
Non-invasive Neuromodulation in 

Motor Rehabilitation after Stroke 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rick van der Vliet 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

Financial support for the publication of this thesis by Daniël van der Vliet senior is gratefully 

acknowledged. 

 

Colophon 

ISBN  978-94-028-1993-9 

Cover  Jan van Kamphout 

Lay-out  Rick van der Vliet 

Printing  Ipskamp printing 

 

Copyright © 2020 by Rick van der Vliet. All rights reserved. Any unauthorized reprint or use of 

this material is prohibited. No part of this thesis may be reproduced, stored or transmitted in any 

form or by any means, without written permission of the author or, when appropriate, of the 

publishers of the publications.  



 
 

Non-invasive Neuromodulation in 

Motor Rehabilitation after Stroke 

Niet-invasieve neuromodulatie bij bewegingsrevalidatie na een beroerte 

 

Proefschrift 

 

ter verkrijging van de graad van doctor aan de 

Erasmus Universiteit Rotterdam 

op gezag van de rector magnificus 

 

Prof.dr. R.C.M.E. Engels 

 

en volgens besluit van het College voor Promoties. 

 

De openbare verdediging zal plaatsvinden op 

woensdag 15 april 2020 om 13:30 uur 

 

door 

 

Rick van der Vliet 

geboren te Schiedam, Nederland 

  



 
 

Promotiecommissie 

 

Promotoren   Prof.dr. M.A. Frens 

Prof.dr. G.M. Ribbers 

 

Overige leden   Prof.dr. D.W.J. Dippel 

  Prof.dr. A.C.H. Geurts 

  Prof.dr. G. Kwakkel 

 

Copromotor  Dr. R.W. Selles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paranimfen Anne Lenting 

 Claire Verhage  



 
 

Table of contents 
 

Chapter 1. General introduction 7 

 

Chapter 2. Optimal control models of movement 

 

13 

 

2.1 Individual differences in motor noise and adaptation rate are optimally related. 
 

13 

2.2 Frontal midline theta activity acts as a bottom-up alarm signal and not as a top-

down teaching signal in the context of motor adaptation. 

 

32 

Chapter 3. Proportional recovery models of stroke 47 

 

3.1 Predicting upper limb motor impairment recovery after stroke: a mixture model. 

 

47 

3.2 Improving statistical power of subacute upper limb motor rehabilitation trials. 

 

61 

Chapter 4. Electrophysiology, genetics and neuromodulation 73 

 

4.1 TMS motor mapping: Comparing the absolute reliability of digital reconstruction 

methods to the golden standard. 

 

73 

4.2 Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in 

motor learning. 

81 

4.3 Cerebellar cathodal transcranial direct stimulation and performance on a verb 

generation task: a replication study. 

99 

4.4 BDNF Val66Met but not transcranial direct current stimulation affects motor 

learning after stroke. 

116 

4.5 Long-lasting tDCS in the subacute phase after stroke: double-blind randomized 

clinical trial. 

 

132 

Chapter 5. General discussion 143 

 

Chapter 6. Summary 

 

149 

 

Chapter 7. Epilogue 

 

157 

  



 
 

 



 

7 
 

Chapter 1. General introduction 
 

Stroke is a common global health-care problem1 that is serious and disabling.2 Currently, stroke 

is defined as an acute loss of neurological function caused by permanent (as opposed to a 

transient ischemic attack) ischemic damage from infarction or hemorrhage in the cerebrum or 

the spinal cord.3 Permanency can be objectified clinically as neurological deficits outlasting 24 

hours or radiologically as ischemic damage on computed tomography (CT) or magnetic 

resonance imaging (MRI). Because most patients with stroke survive the initial injury,4 the 

largest effect on patients and families is usually through long-term impairment, limitation of 

activities (disability), and reduced participation (handicap).5,6 Motor impairment after stroke, 

which can be regarded as a loss or limitation of function in muscle control or movement or a 

limitation in mobility,7 typically affects the control of movement of the face, arm, and leg of one 

side of the body in about 80% of patients.8,9 Therefore, much of the focus of stroke rehabilitation 

is on the recovery of movement and associated functions with high-intensity, repetitive task-

specific practice.8,9 Disappointingly though, evidence for effectiveness of therapeutic 

interventions aimed at motor recovery poststroke is limited.9–11 Therefore, a better 

understanding of motor rehabilitation after stroke is needed. 

Both restoration and compensation of motor function contribute to recovery after 

stroke.7 Restoration refers to the recruitment of the same muscle groups as prestroke for a 

specific movement, for example by non-damaged ipsilesional premotor areas, and is measured 

on the ICF level of impairment.7 The biological processes underlying restoration are most active 

in the first weeks poststroke, also termed the “sensitive” period,12–15 and act as the main driver 

of motor recovery poststroke.16 This specific activity is also referred to as “spontaneous 

biological recovery”, even though studies in non-human primates17,18 and rodents12 do suggest 

that intensive motor learning with the affected limb diminishes impairment. Compensation refers 

to the recruitment of alternative muscle groups for a specific movement and is measured on the 

ICF level of activity.7 An example could be learning how to write with the non-lesioned non-

dominant hand. Compensation relies on motor learning mechanisms which are not time-

sensitive, as opposed to restoration, and is therefore not restricted to a specific period 

poststroke.7 Therefore, studying motor learning and spontaneous biological recovery could help 

develop more effective treatments for stroke recovery. 

In this thesis, we aim to develop more accurate models of motor learning and 

spontaneous biological recovery, which both contribute to motor recovery after stroke, by 

applying the principles of optimal control and proportional recovery. Using these models, we aim 

to sensitively test the role of electrophysiology (electro-encephalography), genetics (common 

polymorphism in brain-derived neurotrophic factor) and neuromodulation (transcranial direct 

current stimulation) in healthy subjects and stroke patients. 

 

Optimal control models of movement 

Fundamental to the optimal control model of movement is the motivation to minimize motor 

costs and maximize rewards.19 The optimal control framework is built on four criteria to which 

the brain must cater; it needs to (1) infer sensory consequences from motor commands (system 

identification), (2) integrate the predicted sensory consequences with the actual sensory 

feedback to construct a best estimate of the state of our body and world (state estimation), (3) 

1 



 

8 
 

estimate costs and rewards of movement (cost estimation), and (4) adjust the feedback gains in 

order to maximize performance (optimal control). First, system identification means discovering 

the internal dynamics of the musculoskeletal system to predict the results of movement. The 

nervous system is believed to achieve this goal by translating an efference copy of the motor 

command into its sensory consequence (located in the cerebellum)20–22 Second, state estimation 

integrates predictions from the forward model with sensory information to form a belief about 

the states (position, velocities, etc.) of the world and our body. In essence, the forward model 

forms a prior estimate of the state of the body and the world,19,23 which is integrated with 

proprioceptive and visual feedback to create a posterior belief, using an optimal observer or 

“Kalman filter”24 (located in the parietal cortex).25–28 Third, to select the optimal movement out 

of the many possible actions, it is needed to estimate the cost function of the movement as well 

as the rewarding nature of the future sensory state for every time step of the movement23 

(located in the basal ganglia).23,29,30 Finally, all these components come together in the feedback 

control policy. Here, internal state estimates are transformed into actual motor commands on the 

basis of feedback gains, that have been deducted from the expected rewards and costs23 (located 

in the premotor cortex and primary motor cortex).31,32 Optimal control models of movement 

have been successful in explaining a wide variety of movements, amongst other motor 

rehabilitation after stroke. 

Skill acquisition (e.g mastering wheelchair skills or walking stairs with a hemiparesis) 

is a major part of stroke rehabilitation programs. It involves acquiring new patterns of muscle 

activation over an extended period ranging from days to months.7 According to the optimal 

control model of movement, skill learning involves several steps relying on different areas of the 

brain: (1) acquiring an internal model that predicts sensory feedback for a given motor command 

(cerebellum), (2) combining these predictions with actual sensory information to form a belief 

about the states of the body (parietal cortex) and (3) setting feedback gains to optimally guide 

movement during execution (motor cortex).19 Brain injury changes the relation between a motor 

command and sensory feedback and therefore necessitates reacquiring (1) proper internal 

models, which is similar to movement adaptation (cerebellum) and (2) optimal feedback gains 

though extensive practice (motor cortex). 

However, even though optimal control models of movement have been successful in 

explaining motor behavior on a group level, they have hardly been used to investigate differences 

between individuals which result from talent, disease or neuromodulation. The difficulty lies in 

estimating the parameters of relatively complex models with enough certainty to discern 

individuals. To this end, we need more flexible and accurate statistical methods. 

 

Proportional recovery models of stroke 

The proportional recovery rule has been instrumental in modeling spontaneous upper extremity 

recovery by linking baseline FM-UE,33 to the observed motor recovery (ΔFM-UE), defined as the 

difference between the measurements early and 3 to 6 months after stroke.34 More specifically, 

the proportional recovery rule states that in 3 to 6 months (1) the majority of patients 

(recoverers) gain a fixed proportion, estimated between 0.55 and 0.85,29 of their potential 

recovery, calculated as the difference between baseline FM-UE and the scale's maximum score of 

66, while (2) the minority of patients (non-recoverers) show only very moderate improvement 

which cannot be linked to potential recovery.34–36 Mechanistically, the key underlying difference 
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between recoverers and non-recoverers is currently understood as the intactness of the 

corticospinal tract early after stroke.37–40 

However, the proportional recovery rule has been criticized for a number of reasons. 

Recent analyses indicated that a strong correlation between baseline FM-UE and recovery can 

emerge even when baseline FM-UE is completely uncorrelated to endpoint FM-UE.41,42 Therefore, 

even though the proportional recovery rule is not wrong,35 it probably overstates the 

predictability of endpoint FM-UE.41,42 In addition, the proportional recovery rule does not model 

the time course of recovery early poststroke which means it cannot model the rate of recovery 

nor update predictions with repeated measurements in time. Finally, predictions of endpoint FM-

UE based on the proportional recovery rule and identification of (non)-recoverers have never 

been cross-validated. To increase our understanding of upper extremity recovery after stroke, 

we therefore need a model that (1) relates the FM-UE to potential recovery as a function of time 

after stroke, with (2) separate sets of parameters for different subgroups, including those that 

show no improvement early poststroke. 

 

Electrophysiology, genetics and neuromodulation 

We investigate the electrophysiology of motor learning using electro-encephalography. Since the 

discovery of error-related negativity43,44 and feedback-related negativity45 as markers of cortical 

processing of binary decisions in electro-encephalography recordings over the anterior cingulate 

cortex,46 understanding of these signals has advanced in at least two important ways. First, the 

role of error-related negativity and feedback-related negativity has been generalized to the 

processing of continuous error in for example visuomotor adaptation47,48 and forcefield 

adaptation.49 Second, the error-related negativity and feedback-related negativity have been 

identified as reflections of frontal midline theta activity (FM, 4-8Hz) in the frequency domain.50 

Therefore, FM activity might be an interesting electrophysiological marker of individual 

differences in motor learning ability. 

 As a neuromodulation tool, we choose transcranial direct current stimulation (tDCS). 

tDCS is a safe,51 non-invasive technique that delivers low-intensity current to the scalp through a 

pair of electrodes.52,53 Depending on the polarity of the electrodes and the spatial orientation of 

the underlying neurons,54,55 tDCS was found to alter the excitability of the motor cortex, as 

measured with transcranial magnetic stimulation, for approximately an hour.56–58 In addition, 

tDCS has been reported to improve motor skill learning in healthy subjects59–66 and chronic 

stroke patients,67,68 and upper limb rehabilitation in subacute and chronic stroke patients with 

moderately severe cortical damage,69–73 presumably by releasing brain-derived neurotrophic 

factor62, down-regulating GABA74–77 and, in stroke patients, restoring the interhemispheric 

imbalance between the affected motor cortex and the unaffected motor cortex.78–80 

We limit our search for genetic contributors to variations in motor skill learning to 

brain-derived neurotrophic growth factor (BDNF). Brain-derived neurotrophic factor (BDNF) 

plays a role in long-term potentiation of horizontal connections62 and therefore motor skill 

learning81,82 and is believed to be important for realizing the behavioral effects of tDCS. Activity-

dependent release of BDNF has been related to motor skill learning in healthy subjects by 

studying the role of the common (approximately 30% of the Caucasian population83,84) secretion-

limiting85 BDNF Val66Met polymorphism. Agreeing with the function of BDNF in motor cortex 

long-term potentiation, carriers of this polymorphism were found to more slowly acquire a new 
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motor skill.62,86 Therefore, since activity-dependent release of BDNF is important for motor skill 

learning and possibly also for translating tDCS into motor skill learning gains. 

 

Scope of this thesis 

We introduce Bayesian hierarchical modeling in Chapter 2.1 to estimate individual parameters 

of motor adaptation, which is the component of optimal control of movement necessary to 

calibrate the forward model. This statistical approach is combined with electro-encephalography 

in Chapter 2.2 to attribute individual differences to variations in cortical brain activity. 

In chapter 3.1, we develop a longitudinal model of spontaneous recovery of motor 

impairment after stroke, which describes the different patterns of recovery over time using 

exponential functions, and identifies subgroups based on: (1) the degree of recovery as a fraction 

of potential recovery, (2) the rate of recovery, and (3) the initial FM-UE score. In Chapter 2.2, we 

compare the power to detect an intervention effect with this longitudinal mixture model of stroke 

to a cross-sectional, non-parametric (Mann-Whitney U) test. 

 In Chapter 4.1, we first study the properties of the motor map, which is the area on the 

skull where transcranial magnetic stimulation elicits a motor evoked potential. The motor map is 

an interesting measurement because the area has been found to increase in size after motor 

learning,87 while the peak is known to increase following tDCS. Potentially, the motor map is 

therefore able to capture motor learning and the influence of neuromodulation on an 

electrophysiological level. Next, we study the contribution of cerebellar tDCS to cerebellar-

dependent motor learning (Chapter 4.2) and cognition (Chapter 4.3) in healthy individuals. 

Cerebellar tDCS has been studied less than motor cortex tDCS but is from a theoretical 

perspective as least as interesting for rehabilitation purposes. Finally, we investigate the role of 

motor cortex stimulation in motor learning in the chronic phase after stroke (Chapter 4.4) and 

rehabilitation in the subacute phase after stroke (Chapter 4.5).  
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Chapter 2. Optimal control models of movement 

 

2.1 Individual differences in motor noise and adaptation rate are optimally 

related 
Rick van der Vliet, Maarten A. Frens, Linda de Vreede, Zeb D. Jonker, Gerard M. Ribbers, Ruud W. 

Selles, Jos N. van der Geest and Opher Donchin 

 

Abstract 

Individual variations in motor adaptation rate were recently shown to correlate with movement 

variability or “motor noise” in a forcefield adaptation task. However, this finding could not be 

replicated in a meta-analysis of adaptation experiments. Possibly, this inconsistency stems from 

noise being composed of distinct components which relate to adaptation rate in different ways. 

Indeed, previous modeling and electrophysiological studies have suggested that motor noise can 

be factored into planning noise, originating from the brain, and execution noise, stemming from 

the periphery. Were the motor system optimally tuned to these noise sources, planning noise 

would correlate positively with adaptation rate and execution noise would correlate negatively 

with adaptation rate, a phenomenon familiar in Kalman filters. To test this prediction, we 

performed a visuomotor adaptation experiment in 69 subjects. Using a novel Bayesian fitting 

procedure, we succeeded in applying the well-established state-space model of adaptation to 

individual data. We found that adaptation rate correlates positively with planning noise (β = 0.44; 

95%HDI=[0.27 0.59]) and negatively with execution noise (β = -0.39; 95%HDI=[-0.50 -0.30]). In 

addition, the steady-state Kalman gain calculated from planning and execution noise correlated 

positively with adaptation rate (r = 0.54; 95%HDI = [0.38 0.66]). These results suggest that motor 

adaptation is tuned to approximate optimal learning, consistent with the “optimal control” 

framework that has been used to explain motor control. Since motor adaptation is thought to be 

a largely cerebellar process, the results further suggest the sensitivity of the cerebellum to both 

planning noise and execution noise.   
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Introduction 

As children we all learned: some of us move with effortless grace and others are frankly clumsy. 

Underlying these differences are natural variations in acquiring, calibrating and executing motor 

skill, which have been related to genetic 1–3 and structural factors 4. Recently, it has been 

suggested that differences between individuals in the rate of motor adaptation (i.e. the 

component of motor learning responsible for calibrating acquired motor skills to changes in the 

body or environment 5), correlate with movement variability, or motor noise 6. However, this 

finding was not supported by a recent meta-analysis of adaptation experiments 7. This 

inconsistency may arise because motor noise has multiple components with differing relations 

to adaptation rate. Our study characterizes the relationship between adaptation rate and motor 

noise and suggests that adaptation rate varies optimally between individuals in the face of 

multiple sources of motor variability. 

Motor noise has many physiological sources such as motor preparation noise in 

(pre)motor networks, motor execution noise, and afferent sensory noise 8. Modeling 9–11 and 

physiological studies 12,13 have divided the multiple sources of motor noise into planning noise 

and execution noise (see Figure 1A). Planning noise is believed to arise from variability in the 

neuronal processing of sensory information, as well as computations underlying adaptation and 

maintenance of the states in time 10,11. Indeed, electrophysiological studies in macaques show 

that activity in (pre)motor areas of the brain is correlated with behavioral movement variability 
12,13. Similar results have also been seen in humans using fMRI 14. In contrast, execution noise 

apparently originates in the sensorimotor pathway. In the motor pathway, noise stems from the 

recruitment of motor units 15–17. Motor noise is believed to dominate complex reaching 

movements with reliable visual information 17. In addition, sensory noise stems from the physical 

limits of the sensory organs and has been proposed to dictate comparably simpler smooth pursuit 

eye movements 18,19. Planning and execution noise might affect motor adaptation rate in different 

ways. 

Motor adaptation has long been suspected to be sensitive to planning noise and 

execution noise. Models of visuomotor adaptation incorporating both planning and execution 

noise have been shown to provide a better account of learning than single noise models 9–11. In 

addition, manipulating the sensory reliability by blurring the error feedback, effectively 

increasing the execution noise, can lower the adaptation rate 20–23 whereas manipulating state 

estimation uncertainty by temporarily withholding error feedback, effectively increasing the 

planning noise, can elevate the adaptation rate 23. These studies not only suggest that adaptation 

rate is tuned to multiple sources of noise, but also indicate that this tuning process is optimal and 

can therefore be likened to a Kalman filter 24. Possibly, differences in adaptation rate between 

individuals correlate with planning noise and execution noise according to the same principle, 

predicting faster adaptation for people with more planning noise and slower adaptation for 

people with more execution noise 7 (Figure 1C and Figure 1D).  

To test the relation between adaptation rate and planning noise and execution noise 

across individuals, we performed a visuomotor adaptation experiment in 69 healthy subjects. We 

fitted a state-space model of trial-to-trial behavior 10,11 using Bayesian statistics to extract 

planning noise, execution noise and adaptation rate for each subject. We show that the adaptation 

rate is sensitive to both types of noise and that this sensitivity matches predictions based on 

Kalman filter theory. 
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Figure 1. Planning and execution noise have opposing effects on visuomotor adaptation. A. State-space 

model of visuomotor adaptation. The aiming angle on trial 2 𝑥[2] is a linear combination of the aiming angle 

on the previous trial 𝑥[1] multiplied by a retentive factor 𝐴 minus the error 𝑒[1] on the previous trial 

multiplied with adaptation rate 𝐵. In addition, the aiming angle is distorted by the random process 𝜂 

(planning noise). The actual movement angle 𝑦[2] is the aiming angle𝑥[2] distorted by the random process 𝜖 

(execution noise). The error 𝑒[1] is the sum of the movement direction 𝑦[1] and the external perturbation 

𝑝[1]. B. Planning noise and optimal adaptation rate 𝐵𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (defined as the Kalman gain). The optimal 

adaptation rate increases with planning noise 𝜎𝜂 . In this figure, 𝜎𝜖 was kept constant at 2°. C. Execution noise 

and optimal adaptation rate 𝐵𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (defined as the Kalman gain). The optimal adaptation rate decreases 

with execution noise 𝜎𝜖 . In this figure, 𝜎𝜂 was kept constant at 0.2°. D. Simulated optimal learners. At trial 

110, a perturbation (black line) is introduced that requires the optimal learners to adapt their movement. 

The gray learner has low planning noise 𝜎𝜂 = 0.1° and execution noise 𝜎𝜖 = 1°. The red learner has a higher 

planning noise 𝜎𝜂 = 0.3° than the gray learner 𝜎𝜂 = 0.1°. This causes the red learner to adapt faster. The 

green learner has a higher execution noise than the gray learner 𝜎𝜖 = 3°. This causes the green learner to 

adapt more slowly. For all learners, the thick line shows the average, thin line a single noisy realization.
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Methods 

Subjects 

We included 69 right-handed subjects between October 2016 and December 2016, without any 

medical conditions that might interfere with motor performance (14 men and 55 women; age 

M=21 years, range 18 - 35 years; handedness score M=79; range 45 – 100). Subjects were 

recruited from the Erasmus MC University Medical Centre and received a small financial 

compensation. The study was performed in accordance with the Declaration of Helsinki and 

approved by the medical ethics committee of the Erasmus MC University Medical Centre. 

 

Experimental procedure 

Subjects were seated in front of a horizontal projection screen while holding a robotic handle in 

their dominant right hand (previously described in 25). The projection screen displayed the 

location of the robotic handle (“the cursor”; yellow circle 5 mm radius), start location of the 

movement (“the origin”, white circle 5 mm radius), and target location of the movement (“the 

target”, white circle 5 mm radius) on a black background (see Figure 2A). Position of the origin 

on the screen was fixed throughout the experiment, approximately 40 cm in front of the subject 

at elbow height, while the target was placed 10 cm from the origin at an angle of -45°, 0° or 45°. 

To remove direct visual feedback of hand position, subjects wore an apron that was attached to 

the projection screen around their neck. 

Subjects were instructed to make straight shooting movements from the origin towards 

the target and to decelerate only when they passed the target. A trial started with the 

presentation of the target and ended when the distance between the origin and cursor was at 

least 10 cm or when trial duration exceeded 2 seconds. At this point, movements were damped 

with a force cushion (damper constant 3.6 Ns/m, ramped up over 7.5 ms) and the cursor was 

displayed at its last position until the start of the next trial to provide position error feedback. 

Furthermore, timing feedback was given to keep trial duration (see definition below) in a tight 

range. The target dot turned blue if trial duration on a particular trial was too long (>600 ms), 

red if trial duration was too short (<400 ms) and remained white if trial duration was in the 

correct time range (400-600 ms). During presentation of position and velocity feedback, the 

robot pushed the handle back to the starting position. Forces were turned off when the handle 

was within 0.5 cm from the origin. Concurrently, the cursor was projected at the position of the 

handle again and subjects had to keep the cursor within 0.5 cm from the origin for 1 second to 

start the next trial. 

 The experiment included vision unperturbed, vision perturbed and no vision trials (see 

Figure 2B). In vision unperturbed trials, the cursor was shown at the position of the handle during 

the movement. The cursor was also visible in vision perturbed trials but at a predefined angle 

from the vector connecting the origin and the handle. In no vision trials, the cursor was turned 

off when movement onset was detected (see below) and was visible only at the start of the trial 

to help subjects keep the cursor at the origin. 

The entire experiment lasted 900 trials with all three target directions (angle of -45°, 0° 

or 45°) occurring 300 times in random order. The three different trial types were used to build a 

baseline and a perturbation block (see Figure 2C). We designed the baseline block to obtain (1) 

reliable estimates of the noise parameters and (2) variance statistics (standard deviation and lag-

1 autocorrelation of the movement angle) related to the noise parameters. Therefore, we 

included a large number of no vision trials (225 no vision trials) as well as vision unperturbed 

trials (225 vision unperturbed trials). The order of the vision unperturbed trials and no vision 
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trials was randomized except for trials 181-210 (no vision trials) and trials 241-270 (vision 

unperturbed trials). We designed the perturbation block to obtain (1) reliable estimates of the 

adaptation parameters and (2) variance statistics related to trial-to-trial adaptation (covariance 

between perturbation and movement angle). The perturbation block consisted of a large number 

of vision trials (400 vision trials) and a small number of no vision trials (50 no vision trials), with 

every block of nine trials containing one no vision trial. Every eight to twelve trials, the 

perturbation angle changed with an incremental 1.5° step. These steps started in the positive 

direction until reaching 9° and then switched sign to continue in the opposite direction until 

reaching -9°. This way, a perturbation signal was constructed with three “staircases” lasting 150 

trials each (see Figure 2C). Design of the gradual perturbation was optimized to provide a “rich” 

input for system identification, without sacrificing the consistency of the signal too much as this 

has been shown to negatively affect the adaptation rate 26,27, and is similar to the perturbation 

used by Cheng and Sabes 11. The experiment was briefly paused every 150 trials.  

 

Data Collection 

The experiment was controlled by a C++ program developed in-house. Position and velocity of 

the robot handle were recorded continuously at a rate of 500 Hz. Velocity data was smoothed 

with an exponential moving average filter (smoothing factor=0.18s). Trials were analyzed from 

movement start (defined as the time point when movement velocity exceeds 0.03 m/s) to 

movement end (defined as the time point when the distance from the origin is equal to or larger 

than 9.5 cm). Reaction time was defined as the time from trial start until movement start, 

movement duration as the time from movement start until trial end and trial duration as the time 

from trial start until trial end. Movement angle was calculated as the signed (+ or -) angle in 

degrees between the vector connecting origin and target and the vector connecting robot handle 

position at movement start and movement end. The clockwise direction was defined positive. 

Peak velocity was found by taking the maximum velocity in the trial interval. Trials with (1) a 

maximal displacement below 9.5 cm, (2) an absolute movement direction larger than 30° or (3) 

a duration longer than 1 second were removed from further analysis (2% of data). 

 

Visuomotor adaptation model 

Movement angle was modeled with the following state-space equation (see Figure 1A) 10,11: 

 

 𝑥[𝑛 + 1] = 𝐴𝑥[𝑛] − 𝐵𝑒[𝑛] + 𝜂 (1) 

 𝑦[𝑛] = 𝑥[𝑛] + 𝜖 (2) 

 𝑒[𝑛] = 𝑦[𝑛] + 𝑝[𝑛] (3) 

 𝜂 ~ 𝑁(0, 𝜎𝜂
2), 𝜖 ~ 𝑁(0, 𝜎 𝜖

2) (4) 

 

In this model, 𝑥[𝑛] is the aiming angle (the movement plan) and 𝑦[𝑛] the movement angle (the 

actually executed movement). Error e[𝑛] on a particular trial is the sum of 𝑦[𝑛] and the 

perturbation 𝑝[𝑛]. The learning terms are 𝐴, which represents retention of the aiming angle over 

trials, and adaptation rate 𝐵, the fractional change from error 𝑒[𝑛]. The movement angle is 

affected by planning noise process 𝜂, modeled as a zero-mean Gaussian with standard deviation 

𝜎𝜂, and execution noise process 𝜖, modeled as a zero-mean Gaussian with standard deviation 𝜎𝜖 .  
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Figure 2. Measurements of planning and execution noise and adaptation rate in a visuomotor 

adaptation experiment. A. Set-up. The projection screen displayed the location of the robotic handle (“the 

cursor”), start location of the movement (“the origin”), and target of the movement (“the target”) on a black 

background. The position of the origin on the screen was fixed throughout the experiment, while the target 

was placed 10 cm from the origin at an angle of -45°, 0° or 45°. B. Trial types. The experiment included vision 

unperturbed and perturbed trials and no vision trials. In vision unperturbed trials, the cursor was shown at 

the position of the handle during the movement. The cursor was also visible in vision perturbed trials but at 

a predefined angle from the vector connecting the origin and the handle. In no vision trials, the cursor was 

          
   

   

   

 

 
 
 
  

  
 
 

                 

   

  

 

 

  

         

                                    

       

      

     

   

      

      

      

                    

               

      

      

             

  

                           
   

  

 

 

  

         

 
  

  
 
  
  
  

  
 
 
  
 
  

 

                   

         

 

 

 

 

 

 

 
 
     

 
 
  

 
 
 

      

         

         

 

  

  

  

  

 

 
 
     

 
  

 

     

 

 

 

 

 

 

 
 
     

 
 
  

  
 

     

 

  

  

  

  

 

 
 
     

 
  

 

           

  

 

 

         

 
  

  
 
  
  
  

  
 
 
  
 
  

 

                                 

 
 
        

 
 
       

   

   



Optimal control models of movement 

19 
 

Statistics 

Our statistical approach is a Bayesian approach (an excellent introduction to Bayesian statistics 

for a non-technical audience can be found in Kruschke 28).  We used this approach to fit the state-

space model described in equations (1)-(4) because it offers a number of advantages over the 

expectation-maximization algorithm used in previous studies 10,11. Perhaps the most important 

advantage of the Bayesian approach is that it naturally allows hierarchical modeling which shares 

data across subjects, allowing greater regularization of the parameter fits for each subject, as well 

as simultaneous estimates of the population distribution of the parameters 29,30. In a classical 

approach, each subject’s parameters are generally estimated independently and the uncertainty 

in those estimates is often not propagated forward when calculating population estimates. 

