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ARTICLE INFO ABSTRACT

Keywords: Sex is a major determinant of cardiometabolic risk. DNA methylation (DNAm), an important epigenetic me-

DNA methylation
Type 2 diabetes
Coronary disease

chanism that differs between sexes, has been associated with cardiometabolic diseases. Therefore, we aimed to
systematically review studies in adults investigating sex-specific associations of DNAm with intermediate car-
diometabolic traits and incident cardiovascular disease including stroke, myocardial infarction (MI) and cor-

Myocardial infarction

Stroke onary heart disease (CHD). Five bibliographic databases were searched from inception to 15 July 2019. We

selected 35 articles (based on 30 unique studies) from 17,023 references identified, with a total of 14,020
participants of European, North American or Asian ancestry. Four studies reported sex differences between
global DNAm and blood lipid levels and stroke risk. In 25 studies that took a genome wide or candidate gene
approach, DNAm at 31 gene sites was associated with sex differences in cardiometabolic diseases. The identified
genes were PLA2G7, BCL11A, KDM6A, LIPC, ABCG1, PLTP, CETP, ADD1, CNN1B, HOOK2, GFBP-7,PTPN1, GCK,
PTX3, ABCG1, GALNT2, CDKN2B, APOE, CTH, GNASAS, INS, PON1, TCN2, CBS, AMT, KDMAG6A, FTO,
MAP3K13, CCDC8, MMP-2 and ER-a. Prioritized pathway connectivity analysis associated these genes with
biological pathways such as vitamin B12 metabolism, statin pathway, plasma lipoprotein, plasma lipoprotein
assembly, remodeling and clearance and cholesterol metabolism. Our findings suggest that DNAm might be a
promising molecular strategy for understanding sex differences in the pathophysiology of cardiometabolic dis-
eases and that future studies should investigate the effects of sex on epigenetic mechanisms in cardiometabolic
risk. In addition, we emphasize the gap between the translational potential and the clinical utilization of car-
diometabolic epigenetics.

1. Introduction components of the metabolic syndrome and obesity [1]. Aging is as-
sociated with development of unfavorable cardiometabolic profile

Cardiometabolic diseases include cardiovascular diseases (CVD), which in large contributes to increased incidence of major cardiovas-
type 2 diabetes (T2D) and their associated risk factors including cular events and mortality [2]. Intermediate cardiometabolic risk
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factors are unequally distributed among sexes, and sex differences are
also described in cardiometabolic diseases prevalence, clinical char-
acteristics and prognosis [3-5]. Generally, before menopause women
have better cardiometabolic risk profiles than same aged men; however,
this sex advantage gradually disappears with advancing age, particu-
larly after menopause [6]. Mechanisms underlying sex differences in
CVD have been extensively studied in the past two decades and sig-
naling pathways including epigenetic modifications of the genome
emerged as possible pathways leading to sexual dimorphism in cardi-
ometabolic diseases [7].

Epigenetic modifications comprise dynamic changes in the genome
engaged in the modification of important cellular processes such as
gene expression, chromosomal stability and genomic imprinting [8,9].
DNA methylation (DNAm) is the best understood and most extensively
studied epigenetic mechanism in regard to CVD risk [8,9]. DNAm refers
to the transfer of a methyl group into the C5 position of the cytosine to
form 5-methylcytosine (5mC) and increases or decreases in genomic
5mC are referred as DNA hyper- and hypomethylation respectively
[8,9]. The global DNAm assessed at long-interspersed nuclear element
(LINE-1) has been inversely associated with intermediate CVD risk
factors and higher risk of metabolic status worsening [10]. Conversely,
a higher degree of global DNA methylation measured at Alu repeats or
by the LUMA method was associated with the presence of CVD [10].
Also, gene specific hyper- or DNA hypomethylation was associated with
changes in gene expression and was shown to affect cardiometabolic
risk including atherosclerosis, inflammation, blood pressure, serum
lipid and glucose levels, subsequently leading to increased risk of de-
veloping T2D, stroke and myocardial infarction [11]. Also, sex-specific
differences in DNAm have been found in brain, human pancreatic islets
and blood [12,13]. Men in general seem to have lower levels of me-
thylation in their genome as compared to women [14,15], indicating
that similarly to sex chromosomes, methylation at the autosomes might
be subject to sex differences. Despite this, only a relatively small
number of studies in the ample field of cardiometabolic epigenetics
stratify according to sex or focus in sex differences. Although a few
studies [11,16,17] have summarized the existing literature on this
complex topic, they did not focus on epigenetically induced sex dif-
ferences in CVD, intermediate CVD risk factors or T2D, with the ex-
ception of a recent review that focused only on major CVD events [16].

Therefore, we aimed to systematically review the available evidence
in human studies exploring the association between sex-specific DNAm
and cardiometabolic diseases.

2. Methods
2.1. Data sources and searches

This review was conducted using a predefined protocol (which was
not registered at online platforms) and following a recently published
guideline on how to perform systematic reviews [18] and in accordance
with PRISMA guidelines [19]. A literature search was done using 5
electronic databases (Medline ALL via Ovid (1946-current), EMBASE
(1974-current) via embase.com, Web of Science Core Collection (1900-
current), Cochrane CENTRAL registry of trials (issue 7 2019) via Wiley
and Google Scholar) until 15 July 2019 (date last searched) with the
help of an experienced medical information specialist (WMB). Details
on the search strategy are provided in Supplemental Table 1. All re-
ferences were imported in an EndNote library and deduplicated with
the algorithm developed by Bramer et al. [20]. Additionally, we sear-
ched the reference lists of the included studies and relevant reviews.
Two independent reviewers screened the titles and abstracts of all
studies identified initially, according to the selection criteria. Full texts
were retrieved from studies that satisfied all selection criteria. All dis-
agreements were resolved through consensus or consultation with two
other independent reviewers.
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2.2. Study selection

Observational (cross-sectional, case-control, prospective) studies
conducted in adults and investigating the associations of global or gene-
specific DNAm with cardiometabolic outcomes were selected. Studies
were included if they investigated sex-stratified associations between
DNAm and intermediate cardio-metabolic traits (blood lipids, glucose,
blood pressure, inflammatory markers, atherosclerosis, T2D) and CVD
(MI, CHD, stroke). Also, we included studies that reported a significant
interaction term with sex but did not stratify by sex in their analysis.
Furthermore, studies conducted only in men/women were not included
in the current review.

