be susceptible to integration into our over-all account of knowledge. (Benacerraf, 1973, p. 670)

Als de gödeliaan aannemelijk kan maken dat van wiskundige kennis niet geïntegreerd mag worden dat ze hetzelfde is als andere soorten van kennis, dan gaat de zojuist genoemde kritiek van Benacerraf niet langer op. Zoals verderop duidelijk zal worden kan dit door het speciale karakter van de wiskunde te bewijzen.

2.2 Charles Chihara: verklarende kracht

Charles Chihara valt de houdbaarheid van wiskundige intuïtie op een andere manier aan. Hoewel de meeste van zijn argumenten gericht zijn tegen Gödels platonisme, vinden we in Chihara's artikel (1982) ook argumenten gericht tegen Gödels wiskundige intuïtie.

Gödels analogie tussen visuele perceptie en wiskundige intuïtie zet Chihara ertoe aan om de betrouwbareheid van deze twee te vergelijken. Chihara identificeert een probleem dat zich voordoet bij deze vergelijking die nadelig uitpakt voor wiskundige intuïtie. Empirische waarnemingen kunnen namelijk worden gemeten. We kunnen tests herhalen en verduidelijken wie de waarnemingen heeft gehad. Dit in tegenstelling tot kennis die het effect is van wiskundige intuïtie:

What sort of data about mathematical experience do we have that is comparable to the scientist's Brownian movement data? What is this experience of axioms forcing themselves upon us as being true to which Gödel appeals? And how many people have had these experiences? What sort of people? And under what conditions? Surely, there is something suspicious about an argument for the existence of sets that rests upon data of so unspecified and vague a nature, where even the most elementary sorts of controls and tests have not been run. It is like appealing to experiences vaguely described as 'mystical experiences' to justify belief in the existence of God. (Chihara, 1982, p. 215)

Chihara laat in de laatste zin zien dat hij wiskundige intuïtie onenvertui-
gend vindt. Het gebrek aan de betrouwbaarheid van wiskundige intuïtie doet hem stellen dat wiskundige intuïtie eigenlijk niet kan fungeren als rechtvaardiging of verklaring van wiskundige kennis. Even verderop schrijft hij:

But here again, the 'explanation' offered is so vague and imprecise as to be practically worthless: all we are told about how the 'external objects' explain the phenomena is that mathematicians are 'in some kind of contact' with these objects. What empirical scientist would be impressed by an explanation thisabby? (Chihara, 1982, p. 217)

Chihara’s argument is samen te vatten met een analogie. Als we willen verklaren dat optium slaapverwekkend is, schieten we niks op met de verklaring dat dit komt doordat de slaapverwekkende inhoud van optium. Voor Chihara is het gebrek aan concrete effecten op de wereld van wiskundige intuïtie (zoals bijvoorbeeld trekbare effecten, of effecten op de wiskundige praktijk) reden dat wiskundige intuïtie niet als verklaring kan fungeren. Net zoals bij de slaapverwekkende inhoud van optium het geval is, komt het aannemen van wiskundige intuïtie op niets meer neer dan het geven van een naam aan een probleem en dan zeggen dat je deze hebt verklard.

De godeliaan zal in reactie hierop moeten laten zien dat er redenen zijn om aan te nemen dat er zo iets als wiskundige intuïtie bestaat, bijvoorbeeld door middel van het leveren van een concreet effect van wiskundige intuïtie. Hiermee kan hij laten zien dat wiskundige intuïtie meer is dan een ad-hocoplossing voor het epistemologische probleem waar hij als platonist nu eenmaal een oplossing voor dienst aan te leveren. Ik zal betogen dat de godeliaan in maat is om dergelijke concreet effecten van wiskundige intuïtie te leveren. Dit zal tot gevolg hebben dat Chihara’s aanval, die stuit op het gebrek aan extern, concreet bewijs voor wiskundige intuïtie, weerlegd kan worden.

§3 De continuümhypothesen

In *What is Cantor’s continuum problem?* vinden we een argument voor wiskundige intuïtie dat inhoudt op de continuümhypothesen. Het argument dat Gödel geeft is dat de continuümhypothesen laat zien dat alleen wiskundige intuïtie in staat is om te verklaren dat er onafhankelijke stellingen zoals de continuümhypothesen kunnen bestaan. Hoewel Gödel dit inzet als een direct argument voor wiskundige intuïtie zal er op basis hiervan een ander argument worden geformuleerd dat ingaat tegen Chihara. Immers, als er een verband bestaat tussen een bepaalde wiskundige praktijk (waar Gödel wiskundige intuïtie noodzakelijk voor achtte), dan kan wiskundige intuïtie niet langer een gebrek aan concrete effecten worden aangerekend.