Indeed, the output of a Bayesian approach is not the best possible estimate of the parameter or 

even a maximum-likelihood estimate with a confidence interval, but rather a sampling from the 

parameter’s probability distribution given the data 31. This allows the analysis to naturally 

refocus on parameter uncertainty rather than focusing on point estimates 32–34. The difficulty 

with point estimates has been a focus of much debate in the current discussion of the 

reproducibility crisis in science 35,36. The Bayesian approach also estimates the hidden (state) 

variables simultaneously with the parameters, rather than creating a somewhat arbitrary 

distinction between imputation and estimation 37,38. This allows analysis of how the state variable 

estimates change with the parameter estimates, an analysis that is tricky to do with an 

expectation-maximization approach. Finally, the Bayesian approach allows great flexibility in 

specifying the form of the model 31. This can be useful in defining constraints on the model 

parameters or transforming variables to lie in more relevant parameter spaces, as defined below. 

turned off when movement onset was detected and therefore only visible at the start of movement to help 

subjects keep the cursor at the origin. C. Experimental design. The baseline block consisted of 225 vision 

unperturbed trials and 225 no vision trials (indicated by vertical red lines). The perturbation block had 50 

no vision trials and 400 vision trials, with every block of nine trials containing one no vision trial. Most vision 

trials were perturbed vision trials whose perturbation magnitudes formed a staircase running from -9 to 9°. 

D. Simulation of planning noise 𝜎𝜂 and standard deviation 𝜎𝑦 of the movement angle. 𝜎𝑦 increases with 𝜎𝜂 . 

Calculated for 𝐴 = 0.98 and 𝜎𝜖 = 2° with 𝐵 = 0.2 for the solid line and 𝐵 = 0 for the dashed line. E. Simulation 

of planning noise 𝜎𝜂 and lag-1 autocorrelation 𝑅(1) of the movement angle. 𝑅(1) increases with 𝜎𝜂 . Calculated 

for 𝐴 = 0.98 and 𝜎𝜖 = 2° with 𝐵 = 0.2 for the solid line and 𝐵 = 0 for the dashed line.  F. Simulation of 

execution noise 𝜎𝜖 and standard deviation 𝜎𝑦 of the movement angle. 𝜎𝑦 increases with 𝜎𝜖  Calculated for 𝐴 =

0.98 and 𝜎𝜂 = 0.2° with 𝐵 = 0.2 for the solid line and 𝐵 = 0 for the dashed line. G. Simulation of execution 

noise 𝜎𝜖 and lag-1 autocorrelation 𝑅(1) of the movement angle. 𝑅(1) decreases with 𝜎𝜖  Calculated for 𝐴 =

0.98 and 𝜎𝜂 = 0.2° with 𝐵 = 0.2 for the solid line and 𝐵 = 0 for the dashed line. H. Simulated learners without 

vision. The green and red traces show a single realization of two learners with either high planning noise (red 

learner 𝜎𝜂 = 0.4° and 𝜎𝜖 = 0°) or high execution noise (green learner 𝜎𝜂 = 0° and 𝜎𝜖 = 2°). Both sources 

increase the movement noise, but planning noise leads to correlated noise whereas execution noise leads to 

uncorrelated noise. This property can be seen from the relation between sequential trials. For the red learner 

sequential trials are often in the same (positive or negative) direction. For the green learner sequential trials 

are in random directions. This is captured by the lag-1 autocorrelation. I. Simulation of 𝜎𝑝𝑦 between the 

perturbation 𝑝 and movement angle 𝑦, and adaptation rate 𝐵. 𝜎𝑝𝑦 gets more negative for increasing 𝐵 

(simulated with 𝐴 = 0.98). J. Simulated learners with perturbation. The gray and blue lines show a simulated 

slow (𝐴 = 0.98, 𝐵 = 0.05) and fast learner (𝐴 = 0.98, 𝐵 = 0.2). The fast learner tracks the perturbation signal 

more closely than the slow learner. This property is captured by the covariance between the perturbation 

and the movement angle. 
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Modern Bayesian approaches rely on a family of algorithms called the Markov chain 

Monte Carlo (MCMC) algorithms 39. These algorithms require definitions of the likelihood 

function (how the data would be generated if we knew the parameters) and the prior probability 

for the parameters (generally chosen to be broad and uninformative, but see below), and return 

samples from the posterior joint-probability function of the parameters. Thus, once the model 

and priors are specified, the output of the MCMC algorithm is a large matrix where each row is a 

sample and each column is one of the parameters in the model. These samples can be, then, 

summarized in different ways to generate parameter estimates (usually the mean of the samples 

but often the mode) and regions of uncertainty (very often a 95% region called the high density 

interval (HDI) which contains 95% of the posterior samples but also obeys the criterion that 

every sample in the HDI is more probable than every sample outside of it). They can also be used 

to assess asymmetry in the parameter distributions and covariance in the parameter estimates. 

As outlined above, the Bayesian approach to state-space modeling we have taken, 

requires us to define priors on the model parameters. We will justify our choices in the following 

section. The adaptation parameters 𝐵[𝑠] and retention parameters 𝐴[𝑠] were sampled in the 

logistic space instead of the regular 0-1 space: 

 

 
𝐴[𝑠] ~ 

1

1 + exp(−𝑁(𝜇𝐴, 𝜎𝐴
2))

, 𝐵[𝑠] ~ 
1

1 + exp(−𝑁(𝜇𝐵, 𝜎𝐵
2))

  
(5) 

 

The logistic space spreads the range from 0-1 all the way from −∞ to +∞. This means that the 

distance between 0.1 and 0.01 and 0.001 are all similar in the logistic space, as are the distances 

between 0.9, 0.99 and 0.999. This space, thus, reflects much more accurately the real effects of 

changes in the parameter than we would have if we sampled in the untransformed space. This 

leads to much better sampling behavior and, thus, greater accuracy and less bias in the results. 

The priors for 𝐴[𝑠] and 𝐵[𝑠] were not actually specified in the description of the model. Only their 

shape was determined (normal in the logistic space). The actual prior was chosen by sampling 

hyperparameters for these normal distributions. For the hyperparameters, we did need to choose 

a specific prior, and here we choose highly uninformative priors in order to allow the posterior 

distribution to be influenced primarily by the data: 

 

𝜇𝐴 ~ 𝑁(0, 103), 𝜇𝐵 ~ 𝑁(0, 103) (6) 

   

 𝜎𝐴
2 ~ 𝜎𝐵

2 ~ 1/Γ(10−3, 10−3) (7) 

 

The sensitivity analysis (described below) showed that the choice to sample 𝐴[𝑠] and 𝐵[𝑠] from 

a normal distribution in the logistic space had no strong effect on the results. Following the 

standard Bayesian approach 28, we sampled the precision (inverse of the variance) and used a 

very broad gamma distribution as a prior for the precision.  

 

 𝜎𝜂
2[𝑠] ~ 1/Γ(10−3, 10−3), 𝜎𝜖

2[𝑠] ~ 1/Γ(10−3, 10−3) (8) 

 

One reason the gamma distribution is a popular prior for the precision is that it is a conjugate 

prior which makes the algorithm more efficient. In any case, other choices of prior did not change 

our results in a meaningful way (see sensitivity analysis below).  
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MCMC sampling for the Bayesian state-space model was implemented in OpenBUGS 

(ver 3.2.3, OpenBUGS Foundation available from: http://www.openbugs.net/w/Downloads) 

with three 50,000 samples chains and 20,000 burn-in samples. A single estimate per subject 𝑠 

was made for 𝐴[𝑠] and 𝐵[𝑠], 𝜎𝜂
2[𝑠] and 𝜎𝜖

2[𝑠]. We used all 150,000 MCMC samples that represent 

the posterior distribution of the model parameters 𝐵[𝑠], 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] given the data to 

calculate linear regressions and correlations between the model parameters across subjects. 

Results were presented as the mode of the effect size (either the correlation coefficients r or 

regression coefficient β) with 95%HDIs. Parameter estimates are plotted as the mode with 68% 

HDIs, similar to the standard deviation interval. 

To demonstrate the test-retest properties of the Bayesian state-space model, we 

simulated two datasets with 50 learners on the visuomotor adaptation task outlined above. The 

first (optimal) dataset was simulated by drawing model parameters from the following 

distributions: 𝐴[𝑠] ~ 𝑁(0.97, 10−4), 𝜎𝜂[𝑠] ~ 𝑁(0.6,0.04), 𝜎𝜖[𝑠] ~ 𝑁(3, 0.5625) and calculating 

𝐵[𝑠] as the Kalman gain. The goal of this analysis was to determine the test-retest correlations of 

the model parameters 𝐵[𝑠], 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] and the ability to correctly estimate the relations 

between 𝐵[𝑠] and the noise parameters. For the second (permuted) dataset 𝐴[s], 𝜎𝜂[𝑠], and 𝜎𝜖[𝑠]  

were kept constant but 𝐵[𝑠] was permuted between learners. The motivation for this analysis 

was to show that our Bayesian state-space model does not introduce false relations between 𝐵 

and the noise parameters.  

To evaluate the sensitivity of the main results to alternate prior distributions for the 

Bayesian state-space model, we repeated the entire analysis with (alternative priors 1) t-

distributions with the hyperparameter for the degrees of freedom sampled from an exponential 

distribution (in line with recommendations from Kruschke 33) as priors for 𝐴[𝑠] and 𝐵[𝑠], 

(alternative priors 2) t-distributions as priors for 𝐴[𝑠] and 𝐵[𝑠] and uniform distributions in the 

range [0, 20] as priors for 𝜎𝜂 and 𝜎𝜖  (in line with recommendations from Gelman 30), and 

(alternative priors 3) beta distributions with hyperparameters sampled from gamma 

distributions as priors for 𝐴[𝑠] and 𝐵[𝑠] and uniform distributions as priors for 𝜎𝜂 and 𝜎𝜖 . Finally, 

we addressed the concern that the between-subjects correlations of the model parameters might 

arise from within-subject correlations of the model parameters by permuting the MCMC samples 

differently for each parameter and recalculating the correlation and regression coefficients. The 

permuted distribution of the model parameters has the property that all correlations between 

the parameters within-subjects are zero.  

 

Code Accessibility 

BUGS/ JAGS code for the Bayesian state-space model can be accessed without restrictions at: 

https://github.com/rickvandervliet/Bayesian-state-space. 

 

Results 

Simulations 

We designed a visuomotor adaptation task 40 to (1) fit the state-space model of adaptation and 

(2) investigate the validity of the parameter estimates 𝐵[𝑠], 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] by correlating the 

estimates with the variance statistics of the data (see Figure 2A-C).  

The baseline block was designed to extract the standard deviation and the lag-1 

autocorrelation of the movement direction and relate these measures to the parameter estimates 
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of 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠]. The standard deviation and lag-1 autocorrelation in our baseline block are 

well-approximated by the following expressions: 

 

 

𝜎𝑦 = √(𝜎𝜖
2 + ∑(𝐴 − 𝐵)2𝑘𝜎𝜂

2

∞

𝑘=0

+ ∑(𝐴 − 𝐵)2𝑘𝐵2𝜎𝜖
2

∞

𝑘=0

) 

(9) 

   

 
𝑅(1) =

∑ (𝐴 − 𝐵)2𝑘+1𝜎𝜂
2∞

𝑘=0 + 𝐵𝜎𝜖
2 + ∑ (𝐴 − 𝐵)2𝑘+1𝐵2𝜎𝜖

2∞
𝑘=0

∑ 𝐴𝑘(𝐴 − 𝐵)𝑘𝜎𝜂
2∞

𝑘=0 + 𝜎𝜖
2 + ∑ 𝐴𝑘(𝐴 − 𝐵)𝑘𝐵2𝜎𝜖

2∞
𝑘=0

 
(10) 

 

In addition, we included a control segment of 30 trials without vision (𝐵 = 0), to calculate 

estimates of the standard deviation and lag-1 autocorrelation which are independent of the 

adaptation rate 𝐵: 

 

 

𝜎𝑦 = √(𝜎𝜖
2 + ∑ 𝐴2𝑘𝜎𝜂

2

∞

𝑘=0

) 

(11) 

   

 
𝑅(1) =

∑ (𝐴2𝑘+1𝜎𝜂
2)∞

𝑘=0

𝜎𝜖
2 + ∑ 𝐴2𝑘𝜎𝜂

2∞
𝑘=0

 
(12) 

 

Both for the expressions with vision (9)-(10) (solid lines) and without vision (11)-(12) (dashed 

lines), standard deviation 𝜎𝑦 increases with planning noise 𝜎𝜂 (see simulations in Figure 2D) and 

 
𝝈𝜼[𝒔] (𝜷)  𝝈𝝐[𝒔] (𝜷)  𝑲[𝒔] (𝒓)  

Main analysis 0.44 [0.27 0.59] -0.39 [-0.50 -0.30] 0.54 [0.38 0.66] 

Alternative priors 1 0.44 [0.26 0.60] -0.40 [-0.50 -0.29] 0.53 [0.38 0.66] 

Alternative priors 2 0.45 [0.27 0.61] -0.40 [-0.51 -0.30] 0.53 [0.37 0.66] 

Alternative priors 3 0.44 [0.28 0.60] -0.40 [-0.51 -0.30] 0.53 [0.38 0.66] 

Permuted samples 0.29 [0.10 0.45] -0.38 [-0.50 -0.24] 0.38 [0.21 0.66] 

Table 1. Sensitivity and control analyses. For the main analysis, we used logistic normal distributions with 

hyperparameters sampled from normal and gamma distributions as priors for 𝐴[𝑠] and 𝐵[𝑠] and inverse 

gamma distributions as priors for 𝜎𝜂
2[𝑠] and 𝜎𝜖

2[𝑠]. For the sensitivity analysis, we used (alternative priors 1) 

t-distributions with the hyperparameter for the degrees of freedom sampled from an exponential 

distribution as priors for 𝐴[𝑠] and 𝐵[𝑠], (alternative priors 2) t-distributions as priors for 𝐴[𝑠] and 𝐵[𝑠] and 

uniform distributions in the range [0, 20] as priors for 𝜎𝜂 and 𝜎𝜖 , and (alternative priors 3) beta distributions 

with hyperparameters sampled from gamma distributions as priors for 𝐴[𝑠] and 𝐵[𝑠] and uniform 

distributions as priors for ση and σϵ. Finally, as a control analysis for within-subjects correlations of the model 

parameters, we recalculated the correlation and regressions coefficients after permuting the samples of the 

main analysis differently for each parameter. 
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execution noise 𝜎𝜖  (see simulations in Figure 2F) whereas lag-1 autocorrelation 𝑅(1) increases 

with planning noise 𝜎𝜂 (see simulations in Figure 2E) but decreases with execution noise 𝜎𝜖  (see 

simulations in Figure 2G), with the strongest correlations between 𝜎𝑦 and 𝜎𝜖 , and  𝑅(1) and 𝜎𝜂. 

We therefore expected similar relations between the noise parameters 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠], and the 

standard deviation 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] and lag-1 autocorrelation 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1)[𝑠] of the baseline block 

(see simulations of planning and execution noise in the baseline block in Figure 2H).  

The perturbation block was designed to extract the covariance 𝜎𝑝𝑦 between the 

perturbation and the movement angle from the data and relate this parameter to the adaptation 

rate 𝐵. The covariance 𝜎𝑝𝑦 depends solely on the learning parameters 𝐴 and 𝐵 and becomes 

increasingly negative for higher adaptation rates because learning is compensatory (see 

simulations in Figure 2I). Therefore, we expected a similar relation between the covariance 

𝜎𝑝𝑦[𝑠] and adaptation rate 𝐵[𝑠] in the perturbation block of our experiment (see simulations of 

two learners with a low or high adaptation rate in Figure 2J). 

  

 
Figure 3. Test-retest properties of the Bayesian state-space model. A-B. Regression of 𝑩[𝒔] onto (A) 

𝝈𝜼[𝒔] and (B) 𝝈𝝐[𝒔] for the simulated optimal dataset. C-D. Regression of 𝑩[𝒔] onto (C) 𝝈𝜼[𝒔] and (D) 𝝈𝝐[𝒔] 

for the simulated permuted dataset. Parameter estimates with 68% HDIs are shown for every simulated 

learner as a dot with error bars. The black solid line shows the regression on the model parameters estimated 

with the Bayesian state-space model, the green dashed line the regression on the original model parameters. 
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Figure 4. State-space model of visuomotor adaptation. A. Visuomotor adaptation. Average movement 

angle of the 69 subjects with standard deviations are shown in brown tone colors. The black line indicates 

the average perturbation signal, the green line the average posterior estimate of the aiming angle. B. Planning 

noise examples. The gray line shows a subject with low planning noise (𝜎𝜂 = 0.15° 𝜎𝜖 = 4.6°), the red line a 

subject with high planning noise (𝜎𝜂 = 0.65° 𝜎𝜖 = 4.6°). C. Execution noise examples. The gray line shows a 

subject with low execution noise (𝜎𝜂 = 0.36° 𝜎𝜖 = 2.3°), the green line a subject with high execution noise 

(𝜎𝜂 = 0.29° 𝜎𝜖 = 5.0°). D. Relation between the parameter estimate 𝜎𝜂 and baseline measure 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The 

black line is a linear regression of 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for average 𝜎𝜖[𝑠]. E. Relation between the 

parameter estimate 𝜎𝜂 and baseline measure 𝑅(1)𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The black line is a linear regression of 
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Next, we designed a Bayesian state-space model to estimate the model parameters. To 

demonstrate the test-retest properties of this approach, we simulated one dataset with optimal 

learners and one dataset wherein the adaptation rate of the optimal dataset was permuted across 

learners. Excellent test-retest correlation were found both in the optimal dataset (𝐵[𝑠] r = 1.00; 

95%HDI = [1.00 1.00], 𝜎𝜂[𝑠] r = 0.89; 95%HDI = [0.85 0.93] and 𝜎𝜖[𝑠] r = 0.99; 95%HDI = [0.98 

0.99]) and in the permuted dataset (𝐵[𝑠] r = 1.00; 95%HDI = [1.00 1.00], 𝜎𝜂[𝑠] r = 0.90; 95%HDI 

= [0.86 0.93] and 𝜎𝜖[𝑠] r = 0.99; 95%HDI = [0.98 0.99]). In the optimal dataset, the Bayesian state-

space model was able to uncover the relations between 𝐵[𝑠] and the noise parameters 𝜎𝜂[𝑠] β = 

0.73; 95%HDI = [0.68 0.77] (see Figure 3A) and 𝜎𝜖[𝑠] β = -0.44; 95%HDI = [-0.51 -0.38]), which 

were 0.81 and -0.53 in the simulated data (see Figure 3B). In the permuted dataset, the Bayesian 

state-space model did not falsely introduce relations between 𝐵[𝑠] and the noise parameters 

𝜎𝜂[𝑠] β = 0; 95%HDI = [-0.09 0.08] (see Figure 3C) and 𝜎𝜖[𝑠] β = -0.01; 95%HDI = [-0.04 0.02]), as 

they were -0.01 and -0.04 in the original dataset (see Figure 3D). Therefore, the Bayesian state-

space model can reliably estimate the model parameters and the regression coefficients between 

the noise terms and the adaptation rate.  

 

Experimental results 

Sixty-nine subjects performed the visuomotor adaptation task outlined above. Overall, 

participants started moving 230ms IQR = [211 254]ms after target presentation and completed 

the movement in 290ms IQR = [251 320]ms, resulting in a trial duration of 520ms IQR = [500 

534]ms with 87% of trials IQR = [84 95]% in the correct time window between 400ms and 

600ms. Standard deviation of movement angle calculated across the 69 subjects illustrates the 

differences in movement behavior between people (Figure 4A). The group average aiming angle 

𝑥[𝑛], calculated from 1,000 samples of the posterior distribution using the model (green dotted 

line), shows good agreement with the group average movement angle calculated directly from 

the data (brown solid line). 

Figures 4B and 4C show example subjects with low or high planning noise 𝜎𝜂[𝑠] (see 

Figure 4B) and low or high execution noise 𝜎𝜖[𝑠] (see Figure 4C). We calculated the standard 

deviation and lag-1 autocorrelation using all trials in the baseline block and regressed these 

estimates onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠]. Agreeing with our group level predictions (see Figures 2D-G), we 

found a positive relation between planning noise 𝜎𝜂[𝑠] and standard deviation 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] (β = 

0.18; 95%HDI = [0.11 0.24]; see Figure 4D), between planning noise 𝜎𝜂[𝑠] and lag-1 

autocorrelation 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1)[𝑠] (β = 0.42; 95%HDI = [0.29 0.55]; see Figure 4E) and between 

execution noise 𝜎𝜖[s] and standard deviation 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] (β = 0.91; 95%HDI = [0.87 0.94]; see 

Figure 4F) and a negative relation between execution noise 𝜎𝜖[𝑠] and lag-1 autocorrelation 

𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1)[𝑠] (β = -0.14; 95%HDI = [-0.24 -0.07]; see Figure 4G). Next, we calculated the 

standard deviation and lag-1 autocorrelation of trials 181-210 only, which are no vision trials 

𝑅(1)𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for average 𝜎𝜖[𝑠]. F. Relation between the parameter estimate 𝜎𝜖 and 

baseline measure 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The black line is a linear regression of  𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for 

average 𝜎𝜂[𝑠]. G. Relation between the parameter estimate 𝜎𝜖 and baseline measure 𝑅(1)𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The black 

line is a linear regression of 𝑅(1)𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for average 𝜎𝜂[𝑠]. H. Adaptation rate 

examples. The thick lines show a slow (gray, 𝐵 = 0.055) and fast subject (blue, 𝐵 = 0.14) smoothened with 

a 6th order Butterworth filter. The black shows the perturbation signal for the fast subject. I. Relation between 

the parameter estimate 𝐵[𝑠] and perturbation block estimate 𝜎𝑝𝑦[𝑠]. Parameter estimates and 68% HDIs are 

shown for every subject as a dot with error bars. 
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where adaptation rate 𝐵 = 0. Here, we found similar correlations between (1) planning noise 

𝜎𝜂[𝑠] and standard deviation𝜎𝑦,𝑛𝑜𝑣𝑖𝑠𝑖𝑜𝑛[𝑠] (β = 0.12; 95%HDI = [-0.04 0.27]), (2) planning noise 

𝜎𝜂[𝑠] and lag-1 autocorrelation 𝑅𝑁𝑜𝑣𝑖𝑠𝑖𝑜𝑛(1)[𝑠] (β = 0.22; 95%HDI = [0.07 0.35]), (3) execution 

noise 𝜎𝜖[s] and standard deviation 𝜎𝑦,𝑛𝑜𝑣𝑖𝑠𝑖𝑜𝑛[𝑠] (β = 0.44; 95%HDI = [0.39 0.49]), and (4) 

execution noise 𝜎𝜖[𝑠] and lag-1 autocorrelation 𝑅𝑁𝑜𝑣𝑖𝑠𝑖𝑜𝑛(1)[𝑠] (β = -0.04; 95%HDI = [-0.10 -

0.01]). Example subjects with a low and high adaptation rate are shown in Figure 4H. Again, 

according to the model prediction (see Figure 2I), we found a negative relation between 

adaptation rate 𝐵[𝑠] and covariance 𝜎𝑝𝑦[𝑠] on a group level (r = -0.69; 95%HDI = [-0.78 -0.60]; 

see Figure 4I). 

Next, we investigated the relation between adaptation rate and the noise terms. The 

results are illustrated with scatterplots of the parameter estimates for individual subjects (Figure 

5 left column), heatmaps of the parameter estimate distributions for the entire population 

(Figure 5 middle column) and line plots of the regression and correlation coefficient densities 

(Figure 5 right column). We regressed 𝐵[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] and found a positive relation 

between 𝜎𝜂[𝑠] and 𝐵[𝑠] (β = 0.44 95%HDI=[0.27 0.59]) (see Figure 5A-C) and a negative relation 

between 𝜎𝜖[𝑠] and 𝐵[𝑠] (β = -0.39 95%HDI = [-0.50 -0.30]) (see Figure 5D-F) with a variance 

explained of 0.32 [0.19 0.45]. This finding indicates that a significant proportion of the difference 

in adaptation rate between individuals can be explained from differences in their planning and 

execution noise with the direction of the correlations in agreement with Kalman filter theory (see 

Figure 1B-1C). In addition, we determined the steady-state Kalman gain for every subject from 

𝐴[𝑠], 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] and correlated the steady-state Kalman gain with 𝐵[𝑠]. Steady-state Kalman 

gain was calculated by solving the Riccati equation for the steady-state covariance 𝑃∞[𝑠]: 

 

 𝐴[𝑠]𝑇𝑃∞[𝑠]𝐴[𝑠] − 𝑃∞[𝑠] − 𝐴[𝑠]𝑇𝑃∞[𝑠](𝑃∞[𝑠] + 𝜎𝜖[𝑠]2)−1𝑃∞[𝑠]𝐴[𝑠] + 𝜎𝜂[𝑠]2 = 0 (13) 

 𝐾[𝑠] = 𝑃∞[𝑠]/(𝑃∞[𝑠] + 𝜎𝜖[𝑠]2) (14) 

 

On a group level, the Kalman gain was a good approximation for the adaptation rate as the 

difference between the mean 𝐾[𝑠] and the mean 𝐵[𝑠] normalized with respect to the mean 𝐵[𝑠] 

was 10% [6.6 14]%. On an individual level, we found a positive correlation between steady-state 

Kalman gain 𝐾[𝑠] and 𝐵[𝑠] (r = 0.54; 95%HDI = [0.38 0.66]; see Figure 5G-I), adding support to 

the claim that individual differences in adaptation rate can be explained from differences in noise 

according to an optimal learning rule. To assess the robustness of our findings, we performed a 

sensitivity analysis for the model priors (see Table 1: alternative priors 1-3) and a control 

analysis for within-subject correlations (see Table 1: permuted samples) and found consistent 

results. 

Finally, we investigated how planning and execution noise correlated with movement 

peak velocity. Execution noise originates from muscle activity and should increase with vigorous 

contraction when larger motor units are recruited which fire at a lower frequency and produce 

more unfused twitches 15,16. Indeed, by regressing peak velocity onto the noise terms we found a 

negligible correlation between peak velocity and planning noise β = -0.12; 95%HDI = [-0.27 0.02] 

and a small positive correlation between peak velocity and execution noise β = 0.22; 95%HDI = 

[0.18 0.28].  
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Figure 5. Relation between noise and adaptation rate. A, D, G. Scatter plots of individual parameter 

estimates. Parameter estimates and 68% HDIs are shown for every subject as a dot with error bars. The black 

line is (A) a linear regression of 𝐵[𝑠] onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for average 𝜎𝜖[𝑠], (D) a linear regression of 𝐵[𝑠] 

onto 𝜎𝜂[𝑠] and 𝜎𝜖[𝑠] for average 𝜎𝜂[𝑠] and (G) the correlation between 𝐾[𝑠] and 𝐵[𝑠]. B, E, H. Heatmaps of 

the parameter estimate distributions. The heatmaps illustrate the distribution of the parameter estimates for 

the entire population of 69 subjects. The intensity represents the percentage of samples in a specific range 

for (B) 𝜎𝜂[𝑠] and 𝐵[𝑠], (E) 𝜎𝜖[𝑠] and 𝐵[𝑠] (H) 𝐾[𝑠] and 𝐵[𝑠]. C, F, I. Effect size densities. The black line 

represents the probability density of (C) the regression coefficient for 𝐵[𝑠] and 𝜎𝜂[𝑠], (F) the regression 

coefficient for 𝐵[𝑠] and 𝜎𝜖[𝑠], (I) the correlation coefficient for 𝐵[𝑠] and 𝐾[𝑠]. The green lines indicate the 

95% HDIs. The red line shows the mode. 
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Discussion 

We investigated the relation between components of motor noise and visuomotor adaptation 

rate across individuals. If adaptation approximates optimal learning from movement error, it can 

be predicted from Kalman filter theory that planning noise correlates positively and execution 

noise negatively with adaptation rate24. To test this hypothesis, we performed a visuomotor 

adaptation experiment in 69 subjects and extracted planning noise, execution noise and 

adaptation rate using a state-space model of trial-to-trial behavior. Indeed, we found that 

adaptation rate correlates positively with planning noise (β = 0.44 95%HDI = [0.27 0.59]) and 

negatively with execution noise (β = -0.39 95%HDI = [-0.50 -0.30]). In addition, the steady-state 

Kalman gain calculated from planning and execution noise correlated positively with adaptation 

rate (r = 0.54; 95%HDI = [0.38 0.66]). We discuss implications of our findings for the optimal 

control model of movement and cerebellar models of adaptation and identify future applications 

of Bayesian state-space model fitting. 

 

Optimal control model of movement 

The optimal control model of movement has been successful in providing a unified explanation 

of motor control and motor learning 41. In this framework, the motor system sets a motor goal 

(possibly in the prefrontal cortex) and judges its value based on expected costs and rewards in 

the basal ganglia 42. Selected movements are executed in a feedback control loop involving the 

motor cortex and the muscles which runs on an estimate of the system’s states 42. Both the 

feedback controller and the state estimator are optimal in a mathematical sense. The feedback 

controller because it calculates optimal feedback parameters for minimizing motor costs and 

maximizing performance, given prescribed weighting of these two criteria 43. The state estimator 

because it optimally combines sensory predictions from a forward model (cerebellum) with 

sensory feedback from the periphery (parietal cortex), similar to a Kalman filter 24,44. In the 

optimal control model of movement, motor adaptation is defined as calibrating the forward 

model, which is optimal in the same sense as the state estimator 5. 