2.3. Data extraction

A predesigned electronic data abstraction form was used to extract
relevant information. This included questions on study location, per-
centage of men and women included in the study, participants’ age,
cardio-metabolic outcome, tissue type, DNAm technique used and
general and sex-specific findings. Two authors independently extracted
the data and a consensus was reached in case of any inconsistency with
involvement of an additional author.

2.4. Assessing the risk of Bias

Two independent investigators used the Newcastle-Ottawa Scale
[21] to assess the risk of bias of the included observational studies. The
Newcastle-Ottawa Scale uses a star system (maximum of nine stars) to
evaluate three domains: selection of participants; comparability of
study groups; and the ascertainment of outcomes and exposures of in-
terest. Studies that received a score of nine stars were judged to be of
low risk of bias; a score of seven or eight stars was medium risk and
those that scored six or less were considered at high risk of bias.

2.5. Pathway connectivity analysis

To identify biological pathways of the differentially methylated
genes previously linked to CVD, we used the CPDB (ConsensusPathDB-
human) tool from the Max Plank Institute for Molecular Genetics [22].
This tool integrates interaction networks in humans (in this study) and
includes information on binary and complex protein-protein, genetic,
metabolic, signaling, gene regulatory and drug-target interactions, as
well as biochemical pathways [22]. Data that explains interactions was
derived from 32 public resources.

3. Results
3.1. Search results and study characteristics

The search strategy identified 17,023 potentially relevant studies;
after titles and abstracts were screened 16, 814 references were ex-
cluded (Fig. 1). For the remaining 209 references, full-text articles were
reviewed, 174 of which were excluded for various reasons outlined in
Fig. 1. A total of 35 articles based on 30 unique studies were included in
this systematic review including a total of 14,020 non-overlapping
participants, of whom approximately 53 % were women. The studies
included population with European (n = 13), North American (n = 3)
and Asian (n = 14) ancestries with age ranging from 32 to 75 years.
Due to differences in the epigenetics marks and outcomes investigated,
as well as different study designs of the included studies, we were not
able to quantitatively pool the estimates from various studies. Therefore
we report in this review a detailed descriptive summary of the available
published literature. The characteristics of the included studies are
described in Table 1. The median Newcastle-Ottawa quality score for
the included studies was 7 of 9 possible points. The Table 1 depicts the
methodologic quality of all included studies.
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16,814 unique citations excluded on the basis of title and abstract:
Review, letter, editorial or case reports
In vitro, ecological, functional or animal studies

No relevant population (e.g. men or women only)

*Sex differences reported (n=31)
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Fig. 1. The flowchart of included studies according to PRISMA guidelines.

*In a specific study more outcomes might have been investigated, therefore, numbers refer to number of articles and not numbers of unique studies’.

3.2. The Role of Sex-Specific DNAm in Intermediate Cardio-metabolic
Traits

3.2.1. Blood lipids

Global DNA methylation is a frequent used marker for epigenetic
screening since it captures the DNA methylation also at unknown ge-
netic locations while the results of average DNA methylation correlate
with the methylation of some trait-relevant genes [23,24]. Ten articles
[14,25-33] investigated sex-specific associations between DNAm and
blood lipid concentrations applying global n = 2, epi-genome wide
n =1 and candidate gene n = 7 approaches. In total 2,443 non-over-
lapping participants 1,174 women and 1,269 men from USA, Canada,
Finland, UK and China were included in these studies. The summary of
the sex-specific findings is described in Supplemental Fig. 1.

Two cross-sectional studies [14,25] investigating global DNAm and
blood lipid levels reported sex differences. In the study conducted by
Cash et al., LINE-1 methylation was significantly higher in men than in
women, and among the entire sample, lower levels of LINE-1 methy-
lation was associated with higher levels of fasting low-density lipo-
protein-cholesterol (LDL) and lower levels of fasting high-density li-
poprotein-cholesterol (HDL) [14]. However, when stratifying by sex,
the inverse association between global LINE-1 methylation, LDL and
HDL remained significant only in men [14]. Malipatil et al., in their
study reported that an increase of 10 % in LINE-1 methylation was
associated with decreased cholesterol/HDL ratio by 0.4 mmol/L in the
overall sample of men and women. However, when stratifying by sex,
the inverse association remained significant only in women [25]. In an
EWAS performed by Garcia-Calzon et al., female samples displayed on
average higher methylation in the X-chromosome, whereas males

presented higher methylation in the autosomes. Further, women
showed higher HDL levels, which were associated with higher KDM6A
expression and epigenetic differences in human liver [31]. The results
were not replicated. Further, the authors integrated DNA regulatory
regions and other epigenetic factors for CpGs in the autosomal and X-
chromosome based on sex (q < 0.05) for only four liver donors. Parti-
cularly, 42 % of the autosomal CpG sites (13,817 CpGs) and 27 % of the
X-chromosome sites (2601 CpGs) differentially methylated by sex
overlapped with histone marks related to active chromatin and en-
hancer regions (H3K4mel), whereas 14 % of the autosomal sites (4760
CpGs) and 11 % of the X-chromosome sites overlapped with histone
marks related to heterochromatin (H3K27me3) [31].