3.1. Wat is de continuümhypothesen?

Gödel introduceert de continuümhypothesen op de volgende wijze:

The problem is to find out which one of the N’s (aleph numbers, HH) is the number of points of a straight line or (which is the same) of any other continuum (of any number of dimensions) in a Euclidean space. Cantor, after having proved that this number is greater than N 0, conjectured that it is N 1. An equivalent proposition is that: Any infinite subset of the continuum has the power either of the set of integers or of the whole continuum. This is Cantor’s continuum hypothesis. (Gödel, 1995b, p. 256)

De continuümhypothesen is de claim dat de eerstvolgende zogeheten graad van oneindigheid na die van de verzameling N van de natuurlijke getallen (0, 1, 2, 3, …) die van de verzameling R van de reële getallen is (1, 2, √2, 3, π, 5, 82). Dat wil zeggen, tussen de verzameling N van de natuurlijke getallen en de verzameling R van de reële getallen zijn geen oneindige verzamelingen die groter zijn dan N en kleiner dan R. Wat wil het echter zeggen dat de continuümhypothesen stelt dat de ene oneindige verzameling groter is dan de andere oneindige verzameling? De manier waarop dit wordt nagegaan is door middel van het zoeken naar een één-op-één relatie tussen de twee oneindige verzamelingen. Als ik in staat ben een dergelijke relatie te vinden, dan zijn de twee verzamelingen even groot. Als daarentegen kan worden bewezen dat een dergelijke relatie niet bestaat, dan weten we dat de verzamelingen niet even groot zijn.

Nagaan of een één-op-één relatie werkelijk één-op-één is gaat op de volgende manier. We hebben een één-op-één correspondentie tussen (de elementen van) een verzameling V en (de elementen van) een verzameling
Wals er een functie een functie F van V naar W is, zodanig dat F aan verschillende elementen van V verschillende elementen van W toevoegt en zodanig dat er bij elk element w van W precies één element v in V is met F(v) = w. Een één-op-één correspondentie F tussen V en W associeert dus met elk element v in V precies een element F(v) in W zodanig dat er bij elk element w in W ook precies een element v in V is met F(v) = w. Anders gezegd, we geven een functie die elk element uit de ene verzameling koppelt aan precies één element uit de andere verzameling en vice versa. We zullen twee voorbeelden geven van het redeneren met deze begrippen, een met eindige verzamelingen en een andere met oneindige verzamelingen.

Neem de verzameling X = {1, 2, 3} en de verzameling Y = {1, 2, 3, 4, 5}. Als we een functie willen maken van X naar Y die alle elementen van Y beslaat, dan gaat dit niet lukken. Immers X heeft niet genoeg elementen om alle elementen van Y te beslaan. X heeft drie elementen, en deze drie kunnen nooit vijf elementen bereiken. Als we nu een functie van Y naar X willen maken die alle elementen van X beslaat zonder dubbelte hakt dit ook niet. Er zijn immers vijf elementen in Y die verdeeld moeten worden over drie of minder elementen van X. We zien dat er geen één-op-één relatie kan worden gemaakt tussen X en Y, wat overeen komt met de intuïtie dat een verzameling met drie elementen niet even groot is als een verzameling met vijf elementen.

Zoals we hierboven hebben gezien kunnen we dus bij een eindige verzameling eenvoudigweg de elementen tellen en tot de conclusie komen dat de ene verzameling er meer heeft dan de andere en dus groter is. Bij oneindige verzamelingen werkt dit iets anders; hier kan een verzameling een strikte deelverzameling (een verzameling die bestaat uit slechts een deel van de elementen van een andere verzameling maar niet uit alle elementen van die andere verzameling) maar nog steeds even groot zijn. Neem bijvoorbeeld de verzameling \mathbb{N} van de natuurlijke getallen en de verzameling \mathbb{N}_{even} van de oneven natuurlijke getallen. In tegenstelling tot wat wellicht valt te verwachten, kunnen we wel degelijk een één-op-één relatie geven tussen de pozitieve oneven getallen en \mathbb{N}, ondanks dat \mathbb{N}_{even} een strikte deelverzameling is van \mathbb{N} (immers \mathbb{N}_{even} is \mathbb{N} zonder de positieve even getallen). Inzien dat de twee verzamelingen even groot zijn doen we door middel van onderstaande afbeelding en hieruit leiden we de functie af die de één-op-één correspondentie zal geven (De Swart, 1989, p. 28):

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>\mathbb{N}_{even}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>

Van de positieve oneven getallen naar \mathbb{N} en terug

Zoals we zien, kun je vanuit de oneven getallen bij alle natuurlijke getallen terechtkomen en vice versa. De betreffende één-op-één correspondentie F van \mathbb{N}_{even} naar \mathbb{N} wordt gegeven door $F(x) = (x - 1)/2$. Immers, voor elk natuurlijk oneven getal krijgen we precies één natuurlijk getal terug, wel specifiek het natuurlijke getal zoals hierboven gekoppeld aan het oneven natuurlijke getal. Omgekeerd is de functie G van \mathbb{N} naar \mathbb{N}_{even}, gedefinieerd door $G(y) = 2y - 1$, een één-op-één correspondentie tussen \mathbb{N} en \mathbb{N}_{even}. Als we een natuurlijk getal invoeren krijgen we daarvan een natuurlijk oneven getal, precies gekoppeld zoals hierboven. De verzameling van de oneven natuurlijke getallen en de verzameling van alle natuurlijke getallen is dus even groot.