Wu et al. 6, is one of the first studies to suggest that there may be a positive relationship 

between motor noise and motor adaptation. They outlined two apparent challenges of their 

findings to the optimal control approach: first, they claimed that optimal motor control is 

inconsistent with a positive relation between motor noise and adaptation rate; second, they 

claimed that optimal motor control does not account for the possibility that the motor system 

shapes motor noise to optimize adaptation. We take a different view. Because we find that only 

the planning component correlates positively with adaptation rate, our results are predicted by 

Kalman filter theory24 and consistent with optimal control models of movement 41,43. However, 

we do agree that the mathematical structure used to express the optimal control approach does 

not provide a clear way to discuss shaping noise to optimize adaptation. While this may be a 

technical difficulty from the point of view of optimal feedback approaches, it is apparent that 

there is electrophysiological evidence that some animals do shape noise to optimize adaptation. 

This evidence can be found in monkeys 45. In addition, studies in Bengalese finches show that a 

basal ganglia-premotor loop learns a melody from reward 46 by injecting noise 47 to promote 

exploration 48 during training 49 and development 50. We suggest that a similar mechanism 

operates in humans during adaptation. This additional tuning mechanism could be an interesting 

topic of future studies into optimal control models of movement. 
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Cerebellar model of motor adaptation 

Motor adaptation is the learning process which fine tunes the forward model and is believed to 

take place in the olivocerebellar system 51. How could this learning process be sensitive to 

planning noise and execution noise on a neuronal level?  

Central to the forward model is the cerebellar Purkinje cell, which responds to selected 

sensory 52 and motor 53 parallel fiber input with a firing pattern reflecting kinematic properties 

of upcoming movements 54,55. When Purkinje cell predictions of the upcoming kinematic 

properties are inaccurate, activity of neurons in the cerebellar nuclei is proportional to the 

prediction error. This is apparently because inhibitory Purkinje cell input cannot cancel the 

excitatory input from mossy fibers and the inferior olive 56. The sensory prediction error 

calculated by the cerebellar nuclei could be used to update either (1) motor commands in a 

feedback loop with (pre)motor areas 53 or (2) state estimates of the limb in the parietal cortex 
57,58. During adaptation, parallel fiber to Purkinje cell synapses associated with predictive signals 

are strengthened and parallel fiber to Purkinje cell synapses associated with non-predictive 

signals are silenced 59. These plasticity mechanisms are affected by climbing fibers originating 

from the inferior olive, which integrate input from the sensorimotor system and the cerebellar 

nuclei and act as a teaching signal in the olivocerebellar system 60,61. 

No previous experimental or modeling work has considered how planning or execution 

noise might be conveyed to the cerebellum or how they might influence plasticity. We speculate 

that planning noise is reflected in synaptic variability of the parallel fiber to Purkinje cell synapse. 

Electrophysiological studies of CA1 hippocampal neurons have shown that synaptic noise can 

improve detection of weak signals through stochastic resonance 62. Such a mechanism might help 

form appropriate connections at the parallel fiber to Purkinje cell synapse during adaptation. In 

addition, theoretical studies on deep learning networks have shown that gradient descent 

algorithms, which can be likened to error-based learning, benefit from adding noise to the 

gradient at every training step 63. Furthermore, we speculate that execution noise affects 

adaptation through climbing fiber firing modulation. Execution noise will decrease reliability of 

sensory prediction errors because (1) the motor plan is not executed faithfully (motor noise) 17 

and (2) the sensory feedback is inaccurate (sensory nose) (Osborne et al., 2005). Therefore, when 

sensory information for a specific movement plan has been unreliable in the past the 

olivocerebellar system might decrease its response to sensory prediction error, for example by 

decreasing climbing fiber firing in the inferior olive 61, which would lower the adaptation rate. 

The existence of such a mechanism has also been suggested by a recent behavioral study which 

showed a specific decline in adaptation rate for movement perturbations that had been 

inconsistent in the past27.  

 

Two-rate models of adaptation 

Our results are based on a one-rate learning model of adaptation 9–11. However, recent studies 

have suggested that a two-rate model composed of a slow but retentive and a fast but forgetting 

learning system provides a better explanation for learning phenomena such as savings and 

anterograde interference 64. The fast learning system might represent an explicit process, which 

could be located in the cortex and the slow learning system an implicit process, which could be 

located in subcortical areas such as the cerebellum 65–67. How could we interpret our results in 

light of these two-rate models? In a two-rate state-space model, the two systems will add to 

produce the movement output 64. That is, the total adaptation rate is equal to the sum of the 

adaptation rates of the two systems and the same goes for the planning noise. Of course, a two-
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rate model will still include only one term for execution noise. Therefore, a two-rate model can 

reproduce our results either if both systems are optimally tuned or if only one system is optimally 

tuned but is relatively dominant. With our current experimental design, we cannot differentiate 

between these two options. Future studies combining reporting-based approaches to discern the 

contributions of the implicit and explicit processes and the Bayesian statistical approach to state-

space modeling presented in this paper could further unravel this question. 
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2.2 Frontal midline theta activity acts as a bottom-up alarm signal and not 

as a top-down teaching signal in the context of motor adaptation 
Zeb D. Jonker, Rick van der Vliet, Guido Maquelin, Joris van der Cruijsen, Gerard M. Ribbers, Ruud 

W. Selles, Opher Donchin and Maarten A. Frens 

 

Abstract 

Feedback-related negativity and the underlying theta activity (4-8Hz) have been predominantly 

studied in cognitive decision-making tasks with a binary outcome (failure or success). Recently, 

feedback-related FM has also been found in the context of motor adaptation tasks. However, 

whether this FM is actively involved in trial-to-trial visuomotor adaptation is still an 

unanswered question. To answer this question, 60 healthy participants (19 men and 41 women) 

performed a trial-to-trial visuomotor experiment with a continuous outcome, while their frontal 

midline theta activity was measured with EEG. On the trial level, we investigated whether FM 

serves as a ‘top-down teaching signal’ or as a ‘bottom-up alarm signal’. Additionally, on the 

participant level, we explored if the relation between error size and subsequent FM-power 

(EEG-error sensitivity) differs between individuals and whether these differences are associated 

with individual differences in motor adaptation parameters: planning noise, execution noise and 

adaptation rate. We found that the frontal midline theta activity in each trial was best explained 

by the absolute error in the corresponding trial and not by the correction in the following trial. 

This result indicates that frontal midline theta activity acts as a ‘bottom-up alarm signal’, and not 

as a ‘top-down teaching signal’. Furthermore, we found that individual differences in EEG-error 

sensitivity were negatively related execution noise and positively related to adaptation rate. This 

result indicates that the EEG-error sensitivity of individuals is tuned to the distribution of errors 

that an individual naturally produces. 
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Introduction 

Since the discovery of feedback-related negativity (FRN) 1 in electro-encephalography (EEG) 

recordings over the anterior cingulate cortex 2, the FRN and the underlying theta activity 3 have 

been predominantly investigated in cognitive decision-making tasks with a binary outcome 

(failure or success). In the context of these decision-making tasks, frontal midline theta activity 

(FM) is thought to represent a surprise signal 4. However, whether this surprise signal serves as 

a ‘top-down teaching signal’ or as a ‘bottom-up alarm signal’ is still an unanswered question. As 

a teaching signal, FM may indicate the weight that an error in the current prediction should have 

on a future prediction, whereas, as an alarm signal, FM may indicate the need for cognitive 

control without necessarily defining how this control should be asserted 4. 

Recently, feedback-related FM has also been found in the context of motor adaptation 

tasks 5–7. By using perturbations of different sizes, these studies showed a positive relation 

between the absolute size of the error feedback and the subsequent EEG activity (EEG-error 

sensitivity). Analogous to a ‘top-down teaching signal’, Arrighi et al., (2016) suggested that FM 

might represent a strengthening mechanism that boosts the visuomotor remapping in 

downstream brain regions, such as the olivo-cerebellar system 8,9. However, Arrighi et al., (2016) 

noted that their study, which allowed for online movement correction, was not designed to 

disentangle the involvement of FM in error detection, error correction or both. 

Therefore, the goal of this study was to investigate the involvement of FM in trial-to-

trial visuomotor adaptation. On the trial level, we tested whether FM is related to the absolute 

error in the corresponding trial (bottom-up), the error correction in the following trial (top-

down) or both. Additionally, on the participant level, we explored if the relation between error 

size and the subsequent FM-power (EEG-error sensitivity) differs between individuals and 

whether these differences are associated with individual differences in motor adaptation 

parameters: planning noise, execution noise and adaptation rate 10–13.  

 

Methods 

Participants 

We included 60 right-handed 14 participants without any medical conditions that might interfere 

with motor performance (19 men and 41 women; mean age = 25.6 years, range = 18-61). 

Participants received a small financial token for travelling and time compensation. The study was 

performed in accordance with the Declaration of Helsinki and was approved by the medical ethics 

committee of the Erasmus MC University Medical Centre (study identification number: MEC-

2019-0042). 

 

Experimental procedure 

The experimental procedure was adapted from the procedure described in Van der Vliet et al., 

(2018). Participants were seated in front of a horizontal projection screen with a robotic handle 

underneath. This handle was situated at elbow height and could be moved in the horizontal plane. 

The position of the handle was projected on top of the screen as a cursor (green circle 5mm 

diameter). Furthermore, the screen displayed an origin (white circle 10mm diameter) and a 

target (red circle 10mm diameter) at fixed positions. The origin was located approximately 40cm 

straight in front of the participant and the target was projected exactly 10cm behind the origin, 

approximately 50cm in front of the participant. Participants were instructed to hold the handle 

in their dominant right hand and move the cursor from the origin through the target in one 
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smooth reaching movement. To prevent direct feedback of hand position underneath the screen, 

participants were wearing an apron which was secured to the top of the screen. 

The experiment consisted of three types of trials: no-vision, unperturbed, and perturbed 

trials (Figure 1A). At the start of each trial, participants held the cursor in the origin. The target 

appeared after one second, indicating that the participant should start the movement. In all trial 

types, the cursor disappeared when the handle left the origin. In no-vision trials, the cursor did 

not reappear during the entire movement. In unperturbed and perturbed trials, the cursor 

reappeared when the handle distance from the origin exceeded 5cm. However, in perturbed 

trials, the cursor was projected at a predefined angle relative to the actual handle position. 

The movement was damped with a force cushion (3.6Ns/m, ramped up over 7.5ms) 

when the handle position exceeded 10cm distance from the origin, and thus exceeded the target 

distance. We defined this time point as movement offset. In perturbed and unperturbed trials, the 

cursor froze at this time point to provide feedback on the endpoint error. Furthermore, the target 

changed color. We instructed participants to move through the target in 400-600ms after the 

target appeared, to prevent adjustments during the movement. If the movement duration was 

too short (<400ms) the target stayed red, if the movement duration was correct (400-600ms) the 

target turned white, and if the duration was too long (>600ms) the target turned blue. One second 

after onset of the force cushion, the robot pushed the handle back to the starting position. When 

the handle was at the origin, the cursor reappeared at the handle position. 

The experiment consisted of 900 trials, divided in two blocks of 450 trials: a baseline 

block followed by a perturbation block (Figure 1B). The exact order of the trial types was 

randomized for each participant separately. The baseline block contained 225 unperturbed trials 

and 225 no-vision trials in a completely randomized order. In contrast, the perturbation block 

contained 400 perturbation and 50 no-vision trials in a pseudorandomized order: in every epoch 

of 9 trials, there was 1 randomly interspersed no-vision trial. Furthermore, the perturbation 

angle changed from 0° to 9° to -9° and back to 0° with increments of 1.5° every 8 to 12 trials. The 

experiment was paused after every 150 trials for approximately 2 minutes. 

 

Movement recording and preprocessing 

The experiment was controlled by a custom C++ program. The position and velocity signals of the 

robot handle were sampled at 500Hz. The velocity signal was filtered with an exponential moving 

average filter (smoothing factor = 0.18s). Movement start time was defined as the time point 

when movement velocity exceeded 0.03 m/s and movement end time was defined as the moment 

that the hand location exceeded 10cm distance from the starting position. The hand angle was 

defined as the angle between the vector connecting the origin and the hand at the end of the 

movement, relative to the vector connecting the origin and the target. The clockwise direction 

was defined as positive. Trials were removed if movement duration exceeded 1s or if the hand 

angle exceeded 30 degrees. On average, 2.6% (range [0 24]) of the 900 movement traces were 

excluded per participant. 
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Movement analysis 

In the movement analysis we estimated the execution noise, planning noise and adaptation rate 

of each participant. The analysis was performed with Bayesian Markov Chain Monte Carlo 

simulations in JAGS 15 and is extensively described in van der Vliet et al., (2018). In short, we fitted 

a state-space model of trial-to-trial behavior adapted from Cheng and Sabes, (2006): 

 

 
Figure 1. Design of the experiment. A. Trial design. The projection screen displayed the location of the 

robotic handle (“the cursor”, green circle), start location of the movement (“the origin”, white circle), and 

target of the movement (“the target”, red circle) on a black background. The position of the origin and the 

target were fixed throughout the experiment. The experiment included three types of trials: no-vision, 

unperturbed and perturbed trials. In all trials the cursor was turned off when movement onset was detected. 

In no-vision trials, the cursor was not shown during the entire movement. In unperturbed and perturbed 

trials, the cursor reappeared halfway the movement. However, in perturbed trials the cursor was projected 

at a predefined angle. B. Experimental design. The experiment consisted of a baseline part and a perturbation 

part. The baseline part consisted of 225 unperturbed trials and 225 no-vision trials (indicated by vertical 

yellow lines). The perturbation part had 50 no-vision trials and 400 vision trials, with every block of nine 

trials containing 1 no-vision trial. Most vision trials were perturbed vision trials whose perturbation 

magnitudes formed a staircase running from –9° to 9°. 
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𝑥[𝑠, 𝑛 + 1] = 𝐴[𝑠] ∗ 𝑥[𝑠, 𝑛] − 𝐵[𝑠] ∗ 𝑒[𝑠, 𝑛] + 𝜂[𝑠, 𝑛] (1) 

𝑦[𝑠, 𝑛] = 𝑥[𝑠, 𝑛] +  𝜀[𝑠, 𝑛] (2) 

𝑒[𝑠, 𝑛] = 𝑦[𝑠, 𝑛] + 𝑝[𝑠, 𝑛] (3) 

𝜂[𝑠, 𝑛] ~ 𝑁(0, 𝜎𝜂
2[𝑠]) (4) 

𝜀[𝑠, 𝑛] ~ 𝑁(0, 𝜎𝜀
2[𝑠]) (5) 

 

For each trial 𝑛 of participant 𝑠, 𝑥[𝑠, 𝑛] is the movement plan, 𝑦[𝑠, 𝑛] the angle of the hand relative 

to the target at the endpoint, 𝑝[𝑠, 𝑛] the perturbation angle and 𝑒[𝑠, 𝑛] the error angle of the 

cursor on the screen relative to the target. Participant-specific motor adaptation parameters 

estimated with this model are the retention rate 𝐴[𝑠], which is the fractional retention of the 

movement plan 𝑥[𝑠, 𝑛] in the previous trial, and the adaptation rate 𝐵[𝑠], which is the fractional 

change caused by the error 𝑒[𝑠, 𝑛] in the previous trials. The noise terms include planning noise 

𝜂[𝑠, 𝑛], and execution noise 𝜀[𝑠, 𝑛]. Planning noise and execution noise are modeled as zero-mean 

Gaussians. The standard deviations of these Gaussians 𝜎𝜂[𝑠] and 𝜎𝜀[𝑠] represent the magnitude 

of planning and execution noise for each participant. The participant-specific motor learning 

parameters were estimated hierarchically with uninformative priors. Subsequently, we 

calculated the error distribution of each participant: the standard deviation of the distribution of 

signed errors. 

 

EEG recording and preprocessing 

Participants were wearing a 128 channel EEG cap connected to a 136 channel REFA system 

(TMSi, Oldenzaal, The Netherlands). The EEG data were recorded with a sampling rate of 2048Hz 

from 64 channels: FP1, FPz, FP2, AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7 FC5, 

FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, 

CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, O1, Oz, O2, 

and 2 EOG electrodes. The recording of each channel was referenced to the average signal across 

all channels.  

After recording, the EEG signals were preprocessed with the EEGLAB toolbox (version 

14.1.2b; Swartz Center for Computational Neuroscience, La Jolla, USA) and custom scripts in 

MATLAB version 2018b (Mathworks, Natick, USA). The raw average referenced EEG signals were 

digitally filtered between 2-40Hz with a 6th order Butterworth filter, cut into trial epochs of 

2000ms centered around the onset of visual feedback, and down-sampled to 128Hz. Non-

stereotypical artifacts were automatically removed by excluding trials in which the average log 

power was an outlier compared to the other trials within the same channel (absolute z-score 

>3.5). Similarly, stereotypical artifacts were automatically removed by performing a fast-

independent component analysis 17 and excluding components in which the average log power 

was an outlier (absolute z-score >3.5). The other components were projected back to the channel 

space. On average 38.2 (range [13 79]) of the 900 EEG traces were excluded and 1.1 (range [1 2]) 

of the 64 components were removed. 

The EEG traces were filtered with a surface Laplacian to improve the spatial resolution 

The Legendre polynomial order was 50 and the smoothing parameter was 1E-5 18. Subsequently, 

the traces were decomposed into their time-frequency representations using Morlet wavelet 
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convolution. The wavelet frequencies ranged from 2 to 30 Hz in 29 steps of 1Hz and the number 

of cycles ranged from 4 to 10 in 29 logarithmically-spaced steps 19. After convolution, the traces 

were trimmed to 1800ms around the onset of visual feedback to remove edge artifacts 

introduced by the concatenation. Consecutively, the log power at each time-frequency point 

within each trial was normalized as a percentage change relative to the average log power of that 

frequency in the predefined baseline window (from 900ms until 600ms before visual feedback) 

across all trials. Frontal midline theta activity was defined as the normalized log power in channel 

FCz averaged over the 4-8Hz frequencies 3. The processing window was defined as the 600ms 

after group average movement offset (78-678ms after the onset visual feedback).  

 

EEG analysis 

On the trial level, we investigated whether the frontocentral theta activity (FM) in the processing 

window is related to the absolute error in the corresponding trial, the correction in the following 

trial, or both. Absolute errors were defined as the absolute error angle between the cursor on the 

screen relative to the target. Corrections were defined as the hand angle in the following trial 

minus the hand angle in the corresponding trial, divided by the sign (1 or -1) of the error angle in 

the corresponding trial. Thus, negative values represent corrections in the direction of the target, 

whereas positive values represent corrections in the opposite direction. While estimating the 

relation of FM with error detection and error correction, we controlled for other factors that 

might influence FM, such as the trial number (duration of the experiment) and the feedback on 

the trial duration (color change of the target). We used the linear mixed model function in 

MATLAB version 2018b (Mathworks, Natick, USA) to estimate within-participant effects across 

participants. 

 

𝐹𝑀𝜃[𝑠, 𝑛] ~ 𝛼[𝑠] + 𝐷[𝑠] ∗ |𝑒|[𝑠, 𝑛] +  𝐶[𝑠] ∗ 𝑐[𝑠, 𝑛] + 

+ 𝑇[𝑠] ∗ 𝑡[𝑠, 𝑛] + 𝐹𝑠ℎ𝑜𝑟𝑡[𝑠] ∗ 𝑓𝑠ℎ𝑜𝑟𝑡[𝑠, 𝑛] + 𝐹𝑙𝑜𝑛𝑔[𝑠] ∗ 𝑓𝑙𝑜𝑛𝑔[𝑠, 𝑛] 

(6) 

 

For each trial 𝑛 of participant 𝑠, 𝐹𝑀𝜃[𝑠, 𝑛] is the frontal midline theta activity in the processing 

window, |𝑒|[𝑠, 𝑛] is the absolute error in the corresponding trial, 𝑐[𝑠, 𝑛] is the correction in the 

following trial, 𝑡[𝑠, 𝑛] is the original trial number and 𝑓𝑠ℎ𝑜𝑟𝑡[𝑠, 𝑛] and 𝑓𝑙𝑜𝑛𝑔[𝑠, 𝑛] are binary 

variables indicating if the trial was “too short” (𝑓𝑠ℎ𝑜𝑟𝑡[𝑠, 𝑛] = 1) or “too long” (𝑓𝑙𝑜𝑛𝑔[𝑠, 𝑛] = 1). In 

order to compare the strength of the relations, all variables were z-score normalized. The 

intercept 𝛼[𝑠], the relation with absolute error size (EEG-error sensitivity) 𝐷[𝑠], the relation with 

error correction 𝐶[𝑠], the effect of trial number 𝑇[𝑠], and the effect of the color feedback 𝐹𝑠ℎ𝑜𝑟𝑡[𝑠] 

and 𝐹𝑙𝑜𝑛𝑔[𝑠] were all modelled as random effects.  

We used a backward elimination method to determine which variables best explain the 

frontocentral theta activity. Stepwise removal of variables with the smalles effect size was 

continued as long as the Bayesian Information Criterion decreased, and the last model for which 

this criterion held was selected. To check the assumption of a linear relation, we plotted 𝐹𝑀𝜃 

against the absolute error and the error correction. Based on visual inspection, we included all 

trials with visual feedback (unperturbed and unperturbed), an absolute error smaller than 5 

degrees, and an error correction between -7 and +3 degrees. On average 478, range [264 587], 

artifact-free trials per participant were included. To check for collinearity, we calculated the 

relation between the absolute error and the error correction in the following trial with a separate 

hierarchical model: 

𝑐[𝑠, 𝑛] ~ 𝛼[𝑠] + 𝛽[𝑠] ∗ |𝑒|[𝑠, 𝑛] (7) 
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Figure 2. Group average data. A. Motor learning throughout the experiment. The brown line indicates the 

average hand angle of all 60 participants. The error bar represents the standard deviation. The black line 

indicates the negative of the average perturbation signal. The yellow line indicates the standard deviation of 

the signed errors. B-D: EEG-error sensitivity. Error bars represent the standard error of the mean B. Grand 

average frontal midline theta activity of all trials with visual feedback (perturbed and unperturbed). The 

dotted lines indicate the average target onset (-387±24ms) and the average movement onset (-179±24ms). 

The long vertical lines represent the borders of the 600ms processing window, starting at the average 
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Individual differences in EEG-error sensitivity and motor adaptation 

On the participant level, we explored whether individual differences in EEG-error sensitivity are 

related to individual differences in the motor adaptation paramters by visualizing the data and 

by calculating the Spearman correlation coefficients. For the motor adaptation parameters, we 

used the point estimates from the movement analysis. For the EEG-error sensitivity, we used the 

point estimates (𝐷[𝑠]) from a compact version of the linear mixed model described in the EEG 

analysis: 

 

𝐹𝑀𝜃[𝑠, 𝑛] ~ 𝛼[𝑠] + 𝐷[𝑠] ∗ |𝑒|[𝑠, 𝑛] +  𝑇[𝑠] ∗ 𝑡[𝑠, 𝑛] (8) 

 

In this compact version, we included all trials with visual feedback (unperturbed and 

unperturbed), and an absolute error smaller than 5 degrees, regardless of the error correction in 

the following trial (Average = 539, range [395 602]) 

Finally, we used the point estimates from the movement analysis to investigate the 

relation between the individual differences in adaptation rate and the two noise terms (planning 

noise and execution noise) with a multiple linear regression model 13. 

 

𝐵[𝑠]~ 𝛼 + 𝛽1 ∗ 𝜎𝜂[𝑠] + 𝛽2 ∗ 𝜎𝜀[𝑠] (9) 

movement offset (78±15ms). C. Grand average frontal midline theta activity of trials with visual feedback 

sorted on absolute error. Red is [0 1], blue is [1 2], green is [2 3], orange is [3 4] and purple is [4 5] degrees. 

D. Average EEG-error sensitivity. Colored dots indicate the average frontal midline theta activity in the 

processing window (panel C). The slope of the black line represents the linear relation between absolute 

error size and frontal midline theta activity in the processing window i.e. EEG-error sensitivity. The diameters 

of the open circles represent the relative number of trials in a trial bin. E. Average EEG-error sensitivity in 

each subblock of 150 trials. 

 Step Absolute 

error 

Trial 

number 

Error 

correction 

Trial 

duration 

BIC 

𝐃 𝐓 𝐂   𝐅𝐒𝐡𝐨𝐫𝐭  𝐅𝐥𝐨𝐧𝐠  

1 0.13  

[0.10 0.16] 

-0.10  

[-0.13 -0.08] 

-0.02 

[-0.03 -0.01] 

0.01 

[-0.00 0.01] 

0.00 

[-0.01 0.0] 

78595 

2 0.13 

[0.10 0.16] 

-0.10 

[-0.13 -0.08] 

-0.02 

[-0.03 -0.01] 

0.01 

[-0.00 0.02] 

- 78575 

3 0.13 

[0.10 0.16] 

-0.10 

[-0.13 -0.08] 

-0.02 

[-0.03 -0.01] 

- - 78557 

4 0.14 

[0.11 0.17] 

-0.10 

[-0.13 -0.08] 

- - - 78553 

5 0.14 

[0.10 0.16] 

- - - - 79030 

Table 1. Results from EEG analysis. A backward elimination method was applied to select the model which 

best explained the frontal medial theta activity in each trial. The full model (Equation 6) included the relation 

with absolute error size (EEG-error sensitivity) 𝐷[𝑠], the relation with error correction 𝐶[𝑠], the effect of trial 

number 𝑇[𝑠], and the effect of the color feedback 𝐹𝑠ℎ𝑜𝑟𝑡[𝑠] and 𝐹𝑙𝑜𝑛𝑔[𝑠]. The model with the lowest Bayesian 

Information Criterion (BIC) included only the absolute error in the corresponding trial and the trial number. 
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Results 

Participants adapted their reaching movements to the perturbation, as illustrated by the average 

aiming direction in Figure 2A. Furthermore, this figure illustrates the similarity in the average 

error distribution between the baseline block and the perturbation block.  

 

EEG-error sensitivity 

The frontal midline theta activity (FM) in each trial was best explained by the absolute error in 

the corresponding trial and the trial number and not by the correction in the following trial nor 

the feedback on the trial duration (Table 1). Post-feedback peak in frontal midline theta activity 

started around the movement offset and ended approximately 600ms later (see Figure 2B). 

Larger absolute errors resulted in higher frontal midline theta activity (EEG-error sensitivity) 

with an approximately linear relation for absolute errors up to 5 degrees (Figure 2C). EEG-error 

sensitivity was present in both the baseline and the perturbation blocks (see Figure 2D). 

Furthermore, the overall frontal midline theta activity in the processing window decreased 

throughout the experiment (see Figure 2D). 

The uncorrected association between FM and error correction is a reflection of the 

relation between FM and the absolute error size (see Figure 3). The association between FM 

and error correction is approximately linear for corrections between -7 and +3 degrees (see 

Figure 3A). However, the error correction in the following trial is correlated to the absolute error 

in the corresponding trial (𝜷 = -0.32) as illustrated by the black squares. Furthermore, the 

association between FM and error correction in the following trial is comparable to the 

association between FM a hypothetical error correction in the trial preceding trial. This argues 

against a causal role for FM in error correction. 

 
Figure 3. Uncorrected association between frontal midline theta activity (FM) and the correction in 

the following trial. Trials with visual feedback are sorted based on the error correction in the following trial. 

Purple is [-7 -5], orange is [-5 -3], green is [-3 -1], blue is [-1 1] and purple is [1 3] degrees. Dots indicate the 

average frontal midline theta activity in the processing window and the diameters. Error bars represent the 

standard error of the mean (n=60). The open circles represent the relative number of trials in a bin. The slope 

of the black line represents the linear association between frontal midline theta activity and error correction. 

Black squares indicate the average abolute error in each bin. A. Uncorrected association between FM and 

error correction in the following trial. B. Uncorrected association between FM and ‘error correction’ 

erroneously calculated back in time, using the preceding trial instead of the following trial.  
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Figure 4. Time-frequency plot of channel FCz. Equation 6 was calculated for each time-frequency point. A. 

Average normalized log power in channel FCz. The broken lines indicate the average target onset and the 

average movement offset. The solid lines indicate the borders of the processing window and the borders of 

the theta frequency band. B. Group average relation between EEG activity and absolute error size in the 

corresponding trial (EEG-error sensitivity) for each time-frequency point in channel FCz. C. Group average 

relation between EEG activity and correction in the following trial for each time-frequency point in channel 

FCz. 

                      

         

 

 

  

  

  

  

  

 
  
 
 
 
 
 
 
  
 
  

  

    

 

   

 

 
 
  

  
  
  

  
 
 
  
 
 
  
  
 
 
 

                      

         

 

 

  

  

  

  

  

 
  
 
 
 
 
 
 
  
 
  

    

    

 

   

   

 
  
  
  
 
  

  
 
  
 
  

  
  
  
  
 
  
  

 

                      

         

 

 

  

  

  

  

  

 
  
 
 
 
 
 
 
  
 
  

    

    

 

   

   

 
  
  
  
 
  

  
 
  
  
 
  
 
 
  
  

  
 
 
  
 
 

 

 

 

2 



 

42 
 

Our pre-defined frequency window (4-8 Hz) and pre-defined electrode channel (FCz) to 

quantify EEG-error sensitivity were both found to be appropriate (see Figures 4 and 5). EEG-error 

sensitivity is most prominent in the theta band and does not become apparent in any of the other 

frequency bands (see Figure 4). With regards to electrode selection, EEG-error sensitivity in the 

theta band is indeed most prominent in the channel FCz and comparatively unremarkable in 

other brain regions (see Figure 5).  