In three candidate gene-studies PTPN1 [32], PLA2G7 [26] and
BCL11A [27] DNAm was positively associated with serum lipids in
women, but not in men. Another study reported that methylation at
ABCG1 was negatively associated with triglycerides in women only
[28], whereas methylation at LIPC was negatively associated with tri-
glycerides only in men [27]. This latter study also reported sex-specific
associations for total cholesterol: whereas ABCG1 was associated with
triglycerides only in women, methylation at this CpG site was inversely
associated with total cholesterol only in men [28]. For some CpG sites
there were specific associations with HDL for males; methylation at
PLTP [28], CETP [29], and LIPC [28] were negatively associated with
HDL in men, but not in women. Moreover, a male-specific association
was found between GCK CpG4 methylation at GCK and total cholesterol
concentration [33]. However, a single study performed among 739
African Americans in the Genetic Epidemiology Network of Arterio-
pathy (GENOA) did not find overall or sex-specific significant associa-
tions between DNA methylation and lipid levels [30].
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3.2.2. Blood pressure

Seven articles [25,34-39] based on five unique studies reported
associations between sex-specific DNAm and essential hypertension
(EH), while one study investigated the cross-sectional association be-
tween DNAm and blood pressure [25]. Among these, five studies in-
vestigated candidate gene methylation [34-36,38], while another study
investigated epi-genome wide methylation [40] in regard to hy-
pertension. Studies included 3,561 non-overlapping participants 2,029
women and 1,373 men from China and UK. The summary of sex-specific
findings is reported in Supplemental Fig. 1.

In the study conducted by Malipatil et al., in the overall sample of
men and women, a 10 % increase in LINE-1 methylation was associated
with a 2.5 mmHg lower baseline diastolic blood pressure. The stratified
analysis by sex did not show any significant influence of sex on this
association [25]. One candidate gene study reported higher methyla-
tion levels of the two CpG sites at SCNN18 in women compared with
men as controls (CpGl: t=-2.283, P = 0.025; CpG2: t=-2.568,
P = 0.012) and incident EH cases (CpG1l: t=-2.694, P = 0.009; CpG2:

=-2.583, P = 0.011) [35]. However, for these two CpG sites no sig-
nificant difference was observed between males and females in the
prevalent cases group (CpGl: t = 0.409, P = 0.068; CpG2: t = 0.621,
P = 0.536) [35]. These results indicated a significant association be-
tween EH and SCNN1B methylation, which was affected by age, sex and
antihypertensive therapy. Similarly, in one other study, higher ADD1
DNAm levels were observed in females as compared to males (CpG1:
P = 0.016; CpG2-5: P = 0.021) [34]. Further, the study showed that
lower ADD1 CpG1 methylation levels were significantly associated with
EH in females (cases versus controls (%, SD): 10.00 = 1.41 versus
11.36 = 3.63, adjusted P = 0.042) but not in males (adjusted
P = 0.133). In contrast, lower levels of ADD1 CpG2-5 methylation were
associated with an increased risk of EH in males (cases versus controls:
22.48 % versus 31.86 %, adjusted P = 0.008) but not in females [34].
The prediction potential of EH for ADD1 CpG1 and CpG2-5 methylation
levels was assessed by the ROC curves. CpG2-5 methylation was re-
ported as a significant predictor of EH in males (area under curve
(AUC) = 0.855, P = 0.001), while CpG1 methylation showed a trend
toward being an EH indicator in females (AUC = 0.699, P = 0.054)
[34]. In the same population, AGTR1 CpGl methylation was a sig-
nificant predictor of EH in both sexes [36] and hypomethylation of
CpG3 site at IL-6 promotor was significantly associated with EH risk in
both, men and women. Further, sex-specific DNAm levels were ob-
served only at CpGl and CpG2 sites of IL-6 promoter (males were hy-
pomethylated as compared to females) [38]. Another study by Han
et al., investigated the interactions between alcohol consumption and
DNA methylation of the ADD1 gene promoter and its association with
EH, involving 2040 cases and controls [36]. The researchers concluded
that CpG1 methylation was associated with EH in females while CpG2-5
methylation was significantly associated with EH in males, suggesting
that these interactions in the ADD1 gene promoter might play a role in
modifying EH susceptibility [36]. Finally, Bao et al. reported that hy-
pomethylation of the IFNG promotor region was associated with a
higher risk of EH. However, the authors did not observe any sex dif-
ferences overall, except that in the control group DNAm levels were
found to be higher in males when compared to females [39].

3.2.3. Inflammation and atherosclerosis

Three articles [41-43], investigated the associations between epi-
genome wide DNAm n = 2, candidate gene methylation and in-
flammatory markers. Also, we did not identify any study investigating
the sex-specific role of DNAm in atherosclerosis. Studies in in-
flammatory markers included 2,771 non-overlapping participants 713
women and 317 men and one study did not report the number of men
and women separately [41]) from Germany, China and USA. None of
the epi-genome wide studies reported sex specific associations between
global DNAm and inflammatory markers [41,42]. Nevertheless, Guo
et al., reported men-specific association between lower PTX3 promoter
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methylation levels and higher neutrophil to lymphocyte ratio. Also, the
level of PTX3 promoter methylation in the coronary artery disease
group (mean, SD: 62.69 % + 20.57 %) was significantly lower than that
of the group free of coronary artery disease (mean, SD: 72.45
% + 11.84 %), suggesting a role of this gene in developing coronary
artery disease [43] (Supplemental Fig. 1).