Ik zal niet bewijzen1 dat de verzameling \mathbb{R} groter is dan de verzameling \mathbb{N}. Dat \mathbb{R} groter is dan \mathbb{N} is door Cantor in 1873 ondubbelzinnig (Ferreirós, 2012) en dat deed hem redelijk snel hierna de continuumhypothese formuleren. Immers, nu dat bekend is dat \mathbb{R} groter is dan \mathbb{N}, kunnen we ons afvragen of er oneindige verzamelingen zijn die groter zijn dan \mathbb{N}, maar kleiner dan \mathbb{R}. Godde verwoordt de vraag anders, namelijk: "Hoewel punten liggen er op een lijn?" (Gödel, 1955b, p. 256). Het aantal punten op een lijn is gelijk aan het aantal elementen van \mathbb{R} en we weten dat dit aantal groter is dan het aantal elementen van \mathbb{N}. We weten ook dat de laagste graad van oneindigheid die van \mathbb{N} is. Als we dus de gradering van oneindigheid zouden tellen, vertaalt Gödel vraag zich naar: noem de graad van oneindigheid van \mathbb{N}, is die van \mathbb{R} dan 1?

3.2. De onbewijsbaarheid van de continuumhypothese

Toen Gödel de eerste versie van zijn artikel schreef, was er al geruime tijd gewerkt aan het oplossen van de continuumhypothese. In zijn artikel beschrijft Gödel hoe er nog niets bereikt is ten aanzien van de continuüm-
hypothese en dat er wellicht ook geen oplossing binnen het huidige axiomasysteem van de verzamelingenleer gevonden kan worden. Later bewezen hijzelf en Cohen (Brown, 1999/2008, p.182) dat de continuüm-
hypothese inderdaad onafhankelijk is van de huidige axiomatuur. Voor de
verzamelingenleer (waar we de wiskunde naar kunnen terugbrengen) was
er een axiomasysteem, ZF(C), opgericht, waar de wiskundige gemeenschap
het redelijk eens over heeft kunnen worden. De continuümhypothese blijkt
echter onafhankelijk te zijn van de axiomatuur van ZF(C). Dat wil zeggen,
noch de waarheid noch de onwaarheid van de continuümhypothese kan
bewezen worden op basis van dit axiomasysteem. Dit terwijl, zoals Gödel
in zijn artikel uitlegt, er geen enkele reden is om aan te nemen dat we te
maken hebben met een slecht geformuleerde vraag:

So the analysis of the phrase ‘how many’ unambiguously leads to a
definite meaning for the question stated in the second line of this paper.
(Gödel, 1935b, p.256)

In zijn paper (geschreven toen er nog geen zekerheid bestond over de onaf-
hankelijkheid van de continuumhypothese) stelt Gödel voor om op zoek te
gaan naar nieuwe axiomatuur die ons in staat stellen de continuumhypothese
te beslissen. Aangezien een correct gestelde wiskundige vraag, zoals de vraag
naar het aantal punten op een lijn, nu eenmaal om een antwoord vraagt,
hoe kunnen we bij het opstellen van de axiomatuur van de verzamelingenleer
gens een axiomatuur overgeslagen waarwe een vraag kunnen beantwoorden.
Immers, zonder dit extra axiomatuur kan er nooit een antwoord worden ge-
formuleerd. Het is als doorsteek op deze opmerkingen dat Gödel’s argument
voor wiskundige intuutie gezien kan worden.

3.3 Wiskundige intuutie en de zoektocht naar axiomatuur

In zijn artikel eindigt Gödel met een bijvoegsel, waarin we een uiteenzetting
zien van wiskundige intuutie. Hij zoekt hierbij aansluiting op de rest van zijn
artikel. Wiskundige intuutie is volgens Gödel de enige manier om te verklaaren
hoe het kan dat de continuumhypothese onafhankelijk is van onze axiomatuur
maar dat we er uiteindelijk toch een antwoord van mogen verwachten. Gödel
karakteriseert de zoektocht naar nieuwe axiomatuur als volgt.

Hence it is (de continuumhypothese, III) undecidability from the axioms
being assumed today can only mean that these axioms do not contain a
complete description of that [the mathematical] reality. (Gödel, 1935b,
p.260)

However, the question of the objective existence of the objects of
mathematical intuition (which, incidentally, is an exact replica of the
question of the objective existence of the outer world) is not decisive
for the problem under discussion here. The more psychological fact of
the existence of an intuition which is sufficiently clear to produce
the axioms of set theory and an open series of extensions of them suffices
to give meaning to the question of the truth or falsity of propositions like
Cantor’s continuum hypothesis. (Gödel, 1935b, p.268)

De manier om te verklaarten dat we in staat zijn tot het vergaren van nieuwe
axiomatuur is dus wiskundige intuutie. Hoe anders, stelt Gödel, kunnen we
incomplete kennis van de wiskunde hebben? Vergelijk dit bijvoorbeeld met
de positie van de logicist en met de aan zijn positie gelieerde wiskundige
praktijk. Logicisme is de theorie dat de wiskunde terug valt te brengen
tot enkel logische wetten (Horsten, 2015) (ik zal verderop laten zien
dat deze positie zeer problematisch is, maar voer ik nu naar de effecten
op de wiskundige praktijk van logicisme). Het is onduidelijk hoe een logi-
cist omgaat met het gegeven dat de continuumhypothese onbewijsbaar
is. Immers, als bewezen is dat de continuumhypothese onafhankelijk is
van ZF(C) dan zal de logicist onvermijdelijk moeten accepteren dat de
continuumhypothese onafscheiding kan worden bezeet. Eens breder getrokken
zal de bezigheid van het vinden van axioma’s voor een logicist sowieso
een onzinnige bezigheid zijn. Immers, de enige axioma’s die een logicist in zijn
theorie toelaat zijn die van de logica. Daarmee is dus al een compleet beeld
van de axioma’s gegeven.