 

Individual differences in EEG-error sensitivity and motor learning 

The group average execution noise was 2.52±0.58 degrees; the group average planning noise was 

0.48±0.13 degrees; the group average adaptation rate was 0.13±0.04 and the group average error 

distribution was 2.95±0.60 degrees. Figure 6 shows the associations between the individual 

differences in EEG-error sensitivity and the individual differences in the motor learning 

parameters. Individual differences in EEG-error sensitivity were weakly correlated with 

adaptation rate (Figure 6C) and weakly anticorrelated with execution noise (Figure 6B) and the 

error distribution (Figure 6D). Figure 7 shows the data of four participants with different levels 

of EEG error sensitivity in more detail. Finally, individual differences in adaptation rate were 

positively related to planning noise and negatively related to execution noise (see Figure 8).  

 

Discussion 

This study demonstrates that, in the context of visuomotor adaptation, FM does not act as a ‘top-

down teaching signal’, but rather as ‘bottom-up alarm signal’. The EEG analysis showed that the 

feedback-related frontal midline theta activity (FM) in each trial was better explained by the 

absolute error size in the corresponding trial, than by the correction in the following trial, or a 

 
Figure 5. Topographic plot of theta activity (4-8Hz). Each topographic plot represents the average of a 

time window. Equation 6 was calculated for each channel in each timewindow. First row: Group average log 

normalized theta activity over the scalp. Second row: Group average relation between theta activity and 

absolute error size in the corresponding trial (EEG-error sensitivity) Third row: Group average relation 

between theta activity and correction in the following trial. 
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combination of both variables. The positive relation between frontal midline EEG activity and the 

absolute error size (EEG-error sensitivity) corroborates earlier work by Anguera (2009), 

orrecillos (2014) and (Arrighi 2016). This study expands their results in two ways. First of all, 

this study shows that EEG-error sensitivity is also present in the absence of external 

perturbations i.e. in response to small self-made errors during natural movements. Second, this 

study shows that FM is directly involved in error detection, but not actively involved in error 

correction.   

 
Figure 6. Relation between the individual differences in adaptation rate, and planning noise and 

execution noise. Each colored dot represents a participant. The black lines depict the regression lines of the 

multiple linear regression. A. Relation between adaptation rate and planning noise, corrected for execution 

noise. Each dot represents the residual adaptation rate, after correction for the estimated effect of execution 

noise. The other end of the grey lines represents the adaptation rate before the correction. If the adaptation 

rate of the participants would be perfectly described by their execution noise, all colored dots would have an 

y-value of zero. B. Relation between adaptation rate and planning noise, corrected for planning noise. 
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Furthermore, on the participant level, we found that the individual differences in EEG-

error sensitivity were positively associated with adaptation rate and negatively associated with 

execution noise. These associations are in line with the notion that FM represents a surprise 

signal 4: an individual with a low execution noise and a high adaptation rate naturally produces a 

small distribution of errors. Therefore, for this individual the same absolute error size is more 

surprising than for someone who naturally moves more variably. 

 In agreement with our previous visuomotor experiment 13, we found that individual 

differences in adaptation rate are positively related to planning noise and negatively related to 

execution noise. This confirms that the results of our previous visuomotor experiment can be 

reproduced and thus strengthens the evidence that the adaptation rate of individuals is tuned to 

approximate the optimal learning rate according to Kalman filter theory 10–12.  

Now that we have shown that FM acts as a ‘bottom-up alarm signal’, the most logical 

next step is to investigate what the role of this alarm signal is in the context of motor adaptation. 

We propose that when FM, becomes strong enough it may cause individuals to become aware 

of a change in the environment and apply an explicit strategy to overcome this change. It is 

 
Figure 7. Individual participant data. Each column represents a participant. A-D. Motor learning 

throughout the experiment. The black line is the negative of the perturbation signal. Brown circles represent 

the hand angle in individual trials and the brown line is the walking average over 20 trials. E-H. Average 

frontal midline theta activity of trials with visual feedback sorted on absolute error. Red is [0 1], blue is [1 2], 

green is [2 3], orange is [3 4] and purple is [4 5] degrees. I-L. EEG error sensitivity. Each circle indicates the 

average frontal midline theta activity in the processing window of a single trial. Yellow circels represent trials 

with an absolute error lower than or equal to 5 degrees. The slope of the black line represents the linear 

relation between absolute error size and frontal midline theta activity in the processing window i.e. EEG-

error sensitivity. 
 

         

         

   
   
  
 
 

  
  

 
 
 
  
  
 
 
 
 

 

         

         

   
   
  
 
 

  
  

 
 
 
  
  
 
 
 
 

 

         

         

   
   
  
 
 

  
  

 
 
 
  
  
 
 
 
 

 

         

         

   
   
  
 
 

  
  

 
 
 
  
  
 
 
 
 

 

        

         

 

 

 

  

  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

         

 

 

 

  

  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

         

 

 

 

  

  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

         

 

 

 

  

  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

                    

   
   
  
 
 

  
  
  
  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

                    

   
   
  
 
 

  
  
  
  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

                    

   
   
  
 
 

  
  
  
  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 

        

                    

   
   
  
 
 

  
  
  
  

 
 
 
  
  
 
  
 
  
 
  
 
 
 

 



Optimal control models of movement 

45 
 

thought that motor adaptation results from a combination of implicit learning and explicit 

learning 20. Werner et al., (2019) reported that a small gradual perturbation signal induces 

predominantly implicit learning, whereas a large continuous perturbation signal induces a 

combination of implicit and explicit learning. Savoie et al., (2018), reported that FM during 

reaching movements was higher when participants were made aware of a perturbation and 

instructed how to counteract it. However, whether conversely FM after the movement leads to 

awareness has not yet been studied. Therefore, an interesting follow up experiment would be to 

investigate whether feedback related FM predicts the use of explicit learning in a motor 

adaptation task with a large continuous perturbation signal.  

Another interesting follow up experiment would be to investigate the relation between 

EEG-error sensitivity in the theta (4-8Hz) the beta band (15-30Hz). Multiple studies have shown 

EEG-error sensitivity in the post movement beta synchronization over the sensorimotor area 23–

26. However, in the current study we were not able to explore post movement beta 

synchronization in great detail, because the exact moment participants stopped moving was 

obscured by the force cushion and the pushback to the starting position. 

In summary, this study demonstrates that, in the context of motor adaptation, FM does 

not act as a ‘top-down teaching signal’, but rather as ‘bottom-up alarm signal’. Furthermore, this 

study shows that individual differences in EEG-error sensitivity (the sensitivity of FM to error 

feedback) are negatively associated with the distribution of errors that each individual produces. 

Finally, this study confirmed that individual differences in adaptation rate are negatively related 

to planning noise and positively related to execution noise.  

 

  

 
Figure 8. Uncorrected associations between the individual differences in EEG-error sensitivity and 

the motor learning parameters. Each colored dot represents a participant. The black open circles indicate 

the participants that are highlighted in Figure 8. The Spearman correlations are shown above each panel. A. 

Relation between EEG-error sensitivity and planning noise. B. Relation between EEG-error sensitivity and 

execution noise. C. Relation between EEG-error sensitivity and adaptation rate. D. Relation between EEG-

error sensitivity and the distribution of signed errors. 
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Chapter 3. Proportional recovery models of stroke 

 

3.1 Predicting upper limb motor impairment recovery after stroke: a mixture 

model 
Rick van der Vliet, Ruud W. Selles, Eleni-Rosalina Andrinopoulou, Rinske Nijland, Gerard M. 

Ribbers, Maarten A. Frens, Carel Meskers and Gert Kwakkel 

 

Abstract 

Objective: Spontaneous recovery is an important determinant of upper extremity recovery after 

stroke, and has been described by the 70% proportional recovery rule for the Fugl-Meyer motor 

upper extremity (FM-UE) scale. However, this rule is criticized for overestimating the 

predictability of FM-UE recovery. Our objectives were to (1) develop a longitudinal mixture 

model of FM-UE recovery, (2) identify FM-UE recovery subgroups, and (3) internally validate the 

model predictions. 

Methods: We developed an exponential recovery function with the following parameters: 

subgroup assignment probability, proportional recovery coefficient 𝑟𝑘, time constant in weeks 

𝜏𝑘 , and distribution of the initial FM-UE scores. We fitted the model to FM-UE measurements of 

412 first-ever ischemic stroke patients and cross-validated endpoint predictions and FM-UE 

recovery cluster assignment. 

Results: The model distinguished five subgroups with different recovery parameters (𝑟1 = 0.09, 

𝜏1 = 5.3, 𝑟2 = 0.46, 𝜏2 = 10.1, 𝑟3 = 0.86, 𝜏3 = 9.8, 𝑟4 = 0.89, 𝜏4 = 2.7, 𝑟5 = 0.93, 𝜏5 = 1.2). 

Endpoint FM-UE was predicted with a median absolute error of 4.8 IQR=[1.3 12.8] at one week 

poststroke and 4.2 IQR=[1.3 9.8] at two weeks. Overall accuracy of assignment to the poor 

(subgroup one), moderate (subgroups two and three) and good (subgroups four and five) FM-UE 

recovery clusters was 0.79 95%ETI=[0.78 0.80] at one week poststroke and 0.81 95%ETI=[0.80 

0.82] at two weeks. 

Interpretation: FM-UE recovery reflects different subgroups, each with its own recovery profile. 

Cross-validation indicates that FM-UE endpoints and FM-UE recovery clusters can be well 

predicted. Results will contribute to the understanding of upper limb recovery patterns in the 

first six months after stroke.  
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Introduction  

Longitudinal studies have repeatedly demonstrated the time-dependency of neurological 

recovery after stroke, including upper1,2 and lower limb motor function,3,4 visuo-spatial neglect,5 

and speech.6 This suggests that recovery follows a predictable pattern, which is often described 

as spontaneous neurological recovery.7,8 Understanding the mechanisms and individual 

dynamics that drive stroke recovery is vital for developing better prognostic models and more 

effective, personalized therapeutic interventions.9–12 

The proportional recovery rule has been instrumental in modeling spontaneous upper 

extremity recovery by linking baseline motor impairment, measured with the Fugl-Meyer 

assessment of the upper extremity (FM-UE),13 to the observed motor recovery, defined as the 

difference between the measurements early and three to six months after stroke (ΔFM-UE).14 

More specifically, the proportional recovery rule states that in three to six months (1) the 

majority of patients (recoverers) gain a fixed proportion, estimated between 0.55 and 0.85,2 of 

their potential recovery, calculated as the difference between baseline FM-UE and the scale's 

maximum score of 66, while (2) the minority of patients (non-recoverers) show only very 

moderate improvement which cannot be linked to potential recovery.1,2,14 Mechanistically, the 

key underlying difference between recoverers and non-recoverers is currently understood as the 

intactness of the corticospinal tract early after stroke.15–18 

The proportional recovery rule has been criticized for a number of reasons. Recent 

analyses indicated that a strong correlation between baseline FM-UE and recovery can emerge 

even when baseline FM-UE is completely uncorrelated to endpoint FM-UE.19,20 Therefore, even 

though the proportional recovery rule is not wrong,19 it probably overstates the predictability of 

endpoint FM-UE.19,20 In addition, the proportional recovery rule does not model the time course 

of recovery early poststroke, which means it cannot model the rate of recovery nor update 

predictions with repeated measurements in time. Finally, predictions of endpoint FM-UE based 

on the 70% proportional recovery rule for individual patients has not previously been reported. 

To increase our understanding of upper extremity recovery after stroke, we need a 

model that (1) relates the FM-UE to potential recovery as a function of time after stroke, with (2) 

separate sets of parameters for different subgroups, including those that show no improvement 

early poststroke.21 In this study, we developed and cross-validated a new longitudinal mixture 

model of FM-UE recovery, which describes different patterns of recovery over time using 

exponential functions, and identifies subgroups based on: (1) the degree of recovery as a fraction 

of potential recovery, (2) the rate of recovery, and (3) the initial FM-UE score. Our goals were to 

estimate (1) the number of recovery subgroups, (2) the recovery parameters for each subgroup, 

and (3) the predictability of endpoint FM-UE at 3-6 months poststroke, as well as subgroup 

assignment as a function of time poststroke. Results will contribute to the understanding and 

prediction of upper limb recovery patterns in the first six months after stroke. 

 

Materials and methods 

Study population 

We combined FM-UE data of first-ever ischemic stroke patients collected in four different 

prospective cohort studies: the EXPLICIT22, EPOS,23 4D-EEG24 and EXPLORE studies. These 

datasets contain repeated measurements of the FM-UE scores and the exact measurement dates 

in days poststroke, which also differ between patients assigned to the same follow-up scheme for 

practical reasons. Data collection and patient characteristics of the EXPLICIT and EPOS cohorts 

have been described extensively elsewhere.22,23 The 4D-EEG and EXPLORE cohorts recruited 
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patients with a first-ever ischemic stroke within three weeks poststroke. In the 4D-EEG study, 

patients were measured weekly during the first five weeks poststroke and after 8, 12 and 26 

weeks. In the EXPLORE study, patients were measured 1, 2, 3, 5, 12 and 26 weeks poststroke. 

Inclusion criteria were comparable to the EPOS cohort. The majority of patients received 

standard rehabilitation treatment according to the Dutch rehabilitation guidelines, which are in 

agreement with current international rehabilitation guidelines.25,26 In the EXPLICIT study, half of 

the patients with an unfavorable prognosis received electromyography-triggered neuromuscular 

stimulation and half of the patients with a favorable prognosis received modified constrained-

induced movement therapy.22 Since both of these interventions did not affect the FM-UE at any 

time poststroke,22 we disregarded therapeutic intervention as a factor in the analysis. The 4D-

EEG and EXPLORE studies have been approved by the medical ethics committees of the VU 

University Medical Center (NL 47079 029 14, for 37 patients measured) and the Leiden 

University Medical Center (NL39323.058.12, for 11 patients measured), respectively.  

We included a patient if (1) at least two repeated measurements were available, and (2) 

the first and last measurement were at least 12 weeks apart. This way, we maximized the number 

of included patients while still being able to cross-validate predictions of endpoint FM-UE. 

Additional patient data were: age; gender; handedness; dominant side affected; Bamford scale 

(LACI/PACI/TACI)27; administration of alteplase (rt-PA); NIHSS (range 0-42) with item 11, 

extinction and inattention (range 0-2), reported separately;28 motricity index (range 0-99) with 

the shoulder abduction item listed separately (dichotomized as no shoulder abduction (0) and at 

least some shoulder abduction (1));29,30 and finger extension (dichotomized as no finger 

extension (0) and at least some finger extension (1)) as a separate item of the FM-UE (range 0-

66).31 

 

Longitudinal mixture model of FM-UE recovery 

We designed a longitudinal model of FM-UE recovery after stroke based on the principles of 

proportional recovery, which are (1) a proportional relation between observed recovery over 

time and potential recovery at baseline (longitudinal), and (2) the existence of clinically distinct 

subgroups of FM-UE recovery (mixture). Longitudinal, therefore, refers to the ability of the model 

to handle repeated measurements over time and mixture to the ability of the model to identify 

different subgroups. Since FM-UE recovery follows an exponential pattern,7 we chose an 

exponential function as the time-dependent element of the model, with the asymptote defined as 

a proportion of the potential recovery and the time constant expressed in weeks. In addition, we 

included an intercept which represents the FM-UE early after stroke. The mathematical 

expression of our model is: 

 

 𝜇𝑖𝑗|𝑘 =  𝛼𝑖|𝑘 + 𝑟𝑘 ∗ (66 − 𝛼𝑖|𝑘) ∗ (1 − e−𝑡𝑖𝑗/𝜏𝑘) (15) 

 𝑦𝑖𝑗|𝑘  ~ 𝑁(𝜇𝑖𝑗|𝑘 , 𝜎𝜖
2) (16) 

 

With 𝑖 the patient identification number [1 𝐼], 𝑗 the measurement identification number [1 𝐽], and 

𝑘 the subgroup identification number [1 𝐾]. The equation describes how the FM-UE (𝑦𝑖𝑗|𝑘) for a 

particular patient 𝑖 and measurement 𝑗 is determined by the (estimated) baseline FM-UE (𝛼𝑖|𝑘) 

plus an exponential term 𝑟𝑘 ∗ (66 − 𝛼𝑖|𝑘) ∗ (1 − e−𝑡𝑖𝑗/𝜏𝑘) which increases over time 𝑡𝑖𝑗 as the 

patient recovers. We chose to express measurement dates poststroke in weeks by dividing the 

number of days poststroke by seven. The asymptote of the exponential term is determined by the 

potential recovery (66 − 𝛼𝑖|𝑘) multiplied by the recovery coefficient 𝑟𝑘 [0 1], which describes 
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how much of the potential recovery is achieved. The rate of the exponential term (i.e. how quickly 

the patient recovers) is defined by time constant 𝜏𝑘  in weeks [1/7  ∞), which signifies the time 

point when recovery has reached a proportion of 1 − e−1 ≈ 0.63 of the asymptotic value. Finally, 

𝜎𝜖
2 is the residual error variance. 

 

Model fitting 

We chose a Bayesian approach to mixture modeling rather than expectation-maximization, as 

Bayesian data analysis (1) focuses on parameter uncertainty rather than on point estimates, (2) 

estimates hidden variables (for example the subgroup identification number 𝑘) simultaneously 

with the parameters, and (3) offers flexibility in specifying the form of the model (for example to 

constrain the recovery coefficient 𝑟𝑘 between 0 and 1).32 Modern Bayesian approaches rely on a 

family of algorithms called the Markov-chain Monte-Carlo (MCMC) algorithms.32 These 

algorithms require defining a likelihood function (how the data would be generated if we knew 

the parameters) and the prior probability distributions for the parameters, and they return 

samples from the posterior joint-probability function of the parameters. We chose the following 

prior probability distributions for the model parameters: 

 

 
𝛼𝑖|𝑘  ~ 

66

1 + exp (−N(𝜇𝛼,𝑘 , 𝜎𝛼,𝑘
2 )) 

  
(17) 

 𝜇𝛼,𝑘  ~ N(0, 103) (18) 

 𝜎𝛼,𝑘
2  ~ 1/Γ(10−3, 10−3) (19) 

 
𝑟𝑘  ~ 

1

1 + exp(−N(0, 103)) 
  

(20) 

 𝜏𝑘  ~ Γ(10−3, 10−3) + 1/7 (21) 

 𝑘 ~ 𝐶𝑎𝑡(𝐾, 𝑝𝑘), 𝑝𝑘  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝐾, 𝛾) (22) 

 1/𝜎𝜖
2 ~ Γ(10−3, 10−3) (23) 

 

For the patient-specific baseline FM-UE 𝛼𝑖|𝑘, we defined a logistic normal prior distribution with 

the hyperparameters sampled from weakly informative normal and gamma distributions. This 

means that each subgroup is characterized by a specific distribution of the FM-UE early after 

stroke, which can be close to 0 or to the maximum of 66, or span the entire range with almost 

equal probability. The subgroup-specific prior distribution for the recovery coefficient 𝑟𝑘 is also 

a logistic normal distribution, which spans the 0 to 1 range. Time constant 𝜏𝑘 , specified separately 

for each subgroup, has a weakly informative gamma prior distribution, shifted by 1/7 to set the 

lower limit at one day. Subgroup labels 𝑘 have a categorical prior distribution with 

hyperparameters for the subgroup assignment probability vector 𝑝𝑘, sampled from a Dirichlet 

distribution with concentration parameter 𝛾. Finally, the precision 1/𝜎𝜖
2 has a weakly informative 

gamma prior distribution. 

MCMC sampling was used to simultaneously calculate (1) the number of subgroups in 

the data, and (2) the model parameters. We used the Rousseau and Mengersen criterion33,34 as 

implemented by Nasserinejad et al.35 to select the number of subgroups 𝐾𝑂𝑝𝑡𝑖𝑚𝑎𝑙 , setting the 

overfitted number of subgroups 𝐾 at 10, the concentration parameter 𝛾 at 0.9 ∗ 𝑑/2 (equal to 1.8 

for our study), the cut-off value for the subgroup size at 5% of the number of patients and the 

number of parallel chains to 10. From the parallel chains, we selected the solution which 

minimized the number of subgroups and maximized the total subgroup assignment probability. 
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Subgroup assignment probabilities were normalized to 1. The subgroups were arranged 

according to the recovery coefficient 𝑟𝑘, making 𝑟1 the lowest and 𝑟𝐾,𝑜𝑝𝑡𝑖𝑚𝑎𝑙  the highest recovery 

coefficient. The 'optimal FM-UE recovery cluster' was determined as the FM-UE recovery cluster 

a patient was assigned to most by the model. Goodness of fit was evaluated with the explained 

variance, which we calculated as one minus the residual error variance (𝜎𝜖
2) divided by the total 

FM-UE variance across patients and measurements. 

 

Cross-validation 

Predictability of ΔFM-UE (the difference between the first and last measurements available for a 

particular patient) and endpoint FM-UE (last measurement available for a particular patient), as 

well as FM-UE recovery cluster assignment (poor, moderate or good recovery, see RESULTS 

section for the definitions), was estimated using the proposed model. We used cross-validation, 

which is a method for internal validation, to obtain correct estimates of the predictions. The study 

population was divided n (total number of patients) times into a prediction dataset containing 

data from only one patient and a fitting dataset containing data from all other patients. For all n-

folds, we first ran the fitting dataset with settings 𝐾 = 𝐾𝑂𝑝𝑡𝑖𝑚𝑎𝑙  and 𝛾 = 1.8, and randomly 

selected 100 samples from the posterior distribution of the model parameters. In addition, we 

paired the five subgroups with one of the three FM-UE recovery clusters using a 1-nearest 

neighbor algorithm trained on the model parameters 𝑟𝑘, 𝜏𝑘 , 𝜇𝛼,𝑘 and 1/𝜎𝜖
2. Next, MCMC sampling 

was performed for all 100 model parameter sets using the measurements available from the 

prediction dataset in the first one to 12 weeks poststroke (12 time points). Only patients who had 

at least one measurement available were included in the analysis for a specific time interval. 

Therefore, the number of patients available for cross-validation increased with time poststroke. 

Outcome measures were (1) the predicted ΔFM-UE between the first and last measurements of a 

patient, (2) the predicted FM-UE at the last measurement of a patient, and (3) the ‘predicted FM-

UE recovery cluster’, defined as the FM-UE recovery cluster a patient was assigned to most by the 

model.  

To evaluate prediction accuracy, we (1) calculated the absolute difference between the 

predicted and observed values, (2) correlated the predicted and observed ΔFM-UE and FM-UE, 

and (3) determined the accuracy of the FM-UE recovery cluster assignment (proportion of 

patients in the study population who were correctly assigned), the positive predictive value 

(proportion of patients in one of the three ‘predicted FM-UE recovery clusters’ who were 

correctly assigned), and the miss rate (proportion of patients in one of the three ‘optimal FM-UE 

recovery clusters’ who were incorrectly assigned). Note that accuracy is only defined for the 

entire study population whereas the positive predictive value and miss rate are defined for the 

three FM-UE recovery clusters separately. 

 

Covariate model 

We compared the predictive accuracy of the model presented above to a model incorporating a 

set of static (not changing over time) covariates: age at stroke onset, gender, Bamford 

classification, and alteplase treatment. The static covariates did not include right-handedness and 

dominant side affected as these were biased by the inclusion criteria of the cohort studies. We 

modeled age as a normal distribution with hyperparameters sampled from normal and gamma 

distributions, gender and alteplase treatment as binomial distributions with the 

hyperparameters sampled from beta distributions, and Bamford classification as a categorical 

distribution with hyperparameters sampled from Dirichlet distributions. The cross-validated 
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primary outcomes (absolute median error in endpoint FM-UE and ΔFM-UE, correlations between 

actual and observed endpoint FM-UE and ΔFM-UE, and mean accuracy of FM-UE recovery cluster 

assignment) of the models with and without covariates differed less than 10% at every time point 

poststroke. Therefore, we decided to present a simpler model without covariates. 

 

Markov-chain Monte-Carlo sampling 

MCMC sampling was implemented in JAGS 4.3.0 (available from: 

https://sourceforge.net/projects/mcmc-jags/). Matlab 2015a (MathWorks, Natick, 

Massachusetts, United States) and Matjags (available from: 

http://psiexp.ss.uci.edu/research/programs_data/jags/) were used for data and sample 

processing. Settings for determining the number of subgroups and calculating the model 

parameters were: 2.5x104 burn-in samples and 2.5x104 posterior distribution samples, 10 

parallel chains, and initial guesses for the model parameters. Settings for cross-validation were: 

103 burn-in samples, 104 posterior distribution samples, 1 parallel chain, and the mean model 

parameters estimated in step 1 as initial values for model fitting. All scripts can be accessed at: 

https://github.com/rickvandervliet/Bayesian-Proportional-Recovery. This website also hosts 

scripts which can prospectively predict FM-UE recovery profiles for individual patients based on 

the model presented in this paper. In addition, we have created an online application offering the 

same functionality in a user-friendly format: 

https://emcbiostatistics.shinyapps.io/LongitudinalMixtureModelFMUE/.  

 

Results 

Out of a total 479 patients in all four cohorts, we included data from 412 patients whose FM-UE 

had been measured at least two times, with the first and last measurements spaced at least 12 

weeks apart. The 412 included patients were found to have a mean 6.1 (SD=1.9) measurements 

per patient, with an interval of 26.2 (SD=2.0) weeks between the first and last measurements. 

FM-UE recovery 

cluster 

Poor Moderate Good 

Subgroup 1 2 3 4 5 

𝑝𝑘 0.27  

[0.22 0.31] 

0.14  

[0.10 0.18] 

0.11  

[0.08 0.15] 

0.18  

[0.12 0.24] 

0.30  

[0.24 0.37] 

𝑟𝑘 0.09  

[0.07 0.11] 

0.46  

[0.43 0.50] 

0.86  

[0.83 0.90] 

0.89  

[0.87 0.90] 

0.93  

[0.92 0.94] 

𝜏𝑘 5.3  

[2.8 9.2] 

10.1  

[8.4 12.3] 

9.8  

[8.9 10.8] 

2.7  

[2.5 2.8] 

1.2  

[1.1 1.3] 

𝜇𝛼,𝑘  -3.2  

[-4.0 -2.8] 

-2.1  

[-2.9 -1.2] 

-2.8  

[-4.1 -1.3] 

-1.3  

[-2.6 -0.1] 

0.0  

[-0.6 0.6] 

𝜎𝛼,𝑘  0.6  

[0.3 1.5] 

2.2  

[1.5 3.3] 

3.0  

[1.7 4.8] 

2.9 

 [2.0 4.0] 

2.4  

[1.9 3.0] 

Table 1. Model parameters. Subgroup mean model parameters with 95%ETIs calculated over all samples. 

𝑝𝑘 subgroup assignment probability, 𝑟𝑘 recovery coefficient, 𝜏𝑘 time constant in weeks, 𝜇𝛼,𝑘 mean of the 

initial distribution of the FM-UE in the logistic space, 𝜎𝛼,𝑘  standard deviation of the initial distribution of the 

FM-UE in the logistic space. 

https://github.com/rickvandervliet/Bayesian-Proportional-Recovery
https://emcbiostatistics.shinyapps.io/LongitudinalMixtureModelFMUE/
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The first FM-UE had been measured within the first 72 hours for 53% of patients, within the first 

week for 76% of patients and within the first two weeks for 93% of patients.  

The longitudinal mixture model of FM-UE recovery identified five different subgroups, 

with a residual error standard deviation 𝜎𝜖  of 3.9 95%ETI=[3.7 4.0] points on the FM-UE, 

corresponding to a variance explained of 0.97 95%ETI=[0.97 0.98] (See Figure 1 and Table 1). 

Patient characteristics (age, gender, and handedness) were comparable between subgroups. 