3.2.4. Glycemic traits and T2D

Eight articles [12,27,32,33,44-47] reported sex-specific associa-
tions between DNAm and glycemic traits and T2D. Five studies were
candidate gene studies and three were epi-genome wide studies. Among
them, six studies focused on DNAm and T2D, one investigated the as-
sociation between DNAm and metabolic syndrome and another in-
vestigated insulin metabolism. Studies included 2,239 non-overlapping
participants 353 women and 554 men, with one study not specifying
the number of men and women [46]) from Israel, Spain, Sweden, China
and USA. Summary of the sex-specific findings is shown in Supple-
mental Fig. 1.

In a case-control study including 1,169 individuals, individual me-
thylation levels at the FTO gene showed that CpG sites in the first intron
were slightly (3.35 %) hypomethylated in T2D cases relative to controls
[46]. The odds of developing T2D increased by 6.1 % for every 1%
decrease in DNAm. Men were hypomethylated relatively to women and
the effect of DNAm was stronger in males compared to females
(P = 0.034 for sex interaction, AUC = 0.675 among men and 0.609
among women) [46]. Also, in another case-control study association
between PTPN1 promoter methylation and the risk of T2D was ob-
served in the overall population and in females [32].

In the study by Burghardt et al., a significant increase in CDH22
gene methylation in subjects with metabolic syndrome was identified in
the overall sample [44]. However, when investigating males and fe-
males separately; differential methylation levels were observed within
the MAP3K13 gene in females and the CCDC8 gene in males with me-
tabolic syndrome. In the validation sample a significant difference in
methylation was again observed for the CDH22 and MAP3K13 genes,
but not for CCDC8 gene [44]. Another study investigated the impact of
sex on the genome-wide DNAm pattern in human pancreatic islets from
53 males and 34 females, and relate the methylome to changes in ex-
pression and insulin secretion [12]. The study identified both chro-
mosome-wide and site-specific sex differences in DNA methylation at
the X chromosome of human pancreatic islets. However, the autosomal
chromosomes showed differences in DNA methylation only on the level
of individual CpG sites between sexes. Importantly, they found higher
insulin secretion in pancreatic islets from females compared with males,
as well as sex differences in gene expression [12]. Additionally, the
authors did not find any difference in -cell number between females
and males. This could suggest that the DNA methylation differences
seen between males and females might not be due to altered p-cell
composition in the islets [12].

In a case-control study conducted by Rodriguez-Rodero et al. [45],
hypermethylation at CpG sites annotated to the HOOK2 gene was as-
sociated with the presence of T2D. Interestingly, when these results
were analyzed by sex, female T2D samples were found hypermethy-
lated at the cg04657146-region and the cgl1738485-region of the
HOOK2 gene, whilst male samples were found hypomethylated in this
latter region only [45]. Tang et al. reported a significant association
only in males when investigating the overall BCL11A methylation in
T2D patients [27]. While in another study among the same population,
significantly elevated methylation levels of GCK CpG4 were observed in
T2D patients than in the healthy controls. Also, this association was
characteristic to males only [33]. Further, serum IGFBP-7 protein levels
were similar among newly diagnosed and treated T2D patients and
were not correlated with IGFBP7 DNAm overall, but solely in males
[47].
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3.3. The role of sex-specific DNAm in CVD

3.3.1. Coronary heart disease

Eight articles [48-55] investigated the associations between DNAm
and CHD and MI. All studies applied a candidate-gene approach and
included a total of 2,353 participants 1,010 women and 1,343 men
from China, Italy and the Netherlands. The summary of sex-specific
findings can be found in Supplemental Fig. 2.

One study reported that a higher DNAm at the imprinted loci of INS
and GNASAS was associated with the incidence of MI in women (INS:
+2.5 %, P=0.002; GNASAS: +4.2 %, P =0.001) [48]. Hy-
permethylation at one locus and at both loci was associated with odds
ratios (ORs) of 2.8 and 8.6, respectively (Ptrend = 3.0 X 10 — 4) while
no association was observed among men. Similarly, one study revealed
a female-specific significant association between methylation at
PLA2G7 promoter and risk of CHD [49]. Another study reported a fe-
male specific association of CDKN2B methylation with CHD [women
with CHD (mean, SD: 7.21 + 2.40 %) compared with women without
CHD. In contrast, four studies reported men-specific associations be-
tween DNAm of various genes and CHD [43,50,51]. Peng et al., re-
ported significant associations of the methylated promoter of the
ABCG1 and GALNT2 genes with an increased risk of CHD overall and
among men only [50]. Also, CHD patients had significantly lower levels
of APOE methylation than non-CHD controls. In addition, rs7412-T and
1s7259620-A were protective factors for CHD in males (rs7412-T:
OR = 0.527, allele P = 0.004; rs7259620-A: OR = 0.743, allele
P = 0.029) [54]. Giannakopoulou et al. reported a sex specific in-
creased methylation in the CTH promoter gene in 34 patients who had
coronary artery bypass surgery (CABG) (19.1 %) compared to 16 con-
trol subjects (10.3 %). Increased methylation levels were observed in
male CABG patients compared to male control subjects while in females
this was not observed [51]. Furthermore, Xu at al., showed that CHD
cases had a significantly lower methylation level of the GCK gene
(mean, SD: 49.77 + 6.43 %) compared with controls, while there was
no difference of GCK methylation level between males and females and
no significant interaction between gender and disease [52]. However, a
significant difference of the CpG2 methylation level with CHD was
observed in males only [52]. On the other hand, one study evaluated
the association between the DNA methylation profiles of genes involved
in One-Carbon Metabolism (OCM) and the homocysteine (Hcy)
pathway, with the myocardial infraction risk due to the low B-vitamins
intake [53], based in the rationale that B-vitamins and folates pathway
may modulate DNA methylation [53]. The results from this study
showed an inverse association between B-vitamins intake and the hy-
permethylation in three genes (TCN2 promoter, CBS S0UTR, AMT gene-
body) in male cases, as well as two genes (PON1 gene-body, CBS
50UTR) in female cases [53].