Er zijn twee manieren waarop het argument van Gödel ingezet kan
worden ten voordele van wiskundige intuutie. Ten eerste is het een direct
argument. Dit wil zeggen dat als we ons willen aansluiten bij het idee
van het blijven zoeken van nieuwe axiomatuur, we ofwel wiskundige intuutie
moeten aanstomen, ofwel een nieuw(e) theorie tegenargument naar voren
moeten schuiven. De zoektocht naar nieuwe axiomatuur is echter ook op een
Andere manier een argument. Niet alleen maakt de zoektocht naar nieuwe axiomatische wiskundige intuition plausibel, het maakt wiskundige intuition ook houdbaar. Chihara’s argument richt zich op het gebrek aan concrete eigenschappen en effecten die toegeschreven kunnen worden aan wiskundige intuition. We hebben in dit hoofdstuk echter gezien dat wiskundige intuition wel degelijk geconcretiseerd kan worden. Naast dat het een oplossing is voor een ontologisch vraagstuk, kan wiskundige intuition een argumentatieve rol spelen bij de keuze tussen bepaalde wiskundige praktijken. De vraag of we moeten zoeken naar nieuwe axiomatische voor de verzamelingenleer is afhankelijk van ons antwoord op de vraag hoe we wiskundige kennis vergaren en is daarom afhankelijk van hoe we onszelf verhouden tot Gödel's wiskundige intuition.

§4 De eerste onvolledigheidsstelling en wiskundige kennis

De door Gödel ontdekte eerste onvolledigheidsstelling (een stelling over de onvolledigheid van de getaltheorie die we weldra uiteen zullen zetten) geeft iemand die wiskundige intuition wil verder ontdekken houvast. Uit de eerste onvolledigheidsstelling kan worden afgeleid dat wiskunde een zeer bijzondere/afwijkende vorm van kennis is. Dit helpt de Gödelian aan omdat het argument van Benacerraf op de veranderling leunt dat van wiskundige kennis mag worden verwacht dat het op eenzelfde manier kan worden verklaard als andere kennis. Als wiskundige kennis aantoonbaar afwijkend is, is deze veronderstelling niet langer gerechtvaardigd.

4.1 Gödel's onvolledigheidsstelling

Op basis van de uitleg van H.C.M. De Swart (1993, pp. 465-475) over de onvolledigheidsstellingen zal ik beknopt een overzicht geven van de conclusies van dit theorema. Ik zal mij niet bezighouden met het bewijs dat Gödel hiervoor formuleert, maar enkel naar de conclusies en mogelijke gevolgen voor de aard van wiskundige kennis kijken.

De eerste onvolledigheidsstelling stelt dat voor elk formeel systeem van de getaltheorie dat aan bepaalde minimale eigenschappen voldoet, geldt dat er ware uitspraken zijn die niet te bewijzen vallen binnen dat formeel systeem (De Swart, 1993, p. 465). Dit wil zeggen dat indien we een sterk genoeg formeel systeem maken waarin we de getaltheorie modelleren, we voor dit systeem altijd een waarheid kunnen vinden die niet te bewijzen valt binnen dat systeem. Voor elk systeem dat ook maar de kans wil hebben volledig te zijn aangaande de waarheden van de getaltheorie, geldt dat het aan bepaalde eigenschappen moet voldoen (Smith, 2007/2013, pp. 49-52). Dit wil op zijn beurt zeggen dat formeel systemen van de getaltheorie altijd onvolledig zullen zijn. Oftewel, het zal nooit mogelijk zijn alle waarheden van de getaltheorie binnen een formeel systeem te bewijzen.

4.2 Hume en Kant: wiskunde als een bijzondere soort kennis

In An enquiry concerning human understanding beschrijft Hume dat er twee vormen van kennis kunnen zijn, namelijk matters of fact en relations of ideas (2008, p. 18). Matters of fact zijn afkomstig van de zintuigen of het geheugen (afwel, vanuit impressions of door impressions gevormde ideas) en de matters of fact zijn de verschillende dingen die we weten door middel van afleiding uit de indrukken die wij hebben. Dit is de eerste oorsprong van kennis en deze kennis voegt informatie toe. Naarmate ik meer impressions heb, ontstaat er meer matters of fact. Hieruit worden de relations of ideas. De relations of ideas zijn kennis die ik op doe door waarheden te vinden die per definitie waar zijn. Als ik een idea van een eendhoorn heb, dan kan ik daar de ware uitspraak over doen, op basis van relations of ideas, dat deze eendhoorn wit of niet wit is.