Baseline clinimetric scores correlated with the recovery coefficient as expected (Table 2), that is, 

more favorable clinimetric scores were associated with higher recovery coefficients. For 

example, subgroup five, with the highest recovery coefficient, had the lowest score on the NIHSS, 

and the highest scores on the motricity index and the finger extension item of the FM-UE, while 

the opposite was true for subgroup one. 
The number of patients included in the cross-validation increased with time poststroke 

as more patients with a baseline FM-UE became available (see Figure 2A). In addition, the median 

number of measurements per patient increased from two measurements at one week poststroke 

until five measurements eight weeks poststroke (see Figure 2B). Median future recovery, defined 

as endpoint FM-UE – last available FM-UE for each patient, decreased with time poststroke from 

10.0 IQR=[3.0 26.3] until 2.0 IQR=[0.0 8.0] at 12 weeks poststroke (see Figure 2C). Reliability of 

endpoint FM-UE and ΔFM-UE predictions increased with time poststroke and was higher for 

endpoint FM-UE than for ΔFM-UE. The median absolute error for the predicted endpoint FM-UE 

was 4.8 IQR=[1.3 12.8] at one week poststroke and 4.2 IQR=[1.3 9.8] at two weeks poststroke 

(see Figure 2D), while the mean correlation between predicted and observed FM-UE was 0.84 

95%ETI=[0.83 0.84] at one week poststroke and 0.86 95%ETI=[0.86 0.87] at two weeks 

poststroke (see Figure 2F). The median absolute error for the predicted ΔFM-UE was 5.2 IQR=[1.7 

12.9] at one week poststroke and 4.8 IQR=[1.7 11.0] at two weeks poststroke (see Figure 2E), 

while the mean correlation between predicted and observed ΔFM-UE was 0.68 95%ETI=[0.67  

FM-UE recovery cluster Poor Moderate Good 

Subgroup 1 2 3 4 5 

Patients (#) 111 [97 120] 56 [49 66] 44 [37 57] 72 [54 94] 126 [104 146] 

Age (y) 63 [42 93] 65 [43 86] 60 [28 85] 64 [38 85] 66 [33 86] 

Male (%) 56 58 53 53 47 

Right-handed (%) 90 89 92 90 95 

Dominant hand affected 

(%) 

27 46 52 49 43 

Bamford LACI-PACI-TACI 

(%) 

28 47 25 50 37 13 55 31 14 70 22 8 64 26 9 

Alteplase treatment (%) 29 18 24 15 18 

NIHSS 13 [6 21] 8 [2 18] 9 [2 18] 5 [1 18] 5 [0 14] 

Motricity index 5 [0 34] 28 [0 84] 23 [0 92] 55 [0 100] 66 [0 100] 

Shoulder abduction (%) 23 69 51 94 95 

Finger extension (%) 2 24 24 69 88 

Table 2. Baseline patient clinimetric scores. Subgroup mean clinimetric scores with 95%ETIs calculated 

per subgroup over all samples. LACI = lacunar anterior circulation infarction, PACI = partial anterior 

circulation infarction, TACI = total anterior circulation infarction. 
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0.69] at one week poststroke and 0.71 95%ETI=[0.71 0.72] at two weeks poststroke (see Figure 

2F). 

Based on the recovery coefficients (𝑟𝑘), time constants (𝜏𝑘), and initial distributions 

(𝜇𝛼,𝑘  and 𝜎𝛼,𝑘), we organized the five subgroups into three main FM-UE recovery clusters with 

poor (subgroup one), moderate (subgroups two and three) and good (subgroups four and five) 

recovery profiles (See also Tables 1-2) Mean accuracy of the FM-UE recovery cluster assignment 

was 0.79 95%ETI=[0.78 0.80] at one week poststroke and 0.81 95%ETI=[0.80 0.82] at two weeks 

(see Figure 2G). Positive predictive value was high (> 0.9) for the good FM-UE recovery cluster 

as early as one week poststroke (see Figure 2H) and low to modest for the poor and moderate 

FM-UE recovery cluster at week one (0.66 95%ETI=[0.63 0.68] and 0.50 95%ETI=[0.42 0.57], 

respectively) and week two (0.72 95%ETI=[0.70 0.73] and 0.61 95%ETI=[0.57 0.64], 

respectively). The miss rate was lower than 0.1 for the poor and moderate FM-UE recovery 

cluster from week one onwards, while the miss rate for the moderate cluster was much higher at  

one week (0.74 95%ETI=[0.68 0.79]) and two weeks poststroke (0.63 95%ETI=[0.60 0.65]) (see 

Figure 2I). 

  

 
Figure 1. Longitudinal mixture model of FM-UE recovery. A. FM-UE recovery data of the 412 ischemic 

stroke patients in our dataset. Individual patients are color-coded according to the subgroup they were 

assigned to most by the longitudinal mixture model of FM-UE recovery. The average subgroup recovery 

patterns are shown in bold. B-D. Estimated model parameters for the five different subgroups: subgroup 

assignment probability (B), recovery coefficient (C), time constant (D), initial distribution of the FM-UE (E). 

Whiskers indicate 95%ETIs. 
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FM-UE data for typical patients with model-based predictions of FM-UE recovery and 

FM-UE recovery clusters are shown in Figure 3. This figure illustrates how the credible intervals 

of the predictions decrease as more measurements become available and how individuals can 

initially be misclassified in terms of their FM-UE recovery cluster. Our prediction algorithm is 

available through a web-based application (Shiny App) which can be accessed on: 

https://emcbiostatistics.shinyapps.io/LongitudinalMixtureModelFMUE/. This web-based 

application requires FM-UE scores and measurement dates and outputs predicted FM-UE profiles 

with credible intervals as well as the most likely FM-UE recovery cluster. 

 

  

Figure 2. Cross-validation of model predictions. A. Number of patients who had at least one 

measurement at a specific time post stroke and were therefore included in the cross-validation. B. Median 

number of measurements per patient available for cross-validation at a specific time post stroke. Error bars 

indicate 95%ETI's across patients with at least one measurement. Whiskers represent 1.5 times the 

interquartile range; outliers not shown. C. Future recovery, defined as endpoint FM-UE – last available FM-

UE for each patient at a specific time post stroke. D-E. Boxplot of the absolute error across all 412 patients 

times 100 samplings of the endpoint FM-UE (D) and the ΔFM-UE (E). Whiskers represent 1.5 times the 

interquartile range; outliers not shown. F. Correlation between predicted and observed FM-UE (blue 

circles) and ΔFM-UE (red triangles) with error bars indicating the 95%ETIs over the 100 samplings. G-I. 

FM-UE recovery cluster assignment accuracy (G), positive predictive value (H) and miss rate (I) with error 

bars indicating the 95%ETIs across the 100 samplings. 
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Discussion 

We have developed a longitudinal mixture model of FM-UE recovery which describes the time 

course of FM-UE recovery after a first-ever ischemic stroke and does not suffer from 

mathematical coupling.19,20 Based on this model, we analyzed a large FM-UE dataset of 412 first-

ever ischemic stroke patients collected in prospective cohorts. Subsequently, we identified five 

subgroups, which we organized in three clinically relevant clusters of poor, moderate, and good 

FM-UE recovery. Based on a cross-validation, our paper provides first-ever estimates of 

predictability of endpoint FM-UE between 3 and 6 months poststroke, as well as subgroup 

assignment as a function of time poststroke. These results contribute to the understanding of 

recovery patterns in the first six months after stroke. 

Our current longitudinal mixture model of FM-UE recovery, as opposed to the 

proportional recovery model, cannot be confounded by mathematical coupling. Hope et al. 

showed that the correlations between baseline FM-UE score (distribution X) and the amount of 

recovery defined as endpoint FM-UE – baseline FM-UE (distribution Y-X) found in proportional 

recovery research could be inflated by mathematical coupling.19 However, since mathematical 

coupling applies to correlations of data points (baseline and endpoint FM-UE) and not to models 

 
Figure 3. Model FM-UE predictions for three typical patients. Model FM-UE predictions for example 

patients from the optimal (given all FM-UE data) poor (A-C), moderate (D-F) or good (G-I) FM-UE recovery 

cluster. The left column illustrates predictions made using data available at two weeks post stroke, the second 

column at four weeks post stroke and the final column at three months post stroke. Open circles represent 

data used for prediction modeling. Filled markers indicate the actual endpoint FM-UE. The prediction is 

shown as the mean profile (dark line) with 68% credible intervals (dark shaded area) and 95% credible 

intervals (light shaded area). The figure titles and the colors of the credible intervals (poor (purple), 

moderate (orange) or good (green)) indicate the predicted FM-UE clusters as well as the probability of cluster 

assignment. 
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of longitudinal data, the recovery coefficients in our paper represent non-confounded measures 

of recovery as a proportion of potential recovery. In addition, mathematical coupling does not 

apply to the outcomes of the cross-validation as we report correlations between the model 

predictions and the observed values for endpoint FM-UE and ΔFM-UE rather than correlations of 

the form X and Y-X.  

In contrast to studies relying on the proportional recovery rule, which have identified 

two subgroups of recoverers (fitters) and non-recoverers (non-fitters),1,2,15–17,36 our model 

distinguishes five subgroups, differing in the amount and rate of recovery as well as the 

distribution of the FM-UE early after stroke. Patients in subgroup one, containing approximately 

30% of patients, have a low baseline FM-UE and a small recovery coefficient resulting in a poor 

outcome. These patients seem to overlap with the non-recovers from the proportional recovery 

rule. Subgroups two to five refine the recovers in a more granular pattern. The majority of the 

recoverers (subgroups 4 and 5) regain close to 0.9 of their potential recovery in the first weeks 

after stroke, which is on the high end of previous estimates 0.55-0.85.1,2,15–17,36, whereas the 

recoverers in subgroups 2 (0.45) and 3 (0.86) also regain a fair amount of their potential recovery 

but over a much longer time frame. Since previous studies have identified disruption of the 

corticospinal tract as the essential difference between recoverers and non-recoverers,15–18 we 

expect a similar contrast between patients from subgroup one and patients from subgroups two 

to five. Indeed, the baseline Bamford classification shows a strikingly higher percentage of total 

anterior circulation infarctions (TACI) in subgroup one compared with the other four subgroups. 

Further definition of the structural and possibly also the genetic characteristics of the five 

subgroups might lead to a better understanding of FM-UE recovery. 

Our study provides first-ever cross-validated estimates of individual endpoint FM-UE 

and ΔFM-UE prediction errors. Theoretically, it is possible to predict endpoint FM-UE at baseline 

using the proportional recovery rule as well. One approach could be to first identify recoverers 

and non-recoverers using measurements of corticospinal intactness (TMS16 and DTI15) and then 

estimate endpoint FM-UE for the recoverers as the baseline FM-UE plus a proportional recovery 

term and for the non-recovers as just the baseline FM-UE. However, even though TMS37,38 and 

DTI17,39 have been validated as markers of recovers and non-recoverers, the absolute error of 

predicted FM-UE or ΔFM-UE scores for a population of first-ever ischemic stroke patients based 

on this combined approach has never been cross-validated. We found the median absolute error 

of endpoint FM-UE to be 4.8 at the first week poststroke and 4.2 at the second week poststroke, 

which is at the low end of what is deemed to be a clinically important difference (4.25 to 7.25)40. 

Therefore, our model can provide a satisfactory prognosis to patients as early as one week 

poststroke. In the future, further reduction in prediction errors may be achieved by adding (1) 

dynamical covariates (covariates that also change over time) such as the NIHSS and (2) 

biomarkers of corticospinal integrity (e.g., TMS16 or DTI15) to improve the accuracy of subgroup 

assignment early after stroke. Interested researchers can apply our model to predict FM-UE 

recovery and the FM-UE recovery cluster by accessing a web-based application at 

https://emcbiostatistics.shinyapps.io/LongitudinalMixtureModelFMUE/. This application 

requires one or multiple FM-UE measurements (dates and scores) from a single patient to predict 

upper limb recovery within the first six months. Predictions are presented as the expected 

recovery with 68% and 95% credibility intervals to express uncertainly.  

Currently, we do not yet recommend clinicians to implement our model in clinical 

practice nor to provide FM-UE recovery predictions based on our model. First, future studies 

should externally validate the model with different stroke rehabilitation datasets. Outcome of 
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these studies might also be that the precision of the model needs to be increased (using some of 

the recommendations listed above) before clinical implementation is realistic. Second, guidelines 

need to be developed on responsible communication of stroke recovery prognoses to patients 

and health care professionals, with special emphasis on the uncertainly of the model predictions. 

Finally, it is necessary to investigate whether knowledge of the FM-UE prognosis actually 

improves rehabilitation efficiency or outcome. 

Based on the five subgroups identified by the model, we defined poor, moderate and 

good FM-UE recovery clusters (similar to the lower, middle and upper band groups identified in 

the classic descriptive cohort study of Garraway and colleagues almost 40 years ago41). These 

clusters could, in the future, be relevant for personalizing therapeutic interventions as well as 

supporting decisions on the discharge policy after admission to acute and subacute stroke units. 

For example, patients in the poor FM-UE recovery cluster (subgroup one) will show very limited 

motor recovery and might, therefore, benefit from learning compensation strategies7 or early 

started neuropharmacological interventions42 aimed at promoting neural repair.9 In contrast, 

patients in the moderate FM-UE recovery cluster (subgroups two and three) recovery reasonably 

well over an extended period, and might benefit from early started intensive therapeutic 

interventions aimed at behavioral restitution.7 Patients in the good FM-UE recovery cluster 

(subgroups four and five) are expected to require support in regaining advanced skills such as 

writing.7  

In a research setting, the present model can be used to select patients for interventions 

designed for a specific FM-UE recovery cluster (e.g., interventions designed specifically for the 

moderate recovery cluster). Patient selection can be achieved by predicting the cluster for a 

patient based on the patient's early FM-UE score(s) using the web-based application of our model 

(see link above). The efficiency of this approach depends critically on the positive predictive value 

and the miss rate of cluster assignment. Positive predictive value in this context indicates the 

proportion of patients from a predicted cluster who have been assigned to their optimal cluster 

and will therefore receive the personalized intervention specifically designed for their cluster. In 

the current model, the positive predictive value is high for the good FM-UE recovery cluster, fair 

for the poor cluster and relatively low for the moderate cluster. We therefore expect that an 

intervention designed for good recovers will be regularly offered to the right patients, while an 

intervention designed for moderate recovers will be regularly offered to the wrong patients. The 

miss rate is the proportion of incorrectly assigned patients from an optimal cluster who therefore 

receive a personalized intervention designed for another cluster. We found that the miss rate is 

low for the good and poor cluster, and therefore expect that patients from these clusters will often 

get the intervention designed for their cluster, and high for the moderate cluster, and therefore 

expect that patients from this cluster will often an intervention designed for another cluster. 

Identification of patients in the poor and moderate FM-UE recovery cluster might benefit from 

additional repeated FM-UE measurements over time. Of particular interest would be to design a 

decision algorithm which identifies patients in whom the cluster prediction is uncertain, and 

advises on specific measurements to achieve sufficient accuracy. An additional option to increase 

assignment accuracy would be to incorporate additional clinical markers as explained above.  

Another future application of the longitudinal mixture model of FM-UE recovery could 

be to detect intervention effects in recovery and rehabilitation trials with more statistical 

power.14 To estimate an intervention effect, the model would need to be amended with an 

additional term to capture differences in the extent or possibly also the rate of recovery. This 

amended model could be fitted to serially collected clinical data to establish the added value of 
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an innovative therapeutic intervention above usual care either for the entire study population or 

for the three FM-UE recovery clusters separately. Given that all serial measurements are 

analyzed, rather than just the baseline and endpoint FM-UE, as is true for stroke recovery and 

rehabilitation trials, this approach could significantly promote study power. Studies investigating 

therapies specifically designed for either poor, moderate, or good stroke recoverers could 

additionally use the model's predicted FM-UE recovery cluster early after stroke to select 

patients, as explained above. This way, the proportion of patients from a certain FM-UE recovery 

cluster and the power to detect an intervention effect in that FM-UE recovery cluster will both 

increase, with the positive predictive value determining study homogeneity and the miss rate the 

study inclusion efficiency.43,44 Further quantification of these approaches will be one of the main 

targets of our future work. 

Limitations of the present study include (1) the lack of severely affected patients with a 

hemiparesis in the dominant hand, (2) the restricted generalization to patients with upper limb 

motor impairment after a first-ever ischemic stroke, (3) the focus on stroke recovery rather than 

deterioration. The language center is localized in the left hemisphere for most left-handed and 

right-handed people.45 Therefore, severely affected patients with left hemisphere lesions often 

have language impairments that hinder providing informed consent and therefore participating 

in a clinical study. This explains the low percentage of patients with a hemiparesis on the 

dominant side in subgroup one (severely affected patients). In addition, we cannot conclude 

whether hemorrhagic stroke patients have similar recovery patterns, or investigate how 

spontaneous neurological recovery is affected by recurrent stroke. Finally, our model is not 

equipped to predict FM-UE deterioration after stroke. As recently emphasized, the next step is to 

start an international collaboration for building datasets large enough to address these questions 

and move recovery and rehabilitation studies forward.43 These databases could also be used to 

model recovery of lower limb impairment3,4 as well as other non-motor modalities such as 

speech6 and visuo-spatial neglect5 after stroke.21 
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3.2 Improving statistical power of subacute upper limb motor rehabilitation 

trials 
Rick van der Vliet, Gert Kwakkel, Eleni-Rosalina Andrinopoulou, Rinske Nijland, Gerard M. 

Ribbers, Maarten A. Frens, E.E.H. van Wegen, Carel G.M. Meskers and Ruud W. Selles 

 

Abstract 

Objective: Powering trials is a key challenge considering current weak evidence for the 

effectiveness of interventions to improve motor recovery early after stroke. The goal of this paper 

was to compare the power to detect a difference on the Fugl-Meyer assessment of the upper 

extremity (FM-UE) between a longitudinal mixture model and a cross-sectional non-parametric 

(Mann-Whitney U) test, and investigate the effect of measurement time and intervention onset 

variability, number of repeated measurements, and patient selection based on predicted 

recovery. 

Methods: We amended a longitudinal mixture model of stroke recovery to account for 

participation in a stroke rehabilitation trial. Using this amended model, we simulated FM-UE data 

of patients in the first six months poststroke and calculated the statistical power to detect a 4.25 

point FM-UE difference. 

Results: The number of patients needed to obtain 90% power dropped approximately sevenfold 

from 510 patients for the cross-sectional test to 70 patients for the longitudinal mixture model. 

Between-patient variability in measurement dates and intervention onset did not influence study 

power. Inclusion of more repeated measurements was associated with higher study power. 

Patient selection based on the predicted FM-UE recovery cluster increases the power to detect 

an intervention effect in that specific cluster, at the cost of falsely excluding patients when the 

predicted cluster is wrong. 

Interpretation: A longitudinal mixture model can significantly reduce the minimum sample size 

of stroke rehabilitation trials and will, therefore, be useful for designing future stroke 

rehabilitation trials and for re-analyzing already completed stroke rehabilitation trials.  
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Introduction 
The evidence for effectiveness of therapeutic interventions aimed at enhancing motor recovery 

early poststroke is still weak.1–3A major reason is that 97% of all trials in stroke rehabilitation are 

underpowered to detect effect sizes of 5 to 10%.1 For example, around 300 patients with subacute 

stroke are required to obtain 80% power for an intervention effect of 6.6 points on the Fugl Meyer 

Upper Extremity score (FM-UE).4 However, since (1) spontaneous biological recovery is the main 

driver of improvement on the FM-UE in the subacute phase after stroke,5 and (2) spontaneous 

biological recovery is known to vary from poor to good between groups of stroke patients,6–9 the 

cross-sectional approach of comparing endpoint FM-UE or FM-UE recovery from baseline to 

endpoint (ΔFM-UE) between intervention and usual care groups may not be optimal. Therefore, 

it could be more appropriate to investigate (1) longitudinal modeling approaches, which better 

capture non-linear upper extremity recovery after stroke8 and (2) selection techniques for 

creating patient populations with similar recovery potential, as also recently suggested by the 

Stroke Recovery and Rehabilitation Roundtable group.4,10–12 

Recently, we have developed a longitudinal mixture model of FM-UE recovery,9 based 

on the principles of the proportional recovery rule,6–8 which could be used both for estimating 

intervention effects on FM-UE recovery as well as selecting patients based on their predicted FM-

UE recovery cluster (poor, moderate or good recovery). This model describes the course of FM-

UE recovery in the first six months after a first-ever ischemic stroke based on (1) a proportional 

relation between observed recovery over time and potential recovery at baseline (longitudinal), 

and (2) the existence of clinically distinct subgroups of FM-UE recovery (mixture). Both concepts 

were implemented in an exponential recovery function with subgroup-specific model parameters 

for the amount and rate of recovery, and the distribution of the baseline FM-UE. In a FM-UE 

dataset of 412 first-ever ischemic stroke patients, five subgroups were identified with distinct 

recovery profiles. The five subgroups were grouped in three FM-UE recovery clusters of poor 

(~30% of patients, almost no recovery), moderate (~25% of patients, moderate recovery over 

the first three months) and good recovery (~45% of patients, almost full recovery in the first 

month). With a residual error as low as 3.9 points on the FM-UE, this model may improve the 

precision of effect size estimates. In addition, cluster assignment accuracy of the poor, moderate 

and good clusters was as high as 0.79 at one week poststroke, implying that model-based 

selection of patients could help select stroke patients in future stroke rehabilitation trials to 

further promote study power.5,13 

The goals of this paper are to study the effects on study power of (1) FM-UE analysis 

with either the longitudinal mixture model or a cross-sectional non-parametric (Mann-Whitney 

U) test (2) between-patient variability in measurement dates and intervention onset, (3) the 

number of repeated measurements, and (4) patient selection based on the predicted FM-UE 

recovery cluster (poor, moderate or good) for estimating cluster-specific intervention effects. To 

this end, we amended the longitudinal mixture model of FM-UE recovery to account for 

participation in a stroke rehabilitation trial and simulated FM-UE data of patients in the first six 

months poststroke. Using simulated patient data, we calculated the power to detect the lower 

limit for a clinically important difference on the FM-UE (4.25 points).14 

 

Materials and methods 

We first amended our previously-reported longitudinal mixture model of FM-UE recovery9 (see 

Longitudinal mixture model of FM-UE recovery) for application in the design and statistical 

analysis of a stroke rehabilitation trial (see: Amended longitudinal mixture model of FM-UE 
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recovery). Using this amended model, we simulated 1000 longitudinal datasets of patients 

participating in a stroke rehabilitation trial by assuming values for, amongst others, the size of 

the intervention effect, the number of repeated measurements, the timing of measurements 

poststroke, and the number of patients (see: Patient data simulation). These datasets were used 

to calculate the power of different simulated study designs (see Table 1) based on (1) a cross-

sectional nonparametric (Mann-Whitney U) test, (2) a longitudinal model analysis without 

patient selection or (3) a longitudinal model analysis with patient selection based on the 

predicted FM-UE recovery cluster (poor, moderate or good) (see: Power analyses). These 

different steps are outlined in more detail below.  

 

Longitudinal mixture model of FM-UE recovery 

Details of the longitudinal mixture model of FM-UE recovery have been reported extensively.9 In 

brief, we included FM-UE data from 412 first-ever ischemic stroke patients collected in four 

different prospective cohort studies: the EXPLICIT, 15 EPOS,16 4D-EEG17 and EXPLORE studies. 

We developed a longitudinal model of FM-UE recovery after stroke, based on the principles of 

proportional recovery, which are (1) a proportional relation between observed recovery over 

time and potential recovery at baseline and (2) the presence of distinct subgroups of FM-UE 

recovery (mixture).6–8 Since FM-UE recovery follows an exponential pattern,5 we chose an 

exponential function as the time-dependent element of the model, with the asymptote defined as 

a proportion of the potential recovery and the time constant expressed in weeks poststroke. In 

addition, we included an intercept which represents the baseline FM-UE immediately after 

stroke:  

 

 
𝜇𝑖𝑗|𝑘 = 𝛼𝑖|𝑘 + 𝑟𝑘 ∗ (66 − 𝛼𝑖,𝑘) ∗ (1 − 𝑒

−
𝑡𝑖𝑗

𝜏𝑘 ) 
(1) 

 𝑦𝑖𝑗|𝑘  ~ 𝑁(𝜇𝑖𝑗|𝑘 , 𝜎𝜖
2) (2) 

 
𝛼𝑖|𝑘  =  

66

1 +𝑒𝑥𝑝 (−𝑁(𝜇𝛼,𝑘 , 𝜎𝛼,𝑘
2 ))  

  
(3) 

 𝑘 ~ 𝐶𝑎𝑡(𝐾, 𝑝𝑘) (4) 

 

With 𝑖 the patient identification number [1 − 𝐼], 𝑗 the measurement identification number [1 −

𝐽], 𝑘 the subgroup identification number [1 − 𝐾] and 𝑡𝑖𝑗 the measurement date in weeks 

poststroke. The subgroup-specific model parameters are the recovery coefficient 𝑟𝑘 (reflecting 

the amount of recovery), the time constant 𝜏𝑘  (reflecting the rate of recovery), the mean and 

standard deviation of the logistic normal distribution (𝜇𝛼,𝑘 and 𝜎𝛼,𝑘
2 ) of the patient-specific 

baseline FM-UE 𝛼𝑖|𝑘, and the subgroup assignment probability 𝑝𝑘. 𝜎𝜖
2 is the standard deviation of 

the residual error. As reported earlier,9 we identified five distinct subgroups with different 

recovery parameters (𝑟1 = 0.09, 𝜏1 = 5.3; 𝑟2 = 0.46, 𝜏2 = 10.1; 𝑟3 = 0.86, 𝜏3 = 9.8; 𝑟4 = 0.89, 

𝜏4 = 2.7; 𝑟5 = 0.93, 𝜏5 = 1.2), with a residual error standard deviation of 3.9 points on the FM-

UE (95%ETI = [3.7 4.0]). We defined poor (subgroup 1), moderate (subgroups 2 and 3) and good 

(subgroups 4 and 5) FM-UE recovery clusters for further analysis. 
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Amended longitudinal mixture model of FM-UE recovery 

We amended the longitudinal mixture model of FM-UE recovery with a study-specific exponential 

function to estimate study group effects on the amount of recovery 𝜃𝑔𝑖
 for patients in the usual 

care group 𝜃1 (covering all differences between the usual care group and the original population, 

including a placebo effect) and for patients in the intervention group 𝜃2 (covering all differences 

between the intervention group and the original population, including a placebo and an 

intervention effect). The intervention effect 𝛥𝜃 is calculated by subtracting the usual care group 

effect 𝜃1 from the intervention group effect 𝜃2. For the intervention group effect 𝜃2, we either 

calculated an estimate for all three clusters combined (𝜃2,𝐴𝑙𝑙) or for the three clusters separately 

(𝜃2,𝐶𝑘
): 𝜃2,𝑃𝑜𝑜𝑟, 𝜃2,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 and 𝜃2,𝐺𝑜𝑜𝑑 . For the time constants of the study-specific exponential 

function, we used the same time constants 𝜏𝑘  describing the spontaneous recovery, which 

assumes that the study group effects manifest with different rates for the different subgroups. 

Sensitivity analyses were performed to test the impact of this assumption (see Patient data 

simulation). In addition, we corrected for the intervention start date poststroke by shifting the 

study-specific exponential function with a patient-specific (𝑖) intervention start date in weeks 

𝛥𝑡𝑖: (𝑡𝑖𝑗 − 𝛥𝑡𝑖 , 0) . The mathematical expression for the mean of the model 𝜇𝑖𝑗|𝑘 becomes: 

 

 
𝜇𝑖𝑗|𝑘 = 𝛼𝑖|𝑘 + 𝑟𝑘 ∗ (66 − 𝛼𝑖|𝑘) ∗ (1 − 𝑒

−
𝑡𝑖𝑗

𝜏𝑘 ) + 𝜃𝑔𝑖
∗ (1 − 𝑒

−
(𝑡𝑖𝑗−𝛥𝑡𝑖,0) 

𝜏𝑘 ) 
(5) 

 

With 𝑔𝑖  the study group [1 2] for patient 𝑖 and 𝜃𝑔𝑖
 the study group effect. Furthermore, we 

modeled 𝑦𝑖𝑗|𝑘 with a t-distribution rather than a normal distribution to increase the robustness 

of the analysis in small datasets: 

 

 𝑦𝑖𝑗|𝑘  ~ 𝑇(𝜇𝑖𝑗|𝑘 , 𝜎𝜖
2, 𝑑𝑓) (6) 

With 𝑑𝑓 the degrees of freedom. 

 

Patient data simulation 

We generated 1000 simulated datasets, each containing 1000 patients with similar 

characteristics as our initial dataset of 412 first-ever ischemic stroke patients. To do so, we 

inserted the means of the model parameters (𝑟𝑘, 𝜏𝑘 , 𝜇𝛼,𝑘, 𝜎𝛼,𝑘, 𝜎𝜖) estimated on the original 

cohort9 in equations 3-6, with the degrees of freedom 𝑘 set to 103. We limited the analysis to 

patients with a clinically-relevant paresis just after stroke, by restricting the baseline FM-UE 𝛼𝑖|𝑘 

to scores below 53,18 and adjusted the subgroup assignment probabilities to account for this cut-

off value. The adjusted subgroup assignment probabilities were: 𝑝1 = 0.31, 𝑝2 = 0.15, 𝑝3 = 0.12, 

𝑝4 = 0.17 and 𝑝5 = 0.25. Furthermore, we limited 𝜇𝑖𝑗|𝑘 and 𝑦𝑖𝑗|𝑘   to the range of the FM-UE (0-

66). 

The overall (𝛥𝜃𝐴𝑙𝑙) and cluster-specific intervention effects (𝛥𝜃𝑃𝑜𝑜𝑟 , 𝛥𝜃𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒  and 

𝛥𝜃𝐺𝑜𝑜𝑑) were set to 4.25, which is the lower limit for a clinically important difference on the FM-

UE.14 Furthermore, the intervention start date 𝛥𝑡𝑖 was set to 3 weeks poststroke and the 

measurement dates 𝑡𝑖𝑗 to 1, 2, 4, 12 and 26 weeks poststroke. For some study designs, we added 

between-patient variability to the intervention onset 𝛥𝑡𝑖 and the measurement dates 𝑡𝑖𝑗 , by 

randomly shifting the dates maximally one week forward or backward with uniform probability: 

𝑈(−1,1). Finally, we performed sensitivity analyses for the assumptions on (1) the recovery rate 

of the intervention effect by setting the time constants used in data simulation to fixed values 
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(two weeks or ten weeks) rather than subgroup-specific values and (2) the residual error of the 

model 𝜎𝜖  by simulating data with 25% more residual error than found in the original dataset. 

Details of the parameters used for each study design are presented in Table 1. 