3.3.2. Stroke

Four articles [15,56-58] reported sex-specific associations between
DNAm and stroke. Among these, three articles [56-58] used data from
the same population for their analyses. Two studies applied global and
two others candidate gene approaches. These studies applied a cross-
sectional design, used blood samples and included a total of 1,045 non-
overlapping participants 459 women and 586 men from diverse ethnic
backgrounds, such as Chinese-Taiwanese [56-58] and Spanish [15].
The summary of their sex-specific findings is shown in Supplemental
Fig. 2.

Two of the studies used a candidate gene approach and performed
pyrosequencing to assess methylation of the targeted regions in the
gene promoter [57,58], while the two other studies investigated the
global DNAm of the LINE-1 elements using pyrosequencing [56] or
luminometric methylation assay (LUMA) [15]. Further, two studies
found a significant decrease in LINE-1 methylation in men compared to
women in cases of stroke [15,56]. One of them also reported that cases
of ischemic stroke presented a lower methylation level compared to
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controls. In addition, this hypomethylation of LINE-1 in men was as-
sociated with an increased stroke risk by 1.2-fold after adjusting for risk
factors, while no significant association was observed in women [56].
On the other hand, among the two studies investigating the estrogen
receptor alpha ERa [57] and the matrix metalloproteinase-2 (MMP-2)
[58] respectively, the methylation levels were lower in individuals with
stroke compared to controls, in all the CpG sites analyzed in both stu-
dies. Further, when exploring the sex-specific associations, the two
studies obtained contrary results. One study found a significant differ-
ence in methylation levels in all the investigated CpGs annotated to the
gene ERa only between female cases and controls [57]. Whereas the
other study reported a significant difference between the methylation
levels in one out of eight CpGs annotated to MMP-2 only between male
cases and controls [58]. None of these studies investigated the differ-
ence between male and female cases.

4. Genes, pathways and cardiovascular disease

Studies included in this systematic review report that methylated
CpG sites annotated to KDM6A, PLA2G7, CETP, ABCG1, LIPC, BCL11A,
ADD1, CNN1B, HOOK2, PLTP, GALNT2, PON1, TCN2, CBS, AMT, CTH,
INS, GNAS-AS1, MMP2, CCDC8, MAP3K13, FTO, ESR1, CDKN2B, APOE,
IGFBP7, PTPN1, GCK and PTX3 were differently methylated for men
and women. An overview of these genes, function and their sex specific
methylations is provided in Table 1 and Supplemental Table 2. In
addition, Fig. 2 shows the prioritized pathway connectivity between
cardio-metabolic genes that were found to be differentially methylated
in men and women. The most significant pathways, that in Fig. 2 are
shown with darker red nodes with more representative enrichment
include the Vitamin B12 Metabolism, Statin Pathway, Plasma lipopro-
tein, Plasma lipoprotein assembly, remodeling and clearance and
Cholesterol metabolism. Hence, the most important genes connecting
these pathways that merit further consideration were: ABCG1, APOE,
PLTP, LIPC, CETP, CTH and INS. Overall, the majority of the genes re-
ported in this review were previously known to be associated with CVD
risk factors or CVD outcomes.

5. Discussion

In this review, we systematically summarized the current evidence
on sex differences in DNA methylation in relation to cardiometabolic
diseases. We included 30 unique studies that had either stratified their
analyses by sex and/or specified that their results did not differ among
sexes by testing for statistical sex-interaction. Overall, our findings in-
dicate that global DNAm might influence cardiometabolic risk in a sex-
specific manner, and that DNAm at 31 gene sites could be differentially
associated with various cardiometabolic traits in men and women.

5.1. Global DNA methylation

We identified four studies suggesting that altered LINE-1 DNAm
may play a role in CVD risk in a sex-specific manner: (i) DNAm mea-
sured in LINE-1 repeats was inversely associated with different serum
lipids in men and women [14,25], (ii) decreased LINE-1 was associated
with higher stroke risk in the overall sample and in men [56] and (iii)
DNAm measured using genomic 5-methyl cytosine content and LUMA
indicated hypomethylation in male as compared to female stroke cases
[15].

In the current review, global DNA hypomethylation was associated
with poorer outcomes. In particular, global DNA hypomethylation was
associated with higher LDL and lower HDL levels in the overall sample
and in Samoan men, but not in women [14] and increased stroke risk in
Chinese men but not in women®?. These findings are in line with ob-
servations in healthy Caucasian men where subjects with decreased
LINE-1 methylation were more likely to develop ischemic heart disease
and stroke (women were not included in this study) [59]. Global DNA
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hypomethylation has been previously reported in stroke patients as
compared with healthy [59] and in a large study with participants from
European ancestry, decreased global DNAm was observed in male as
compared to female stroke cases®®. In experimental studies, global DNA
hypomethylation has been shown to precede the formation of athero-
sclerosis in Apoe-/- mice, and has been associated with hyperhomo-
cysteinemia and aortic lipid deposition in mutant mice deficient in
methylenetetrahydrofolate reductase [60]. While in humans global loss
of DNAm has been previously associated with atherosclerosis in both,
atherosclerotic lesions [61] and peripheral blood leukocytes [62] but
also with blood lipids, inflammation and blood pressure [10] implying
that LINE-1 hypomethylation could be associated with an unfavorable
cardiovascular risk profile. Global DNAm is considered a robust mea-
surement of the overall genomic methylation which is reported to be
one of the earliest molecular changes in the transition of a cell from a
normal to a diseased state [63]. Blood DNA hypomethylation might be
easily measured and could be used to identify people at risk of cardi-
ovascular events. Our findings emphasize the need of sex-specific ap-
proaches when further exploring the possible role of global DNAm as a
biomarker and potential intervention target in cardiometabolic dis-
eases.