Als we nu een paar decennia vooruit springen zien we dat Kant in de Kritiek van de Zuiwere Rede een vergelijkbare onderverdeling maakt van de kennis. Ten eerste is er synthetische a-posteriori kennis. Dit is kennis die wordt opgedaan door middel van de zintuigen (a-posteriori) en die informatie toevoegt (synthetisch). Ten tweede is er a-priori analytische kennis. Dit is kennis die geen informatie toevoegt over de wereld (analytisch) en kenbaar is zonder het gebruik van de zintuigen (a-priori) (Kant, 2004, pp. 93-104). In tegenstelling tot Hume stelt Kant dat er naast deze twee nog een andere vorm van kennis is, namelijk de synthetische a-priori kennis. Deze kennis voegt wel informatie toe maar vereist het gebruik van de zintuigen om te worden verworven.
Deze soort van kennis is alles behalve standaard, want de door Hume gegeven onderverdeling lijkt compleet. Hoe kan het dat er kennis is die mij iets vertelt over de wereld zonder dat deze verkregen is met behulp van de zintuigen? Uitgerekend wiskunde is het voorbeeld dat Kant geeft van een dergelijke, bijzondere soort van kennis. Na duidelijk te hebben gemaakt dat de zintuigen niet nodig zijn voor het vergaren van wiskundige kennis (wiskunde is dus a-priori) zegt hij:

Alle wiskundige oorlogen zijn synthetisch. Deze stelling lijkt de aandacht van de analytici van de menselijke rede tot dusver te zijn ontgaan, en zelfs gelenkt tegengekomen aan al hun vermoedens te zijn, hoewel ze onbewijsbaar is en de gevolgen ervan zeer belangrijk zijn. Want omdat men van mening was dat alle gevolgtrekkingen van de wiskundigen verloopen volgens de wet van de tegenstrijd (dat vereist de aard van alle apodiktische zekerheid), kwam men tot de overtuiging dat ook de goedbeginselen van de wiskunde volgens de wet van de tegenstrijd wordt gekend. (Kant, 2004, pp. 104-105)

Ik zal niet ingaan op de argumenten van Kant betreffende het synthetisch zijn van de wiskunde. Wel zal ik laten zien dat we een argument hiervoor kunnen formuleren op basis van de zojuist geformuleerde onvolledigheidstelling. Belangrijk is om hier te bestellen wat het synthetisch zijn van kennis betekent. Zoals Kant zegt is de wiskunde niet analytisch omdat ze niet gebaseerd is op de wet van de non-contradictio. Anders geformuleerd: wiskundige waarheden zijn geen logische waarheden, dat wil zeggen, het zijn geen waarden die per definitie waar zijn. Ook belangrijk is om stil te staan bij wat voor een bijzondere vorm van kennis dit is. Het betreft hier namelijk kennis die informatie oplevert over de wereld zonder dat er enige impression vanuit de wereld nodig is om deze te genereren.

4.3 Synthetische wiskunde en de onvolledigheidstelling

We hebben gezien dat formele systemen niet in staat zijn om het geheel van de getaltheorie te bewijzen. Bij elk formeel systeem is er een waarheid van de getaltheorie die in dat formele systeem onbewijsbaar is. Dit maakt duidelijk dat wiskunde niet analytisch kan zijn in de zin die zojuist is beschreven. Immers, logische waarheden (waarden die per definitie waar zijn) kunnen wel degelijk in een formele systeem worden beschreven, namelijk in een formele systeem van de logica. Omdat Kant het begrip analytisch niet op formele wijze definiert, is dit wellicht niet direct duidelijk. Bij De Swart vinden we de volgende alternatieve definitie van analytisch:

In more modern terminology, following roughly a 'Fregean' account of analytically, one would define a proposition A to be analytic if either:
(i) A is an instance of a logically valid formula; e.g., 'No unmarried man is married' has the logical form $\forall x (\neg P(x) \land P(x))$, which is a valid formula, or
(ii) A is reducible to an instance of a logically valid formula by substitution of synonyms for synonyms; e.g., 'No bachelor is married'. (De Swart, 1993, p. 359)

De Kantiaanse definitie is niet identiek maar heeft prima facie wel dezelfde extensie als de Fregeaanse definitie zoals gegeven door De Swart. Analytische waarheden zijn waarheden waarbij enkel naar de logische vorm van de claim gekeken hoeveel is te worden. Het voordeel van deze moderne formulerings is dat we direct kunnen inzien dat de eerste onvolledigheidstelling het onmogelijk maakt dat getaltheorie analytisch is. Want als een waarheid, of een verzameling waarheden, analytisch is, dan moet deze te reduceren zijn tot logische waarheden. Als deze waarheden logische waarheden zijn, dan kan er een formele systeem worden geleverd voor deze waarheden. Sterker nog, de volledigheidstelling, die stelt dat alle geldige uitspraken ook bewijsbaar zijn in dat formele systeem geldt voor de predicaten en propositionele in de logica (De Swart, 1993, pp. 410-411). Als voor de logica de volledigheidstelling geldt en de wiskunde te reduceren zou zijn tot logica, dan is het dus zo dat er een formele systeem van de getaltheorie bestaat dat niet onvolledig is. We hebben echter al met behulp van de eerste on-volledigheidstelling geconcludeerd dat een dergelijk formele systeem niet bestaat. De wiskunde is dus niet te reduceren tot de logica.