For the longitudinal model analyses, we randomly included 10 to 140 patients (half 

from the usual care group and half from the intervention group) with increments of 10 patients 

from the pool of 1000 patients for each of the 1000 datasets. In the patient-selection designs, 

patient inclusion was limited to those patients who had been assigned to a certain FM-UE 

recovery cluster (poor, moderate or good) based on their FM-UE measurements at one or two 

weeks poststroke (see below). For the cross-sectional analysis, the maximum number of patients 

was set to 700 patients. 

Power analyses 

We compared the effects of different ways of analyzing the simulated FM-UE trial data on study 

power. For the cross-sectional analysis, the endpoint FM-UE of the intervention group and usual 

care group were compared with a non-parametric, two-tailed, Mann-Whitney U-test, as the 

distribution of the endpoint FM-UE was non-normal in the 412 ischemic stroke patients 

described before9 (Kolmogorov-Smirnov test: D(233) = 0.229, p = 3.58E-18). The cut-off for the 

Comparison Fig Design Model Cluster 

specific 

Patient 

select 

Timing 

var. 

𝝉 𝝈𝝐 𝒕𝒊𝒋 

  𝒕𝒊𝒋 𝜟𝒕𝒊   1 2 4 12 26 

Reference 1-4 1  L No No No No 𝜏𝑘 3.9      

Model 1 2 C - - No No 𝜏𝑘 3.9      

Between-

patient timing 

variability 

2 3 L No No Yes No 𝜏𝑘 3.9      

4  L No No Yes Yes 𝜏𝑘 3.9      

Repeated 

measurement 

2 5 L No No No No 𝜏𝑘 3.9      

Patient 

selection 

3 6 L Yes No No No 𝜏𝑘 3.9      

7 L Yes Yes No No 𝜏𝑘 3.9      

8 L Yes Yes Yes No 𝜏𝑘 3.9      

9 L Yes Yes Yes No 𝜏𝑘 3.9      

Assumptions 4 10 L No No No No 2 3.9      

11 L No No No No 10 3.9      

12 L No No No No 2 3.9      

13 L No No No No 10 3.9      

14 L No No No No 𝜏𝑘 4.8      

Table 1. Simulated study designs. Details of the simulated study designs. The comparison column indicates 

which study designs are used to investigate the influence of (1) the model, (2) between-patient variability in 

measurement dates and intervention onset, (3) repeated measurements, (4) patient selection based on the 

predicted stroke recovery cluster, and (5) assumptions on the recovery rate of the intervention and on the 

model residual error on the power to detect a 4.25 point FM-UE difference. Green filling highlights the 

essential parameter changes for a certain comparison. For the measurement dates columns, filled boxes 

indicate a measurement date was included in the analysis of the intervention effect, diagonally striped boxes 

signal a measurement date was also used for clustering-based patient selection. With L the longitudinal 

mixture model, C the cross-sectional model, 𝜏 the time constant used for data stimulation, 𝜏𝑘 the subgroup-

specific time constants and 𝜎𝜖 the residual error standard deviation. 
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p-value was 0.05. We assessed the contribution of the non-parametric test by repeating the 

analysis with a parametric t-test and found lower study power for the parametric test (data not 

shown). 

For the longitudinal mixture model analysis without patient selection, the amended 

model from equations 3-6 with the mean model parameters 𝑟𝑘, 𝜏𝑘 , 𝜇𝛼,𝑘, 𝜎𝛼,𝑘 derived from Van der 

Vliet et al.9 was fitted to the study dataset. The intervention group effects 𝜃2 were estimated 

either for the entire intervention group 𝜃2,𝐴𝑙𝑙 or for the three clusters separately (𝜃2,𝑃𝑜𝑜𝑟, 

𝜃2,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, and 𝜃2,𝐺𝑜𝑜𝑑). The usual care group effect 𝜃1 was always calculated in the entire usual 

care group. 

 

 𝜃1, 𝜃2,𝐴𝑙𝑙 , 𝜃2,𝑃𝑜𝑜𝑟 , 𝜃2,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 , 𝜃2,𝐺𝑜𝑜𝑑  ~ 𝑁(0,103) (7) 

 

The standard deviation and degrees of freedom were estimated as: 

 

 𝜎𝜖  ~ 1/𝛤(10−3, 10−3) (8) 

 𝑑𝑓 ~ 1/𝛤(10−3, 10−3) (9) 

 

For the longitudinal mixture model analysis with patient selection, patients were assigned at 

baseline to one of the clusters (poor, moderate or good), using the longitudinal mixture model 

from equation (1-4) with the model parameters from van der Vliet et al.9. Next, the amended 

model (equations 3-6) was fitted to estimate cluster-specific intervention effects in the selected 

populations. The primary parameter was the intervention effect specific to the cluster-of-interest. 

For example, if patients from the poor FM-UE recovery cluster were selected, 𝛥𝜃𝑃𝑜𝑜𝑟  would be 

the primary parameter.  

For all longitudinal analyses, power was calculated as the percentage of simulated trials 

wherein the lower border of the 95%ETI of the intervention effect 𝛥𝜃 was larger than zero. 

Additional outcome parameters were: (1) the number of patients needed to obtain 90% power 

and (2) the positive predictive value and the miss rate for the predicted cluster in the patient 

selection designs, presented as the mean with 95%ETIs calculated over all simulations. 

 
Figure 1. Comparing the longitudinal model to a cross-sectional test. A-B. Power plots (A) and 90% 

power bar graphs (B) for the cross-sectional model, shown in black, and the longitudinal model, shown in 

blue. The numbers in the plots refer to the study designs in Table 1. 
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Markov-chain Monte-Carlo sampling 

We followed the Bayesian framework and performed all statistical analyses using Markov-chain 

Monte-Carlo sampling implemented in JAGS 4.3.0 (available from: 

https://sourceforge.net/projects/mcmc-jags/). Matlab 2015a (MathWorks, Natick, 

Massachusetts, United States) and Matjags (available from: 

http://psiexp.ss.uci.edu/research/programs_data/jags/) were used for data and sample 

processing. Settings for data generation were: 102 burn-in samples and 103 posterior distribution 

samples and one chain. Settings for estimating the intervention effect and patient clustering were: 

103 burn-in samples and 103 posterior distribution samples with five chains. All scripts can be 

accessed at: https://github.com/rickvandervliet/Bayesian-Proportional-Recovery. In addition, 

we have created an online application to predict individual recovery profiles and FM-UE recovery 

cluster assignments in a user-friendly format at 

https://emcbiostatistics.shinyapps.io/LongitudinalMixtureModelFMUE/. These scripts can be 

used to (re-)estimate intervention effects in stroke rehabilitation trials and to perform power 

analyses. 

Results 

The longitudinal mixture model had more power than a cross-sectional non-parametric (Mann-

Whitney U) test to detect an overall intervention effect (see results in Figure 1A-B for study 

designs 1-2 in Table 1). More specifically, the number of patients needed to obtain 90% power 

was reduced more than sevenfold from 510 patients for the cross-sectional non-parametric test 

to 70 patients for the longitudinal mixture model.  

Both between-patient variability of measurement dates as well as between-patient 

variability of intervention onset relative to stroke did not influence study power for the 

longitudinal mixture model simulations (see results in Figure 2A-B for study designs 1, 3 and 4 

in Table 1). In all three study designs, 70 patients were needed to obtain 90% power. Having 

repeated measurements at four time points (at 1, 4, 12 and 26 weeks poststroke) during the six 

month follow-up increased the study power compared to two repeated measurements (at three 

weeks and 26 weeks poststroke) and decreased the number of patients needed for 90% power 

with approximately 40% from 70 to 40 patients (see results in Figure 2C-D for study designs 1 

and 5 in Table 1).  

 
Figure 2. The effect of (1) between-patient variability in measurement dates and intervention onset 

and (2) follow-up on study power. A-B. Power plots (A) and 90% power bar graphs (B) for a study design 

without between-patient variability, illustrated with a solid line, a design with between-patient variability 

of measurement dates, illustrated with a striped line and a design with between-patient variability of 

measurement dates and intervention onset (see Table 1 design 4), illustrated with a dotted line. C-D. Power 

plots (C) and 90% power bar graphs (D) for a limited follow-up design, illustrated with a circular marker, 

and an extensive follow-up design, illustrated with a square marker. 
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The power to detect an intervention effect in a specific FM-UE recovery cluster was 

relatively low in an unselected study population (see Figures 3A-B and Table 1 study design 6), 

due to the fact that the number of patients from each cluster is approximately a third of the total 

number of patients. We found the smallest required sample size for the poor FM-UE recovery 

cluster as it is not affected by ceiling. Patient selection based on the predicted FM-UE recovery 

cluster maximized the proportion of patients from a cluster of interest in a trial and therefore 

increased the power to detect a cluster-specific intervention effect (see Figures 3C-D and Table 1 

study design 7 and Figure 3E for the positive predictive value of the included patients). However, 

patient selection early after stroke comes at the cost of falsely excluding patients when the 

predicted cluster is wrong, which was mainly an issue in the cluster of moderate recovery (see 

Figure 3F for the miss rate). Better performance for the cluster of moderate recovery can be 

obtained by delaying patient selection until week two (see Figures 3E-F and Table 1 study design 

8). In contrast, having two measurements to predict the FM-UE recovery cluster (at week one and 

week two; study design 9) rather than one (at week two; study design 8) only slightly improved 

the miss rate (0.41 95%ETI=[0.38 0.44] versus 0.50 95%ETI=[0.47 0.53]) and did not affect the 

positive predictive value (0.76 95%ETI=[0.73 0.79] versus 0.77 95%ETI=[0.73 0.80]) and 

therefore the power (60 patients needed for 90% power). 

Finally, we tested the sensitivity of the power results to violations of the model 

assumptions. Assuming fixed rather than subgroup-specific time constants for the study-specific 

exponential function only marginally affected study power. A fixed long (10 weeks) time constant 

slightly decreased study power whereas a fixed short (2 weeks) time constant slightly increased 

study power (see Figures 4A-B and Table 1 study designs 10-13). Second, increasing the residual 

 
Figure 3. The effect of cluster-based patient selection on study power. A-D. Power plots (A,C) and 90% 

power bar graph (B,D) showing the cluster-specific analyses for the poor FM-UE recovery cluster in red, for 

the moderate FM-UE recovery cluster in orange, and for the good FM-UE recovery cluster in green. Square 

markers indicate an extensive follow-up with patient selection at week 1, diamond markers indicate an 

extensive follow-up with clustering at week 2. Open markers indicate non-selected study populations, filled 

markers selected study populations. E-F. Miss rate and positive predictive value for the predicted cluster at 

week one, or week two compared to the optimal cluster. Error bars represent 95% equal tailed intervals. 
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error of the model compared to the value found by Van der Vliet et al.,9 which simulates a poorer  

model fit, decreased study power (see Figures 4E-F and Table 1 study design 14). 

Discussion 

Proper powering of trials is a key challenge considering current weak evidence for the 

effectiveness of interventions to improve motor recovery after stroke.1–3 The goal of this paper 

was to compare the power to detect a difference on the Fugl-Meyer assessment of the upper 

extremity (FM-UE) between a longitudinal mixture model9 and a cross-sectional non-parametric 

(Mann-Whitney U) test. We amended a longitudinal mixture model of FM-UE recovery to simulate 

FM-UE data of patients in the first six months poststroke and calculated the power to detect a 

4.25 point FM-UE difference. We found that the number of patients needed to obtain 90% power 

drops approximately sevenfold from 510 patients for the cross-sectional test to 70 patients for 

the longitudinal mixture model. Our results will be useful for (1) designing future stroke 

rehabilitation trials, (2) re-analyzing already completed stroke rehabilitation trials. 

 The results of the cross-sectional power analysis presented in this paper are in line with 

earlier results.4 Winters et al. investigated the sample size needed in a stroke rehabilitation trial 

to find an intervention effect 26 weeks after inclusion based on data from the EXPLICT study.4 

Using the power equations and standard deviation of the FM-UE 26 weeks after inclusion (18.47) 

described by Winters et al., we calculate approximately 800 patients would be required to detect 

a 4.25 difference on the FM-UE with a power of 0.9. Our cross-sectional analysis differs from the 

cross-sectional analysis by Winters et al. in that (1) more complex and realistic FM-UE data was 

simulated, (2) non-parametric statistics were used, and (3) comparisons were made at 26 weeks 

 
Figure 4. Testing model assumptions. A-D. Power plots (A, C) and 90% power bar graphs (B, D) for the 

assumptions on the rate of recovery. The solid line shows the results for data simulated with subgroup-

specific time constants (as assumed), the striped line for data simulated with a fixed time constant of two 

weeks and the dotted line for data simulated with a fixed time constant of ten weeks. E-F. Power plot (E) 

and 90% power bar graph (F) for the assumptions on the standard deviation of the residual error. The solid 

line shows the results for data simulated with the model-derived residual error standard deviation, the 

striped line for data simulated with a 25% higher standard deviation. The circular markers indicate a 

limited follow-up, the square markers an extensive follow-up. 
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poststroke rather than 26 weeks after inclusion. Therefore, the 510 patients found in the present 

study diverge from the estimates based on the work by Winters et al.4 

The longitudinal mixture model has a much higher power to detect intervention effects 

than a cross-sectional non-parametric (Mann-Whitney U) test applied to the endpoint FM-UE at 

26 weeks poststroke. More specifically, based on a study design with a limited number of 

repeated measurements (at one week and 26 weeks poststroke), without between-patient 

variability in timing of measurements or treatment start, we found a study sample of 70 patients 

to be sufficient for obtaining 90% power versus a study sample of 510 for the cross-sectional 

analysis. This difference can be explained by (1) the relatively small residual error on the 

longitudinal mixture model compared with the relatively high standard deviation of the endpoint 

FM-UE (23.7 in the original dataset of 412 stroke patients) and (2) incorporation of the baseline 

FM-UE measurement in the analysis.  

Between-patient variability of measurement dates as well as between-patient 

variability in intervention start dates did not impact study power in the mixture model approach. 

Underlying this finding is the incorporation of the exact measurement dates in the longitudinal 

mixture model rather than measurement moments (t0, t1, etc.) for more classical analyses. 

Furthermore, as expected, we found study power to increase with the number of repeated 

measurements. This is because additional measurements improve individual patient estimates 

of baseline Fugl-Meyer 𝛼𝑖|𝑘 and subgroup assignment 𝑘, and therefore also enhance estimates of 

the intervention effects. For studies designed to identify separate treatment effects for each of 

the three recovery clusters (poor, moderate and good), our results indicate that patient selection 

based on the predicted (at one or two weeks after stroke) FM-UE recovery cluster increases 

power. Trials that specifically target patients in the cluster of moderate FM-UE recovery may 

benefit from delaying patient selection until two weeks as this sharply increases successful 

cluster allocation. Patient selection increases the proportion of patients from a certain cluster in 

the study sample, as a function of the positive predictive value and therefore increases the power 

to detect an intervention effect in a certain cluster.  

In simulating patient data and estimating the intervention effects, we assumed that the 

rate of recovery of the intervention effect is identical to the subgroup-specific spontaneous 

recovery rate. However, it is also imaginable that the time course of an intervention effect is fixed 

for patients from all five subgroups. We therefore performed a sensitivity analysis by simulating 

patient data with fixed time constants for the intervention effect (two weeks or ten weeks), while 

erroneously estimating the intervention effect with subgroup-specific time constants. Results 

indicate that power slightly decreases with a fixed long time constant (ten weeks), and slightly 

increases with a fixed short time constant (two weeks). This makes sense, as the follow-up 

includes a measurement late (26 weeks) after stroke, which will capture treatment effects no 

matter the rate. Furthermore, we assumed that the model derived by Van der Vliet et al.9 will fit 

equally well to new datasets, meaning the residual error will be identical. To test this second 

assumption, we simulated data with 25% more residual error and indeed found a decrease in 

study power, although compared to the cross-sectional test, the number of patients needed for 

90% power was still four times smaller. Therefore, our results seem robust to model assumption 

challenges. 

In this study, we estimated the intervention effect as an increase in the amount of 

recovery, although the longitudinal mixture model of FM-UE recovery could also detect other 

types of intervention effects. For example, an intervention could speed up the recovery rate or 

even promote a patient to a better FM-UE recovery cluster. If the focus of a study is on the 
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recovery rate, the longitudinal mixture model would need to be amended with a parameter that 

can modulate the time constant, either for the entire population or for the FM-UE recovery 

clusters separately. Shifts in FM-UE recovery cluster as a result of the intervention could be 

estimated directly from the proportions in the intervention and usual care groups. Calculating 

the statistical power of analyses focused on recovery rate and cluster assignment could be the 

topic of future studies. Moreover, we published all code on GitHub (see Methods) allowing other 

researchers to analyze the effect of potential variations in trial design (e.g., the number of follow-

up measurements, start of intervention, expected intervention effect, etcetera) on study power.  

A limitation of our study is the lack of a real-world stroke rehabilitation dataset analysis. 

Although the model we use for data simulation is based on actual cohort data, the simulated data 

is not directly derived from patients. Therefore, it would be interesting to verify our findings 

using existing stroke rehabilitation trial datasets with or without a statistically significant 

intervention effect. In trials with a statistically significant result, magnitude, and significance of 

the estimated intervention could be compared between the applied cross-sectional approach and 

the longitudinal model. In addition, the model could be improved by testing different hypotheses 

on the time course of intervention effects. Finally, the FM-UE recovery clusters which benefit the 

most from the intervention could be identified, which would be helpful for personalizing the 

intervention. In trials without a statistically significant result, our modeling approach may be able 

to uncover previously unrecognized clinical intervention effects, either in the population as a 

whole or in specific FM-UE recovery clusters.13,15 Another limitation of our study is the 

generalizability of our results. The longitudinal mixture model was derived from first-ever 

ischemic stroke patients with a clinical (hemi)paresis, who were included based on CT or MRI 

imaging. Therefore, the model and power may not generalize to patients with a hemorrhagic 

stroke or recurrent stroke. Moving forward, application of the longitudinal mixture model to 

stroke recovery and stroke rehabilitation trials with broader inclusion criteria would help to 

generalize the results to different patient populations. Alternatively, the approach could be taken 

to re-estimate the model parameters on a new clinical dataset using the current model 

parameters as initial values, also ensuring generalization. International collaboration will help in 

designing increasingly better models to understand recovery after stroke as well as the way 

interventions impact on recovery.10 

Results of the power calculations presented in this paper can be used to design future 

stroke rehabilitation trials. We have found that the longitudinal mixture model has more power 

to detect an intervention effect than a cross-sectional approach based on study design with a 

baseline (at one week) and endpoint (at 26 weeks) measurements. Therefore, relatively small 

(40-100 patients) studies can be powered for a clinically important difference on the Fugl-Meyer 

scale (>=4.25 FM-UE point) to test new innovative interventions, whereas larger studies can be 

powered to detect small differences (<4.25 points). In addition, we found that the exact timing of 

measurements and the start of treatment is not essential from a statistical point of view. 

Biologically, however, interventions may have effects in specific stages poststroke,19,20 which 

would be a reason for having comparable intervention onsets for patients included in a study.19–

21 Furthermore, trials have to balance the effort put into collecting a large number of patients and 

the effort of intensive follow-up measurements. Study power can be improved both by increasing 

the number of patients and by increasing the number of measurements. Having more than two 

measurements per patient will allow for in-depth analysis of the time course of the intervention 

effect whereas having more patients will increase generalizability and support secondary 

analysis of, for example, complication rate and cluster shifts. 
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Chapter 4. Electrophysiology, genetics and neuromodulation 

 

4.1 TMS motor mapping: comparing the absolute reliability of digital 

reconstruction methods to the golden standard. 
Zeb D. Jonker, Rick van der Vliet, Christopher M. Hauwert, Carolin Gaiser, Joke H.M. Tulen, Jos N. 

van der Geest, Opher Donchin, Gerard M. Ribbers, Maarten A. Frens and Ruud W. Selles 

 

Abstract 

Background: Changes in transcranial magnetic stimulation motor map parameters can be used 

to quantify plasticity in the human motor cortex. The golden standard uses a counting analysis of 

motor evoked potentials (MEPs) acquired with a predefined grid. Recently, digital reconstruction 

methods have been proposed, allowing MEPs to be acquired with a faster pseudorandom 

procedure. However, the reliability of these reconstruction methods has never been compared to 

the golden standard. 

Objective: To compare the absolute reliability of the reconstruction methods with the golden 

standard. 

Methods: In 21 healthy subjects, both grid and pseudorandom acquisition were performed twice 

on the first day and once on the second day. The standard error of measurement was calculated 

for the counting analysis and the digital reconstructions. 

Results: The standard error of measurement was at least equal using digital reconstructions.  

Conclusion: Pseudorandom acquisition and digital reconstruction can be used in intervention 

studies without sacrificing reliability.  
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Introduction 

Transcranial magnetic stimulation (TMS) can be used to measure plasticity in the human primary 

motor cortex by comparing the location, size and excitability of cortical muscle representations 

before and after an intervention 1,2. In the golden standard procedure, data is acquired by 

measuring electromyography (EMG) while applying multiple stimuli at predefined grid points on 

the scalp, which is then analyzed by counting the grid points at which more than half of the stimuli 

produced a motor evoked potential (MEP) 1–4 

Recently, digital analysis methods have been proposed for reconstructing the muscle 

representation from scattered stimuli, most notably surface fitting 5, cubic spline interpolation 6 

and Voronoi tessellation 6. Cavaleri et al. 7 showed that the surface fitting analysis produces 

similar results with data acquired in a grid procedure, which takes 15 to 60 minutes 4,5, as with 

data acquired in a pseudorandom walk procedure, which takes less than 5 minutes 5,7. Therefore, 

these reconstruction methods could improve the ability to measure short-term plasticity 5.  

To replace the counting analysis, digital reconstruction methods should show at least 

equal absolute reliability (e.g. standard error of measurement, SEM), as this is a marker of 

sensitivity to change in an individual or group 8. However, this analysis has not yet been done. 

Therefore, the primary goal of this study was to compare the absolute reliability of the motor 

map parameters (volume, area, center of gravity) of the digital reconstruction methods to the 

golden standard. The results can be used as reference values for power calculations of future 

intervention studies.  

 

Materials and methods 

Twenty-one healthy right-handed subjects were recruited for this study (age: 28±9 years, 12 

females). Participants were screened for contraindications using the TMS adult safety 

questionnaire 9. The experiment was approved by the Medical Ethical Committee of the Erasmus 

MC Rotterdam and performed in accordance with the Declaration of Helsinki.  

 

Setup 

A Visor2 XT system (ANT Neuro, The Netherlands) was used, consisting of a MagPro X100 

stimulator, a MC-B70 coil (Magventure, Denmark), a custom-built amplifier (TMSi, The 

Netherlands), a Polaris Spectra motion tracking system (NDI, Canada) and Visor 2 software (ANT 

Neuro, The Netherlands). Electromyography (EMG) signals were recorded from the left first 

dorsal interosseous (FDI) muscle with silver-silverchloride electrodes in a belly-tendon montage, 

sampled at 5 kHz and stored for offline analysis.  

 

Experimental protocol 

During the whole experiment, participants were seated with their left hand resting pronated on 

a table. Monophasic TMS pulses with a posterior-anterior current direction were applied over the 

right hemisphere, with the coil handle pointing 45 degrees from the midsagittal line throughout 

the protocol. The experimenter received visual feedback of the current coil position as well as 

previous coil positions color coded with the MEP-amplitudes. First, the head of the subject was 

co-registered to a stock MRI scan by defining the nasion, pre-auricular points and at least 100 

data points spread out over the scalp. Second, the hotspot, the location with the largest MEPs, 

was estimated with pseudorandom acquisition using 80 pulses with a 2 second interval 5. The 

stimulation intensity was set to 50% of maximum stimulator output (MSO) and increased with 

5% MSO if there were no measurable MEPs after 15 pulses. Third, the resting motor threshold 
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(RMT), the lowest stimulator intensity that has ≥ 50% chance to produce a MEP at the hotspot, 

was determined with the Motor Threshold Assessment Tool (MTAT 2.0) 10. EMG-responses with 

a peak-to-peak amplitude ≥ 0.05 mV, between 5 and 45 milliseconds after stimulation, were 

considered MEPs. Finally, the motor maps were acquired with a stimulation intensity of 110% 

RMT 4.  

  

 
Figure 1. Methods of pseudorandom data acquisition and digital reconstruction with surface fitting 

(green), cubic spline interpolation (orange) and Voronoi tessellation (red) compared to the golden 

standard of grid acquisition and a counting analysis (blue). A. 2D representation of the motor maps. 

Black and grey markers depict negative and positive stimulation sites: squares depict the grid points of the 

grid acquisition and circles and points depict the first 50 and remaining 100 stimuli of the pseudorandom 

acquisition. The estimates of the cog and borders of the motor map are depicted by plus signs and solid lines 

in the corresponding colors of each method. The dashed square represents a 6-by-6cm predefined region 

which was used in previous studies with pseudorandom stimulation 5,7,11. B. 3D representation of the 

counting analysis after grid acquisition. C-E: 3D representation of the three digital reconstruction methods, 

after the same pseudorandom acquisition. MEP = motor evoked potential. 
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Figure 2. Results of pseudorandom data acquisition and digital reconstruction with surface fitting 

(green), cubic spline interpolation (orange) and Voronoi tessellation (red) compared to the golden 

standard of grid acquisition and a counting analysis (blue). A-H. Bland-Altman plots depicting the within 

subject differences of each method for measurements acquired in the same session (A-D) or in separate 

sessions (E-H). Black filled markers depict the two subjects that were removed because of a co-registration 

error. Dashed lines depict the smallest detectable change, which was smaller for the reconstruction methods, 

but still large compared to effect sizes found in clinical studies 1,2. Importantly, the within subject differences 

did not increase with the averages. This indicates that the methods are equally reliable for small and large 

muscle representations. I-N. Bland-Altman plots depicting the between method differences of the subject 

averages. Solid lines depict linear regression lines and their confidence interval. The heteroscedasticity of the 

volume parameter was successfully removed with a log transformation. The estimations of the area 

parameter after digital reconstruction were systematically 67% (surface fitting), 57% (cubic spline 
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Grid acquisition 

Grid acquisition was based on the well-established paradigm by Kleim, et al (2007) 4. Ten pulses 

with an interval of 7 seconds were applied on the points of a 1-by-1cm spaced grid. A point was 

marked positive when at least half of the stimuli resulted in a MEP. Grid points were stimulated 

row by row, moving outward from the center, until a positive area was demarcated by negative 

points (Figure 1A). The pseudorandom acquisition was adapted from Van de Ruit et al. 5 and used 

150 pulses. An improvement was made by first creating a subject-specific region of interest with 

50 pulses, which prevented muscle representations exceeding the borders of a predefined region 
7,11. These 50 pulses were applied in 8 straight lines outward from the hotspot until 2 consecutive 

pulses (6.8±0.8mm apart) did not elicit a MEP, followed by a clockwise ellipsoid around these 

lines (Figure 1A). The experimenter applied the remaining 100 pulses pseudorandomly inside 

the ellipsoid.  

The grid and pseudorandom acquisition were both performed three times in total 

(measurement 1-3), twice during the first session and once on the consecutive day. Each session 

started with determining the RMT, as is done in the follow up of intervention studies [2]. Then, 

the acquisition methods were performed alternatingly, with the two possible orders 

counterbalanced between subjects.  

 

Data analysis 

From each dataset, four parameters were calculated: area, volume and center of gravity in two 

dimensions. Data analysis was conducted offline with a custom-made MATLAB script 

(Mathworks, USA). First, stimuli were excluded if the root mean square of the background EMG, 

100-5 milliseconds before stimulation, was more than 2 standard deviations above the average, 

or the coil position was outside the 99% probability interval. Second, a plane was fitted through 

the 3D coordinates (x,y,z) of the first measurement. The z-coordinates were transposed on this 

plane. The center of the coordinates (x,y,new-z) was used to translate the coordinates to the 

origin, which were then subsequently rotated around the x, y and z axis. 5. The same plane, 

translation and rotation-matrix were used for the other two measurements. For each 

measurement, the error between the z and new-z coordinates was calculated. Third, after 

pseudorandom acquisition, grids were reconstructed with three methods: surface fitting, cubic 

spline interpolation and Voronoi tessellation. For surface fitting the gridfit algorithm was used to 

create a 1.2-by-1.2mm spaced grid 5,7. For cubic spline interpolation and Voronoi tessellation, the 

griddata algorithm (method set to cubic or nearest) was used to create 0.1-by-0.1mm spaced 

grids 6. Points in these reconstructed grids where the estimated EMG-amplitude was below 

0.05mV, were set to 0. After standard grid acquisition, the counting of MEPs was repeated offline. 

For positive points the mean EMG-amplitude was calculated and negative points were set to 0. 

Finally, the motor map parameters were calculated. Volume was computed as the sum of the 

positive cell areas multiplied with their corresponding EMG-amplitudes and area as the sum of 

all positive cell areas. The cog was calculated for the posterior-anterior (xcog) and the medial-

lateral direction (ycog) and added to the translation of the plane. 

interpolation) and 38% (Voronoi tessellation) larger compared to the golden standard. O-P. Examples of 

power calculations (alpha = 0.05) using the absolute reliability of this experiment and the effect sizes from 

previous clinical studies 1,2, The effect size of area was adjusted for the bias between the methods. Dashed 

lines depict the power calculation without this adjustment. Meas. = measurement; C = scaling constant for 

motor map area; xcog = center of gravity in the posterior anterior direction; ycog = center of gravity in the 

medial-lateral direction. 