5.2. Epigenome wide-association studies and candidate gene approach

We identified only six studies [12,31,41,42,44,46] that investigated
differentially methylated regions in the genome with cardiometabolic
diseases in a hypothesis-free approach. Among these, three EWAS
[12,31,44] reported sex-specific associations, and KDMAG6A, FTO,
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MAP3K13 and CCDC8 were some of the important genes that were
found to be methylated in a sex-specific manner with blood lipids and
glycaemia traits. Among 25 candidate gene studies, 22 studies reported
sex-specific associations between DNAm and cardiometabolic diseases
at the following genes PLA2G7, BCL11A, KDM6A, LIPC, ABCG1, PLTP,
CETP, ADD1, CNN1B, HOOK2, GFBP-7,PTPN1, GCK, PTX3, ABCGI,
GALNTZ2, CDKN2B, APOE, CTH, GNASAS, INS, PON1, TCN2, CBS, AMT,
MMP-2 and ER-a. Based on the prioritized pathway connectivity ana-
lysis, although, limited, the evidence suggests an involvement of bio-
logical pathways related to vitamin B12 metabolism, statin pathway,
plasma lipoprotein, plasma lipoprotein assembly, remodeling and
clearance and cholesterol metabolism, with sex differences in cardio-
metabolic diseases (Fig. 2). Some of the most relevant genes from the
pathway analysis were ABCG1, APOE, PLTP, LIPC, CETP, CTH and INS.
Overall, these genes have been associated to cardiometabolic outcomes,
however little evidence links them to epigenetics and cardiometabolic
diseases and even less to sex differences in cardiometabolic diseases.
ABCG1 gene is a transmembrane cholesterol transporter that ef-
fluxes cellular cholesterol from macrophages by delivering cholesterol
to mature high-density lipoprotein particles. Beyond a role in cellular
lipid homeostasis, ABCG1 equally participates to glucose and lipid
metabolism by controlling the secretion and activity of insulin and li-
poprotein lipase. Moreover, there is a growing body of evidence sug-
gesting that modulation of ABCG1 expression might contribute to the
development of diabetes and obesity [64], which are major risk factors
of CVD. The ABCG1, GALNT2 and HMGCR genes have been previously
associated with pathogenesis and progression of CHD through manip-
ulating the various lipid pathways [65,66]. In the current review,
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Fig. 2. Pathway Connectivity between Nodes Harboring Genes from cardio-metabolic genes that were found to be differentially methylated in men and women.
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hypermethylation of these three genes was associated with higher levels
of total cholesterol and LDL, and increased CHD risk in men [50], while
it was linked to higher levels of TG in women but not with risk of CHD.
The expression of ABCG1 gene reduces cholesterol accumulation in
macrophages by promoting the transfer of intracellular cholesterol into
HDL pathway [67]. In contrast to this, hypermethylation at PLA2G7
was associated with levels of total cholesterol, triglycerides and ApoB in
females but not in males, and also only female CHD cases were hy-
permethylated as compared to controls®. PLA2G7 is the coding gene for
Lp-PLA2 whose abnormal activity can cause high risk of CHD and may
serve as a diagnostic marker for CHD [68]. Therefore, the sex disparities
in the ABCG1 and PLA2G7 methylation may have an effect in the mo-
lecular mechanisms underlying the sex-specific pathophysiology of
CHD and may provide epigenetic clues to explain the inconsistency in
the epidemiological studies. However, both studies were done in Han
Chinese population, and sample size was rather small (only 85 CHD
patients and 54 participants without CHD [50] and 36 CHD cases and
36 controls). Hence, further replication studies with larger sample size
and in different ethnic populations are required to confirm these find-
ings.

The APOE gene encodes apolipoprotein ¢ (ApoE), a protein that
associates with lipids to form lipoproteins that package and traffic
cholesterol and lipids through the bloodstream and has been linked
with numerous physiological conditions, including healthy aging [69],
cardiovascular disease [70], diabetes [71] and cognitive function [72].
One study using samples of 563 blood-bank donors, found that 1% of
the inter-individual variation in plasma ApoE levels was attributable to
variation of age and sex [73]. Researchers from the ApoEurope project,
reported a sex-differential effect of age on mean levels of ApoE [74]. In
men, the levels of ApoE levelled off after the age of 45 years, whereas
they continued to increase in women [74].

PLTP (phospholipid transfer protein) is essential for the transfer of
excess surface lipids from TG-rich lipoproteins to HDL particles. PLTP-
mediated phospholipid transport among HDL particles is also known to
be associated with HDL particle size and lipid composition. Sex dis-
parities for HDL levels associated with PLTP have been previously re-
ported [75]. In the PAGE study, the major allele of rs7679 was asso-
ciated with higher HDL levels in women only. The locus with the most
consistent evidence for sex disparities across the studies is LPL, or li-
poprotein lipase. Different SNPs in this gene exhibited sex disparities
for HDL levels in two prior studies, with a larger effect in males [76,77].
In two other studies, LPL exhibited sex differences for TG levels, also
with a stronger effect in males [75,78]. LPL is the rate-limiting enzyme
for hydrolysis of triglycerides in lipoproteins and polymorphisms and
mutations in LPL have been associated with lipid metabolism disorders.
Hormone levels have been shown to affect regulation of LPL, including
thyroid hormone, estrogen, and testosterone [79], which could possibly
and partially explain the observed association in cardiometabolic dis-
eases.