Dit betekent dat de wiskunde niet analytisch maar synthetisch is.

Er is ook verdedigd dat wiskundige kennis a-posteriori zou zijn. Alhoewel ik hier niet verder op in zal gaan, is het interessant om te weten dat Gödel deze positie als absurd beschouwt en verwert (Gödel, 1935a,
p. 312). Er zijn tevens voor de hand liggende argumenten die de positie problematisch maken. Het is bijvoorbeeld niet nodig een zintuig aan te wenden om te weten dat één plus één gelijk is aan twee. Daarnaast doen de perfect vormen van de meetkunde (zoals de cirkel) zich nooit aan onze zintuigen voor.

4.4 Benacerrafs argument geproblematiseerd
Zoals we hebben gezien kan op basis van de eerste onvolledigheidstelling en de onderscheiding van soorten kennis zoals gevonden bij Kant en Hume worden geconcludeerd dat wiskunde een zeer bijzondere vorm van kennis is. Als we nu terugkijken naar het argument dat wordt gegeven door Benacerraf, dan zijn er een aantal vooronderstellingen die we kunnen aanvechten:

i) Wiskundige kennis moet passen binnen onze verdere, algemene opvattingen over kennis.

ii) Ons idee over kennis leunt op de causale interactie die wij met de objecten van onze kennis hebben. Als er geen sprake kan zijn van causale interactie dan past kennis over de objecten niet binnen ons algemene beeld van kennis.

iii) Als we wiskundige intuities gebruiken ter verklaring van wiskundige kennis, dan is deze kennis niet gebaseerd op causale effectieve objecten.

We hebben gezien dat iii) correct is, omdat wiskundige objecten binnen Godels verklaring van wiskundige kennis geen causale effecten hebben. Er zijn kritieken uit meerdere hoeken geweest op punt ii). Waar het echter om gaat is dat op basis van wat we net hebben ontdekt over wiskundige kennis i) in een nieuw, kwaad, daglicht komt te staan.

Dat wiskunde synthetische a-priori kennis is, maakt duidelijk dat wiskunde een bijzondere vorm van kennis is. Op het eerste gezicht zijn we wellicht geneigd om een filosoof gelijk te geven als hij kennis onderscheeld in kennis die per definitie waar is en kennis waarvoor we indrukken vanuit de wereld moeten verkrijgen. Ik heb echter aan de hand van de onvolledigheidstelling laten zien dat er goede redenen zijn om aan te nemen dat wiskunde buitens dit intuitieve beeld over kennis valt.

Wiskunde is een bijzondere vorm van kennis. We kunnen voorzal zeggen wat wiskundige kennis niet is. Bijvoorbeeld, ze is niet zoals kennis van de logica, en niet zoals kennis van empirisch objecten. Aangezien wiskunde een bijzondere vorm van kennis is, is er geen enkele reden om aan te nemen dat wiskundige kennis past binnen ons algemene beeld van kennis. Dit betekent dat één van de belangrijke vooronderstellingen die Benacerraf maakt, namelijk ii), op losse schroeven staat. Benacerraf slaagt er zodoende niet in om een vernietigende kritiek te formuleren die de onhoudbaarheid van wiskundige intuitie aan zou tonen.

5 Wiskundige afbeeldingen; illustraties of bewijzen?
In het artikel *Proof and Pictures* (1997) van James Robert Brown treffen we een verdeling aan van het gebruik van wiskundige afbeeldingen en illustraties als bewijzen voor wiskundige stellingen, naast de formele bewijzen die moderne wiskundigen gewend zijn te gebruiken. Hier koppelt hij een epistemologie van de wiskunde aan, die sterk overeen komt met Godels wiskundige intuitive. Dit helpt de godeliaan op twee manieren. Ten eerste kan deze koppeling tussen wiskundige intuitive en de wiskundige praktijk van het gebruik van afbeeldingen als bewijzen, een direct argument zijn voor wiskundige intuitive als we het eens zijn met Brown over de functie van afbeeldingen binnen de wiskunde. Het is tevens een argument voor de houdbaarheid van wiskundige intuitive omdat deze koppeling tegen Chihara’s argument ingaat. Er zijn concreetere effecten van de godeliaanse epistemologie te geven, namelijk hoe we ons willen verhouden tot de praktijk van afbeeldingen als bewijzen. Dit laat zien dat Chihara’s kritiek dat er geen concretiseringen bestaan van godeliaanse epistemologie, niet geldig is.