4 



 

78 
 

 

 
Supplementary Figure. Relation between the number of pseudorandom stimuli and the SEM and 

average of the motor map parameters for surface fitting (green), cubic spline interpolation (orange) 

or Voronoi tessellation (red). Thirty datasets were created by shuffling the last 100 stimuli of each 
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Statistical analysis 

First, the subject averages of volume, area, xcog and ycog were calculated for the golden standard 

and the three digital reconstruction methods. These subject averages were used to inspect the 

between-method differences with Bland-Altman plots and to compute the overall average of each 

method. Second, for each method separately, the within-subject differences between 

measurement 2 and 1 (same session) and measurement 3 and 1 (separate sessions) were 

inspected with Bland-Altman plots as well. Finally, the standard error of measurement of each 

method was calculated from the standard deviation of these within-subject differences (SEM = 

SDdiff_within  / √2) as was the smallest detectable change (SDC = SDdiff_within * 1.96) 12. To illustrate 

the reliability, examples of sample size calculations are provided. Most intervention studies 

compare the plasticity in a treatment group to a control group. In this scenario, the primary 

outcome is a change in motor map parameters. Therefore, the SDdiff_within of this study is an 

estimate for the standard deviation of the groups. The parameter values are denoted as overall 

average ± between subject standard deviation and the SEM is denoted with a confidence interval.  

 

Results and Discussion 

During data analysis, 3.2±1.9% of the stimuli were excluded. One subject was removed from the 

within session analysis, because there were no positive sites during the second grid acquisition. 

Furthermore, two outliers were removed from the between sessions analysis because the xcog 

(3.3mm, first session) and the z-error (9.2mm, measurement 3) indicated a co-registration error. 

The average z-error was 1.1±0.4mm, 1.3±0.5mm and 2.3±0.9mm for measurement 1, 2 and 3. 

The SEM of the reconstruction methods was equal or smaller than the golden standard 

(Table 1, Figure 2A-H). Therefore, the present golden standard using 122±44 stimuli in 17±7 

minutes can be replaced by the much faster reconstruction methods using 150 stimuli in 5 

minutes, without sacrificing reliability (Supplementary Figure). 

Power calculations indicate the reconstruction methods can reduce the number of subjects 

needed in intervention studies (Figure 2O,P). It is important to note that the reconstruction 

methods increased the area estimates with 67% (surface fitting), 57% (cubic spline) and 38% 

(Voronoi tessellation) relative to the golden standard (Figure 2J,N). This bias was circumvented 

by normalizing the effect sizes to the overall mean of each method. 

Regarding individual patients, all motor map parameters showed a considerable SDC 

and should be interpreted with caution on an individual level (Figure 2A-H). 
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4.2 Cerebellar transcranial direct current stimulation interacts with BDNF 

Val66Met in motor learning 
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M. Ribbers, Chris I. De Zeeuw, Opher Donchin, Ruud W. Selles, Jos N. van der Geest and Maarten 

A. Frens 

 

Abstract 

Background. Cerebellar transcranial direct current stimulation has been reported to enhance 

motor associative learning and motor adaptation, holding promise for clinical application in 

patients with movement disorders. However, behavioral benefits from cerebellar tDCS have been 

inconsistent.  

Objective. Identifying determinants of treatment success is necessary. BDNF Val66Met is a 

candidate determinant, because the polymorphism is associated with motor skill learning and 

BDNF is thought to mediate tDCS effects. 

Methods. We undertook two cerebellar tDCS studies in subjects genotyped for BDNF Val66Met. 

Subjects performed an eyeblink conditioning task and received sham, anodal or cathodal tDCS 

(N=117, between-subjects design) or a vestibulo-ocular reflex adaptation task and received sham 

and anodal tDCS (N=51 subjects, within-subjects design). Performance was quantified as a 

learning parameter from 0 to 100%. We investigated (1) the distribution of the learning 

parameter with mixture modeling presented as the mean (M), standard deviation (S) and 

proportion (P) of the groups, and (2) the role of BDNF Val66Met and cerebellar tDCS using linear 

regression presented as the regression coefficients (B) and odds ratios (OR) with equally-tailed 

intervals (ETIs). 

Results. For the eyeblink conditioning task, we found distinct groups of learners (MLearner=67.2%; 

SLearner=14.7%; PLearner=61.6%) and non-learners (MNon-learner=14.2%; SNon-learner=8.0%; PNon-

learner=38.4%). Carriers of the BDNF Val66Met polymorphism were more likely to be learners 

(OR=2.7 [1.2 6.2]). Within the group of learners, anodal tDCS supported eyeblink conditioning in 

BDNF Val66Met non-carriers (B=11.9% 95%ETI=[0.8 23.0]%), but not in carriers (B=1.0% 

95%ETI=[-10.2 12.1]%). For the vestibulo-ocular reflex adaptation task, we found no effect of 

BDNF Val66Met (B=-2.0% 95%ETI=[-8.7 4.7]%) or anodal tDCS in either carriers (B=3.4% 

95%ETI=[-3.2 9.5]%) or non-carriers (B=0.6% 95%ETI=[-3.4 4.8]%). Finally, we performed 

additional saccade and visuomotor adaptation experiments (N=72) to investigate the general role 

of BDNF Val66Met in cerebellum-dependent learning and found no difference between carriers 

and non-carriers for both saccade (B=1.0% 95%ETI=[-8.6 10.6]%) and visuomotor adaptation 

(B=2.7% 95%ETI=[-2.5 7.9]%). 

Conclusions. The specific role for BDNF Val66Met in eyeblink conditioning, but not vestibulo-

ocular reflex adaptation, saccade adaptation or visuomotor adaptation could be related to 

dominance of the role of simple spike suppression of cerebellar Purkinje cells with a high baseline 

firing frequency in eyeblink conditioning. Susceptibility of non-carriers to anodal tDCS in 

eyeblink conditioning might be explained by a relatively larger effect of tDCS-induced 

subthreshold depolarization in this group, which might increase the spontaneous firing 

frequency up to the level of that of the carriers.   
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Introduction 

Over the past decade, cerebellar transcranial direct current stimulation (tDCS) has been reported 

to enhance motor associative learning 1 and motor adaptation 2–10 (see 11 for a review of the 

technical details), holding promise for patients with movement disorders 12. However, cerebellar 

tDCS effects are inconsistent across the literature, as recent studies failed to replicate initial 

behavioral benefits 13–15. This could mean that the behavioral gains reported in earlier studies 

result from chance and/ or that determinants predicting successful tDCS are incompletely 

understood. Genetic differences between individuals might influence (1) the background 

performance level and therefore the potential to improve with tDCS 16 or (2) the susceptibility to 

tDCS. Therefore, to increase predictability of cerebellar tDCS effectiveness it is important to 

identify factors which modify treatment success 17, like genetic variants. 

The common 18,19 BDNF Val66Met polymorphism, which decreases activity-dependent 

BDNF release 20, is a candidate determinant of cerebellar tDCS effectiveness, because (1) the 

polymorphism is associated with motor skill learning ability 21,22 and (2) BDNF is thought to 

mediate tDCS effects on synaptic plasticity and motor skill learning 22. Since BDNF supports long-

term potentiation 22,23 and formation of inhibitory synapses 24, Val66Met carriers have subtle 

behavioral alterations such as decreased memory 20, slowed motor skill learning 21,22 and more 

pronounced fear conditioning 25. In addition, in mouse cortical brain slices, concurrent DCS and 

synaptic activation only leads to long-term potentiation when BDNF is not knocked out or 

blocked 22, suggesting that Val66Met carriers may benefit less from tDCS. However, whether 

BDNF Val66Met interacts with cerebellar tDCS in cerebellum-dependent motor learning has not 

yet been investigated. 

Eyeblink conditioning and vestibulo-ocular reflex (VOR) adaptation are particularly 

well-characterized cerebellum-dependent learning tasks for which positive effects of cerebellar 

tDCS have been found. Eyeblinks are protective eyelid closures against damage to the cornea. 

They can be activated in response to predictive neutral cues such as auditory tones. This learned 

motor association is made in a relatively simple circuitry involving the interposed nucleus and 

lobule VI of the cerebellum 26–29 and extracerebellar areas in the hippocampus and amygdala 30–

34. Eyeblink conditioning is mediated by a sudden, carefully timed decrease in simple spike 

activity of cerebellar Purkinje cells that fire at a relatively high spontaneous firing frequency 
28,35,36. Zuchowski et al. found an increase in eyeblink conditioning with anodal tDCS and a 

decrease with cathodal tDCS 1, which is in line with the concept that eyeblink Purkinje cells should 

operate at a sufficiently high simple spike firing frequency during spontaneous activity, because 

anodal tDCS is supposed to increase the baseline firing frequency of neurons 37–40. The VOR 

generates eye movements opposite in direction, but with identical speed as head rotation to 

stabilize objects of interest on the retina. Changes in the environment or the body can make this 

relation inappropriate and result in retinal slip 41. Retinal slip will recruit adaptive mechanisms 

in the cerebellar flocculus and downstream vestibular nuclei to increase (gain-increase 

adaptation) or decrease eye (gain-decrease adaptation) movement velocity and regain foveal 

stabilization 42–48. VOR gain-decrease adaptation, which will be studied in this paper, is mediated 

by decreased velocity sensitivity of neurons in vestibular nuclei, at least partially induced by 

plasticity mechanism involving floccular Purkinje cells 44–47. Recently, anodal cerebellar DCS 

during VOR adaptation was found to enhance learning rate of a gain-decrease paradigm in mice 
9. Therefore, eyeblink conditioning and VOR adaptation are two cerebellum-dependent, but 

fundamentally different tasks, which entail different cellular mechanisms, and which concern 
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conceptually different paradigms in that conditioning implies learning new associations, whereas 

adaptation involves recalibrating and optimizing existing behavior.  

The primary aim of this study was to investigate the interaction between BDNF 

Val66Met and cerebellar tDCS in eyeblink conditioning and VOR adaptation. To this end, we 

undertook two studies in genotyped subjects who received cerebellar tDCS and performed either 

an eyeblink conditioning task (N=117, between-subjects design) or a VOR adaptation task (N=51, 

within-subjects design). Based on motor skill learning studies 21,22, we expected better 

performance for non-carriers in both tasks and therefore a more pronounced effect of cerebellar 

tDCS in carriers. Based on fear conditioning studies 25, we expected better performance for 

carriers in the eyeblink conditioning task, which depends on the amygdala as well as the 

cerebellum, but not in the VOR adaptation task and therefore a more pronounced effect of 

cerebellar tDCS in non-carriers.  

 

Materials and methods 

Subjects 

Healthy right-handed, defined as having a Edinburgh handedness inventory score 49 larger than 

zero, individuals participated in the eyeblink conditioning (genetic analysis failed in 3/120 

subjects leaving 117 for analysis), VOR adaptation (genetic analysis failed in 4/55 subjects 

leaving 51 for analysis) (see Table 1). 9/51 subjects dropped out before the second VOR session 

but the available data of the first session was included in the analysis. The order for the 

visuomotor and saccade adaptation experiment was counterbalanced. The experiments were 

approved by the Erasmus MC medical ethics committee and performed in accordance with the 

Declaration of Helsinki. 

Paradigm Group Gender 

(%Male) 

Age 

(M±SD) 

Ethnicity 

(%Western-

European) 

Edinburgh 

handedness 

scale 

Eyeblink 

conditioning 

(N=117) 

Sham (N=39) 41 21.5±2.8 85  

  Carriers (N=16) 31 21.3±2.4 81  

  Non-carriers (N=23) 48 21.7±3.2 87  

Anodal (N=40) 40 20.6±2.5 85  

  Carriers (N=17) 35 20.8±2.9 82  

  Non-carriers (N=23) 43 20.4±2.2 87  

Cathodal (N=38) 42 20.9±2.4 82  

  Carriers (N=14) 57 21.4±2.5 79  

  Non-carriers (N=24) 33 20.6±2.4 83  

VOR adaptation 

(N=51) 

  Carriers (N=18) 11 21.8±3.1 89  

  Non-carriers (N=33) 42 21.7±2.7 82  

Saccade adaptation 

and visuomotor 

adaptation (N=72) 

Carriers (N=25) 40 21.6±2.0 87 82.2±15.6 

Non-Carriers (N=47) 38 21.1±2.5 91 79.0±17.9 

     

Table 1. Subject characteristics for the eyeblink conditioning and VOR adaptation experiments.  

M=mean; S=standard deviation. 
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Figure 1. Experimental procedures and data-analysis for eyeblink conditioning and VOR adaptation. 

A. Eyeblink conditioning set-up. The experiment consisted of unconditioned stimulus trials (red line), 

conditioned stimulus trials (blue line) and paired stimulus trials (green line). During each trial, eyelid 

movements were recorded for 3 seconds. For the unconditioned stimulus trials, an air puff (3 bar at source, 

100 ms duration) was delivered from 1750 until 1850 ms after recording onset. For the conditioned stimulus 

trials, a tone (650 Hz, 75 dB, 540 ms duration) was played from 1310 ms until 1850 ms after recording onset. 

In paired stimulus trials, subjects received both the tone and the air puff, which overlapped for 100 ms. B. 

Eyeblink conditioning experimental design. The experiment started with a baseline measurement (B) 

comprised of ten unconditioned stimulus trials (red lines) and ten conditioned stimulus trials (blue lines), 

followed by ten learning measurements (L1-L10) consisting of ten paired trials (green lines), one 

unconditioned stimulus trial (red lines) and one conditioned stimulus trial (blue lines). C. VOR adaptation 

set-up. The experiment consisted of VOR trials (red line), VOR adaptation trials (blue lines) and VVOR trials 

(green line). During VOR measurements, subjects were asked to keep their eyes fixated at the middle of the 

screen during rotation in total darkness for 40 seconds. Rotation of the chair was paused for 30 seconds 

before each VOR measurement. During VVOR trials, subjects were rotated for 1 minute while the movie was 

projected stationary on the middle of the screen. During VOR adaptation trials, the projection was rotated for 

60 minutes with identical phase and amplitude as the chair. D. VOR adaptation experimental design. The 

experiment started with two baseline VOR trials (red lines, measurements B1 and B2), separated by a single 

VVOR trial (green line). Subsequently, subjects underwent a single VOR adaptation trial (blue line) and two 

VOR trials (red lines, measurements L1 and L2). E. Eyeblink conditioning analysis. Each trial (green line) was 

divided into (I) a baseline window of 150 ms before the start of the conditioned stimulus from tstart=1160 ms 
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Cerebellar tDCS 

Cerebellar tDCS was delivered through two saline-soaked 5x5cm sponge electrodes (DC 

stimulator, NeuroConn GmbH, Ilmenau, Germany) placed on the right side of the scalp, 3 cm 

lateral to the inion (target electrode) and on the ipsilateral buccinator muscle (reference 

electrode). This electrode configuration is the standard for cerebellar tDCS in motor learning 

tasks 1–5,10 and is supported by electrophysiological 50 and modeling studies 51. In the active 

conditions, we applied 2mA anodal or cathodal tDCS during 20 minutes for the eyeblink 

conditioning experiment (similar to: 14) and 2mA anodal tDCS during 15 minutes for the VOR 

adaptation experiment (most commonly used duration: 52). In the sham condition, 2mA anodal 

or cathodal tDCS was delivered for only 30 seconds, which is an effective method for blinding 

subjects 53. In both the active and sham condition, current amplitude was increased and 

decreased in a ramp-like fashion over 30 seconds according to a well-established protocol 2. 

Experimenters were blinded using a list of stimulation codes corresponding with sham or active 

stimulation. This list was semi-randomized, balancing the number of subjects in each condition. 

 

Genetics 

The BDNF Val66Met polymorphism (rs6265) was genotyped using TaqMan assays as described 

before 54. Subjects with at least one Met allele were termed “carriers”, others “non-carriers”.  

 

Eyeblink conditioning 

Eyeblink conditioning was studied by presenting an auditory tone (conditioned stimulus) shortly 

before applying an air puff to the eye (unconditioned stimulus) 55,56, similar to Zuchowski et al. 1. 

Over trials, subjects learn to predict the air puff from the tone and close the eyelid before the puff 

reaches the cornea. We chose a between-subject design for this task, even though a within-subject 

design could have removed between-subject variability, because the motor memory in eyeblink 

conditioning is retained for a long time 57. Furthermore, we included anodal as well as cathodal 

tDCS because both have been found to modulate eyeblink conditioning 1. 

We used a SheBot system (Neurasmus, Rotterdam, The Netherlands, 58) controlled by a 

custom-built LabVIEW program (National Instruments Corporation, Austin, Texas, United States) 

to provide precisely timed (1) auditory tones via a headphone and (2) air-puffs via a nozzle placed 

15 mm from the lateral corner of the eye. Eyelid closures were recorded with a small magnet on 

the upper eyelid and a sensor slightly below the eye 58. During the experiment, subjects watched 

the movie “A Beautiful Mind” (Universal Pictures, 2005, Internet Movie DataBase #tt0268978) 

with audio but without subtitles.  

The experiment consisted of unconditioned stimulus trials, conditioned stimulus trials 

and paired stimulus trials (see Figure 1A). The experiment started with a baseline measurement 

(B) comprised of ten unconditioned stimulus trials and ten conditioned stimulus trials, followed 

by ten learning measurements (L1-L10) consisting of ten paired trials, one unconditioned 

stimulus trial and one conditioned stimulus trial (Figure 1B). For each measurement, trial order 

until tend=1310 ms; (II) a short-latency response window of 150 ms after the start of the conditioned stimulus 

from tstart=1310 ms until tend=1460 ms; (III) a conditioned response window of 290 ms before the start of the 

unconditioned stimulus from tstart=1460 ms until tend=1750 ms; and (IV) an unconditioned response window 

of 250 ms after the start of the unconditioned stimulus from tstart=1750 ms until tend=2000 ms. Trials were 

classified as the window that contained the eyeblink onset. F. VOR adaptation analysis. Forty-second eye 

velocity signals were cut into eleven rotations (brown line) of 3.39 s, aligned in time and fitted with a sine 

wave (green line) of the same frequency to extract the amplitude (red arrow). tDCS = transcranial direct 

current stimulation; VOR = vestibulo-ocular reflex; VVOR visually-enhanced vestibulo-ocular reflex. 
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and trial interval (ranging from 20 to 35 seconds) were pseudo-randomized. Cerebellar tDCS or 

sham stimulation started with L1. 

Eyeblink data was automatically processed using a custom MATLAB program (The 

MathWorks Inc., Natick, Massachusetts, United States) (see Figure 1E). First, trials were low-pass 

filtered with a zero-phase 6th order Butterworth filter using a 100 Hz cut-off frequency. 

Subsequently, trials were divided in four time windows: (1) a baseline window; (2) a short-

latency response window; (3) a conditioned response window; and (4) an unconditioned 

response window. Peak time (ms) occurred at maximum eyelid closure in the conditioned or 

unconditioned response window. Peak amplitude (mV) was the difference between the eyelid 

signal at peak time and the mean eyelid signal in the baseline window. Eyeblink onset (ms) 

occurred at the last time point when the eyelid signal was smaller than 7.5% of the peak 

amplitude. The analysis was robust to small changes in the peak amplitude threshold. Trials were 

classified by the window that contained the eyeblink onset. Short-latency response and baseline 

responses were counted as invalid trials. 

The learning parameter for this experiment was the percentage of conditioned 

responses in the last six learning blocks L5-L10. That is, the number of conditioned responses 

divided by the total number of conditioned and unconditioned responses in the 60 paired trials 

of the learning measurements L5-L10 multiplied by 100 (0=no conditioning; 100=complete 

conditioning). In addition, we investigated the short-latency responses as a percentage of the sum 

of conditioned responses, unconditioned responses and short-latency responses (short-latency 

response fraction).  

 

VOR adaptation 

VOR adaptation was studied by directly coupling head rotation to visual display rotation, which 

requires suppression of the reflex to minimize retinal slip 59–61, similar to an animal study 

performed by Das et al. 9. In contrast to the eyeblink conditioning experiment, we chose a within-

subject design as the motor memory is expected to last no more than three days 62–64. Both 

stimulation sessions were separated by at least 7 days to ensure wash-out of the cerebellar tDCS 
65,66 and VOR adaptation effects 62–64 of the first session. Furthermore, we did not include a 

cathodal condition to limit the number of experimental conditions for our subjects.  

Subjects were seated in a rotational chair placed 224 cm in front of a wide translucent 

screen (235 cm x 170 cm). Head position was fixed relative to the chair with a bite-board (Dental 

Tecno Benelux, Ede, Netherlands). Chair rotation frequency was set to 0.295 Hz with an 

amplitude of 12° around the vertical axis, resulting in a peak angular velocity of 22.2 °/s (similar 

to 67). Two-dimensional binocular eye movements were recorded using infrared video-

oculography (EyeLink I, SR Research, Ontario, Canada, 68). An episode of “How I Met Your Mother” 

with audio but without subtitles (Twentieth Century Fox Film Cooperation, 2005, Internet Movie 

DataBase #tt0460649) was back-projected (Infocus LP 335, Portland, Oregon, United States) 

onto the translucent screen (size 104 x 74 cm) via rotatable mirrors (model number 6900, 

Cambridge Technology, Cambridge, United Kingdom). 

Trial types included VOR, visually-enhanced vestibulo-ocular reflex (VVOR) trials and VOR 

adaptation trials (see Figure 1C). The experiment started with two baseline VOR trials 

(measurements B1 and B2), separated by a single VVOR trial. Subsequently, subjects underwent 

a single VOR adaptation trial and two VOR trials (measurements L1 and L2) (Figure 1D). 

Eye movement data was processed in MATLAB (The MathWorks Inc., Natick, 

Massachusetts, United States) (see Figure 1F). Eye velocity gains were calculated per subject, eye 
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and measurement (B1-2 and L1-2) according to the following procedure. First, saccades and 

eyeblinks were removed from the horizontal eye position using an internal Eyelink routine. 

Subsequently, the horizontal eye position was smoothened and differentiated with a Savitzky-

Golay filter (third order polynomial, 10 Hz critical frequency) to obtain an eye movement velocity 

signal (°/s). Eleven rotations of 3.39 s from this 40-second velocity signal were aligned in time 

and fitted with a sine wave of the same frequency. Fitted velocity amplitudes (°/s) of left and right 

eye velocity signals were combined for each block by weighing with the number of recorded data 

points. Finally, all amplitudes were divided by the mean amplitude in B1 and B2 resulting in a 

normalized gain. 

The learning parameter for this experiment was one minus the average amplitude of 

learning measurements L1 and L2 multiplied by 100 (0=no adaptation; 100=complete 

adaptation).  

 

Saccade adaptation 

Saccade adaptation was studied by relocating a target in an inward direction during a saccade to 

induce a post saccadic error 69–71. Over trials, subjects learn to decrease the size of their saccades 

to compensate for these target jumps.  

Subjects were seated in front of a monitor covered with a red filter (53 cm width, 

1280x1024 pixel resolution) in a completely dark room. Steady head position was maintained 

using a chin rest at a fixed viewing distance of 82 cm. Eye movements were recorded binocularly 

at 250 Hz by means of video-oculography (EyeLink II, SR Research, Ontario, Canada). 

Task design was similar to Avila et al. 6, but with smaller amplitude saccades (10° rather 

than 20°) to reduce the occurrence of two-step saccades. The trial types were unperturbed and 

perturbed trials (see Figure 6A). The experiment included baseline measurements of 50 

unperturbed trials (measurements B1-50), followed by learning measurements of 150 perturbed 

trials (measurements L1-150) (see Figure 6B). 

Saccade amplitudes were calculated using an internal Eyelink routine. All amplitudes 

were divided by 10° to calculate normalized gains and corrected for an offset by subtracting the 

median amplitude of the baseline measurements. The learning parameter was defined as the 

quotient of 1 minus the median of L150-200, and the perturbation size 0.3. 

 

Visuomotor adaptation 

Reaching movement adaptation to visual mismatches was studied with visuomotor adaptation, 

wherein visual feedback of hand location is rotated with respect to actual reaching movement 72–

74. Subjects adjust their movement based on this visual mismatch by changing the angle of their 

reaches. 

Subjects were seated in front of a vertical monitor (48 cm width, 1280x1024 pixel 

resolution, distanced 60 cm from the subjects) while holding a robotic handle in their right hand 

(custom-made, see 75) which recorded hand position and velocity. To remove direct visual 

feedback of hand position, subjects wore an apron that was attached to the table around their 

neck. 

 Task design was similar to Galea et al. 2. The trial types were unperturbed trials and 

perturbed trials (see Figure 6C). The experiment design included baseline measurements of 

unperturbed trials (measurements B1-192) and learning measurements of perturbed trials 

(measurements L1-200) (see Figure 6D). 
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Visuomotor adaptation data was processed using MATLAB (The MathWorks Inc., Natick, 

Massachusetts, United States). From each trial, we extracted movement start, defined as the time 

point when movement velocity exceeded 0.03 m/s, and movement end, defined as the moment 

when displacement from origin was equal to or larger than 9.5 cm. Aiming direction was 

calculated as the signed (+ or -) angle in degrees between the vector connecting origin and target 

and the vector connecting the positions of the manipulandum at movement start and movement 

end. The clockwise direction was defined as positive. Aiming directions more than 30° away from 

the median of an epoch of 8 trials across all subjects, were removed from further analysis. 

 The learning parameter for this experiment was the negative average of L9 through L88 

divided by the perturbation size of 30° (similar to Galea et al. 2). 

 

Statistics 

We used a two-step approach to data-analysis of the learning parameter.  

First, we investigated whether the distribution of the learning parameter was best 

captured by either a single normal distribution (unimodal) or a mixture of two normal 

distributions (bimodal). The latter distribution could arise if one group of subjects is able to learn 

the task (learners) whereas the other group is not (non-learners). For this analysis, we used a 

Bayesian Gaussian mixture model fitting one or two normal distributions to the learning 

parameter (averaged across stimulation conditions for the VOR adaptation experiment), with a 

beta prior for the probability of being a learner or a non-learner. We set the lower limit on the 

prior probability of being a learner or non-learner to 0.15 and the upper limit to 0.85 to neglect 

clusters smaller than 15% of the total population. Quality of the two models was compared for 

each paradigm with the deviance information criterion (DIC) according to 76, which rewards high 

likelihood and penalizes model complexity.  

 Single group Learner / non-learner 

 DIC M S DIC 

 

PNL MNL SNL PL ML SL 

Eyeblink 

conditioning 

1121 46.8 28.8 1067 38.4 14.2 8.0 61.6 67.2 14.7 

VOR 

adaptation 

384 29.1 10.3 416 69.5 26.3 7.0 30.5 38.5 10.5 

Saccade 

adaptation 

635 55.9 19.6 695 40.1 45.2 15.4 59.9 60.7 14.1 

Visuomotor 

adaptation 

548 71.0 10.7 603 50.2 66.5 5.7 49.8 77.8 6.6 

Table 2. Mixture model results. The learning parameters for eyeblink conditioning, VOR adaptation, 

saccade adaptation and visuomotor adaptation were modeled with (1) a single normal distribution and (2) 

a learner / non-learner model composed of a mixture of two normal distributions. We compared model fit 

with the DIC, with lower DICs indicating better model fits. Eyeblink conditioning was best captured with a 

learner/ non-learner model, whereas the adaptation paradigms were best described with a single group 

model. DIC = deviance information criterion, L = learner, M = mean, NL = non-learner, S = standard 

deviation. 
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Second, in case the learning parameter was best captured by a unimodal distribution, 

the learning parameters of all subjects were studied with a ‘single group’ Bayesian linear 

regression model (independent variables described below). However, if the learning parameter 

was best captured by a bimodal distribution, we performed an additional ‘learner / non-learner’ 

regression analysis. For this analysis, we labeled the subjects as "learners" and "non-learners" 

based on the group the subjects were assigned to most in the mixture model and calculated (1) a 

Bayesian logistic regression model for the probability of being a learner, and (2) a Bayesian linear 

regression model for the learning parameter of the "learners" only (independent variables 

described below). For eyeblink conditioning (between-subjects), the regression model contained 

the independent variables "carrier", "anodalCarrier", "anodalNon-carrier", "cathodalCarrier" and 

"cathodalNon-carrier". For VOR adaptation (within-subjects), the regression model contained the 

independent variables "carrier", "anodalCarrier" and "anodalNon-carrier". 

 The short-latency response fraction was analyzed by fitting beta distributions to the 

carriers and non-carriers and calculating the difference in group means. It was necessary to use 

beta distributions because short-latency response fraction was heavily skewed towards zero. 

 

 
Figure 2. Learning parameter distributions. A-D. Histograms of the learning parameter for eyeblink 

conditioning (A), VOR adaptation (B), saccade adaptation (C) and visuomotor adaptation (D). The red 

Gaussians show the unimodal distributions. The green Gaussians the bimodal distribution. 
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Figure 3. Role of BDNF Val66Met and cerebellar tDCS in eyeblink conditioning. A-E. Overall plots 

showing learners and non-learners combined. A. Overall learning curves for carriers (n=47) and non-carriers 

(n=70). B. Overall whisker plots of the learning parameter for carriers (n=47) and non-carriers (n=70). C. 