Although these pathways and the respective reported genes need
further investigation, confirmation and translational research, the cur-
rent evidence suggests they could be biologically relevant and could
hold the key for future drug discovery, diagnosis and treatment of
cardiometabolic diseases overall and in a sex specific manner.
Determining the relationships between genes is essential for molecular
biology and medicine. These relationships often cluster together into
functional and disease pathways, and the characterization of these
pathways is necessary to improve disease classification, patient strati-
fication and, ideally, personalized treatment [80].

5.3. Epigenetic mechanisms in biological processes of sex differences

Sex differences in pathophysiology of cardiometabolic diseases
could be attributed to several gender and sex-specific factors [81].
Lifestyle factors (smoking, diet, stress) can determine gender differ-
ences by modifying cardiometabolic risk directly, and they can also
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modify the epigenetic marks in a sex-specific manner leading to sex
differences in cardiometabolic diseases [81](Fig. 2). Sex differences
may also be driven by biological dissimilarities rather than different
environmental exposures among men and women [81]. In particular,
the major mechanisms by which sex might influence cardiometabolic
diseases epigenetics may include: (i) the genomic and non-genomic
effects of steroid hormones and their receptors on DNAm enzymes,
histone modifiers and miRNAs, (ii) genomic imprinting, leading to
DNAm of either maternal or paternal alleles and (iii) increased ex-
pression of X-chromosomal escape genes in women targeting epigenetic
modifications and the expression of non-pseudo-autosomal Y-chromo-
somal epigenetic modifiers in men [16].

Sex hormones have been extensively studied in the past decade in
regard to cardiometabolic diseases due to the better cardiometabolic
profiles in women as compared to their male counterparts. In the cur-
rent review, we found some implications for the interactions between
sex hormones and methylation in modifying sex differences cardiome-
tabolic diseases. Three [15,57,58] of the studies included in the current
review, investigating epigenetic changes and stroke and reporting dif-
ferences between men and women, highlight the importance of sex
hormones and their receptors. Using a global DNA methylation ap-
proach, Soriano-Tarraga et al. [15], found that global hypomethylation
was independently associated with stroke subtypes only in females.
Moreover, there was an association between lower ERa methylation
levels and large-artery and cardio-embolic stroke subtypes in women,
while in men this association was not observed. It might be that women
suffering from a major ischemic stroke may cause a more significant
change in ERa methylation levels to reduce the brain injury [57]. In line
with this, differential DNAm profiles mediated sex differences in the
endogenous neuroprotective response to middle cerebral artery occlu-
sion (MCAO) in mice were reported. In female mice, MACO induced
selective demethylation of the ERa gene promoter, leading to the in-
crease in ERa expression [82]. Also, sex differences were observed in
MMP-2 methylation, with expression of MMP-2 being closely related to
sex hormones [58]. Males with small-vessel ischemic stroke had lower
methylation levels at all MMP-2 CpG sites, while no association was
observed in women [58]. Further exploration of the underlying me-
chanisms is needed. Sex- and stroke-subtype-specific effects must be
taken into consideration when investigating potential strategies to alter
the activity of MMP-2 in patients with ischemic stroke. Steroid hor-
mones can induce, among others, modification of histones. Androgen or
estrogen receptors act by binding to hormone response elements in the
DNA and attract various cofactors that have inherent histone acetyl-
transferase or methyl transferase activity. This is particularly known for
the CREB binding protein and E1A binding protein p300 [83]. The
histone-modifying enzymes alter the epigenetic state of gene promoters
to which the nuclear receptors bind, thereby changing gene expression.

It is known that DNAm contributes to X-chromosome inactivation in
females [84], and findings by Garcia-Calzon et al., demonstrated that
DNA methylation in the X-chromosome in human liver mirrors the
methylome in other human tissues [31]. They reported higher average
degree of X-chromosome methylation in females than in males with 37
% of the significant sites on the X-chromosome having higher methy-
lation in males [31]. Around 95 % of the CpG sites in the X-chromo-
some that had differential DNAm in human liver between sexes also had
different methylation levels between males and females in pancreatic
islets and brain independently of the clinical characteristics of the po-
pulation [12,85]. Further, they identified four genes on the X-chro-
mosome with large differences in DNA methylation between males and
females and being more expressed in liver from females than males:
XIST, ARSE, RPS4X, and KDM6A [31]. Also, higher ARSE and RPS4X
mRNA expression has been found in pancreatic islets, and higher XIST
and RPS4X mRNA expression was also found in brain from females
compared with males'™ [85]. These differences in gene expression in
several tissues may explain some metabolic differences between males
and females. Interestingly, these four genes are known to escape X-
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chromosome inactivation [86-88]. In this study serum HDL levels were
positively associated with KDM6A mRNA expression in human liver in
addition to higher serum HDL levels and higher KDM6A expression in
females. Also, silencing KDM6A in hepatocytes resulted in lower HDL
levels and lower expression of key genes encoding proteins that reg-
ulate HDL levels, supporting the direct contribution of KDM6A in the
differences found in HDL levels between males and females [31].