5.1 Overtuigende afbeeldingen
Ik begin met twee voorbeelden die Brown geeft van afbeeldingen die als bewijs kunnen fungeren. Bij het eerste voorbeeld is ook het formele bewijs erbij genomen.
Erasmus Student Journal of Philosophy

Hugo Hogenbirk | De Houdbaarheid van Kurt Gödel’s Wiskundige Intuïtie

Theorem: \(1 + 3 + 5 + \ldots + (2n - 1) = n^2\)

[Picture] Proof:

\[
\begin{align*}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\end{align*}
\]

Figure 3

This picture proof should be contrasted with a traditional proof by mathematical induction which would run as follows:

Proof (traditional): We must show that the formula of the theorem holds for 1 (the basis step), and also that, if it holds for \(n\) then it also holds for \(n+1\) (the inductive step).

Basis: \((2 * 1) - 1 = 1^2\)

Inductive: Suppose \(1 + 3 + 5 + \ldots + (2n - 1) = n^2\) holds as far as \(n\). Now we add the next term in the series, \(2(n+1) - 1\), to each side:

\[
1 + 3 + 5 + \ldots + (2n + 1) - 1 = n^2 + 2(n + 1) - 1
\]

Simplifying the right hand side, we get:

\[
\begin{align*}
2(n + 1) - 1 &= n^2 + 2n - 1 \\
&= n^2 + 2n + 1 \\
&= (n + 1)^2
\end{align*}
\]

This last term has exactly the form we want. And so the theorem is proven. (Brown, 1997, pp. 165-170)

Het eerste bewijs is geen formele bewijs. Toch zal menig lezer duidelijk zijn dat het theorema waar is op basis van de afbeelding. Door het blijven plaatsen van nieuwe rijen en kolommen, kan elke keer weer een vierkant gevormd worden waarvan de oppervlakte gelijk is aan de gegeven som.

Het tweede voorbeeld dat Brown geeft is een continue functie (een voudig gezegd een functie die je zou kunnen tekenen zonder je potlood van het papier te hoeven halen) die, als hij op enig moment onder en op een ander moment boven de nullijn ligt, dan ook op enig punt de nullijn zal raken. Het formele bewijs hiervoor is uitgebreid (Brown, 1997, pp. 162-165) en zal ik niet geven. De volgende afbeelding kan echter als picture proof dienen.

![Fig 1. The intermediate zero theorem (Brown, 1997, p. 163)](image)

5.2 Afbeeldingen als bewijzen

Na deze voorbeelden vraagt Brown zich af wat de uitvinding van het formele bewijs in het algemeen heeft opgeleverd. Hij geeft hiervoor drie opties:

1) Het bewijs bewijst een theorema waarvan we daarvoor niet wisten of deze waar was. Brown geeft aan dat we deze optie moeten verwerpen. Iedereen die immers de bovenstaande afbeelding ziet, weet dat de beschreven som gelijk is aan \(n^2\) en dat de functie de nullijn raakt (Brown, 1997, p. 164).

2) Het bewijs legt uit wat het theorema precies betekent en waarom deze waar is. Als we echter naar de afbeelding kijken kunnen we ook zien waarom de som gelijk is aan \(n^2\). Het formele bewijs legt inderdaad uit waarom het theorema waar is, maar het visuele bewijs doet dat eveneens.
3) Het theorema waar we op uit komen, geldt als argument voor de premissen waar het bewijs gebruik van maakt. Het theorema was al gekend, het enige wat dit bewijs bewees is dat de premissen van het bewijs correct waren, aangezien ze op een gekende waarheid uitkomen.

Brown beargumenteert dat optie drie als volgt de beste optie is: stel je voor dat er een bewijs bestaat waaruit blijkt: als een continue lijn een punt heeft boven de nul en een punt onder de nul, dan raakt de lijn zorgvuldig de nullijn. Dit zou waarschijnlijk niet ons geloof beschadigen dat continue lijnen die op enig punt boven de nullijn en op een ander punt onder de nullijn liggen, de nullijn raken. Waarschijnlijk zouden we geneigd zijn om te kijken naar wat er mis is met ons bewijs. Brown kiest dus voor de derde optie:

It is pretty clear that, of our three options, the final one is the best. (The second option, explanation, is compatible with the third, confirmation, but seems much less plausible.) The consequence of adopting (III) is highly significant for our view of pictures. We can draw the moral quickly: on this view pictures are crucial. They provide the known to be true consequences that we use for testing the hypothesis of arithmetization. Trying to get along without them would be like trying to do theoretical physics without the benefit of experiments to test conjectures. (Brown, 1997, p. 165)

Brown verwert een mogelijke tegenwerping die stelt dat er nog een vierde optie is. Deze luidt dat we met twee verschillende bewijsmethodes hetzelfde theorema hebben bewezen. Dit is echter niets meer dan een herformulering van Brown's positie, immers:

I could rephrase it as saying: the two proof-techniques arrive at the same result. One of these (the proof) is prima facie reliable. The other (the analytic proof) is questionable, but our confidence in it is greatly enhanced by the fact that it agrees with the reliable method. (Brown, 1997, p. 166)

Voor de verbinding met en de onderbouwing van wiskundige intuïtie is het echter niet noodzakelijk dat Brown's argumenten worden geaccepteerd. Wat belangrijk is, is dat een onbeperkte discussie aangaande wiskundige praktijk is, waarvan we zullen zien dat zij verband houdt met wiskundige intuïtie.

5.4 De relatie tot wiskundige intuïtie

Dat afbeeldingen in de wiskunde als bewijs zouden kunnen dienen, is op het eerste gezicht niet verbonden met wiskundige intuïtie. Brown vraagt zich op enig moment echter af hoe het kan dat wiskundige afbeeldingen fungeren als bewijs. Hij zegt hierover:

Consequently, I claim, some 'pictures' are not really pictures, but rather are windows to Plato's heaven. (Brown, 1997, p. 174)

As telescopes help the unaided eye, so some diagrams are instruments (rather than representations) which help the unaided mind's eye. (Brown, 1997, p. 174)

Het gebruik van afbeeldingen als bewijzen sluit uitstekend aan bij het verkrijgen van wiskundige kennis met behulp van ons 'geestenoor', die op een imperfecte manier de plattevoet wiskundige objecten aanschouwt. Dit sluit op zijn beurt goed aan bij hoe ik tot nog toe Gödels wiskundige intuïtie heb begrepen. Het lijkt erop dat het gebruik van afbeeldingen als bewijsmethode in de wiskunde alleen kan worden begrepen als wiskundige intuïtie die een scherpe beeld krijgt van de objecten die ze probeert te schouwen. Brown voelt zich genoodzaakt tot het gebruik van dergelijke metaforen om de werking van de afbeeldingen als bewijzen te beschrijven en verklaaren.

Het is op twee manieren gunstig voor de houdbaarheid van wiskundige intuïtie. Ten eerste is er een direct argument. Als iemand ervan overtuigd is dat afbeeldingen als wiskundig bewijs kunnen dienen, en het klopt dat dit enkel mogelijk is als we het bestaan van wiskundige intuïtie onderkennen, dan heeft deze persoon een goede reden om wiskundige intuïtie aan te nemen. Een tweede, indirect argument voor de voorstander van wiskundige intuïtie is dat de vraag naar wiskundige intuïtie niet enkel een vraag naar de metafysische fundamenteel van de wiskunde kan oplossen. Deze verdenking wordt dankzij Brown's artikel wegenomen. Wiskundige intuïtie is een kwestie die niet enkel verband houdt met de ontologie van de wiskunde. Ze houdt ook verband met de geldigheid en waardering van specifieke bewijsvormen binnen de
wiskunde. Wiskundige intuïtie blijkt een onderwerp te zijn dat gerela-
teed is aan de wiskundige praktijk. De vraag naar wiskundige intuïtie bevindt zich in het goede gezelschap van de vraag naar de geldigheid van
afbeeldingen als bewijs.

Conclusie
Ik heb laten zien dat Gódel’s wiskundige intuïtie een sterker en houdbaar
begrip is dan op het eerste gezicht lijkt. Volgens Chihara roept wiskundige
intuïtie herinneringen op aan mystieke ervaringen en lijkt het zonder con-
crete gevolgen enkel als oplossing te dienen voor één specifiek probleem.
Benaceraf merkt op dat wiskundige intuïtie niet strookt met de manier
waarop wij gewend zijn kennis te beïden en daarmee lijkt wiskundige intuïtie
contra intuïtief. De gedeldeaan heeft de middelen om deze aanvallen te weren.
De kwestie aangaande wat we moeten verwachten van concrete wiskundige
problemen zoals de continuümhypothesese, blijkt afhankelijk te zijn van ons
antwoord op de vraag of wiskundige intuïtie bestaat. De eerste onvolledig-
heidsstelling geeft ons aanleiding om te veronderstellen dat wiskunde een
andere vorm van kennis is dan onze alledaagse kennis. Ten slotte vinden we
in de vraag naar het gebruik van wiskundige afbeeldingen niet alleen een
direct argument voor wiskundige intuïtie, maar zien we tevens de praktische
consequenties die een dergelijke theorie zou hebben. Aan de hand van deze
argumenten heb ik laten zien dat wiskundige intuïtie houdbaar is.

Hoewel de gedeldeaan zeker nog op onduidelijkheid en gebrek aan
direct bewijs kan worden aangeraakt, kan hem niet worden verweten een
teoretische, onhoudbare theorie aan te hangen.

Dankbetuigingen
Graag wil ik hierbij prof. dr. Harrie de Swart en dr. Paul Schuurman
bedanken voor de begeleiding tijdens het schrijven van de oorspronkelijke
bachelorthese.

Hugo Hogenbirk (1992) studeerde Wiskundegeneeskunde aan de Erasmus Universiteit
Rotterdam en studeerde Informatica aan de Universiteit Utrecht. Momenteel verricht
hij onderzoek binnen de filosofie van spel. Zijn wetenschappelijke interesses bevinden
zich in de epistemologie, de metafysica en de filosofie van de wiskunde.

‘De houdbaarheid van Kurt Gódel’s wiskundige intuïtie’ was oorspronkelijk geschreven
als bachelorscriptie aan de Erasmus Universiteit Rotterdam voor de studie Wiskundegeneeskunde,

Noten

Literatuur

and Can We Perceive Them? The Philosophical Review, 91(2), 211-227.

ford.edu/entries/set-theory-early/.