5.4. Potential clinical implications and recommendations for future research

Although the clinical use of epigenetic marks in the field of cardi-
ometabolic diseases is still in its infancy this is not the case with cancer
research. Molecular risk stratification studies using (epi)genetic marks
have focused on identifying molecular features associated with clinical
outcome and have applied them to patients' risk stratification and
treatment guidance [89,90]. Such results indicated that a gene ex-
pression score that incorporates prognostic genetic and epigenetic in-
formation could be used as a model for treatment response but also for
risk stratification and early disease detection. In particular, sex-specific
epigenetic marks against or as a supplement to existing risk scores (such
as the Framingham Risk Score [91]) may be an added value when
predicting the risk of cardiometabolic diseases. This is also supported
by our findings suggesting that for cardiometabolic traits epigenetic
markers may not be equally good predictors in men and women, em-
phasizing the role of sex in epigenetic patterns of cardiometabolic
diseases. Further, as sex is one of the strongest predictors of treatment
response, the epigenetic signatures may be used as markers to indicate
the successfulness of pharmacological or dietary/lifestyle interventions
in cardiometabolic diseases among sexes. Given the lack of sex-strati-
fication in studies focusing on epigenetic mechanisms and the fact that
the majority of the studies were focused to epigenetic changes in au-
tosome chromosomes in regard of cardiometabolic diseases, our review
underscores the emerging need for future studies to investigate the
influence of sex on epigenetic mechanisms in cardiometabolic diseases.
In complex phenotypes such as cardiometabolic diseases, the collection
of high-quality blood samples and metabolically active tissues could
provide the basis for the creation of large data sets that should accu-
rately incorporate the many sources of variability (age, sex/gender,
race/ethnicity). In particular, future prospective observational studies
should aim to explore the role of sex when studying the associations
between epigenetic marks and mechanistic pathways of cardiometa-
bolic diseases by stratifying their analyses by sex and comparing male
and female participants. Second, studying the associations between
DNAm and intermediate CVD risk factors is valuable, however, from the
clinical perspective, the value of DNAm as a biomarker of the risk factor
is as good as the intermediate risk factor itself. Therefore, as we did not
identify studies focusing on outcomes such as stroke or myocardial
infarction, it might be of great value for future research to investigate
the role of sex on the epigenetic determinants of stroke and myocardial
infarction. Third, potential biological mechanisms underlying sex-spe-
cific associations should be further explored in an experimental setting.
It is now known that sex differences in morphology and in response to
stress exist also in cellular levels [92-94]. Therefore, when translating
the observational findings into experimental settings a clear distinction
between male and female animal models or cell cultures is of high
importance in order to obtain non-biased results on the sex-specific
pathophysiology of cardiometabolic diseases.

5.5. Strengths and limitations

In this systematic review on sexually dimorphic DNAm, we critically
appraised the literature following an a priori designed protocol with
clearly defined inclusion and exclusion criteria using a comprehensive
literature search in five databases. While previous systematic reviews
on the topic are limited only to major CVD outcomes [16], our study
took in consideration a broad range of cardiometabolic risk factors and
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diseases. However, the limitations of the findings from this study merit
careful consideration. The included studies in this review were limited
in sample size and the majority of studies included were cross-sectional
assessments, making it difficult to conclude whether DNAm patterns are
a cause or consequence of cardiometabolic changes. In addition, the
results of some of the studies need cautious interpretation when it
comes to the biological or functional relevance of their findings. Even
though a study may report a significant difference in DNAm the bio-
logical relevance of small differences could be likely minimal and un-
known. Studies investigating associations between metabolic syndrome
and DNAm also need to be interpreted with caution given the hetero-
geneity of metabolic syndrome and that the subjects may or may not
have dyslipidemia, elevated BP, and hyperglycemia. Therefore inter-
preting associations between changes in DNAm and subjects classified
as having metabolic syndrome is Moreover, although individual studies
attempted to adjust for established CVD risk factors, adjustment levels
were inconsistent across the studies. Also, DNAm patterns reported in
blood samples may not mirror the methylation patterns in the relevant
targeted tissues. Further, we did not perform the search for non-coding
microRNAs and histone modifications because the scope of our search
was DNA methylation. Given the importance of microRNAs and histone
modifications as epigenetic mechanisms, future systematic reviews and
meta- analyses on microRNAs, histone modifications and sex differ-
ences in different types of cardiovascular tissues would be an added
value on the topic. Moreover, we hand searched relevant reviews and
references of studies included in the current review in order to mini-
mize the possibility of missing important studies. Also, we cannot ex-
clude the possibility of publication bias from underreporting negative
findings. Lastly, a meaningful quantitative pooling of the existing data
was unfeasible due to the heterogeneity in the input parameters, as-
sumptions and study design.

5.6. Conclusions

Although a growing body of evidence suggests biological, genetic
and epigenetic sex differences in cardiometabolic diseases, only a small
number of studies in the field stratify or present their results by sex.
Nevertheless, the cumulative evidence from the studies that reported
sex-based results, suggest that epigenetic changes in specific individual
genes might be differently associated with cardiometabolic traits in
males and females, encouraging further and larger-scale investigation.
Robust, replicable results from carefully designed studies have the po-
tential to uncover the molecular biological processes involved in dis-
ease onset and progression. In addition, future studies should help
characterize gene regulatory effects of non-coding genetic variations,
and, hopefully, give indications into disease-relevant biological path-
ways which could be addressed by preventive or therapeutic inter-
ventions. Clearly, a considerable amount of functional work is required
in the future to expand our field of view beyond the classic biological
mechanisms involved in sex differences of cardiometabolic diseases,
and that could be important to design new drugs that target sex-specific
mechanisms and permit more precise and efficient care.
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