Overall learning curves for carriers receiving sham (n=16), anodal (n=17) or cathodal tDCS (n=14). D. Overall 

learning curves for non-carriers receiving sham (n=23), anodal (n=23) or cathodal tDCS (n=24). E. Overall 

                      
 

  

  

  

  

   

           

 
 
  
 
 

        

            

                    
 

  

  

  

  

   

 
  

  
  
 
  
 
  

 
  
 
 

                      
 

  

  

  

  

   

           

 
 
  
 
 

    

      

        

                      
 

  

  

  

  

   

           

 
 
  
 
 

    

      

        

      
 

  

  

  

  

   

 
 
 
  

  
 
  
 
  

 
 
  
 

                      
 

  

  

  

  

   

           

 
 
  
 
 

        

            

                    
  

  

  

  

   

 
 
 
  

  
 
  
 
  

 
 
  
 

                    
 

  

  

  

  

 
 
 
  

 
  
  
 

 

                      
 

  

  

  

  

   

           

 
 
  
 

 

    

      

        

                      
 

  

  

  

  

   

           

 
 
  
 
 

    

      

        

      
  

  

  

  

   

 
 
 
  

  
 
  
 
  

 
 
  
 

      
 

  

  

  

  

 
 
 
  

 
  
  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

                    



Electrophysiology, genetics and neuromodulation 

91 
 

The additional saccade adaptation and visuomotor adaptation experiments were analyzed 

similarly to the eyeblink conditioning and VOR adaptation experiments with "carrier" as the 

independent variable.  

Results for the linear and logistic regressions are reported as the median regression 

coefficient with 95% equally-tailed intervals (ETIs). Results for the direct comparison of beta 

distributions are presented as the median difference between carriers and non-carriers with 

95%ETIs. An effect size is considered significant if the ETI does not overlap with zero. All analyses 

were performed using three chains with 50,000 samples each and 20,000 burn-in samples in 

Openbugs version 3.2.3 (Openbugs foundation). Missing values are automatically handled by the 

Bayesian analysis and do not contribute to the posterior estimates of the model parameters 77. 

Group results are described with medians and interquartile ranges.  

 

Sample size calculation 

We powered the eyeblink conditioning and VOR adaptation studies to find a positive effect of 

anodal cerebellar tDCS in the smaller non-carrier group (estimated as 30% of the population 
18,19). Based on 21,22, BDNF Val66Met carriers were predicted to learn 50% less than non-carriers. 

All power analyses included a drop-out rate of 10%. For eyeblink conditioning, tDCS effect sizes 

were based on 1 (BAnodal,carrier=30%, BCathodal,carrier=30%; population standard deviation of 20%). We 

estimated 35 subjects per group would give >90% power and included 40 subjects per group. For 

VOR adaptation, tDCS effect size was based on 2,61 (BAnodal,carrier=15%, within-subject standard 

deviation of 15%). We estimated a group size of 50 subjects would give >90% power and included 

55 subjects. The additional saccade and reaching adaptation experiments were powered to find 

a BCarrier =10% given a population standard deviation of 10% and included 75 subjects. 

 

Results 

Eyeblink conditioning 

We found that eyeblink conditioning was best captured with a bimodal distribution of the 

learning parameter (see Figure 2A and Table 2), which is line with a recent study 78. The main 

statistical analysis was therefore based on the ‘Learner / non-learner model’.  

Results of the single group analysis are presented in Table 3 (‘Single group model’) and 

Figures 3A-E. We found (1) an increase in the learning parameter for carriers compared to non-

carriers (see Figure 3A-B and Table 3), (2) no effect of cerebellar tDCS on the learning rate for 

carriers (see Figure 3C,E and Table 3) and (3) an increase in the learning parameter with anodal 

stimulation for non-carriers (see Figure 3D-E and Table 3). 

 

whisker plots of the learning parameter for carriers and non-carriers receiving sham, anodal or cathodal 

tDCS. F-L. Plots showing learners only.  F. Learning curves for carriers (n=35) and non-carriers (n=37) who 

were classified as learners. G. Whisker plots of the learning parameter for carriers and non-carriers who were 

classified as learners. H. Bar graphs of the proportion of learners in the carrier and non-carrier group. I. 

Learning curves for carriers who were classified as learners and received sham (n=12), anodal (n=12) or 

cathodal tDCS (n=11). J. Learning curves for non-carriers who were classified as learners and received sham 

(n=10), anodal (n=15) or cathodal tDCS (n=12). K. Whisker plots of the learning parameter for carriers and 

non-carriers receiving sham, anodal or cathodal tDCS who were classified as learners. L. Bar graphs of the 

proportion of learners for carriers and non-carriers receiving sham, anodal or cathodal tDCS. Carriers are 

displayed in green, non-carriers in red. Sham tDCS is shown in brown, anodal tDCS in orange and cathodal 

tDCS in blue. Circles indicate carriers. Triangles indicate non-carriers. Error bars represent the standard 

error of the mean. S = sham; A = anodal; C = cathodal. 
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Figure 4. Role of BDNF Val66Met in the short-latency response fraction. A-B. Histograms for the short-

latency response fraction in carriers (A) and non-carriers (B). 

       
 

 

  

  

  

                                   

 
 
 
 
 
  
 
  
  

 
  
 
  
  
 

 

       
 

 

  

  

  

                                   

                      

Paradigm Model Factor OR B 

Eyeblink 

conditioning 

Single group Carrier - 18.8 [2.3 35.3] 

 AnodalCarrier - -0.7 [-18.6 17.2] 

 AnodalNon-carrier - 18.0 [2.6 33.3] 

 CathodalCarrier - 1.2 [-17.7 19.9] 

 CathodalNon-carrier - 2.3 [-13.0 17.5] 

Learner / 

non-learner 

Carrier 4.2 [1.1 19.8] 2.9 [-8.5 14.5] 

AnodalCarrier 0.8 [0.1 3.9] 1.0 [-10.2 12.1] 

AnodalNon-carrier 2.5 [0.8 8.9] 11.9 [0.8 23.0] 

CathodalCarrier 1.2 [0.2 8.3] -1.4 [-12.8 10.0] 

CathodalNon-carrier 1.3 [0.4 4.3] -1.7 [-13.2 9.9] 

VOR 

adaptation 

Single group Carrier - -2.0 [-8.7 4.7] 

AnodalCarrier - 3.4 [-3.2 9.5] 

AnodalNon-carrier - 0.6 [-3.4 4.8] 

Saccade 

adaptation 

Single group Carrier - 1.0 [-8.6 10.6] 

Visuomotor 

adaptation 

Single group Carrier - 2.7 [-2.5 7.9] 

Table 3. Linear and logistic regression models. VOR adaptation, saccade adaptation and visuomotor 

adaptation were best modeled as a single group (see Table 2) and therefore further analyzed with a linear 

regression of the learning parameter of all subjects. Eyeblink conditioning was best captured with a learner 

/ non-learner model and therefore analyzed both with a logistic regression for the probability of being a 

learner and a linear regression for the learning parameter of the learner group. B = correlation coefficients, 

OR = odds ratio. 
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Results of the learner / non-learner analysis are presented in Table 3 (‘Learner / non-

learner model’) and Figures 3F-L. We found that whereas the learning parameter was similar for 

carriers and non-carriers (see Figure 3F-G and Table 3), the percentage of learners was higher 

for carriers than for non-carriers (see Figure 3H and Table 3). In the carrier group, neither anodal 

tDCS nor cathodal tDCS affected the learning parameter compared with sham (see Figures 3G and 

3K and Table 3). Similarly, neither anodal tDCS nor cathodal tDCS affected the percentage of 

learners compared with sham (see Figure 3L). In the non-carrier group, anodal tDCS increased 

the learning parameter (see Figures 3J-K and Table 3) compared with sham, but not the 

percentage of learners compared with sham (see Figure 3L and Table 3). Cathodal tDCS did not 

affect the learning parameter nor the percentage of learners (see Figures 3J-L and Table 3). 

here was no significant difference in the short latency response fraction between non 

carriers and carriers (MNon-carrier - MCarrier = -1.2% 95%ETI =[-3.3 – 0.6]%) (see Figure 4). 

 

VOR adaptation 

The learning parameter for VOR adaptation was best described by a unimodal distribution (see 

Figure 2B and Table 2). We therefore performed statistical analysis based on the ‘single group’ 

model (see Figure 5 and Table 3).  

The learning parameter was similar for carriers and non-carriers (see Figures 5A and 

5C and Table 3). In carriers, no effect of anodal tDCS was found compared with sham (see Figures 

5B and 5E and Table 3). Similarly, in non-carriers, no effect of anodal tDCS was found compared 

with sham (see Figures 5C and 5F and Table 3). 

 
Figure 5. Role of BDNF Val66Met and cerebellar tDCS in VOR adaptation. A-C. Learning curves for (A) 

carriers and non-carriers, averaged over the two tDCS conditions, (B) carriers receiving sham and anodal 

tDCS and (C) non-carriers receiving sham and anodal tDCS. D-F. Learning parameters for (D) carriers and 

non-carriers, averaged over the two tDCS conditions, (E) carriers receiving sham and anodal tDCS and (F) 

non-carriers receiving sham and anodal tDCS. 
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Figure 6. Role of BDNF Val66Met in saccade and visuomotor adaptation. A. Saccade adaptation set-up. 

Subjects were instructed to look at the origin (red circle 0.25 degrees of visual angle radius) displayed on a 

black background, 5 degrees of visual angle left of the center of the screen. After a uniformly distributed 

random delay between 400 and 1400 milliseconds, the origin disappeared and a target (red circle 0.25 

degrees of visual angle radius) appeared 5 degrees of visual angle right of the center of the screen. Saccades 

were detected online using a velocity threshold of 60°/s and a boundary threshold of 1.2° to the right of the 

fixation position. If no saccade was detected after 500 ms, the screen was blanked for 500 ms and the trial 

was restarted showing the origin. The duration of one trial was 3000 ms. In unperturbed trials (red line), the 

target was shown at a fixed location 10° to the right of the origin from presentation start until trial end. In 

perturbed trials (blue line), the target was displaced 3 degrees of visual angle inward as soon as a saccade 

was detected i.e., during the saccade. B.  Saccade adaptation experimental design. The experiment included 

baseline measurements of 50 unperturbed trials (red line, B1-50), followed by learning measurements of 150 

perturbed trials (green line, L1-150). C. Visuomotor adaptation set-up. Subjects were instructed to make 
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Saccade adaptation and visuomotor adaptation 

To further investigate whether a role for BDNF Val66Met is absent in cerebellum-dependent 

motor adaptation, we performed additional saccade and visuomotor adaptation tasks in 75 

subjects. Genetic analysis failed in 3/75 individuals leaving 72 for analysis.  

The learning parameters of saccade and visuomotor adaptation were best described by a 

unimodal distribution (see Figures 2C-D and Table 2) and therefore analyzed with the ‘single 

group’ model only. For saccade adaptation, no difference was found for the learning parameter 

between carriers and non-carriers (see Figures 6 E-F and Table 3). Similarly, for visuomotor 

adaptation, no difference was found for the learning parameter between carriers and non-

carriers (see Figures 6 G-H and Table 3). 

 

Discussion 

Role of BDNF Val66Met in cerebellum-dependent learning 

The higher proportion of eyeblink conditioning learners in carriers compared to non-carriers 

could depend on modulation of cerebellar activity. Within the cerebellum, BDNF released from 

mossy fibers 24 may control the response of both granule cells and Purkinje cells to GABA 79 and 

thereby keep baseline simple spike firing frequency and the potential for conditioning within 

normal limits. Carriers of the BDNF Val66Met polymorphism on the other hand are expected to 

have an altered granule and Purkinje cell response to GABA, which may increase baseline simple 

spike firing frequency allowing for stronger disinhibition of cerebellar nuclei neurons and faster 

eyeblink conditioning 80. Why then does the polymorphism not affect adaptation? Learning 

mechanisms for gain-decrease VOR adaptation, gain-decrease saccade adaptation and 

visuomotor adaptation are believed to depend more on synaptic plasticity in cerebellar and 

vestibular nuclei rather than the cerebellar cortex, and might be less directly related to baseline 

simple spike firing frequencies 44–48,81,82. 

Alternatively, BDNF Val66Met might also influence other brain regions that are involved 

in eyeblink conditioning, like the amgydala 30–34 and the hippocampus 30. We did not find a 

difference in short latency responses between carriers and non-carriers, which makes a direct 

effect of the amygdala unlikely 31. However, it has been suggested that the amygdala can enhance 

eyeblink conditioning indirectly, by modulating the saliency of the conditioned stimulus 34. In 

contrast, the hippocampus is believed to inhibit eyeblink conditioning. 30. Indeed, lower BDNF 

concentrations in the mouse hippocampus have been associated with faster eyeblink 

straight rapid shooting movements from the origin towards the target. A trial started when the cursor 

(position of robotic handle; green circle 2 mm radius) was within 0.5 cm of the origin (red circle 2 mm radius) 

for 1 second, with the appearance of the target (red circle 2 mm radius) at one of 8 positions. A trial ended 

when the robotic handle passed an (invisible) circle with 10 cm radius around the origin or trial duration 

exceeded 2 seconds. At this point, the cursor was shown at its last position until the start of the next trial and 

the movement was dampened. Color cues were given to keep movement velocity in a tight range (blue when 

too slow >600 ms; yellow when too fast <400 ms; green when correct 400-600 ms). The cursor reappeared 

at its measured position when located 0.5 cm from the origin. In unperturbed trials (red lines), the cursor 

was shown at the location of the robotic handle while in perturbed trials (green lines) cursor position was 

rotated 30 degrees clockwise around the origin with respect to manipulandum position. D. Visuomotor 

adaptation experimental design. The experiment design included baseline measurements of unperturbed 

trials (red line, B1-192) and learning measurements of perturbed trials (green line, L1-200). E-F. Role of 

BDNF Val66Met in saccade adaptation. Learning curves (left column) and learning parameters (right column) 

for carriers of the BDNF Val66Met polymorphism (green) and non-carriers (red). G-H. Role of BDNF 

Val66Met in visuomotor adaptation. Learning curves (left column) and learning parameters (right column) 

for carriers of the BDNF Val66Met polymorphism (green) and non-carriers (red). 
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conditioning 83. Furthermore, BDNF Val66Met carriers show stronger cued fear conditioning, 

with decreased activity in the hippocampus and increased activity in the amygdala 25. This 

extracerebellar hypothesis is also compatible with the null effect of BDNF Val66Met in the 

adaptation tasks, which do not depend on the hippocampus or amygdala 41,84. 

The relevance of BDNF Val66Met for eyeblink conditioning might extend to other cerebellum-

dependent modalities of motor, emotional and cognitive associative learning 85 and pathologies 

of cerebellum-dependent associative learning such as schizophrenia 86,87. 

 

Mechanisms of cerebellar tDCS 

The interaction between cerebellar tDCS and BDNF Val66Met in eyeblink conditioning might 

point to a common effect on simple spike firing frequency. Anodal tDCS only increases eyeblink 

conditioning in non-carriers, who learn more slowly and have higher activity-dependent BDNF 

release. However, it seems unlikely that the effect of anodal tDCS in the cerebellum is mediated 

by BDNF release, as has been suggested for the motor cortex 22, because this would decrease 

rather than increase the eyeblink conditioning response. Rather, we expect anodal tDCS to 

directly modulate the baseline simple spike firing frequency of cerebellar neurons through 

subthreshold depolarization 36,37,39,40,88,89. Carriers might be less sensitive to subthreshold 

depolarization, because baseline firing frequency is already increased (1) as a direct result of 

diminished BDNF release or (2) as a result of stronger excitation by the amygdala. In contrast, no 

effect of cerebellar tDCS on VOR adaptation was found for either carriers or non-carriers, which 

might be related to a minor role for simple spike firing in VOR adaptation compared to eyeblink 

conditioning 46,48. Alternatively, the cerebellar flocculus, which is involved in VOR adaptation is 

located deeper in the cerebellum than Lobule VI, which is involved in eyeblink conditioning, and 

the local electric field strength 51 might therefore be insufficient for cerebellar tDCS to have an 

effect. Modeling-based approaches are necessary to further explore this open question 12. 

 The complex interaction between (1) cerebellar tDCS, (2) anatomical substrates and 

neurophysiological mechanisms of motor learning, and (3) genetic factors requires detailed 

animal studies combining electrophysiological and behavioral experiments to further develop 

cerebellar tDCS as a neuromodulatory technique. 

 

Variable results of cerebellar tDCS 

The interaction between BDNF Val66Met and anodal tDCS might explain some of the 

inconsistency in cerebellar tDCS literature. The null result for anodal tDCS found by Beyer et al. 

compared with increased eyeblink conditioning found by Zuchowski et al. 1 might have resulted 

from a higher proportion of carriers in the subject population of Beyer et al. 14. However, 

decreased eyeblink conditioning with cathodal tDCS 1 could only be explained from our results 

by an uneven distribution of non-learners. In addition, since no interaction between cerebellar 

tDCS and BDNF Val66Met in VOR adaptation was found, as well as no direct effect of BDNF 

Val66Met on VOR adaptation, saccade adaptation and visuomotor adaptation, we do not think 

conflicting literature results in other tasks, such as visuomotor adaptation 2,4,10,13, can be 

explained by our results. Possibly, other individual determinants are important in these tasks. 

Careful characterization of genetic and other individual factors will be necessary in future 

(pre)clinical studies of cerebellar tDCS to decrease response variability and identify non-learners 

who do not benefit from stimulation. 
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4.3 Cerebellar Cathodal Transcranial Direct Stimulation and performance 

on a verb generation task: a replication study 
Kerstin Spielmann, Rick van der Vliet, W. Mieke E. van de Sandt-Koenderman, Maarten A. Frens, 

Gerard M. Ribbers, Ruud W. Selles, Stephanie van Vugt, Jos N. van der Geest and Peter Holland 

 

Abstract 

The role of the cerebellum in cognitive processing is increasingly recognized, but still poorly 

understood. A recent study in this field applied cerebellar Transcranial Direct Current 

Stimulation (c-tDCS) to the right cerebellum to investigate the role of prefrontal-cerebellar loops 

in language aspects of cognition. Results showed that the improvement in participants’ verbal 

response times on a verb generation task was facilitated by cathodal c-tDCS, compared to anodal 

or sham c-tDCS. The primary aim of the present study is to replicate these findings and 

additionally to investigate possible longer term effects. A cross-over within-subject design was 

used, comparing cathodal and sham c-tDCS. The experiment consisted of two visits with an 

interval of one week. Our results show no direct contribution of cathodal c-tDCS over the 

cerebellum to language task performance. However, one week later, the group receiving cathodal 

c-tDCS in the first visit show less improvement and increased variability in their verbal response 

times during the second visit, compared to the group receiving sham c-tDCS in the first visit. 

These findings suggest a potential negative effect of c-tDCS and warrant further investigation into 

long term effects of c-tDCS before undertaking clinical studies with post-stroke patients with 

aphasia.  
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Introduction 

Transcranial Direct Current Stimulation (tDCS) has become increasingly popular in neuroscience 

and neurorehabilitation. This user-friendly noninvasive form of brain stimulation can either 

increase or reduce neuronal excitability in a polarity-specific manner.1,2 Positive or anodal 

stimulation is proposed to increase activity in the brain area under the electrode whereas 

negative or cathodal stimulation would do the opposite. tDCS has been used for fundamental 

research to understand the functional organization of the brain and additionally it has been 

investigated in a clinical setting. Examples of such clinical studies include attempts to treat 

patients with post-stroke aphasia or hemiplegia, Parkinson’s disease, and depression.3–6 

However, despite a large body of tDCS literature reporting positive results, the reproducibility of 

these results is questioned.7,8 

Recent studies have applied tDCS to understand the different functional domains of the 

cerebellum, a brain structure traditionally thought to be solely related to motor control but 

recently suggested to also be engaged in cognitive processes.9 A role of the cerebellum in 

cognitive processing is supported by reports of cognitive deficits following injury to the 

cerebellum as well as anatomical and neuroimaging studies.10,11 Topographically, cerebellar 

lobules VI and VII were found to have projections to cortical association areas involved in 

cognitive processes.11 Neuroimaging studies have shown that regions of lobule VII are involved 

in prefrontal-cerebellar loops.12–14 Specifically, language processing and executive functioning 

activated regions of lobule VII.14 Taken together, these studies demonstrate the role of prefrontal-

cerebellar loops in cognitive processing, specifically it has been suggested that the Purkinje cells 

in the right cerebellum have an inhibitory effect on the contralateral cortical prefrontal regions 

(i.e. cerebello-cortical inhibition).9,11–14 

The efficacy of cerebellar tDCS (c-tDCS) in modulating cerebello-cortical inhibition has 

previously been confirmed by Galea et al.15 They combined Transcranial Magnetic Stimulation 

(TMS) with c-tDCS and demonstrated that anodal c-tDCS to the right cerebellum increases the 

inhibitory effect to the primary motor cortex whilst cathodal c-tDCS to the right cerebellum 

reduces this effect. As Purkinje cells are the sole inhibitory output of the cerebellum, this 

observation suggests that anodal c-tDCS leads to increased activity of these neurons while 

cathodal c-tDCS lead to decreased activity. In addition, electrophysiological animal studies 

confirmed modulation of Purkinje cell activity with electrical stimulation.16,17 However, in 

humans, whether these changes in Purkinje cells firing are direct or depend on other cerebellar 

neurons is currently unknown. Given the highly homogenous anatomy of the cerebellar cortex, it 

would seem likely that c-tDCS affects the prefrontal cortex similarly to the motor cortex. This 

means anodal c-tDCS would decrease prefrontal cortex activity whereas cathodal c-tDCS would 

increase prefrontal cortex activity. However, literature regarding the efficacy of c-tDCS is 

inconsistent, for example, a study by Doeltgen et al. reported18 that anodal c-tDCS may reduce the 

inhibitory effect on the primary motor cortex. Also, a study focusing on language functioning19 

found that both anodal and cathodal c-tDCS enhanced the performance on a phonemic fluency 

task. 

An interesting recent study that investigated right cerebellar involvement in cognitive 

processing employed c-tDCS to study prefrontal-cerebellar loops in arithmetic and language 

aspects of working memory and attention.20 Pope and Miall20 hypothesized that cathodal c-tDCS 

over the right cerebellum lobule VII would reduce the inhibitory tone exerted by the Purkinje 

cells over prefrontal regions, causing disinhibition of the contralateral prefrontal regions. 

Disinhibition of prefrontal regions in turn could improve performance, especially on cognitively 
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demanding tasks. Pope and Miall used arithmetic and language tasks with varying levels of 

cognitive demand and, reported that the improvement in participants’ verbal response times was 

facilitated by cathodal c-tDCS over the right cerebellum, compared to anodal or sham c-tDCS over 

the same region. Additionally response times became less variable. As the improvement was 

greatest for the more cognitively demanding versions of the arithmetic and language task, the 

authors speculated that the cerebellum is capable of releasing cognitive resources by 

disinhibition of prefrontal regions, enhancing performance when tasks become cognitively 

demanding. Further support for this hypothesis was later found by demonstrating that 

stimulation of the prefrontal cortex with anodal tDCS achieves the same effect as cathodal c-tDCS, 

specifically for the task assessing arithmetic aspects.21  

In the present study, we were specifically interested in the potential improvement in 

language task performance after c-tDCS, as reported by Pope and Miall.20 Right cerebellar 

involvement in language processing has been highlighted in several studies.22–24 Further, a 

Positron Emission Tomographic (PET) study25,26 and a Functional Magnetic Resonance Imaging 

(fMRI) study27 have demonstrated an involvement of left hemisphere areas and the right 

cerebellum during a verb generation task. The application of c-tDCS may contribute to our 

understanding of the prefrontal-cerebellar loops and language processing in healthy subjects, but 

could also be interesting for future clinical applications.28 Recent clinical studies applying 

cerebral tDCS in post-stroke aphasia patients have already shown promising effects29–31 and c-

tDCS might possibly further contribute to the recovery of these patients. However, the results of 

cerebellar stimulation on language in healthy subjects awaits replication before translation to the 

clinical setting is justified.  

The primary aim of the present study was to replicate the facilitatory effect immediately 

after cathodal c-tDCS on language task performance, as reported by Pope and Miall (i.e. their 

experiment 2).20 The task setup and outcome measures are similar to their study. In contrast to 

their between-subject design, the present study performed a cross-over within-subject design, 

comparing cathodal and sham c-tDCS, in order to reduce the impact of individual variability in 

the response to tDCS.32 The experiment consisted of two visits with an interval of one week; 

therefore, this design allowed us to investigate the long term effects of stimulation by measuring 

the same participants one week later. 

 

Methods 

Design 

The present study replicates the task used in experiment 2 of the study of Pope and Miall.20 Their 

study had a double-blind between-subject design comparing anodal c-tDCS, cathodal c-tDCS and 

sham c-tDCS (for further details see 20). The present study has a double-blind cross-over within-

subject design, comparing cathodal c-tDCS and sham c-tDCS (see Figure 1). The experiment 

consisted of two visits with an interval of one week. In each visit a different stimulation condition 

(cathodal or sham c-tDCS) was applied and this order was counterbalanced among participants. 

Similar to the study of Pope and Miall, response accuracy and verbal response times were 

collected before and after cathodal c-tDCS and sham c-tDCS on three language tasks: noun 

reading, verb reading and verb generation.  
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Sample size calculation  

Power calculations were based on the reported effects of the study of Pope and Miall,20 

specifically the interaction effect for verbal response times (Group x Block x Task, F(20,570)=1.83 

corresponding to a Cohen’s f of 0.18) and the interaction effect for a computed variable Learning 

(Session x Task x Group, F(1,114)=4.50 corresponding to a Cohen’s f of 0.28). For a study design 

with 4 repeated measurements (cathodal compared to sham; before tDCS compared to after 

tDCS), a within-patient correlation of 0.75, an alpha of 0.05, a power of 0.80 and a Cohen’s f effect 

size of 0.18, we need 23 subjects. For a study design with 4 repeated measurements (cathodal 

compared to sham; before tDCS compared to after tDCS), a within-patient correlation of 0.75, an 

alpha of 0.05, a power of 0.80 and a Cohen’s f effect size of 0.28, we need 11 subjects. Based on 

these power calculations, our aim was to include 24 subjects (in order to have an even number 

of subjects for the counterbalancing procedure).  

 

Participants 

Twenty-four healthy and (near) native Dutch speakers (18 women, 6 men; age range 19-29 years, 

mean ± SD: 22 ± 2.36 years) with normal vision and normal speech (i.e. no stammer) were 

recruited from the Erasmus University Rotterdam for a small monetary reward. Exclusion 

criteria were left handedness and dyslexia. Right-handedness was based on an Edinburgh 

Handedness Inventory score ≥ 50,33 and the absence of dyslexia was self-reported. All 

participants gave informed consent and the study has been approved by the Medical Ethics 

Committee of the Erasmus MC, University Medical Center Rotterdam.  

 

Tasks and Stimuli 

We used the three language tasks that were used in the study of Pope and Miall: a noun reading 

task, a verb generation task and a verb reading task. For a Dutch version of these tasks, we 

prepared Dutch word lists including 40 nouns and 40 matched verbs. First, all nouns of the verb 

generation task used by Pope and Miall20  were translated. Some of the nouns could not be 

translated into Dutch and some verb productions were strongly related to the morphological 

form of the item due to an identical wordstem (e.g. fiets- fietsen, meaning ‘bike- biking’). The list 

of nouns was therefore supplemented by the set of Dutch nouns of De Witte et al.,34 resulting in a 

list of 124 concrete nouns related to manipulable tools and objects that were potential stimuli for 

the language experiment. The stimuli of the final word list were chosen on the basis of responses 

in a verb generation task from a pilot group (n = 22). Only noun-verb pairs generated by more 

than half of the pilot group were selected for the final word list. If two or more nouns elicited the 

same verb, these nouns were excluded. Also nouns eliciting non-action verbs (e.g. ‘oven-bake’) 

were excluded. The final word list, including 40 nouns and 40 matched verbs, was split up in two 

lists (list A and list B): one list was presented before c-tDCS and the other after c-tDCS. The order 

of list A and B was counterbalanced across participants. Specifically, during the first visit, half of 

 
Figure 1. Study design. Participants complete 2 visits with a one-week interval, receiving cathodal (blue) or 

sham c-tDCS (grey) in a counterbalanced order.  
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the group was presented with list A before c-tDCS and list B after c-tDCS. During the second visit, 

this same group was presented with list B before c-tDCS and list A after c-tDCS. The other half of 

the group received the opposite order, starting during the first visit with list B before c-tDCS, etc. 

The stimuli were presented on a computer screen (48 cm x 28 cm) placed 65 cm in front of the 

participants. The tasks were designed and presented using Matlab 2013a and Psychophysics 

Toolbox (v3.0.12).35,36 Each task comprised 6 blocks of 10 trials (i.e. 10 words) each. In the first 

five blocks the same set of words was used but the order of the appearance of the words was 

randomized on a block by block basis. In the sixth block a new set of words was presented, again 

in a randomized order. Each task lasted approximately 5 minutes. Participants had a break of at 

least 10 seconds between each task.  

A microphone (model: Trust-MC 1200) was used to register the verbal response times. 

Each stimulus was replaced by the next stimulus when the microphone recorded a response. 

After a response was recorded, a black screen was displayed for 2 s before the next stimulus was 

presented.  

 

Transcranial Direct Current Stimulation 

Cathodal and sham c-tDCS were delivered through a pair of saline-soaked sponge electrodes (25 

cm2 surface area) using a NeuroConn DC-stimulator. In the cathodal stimulation condition 

participants received active stimulation of 2 mA for a duration of 20 minutes. Stimulation was 

automatically activated with a fade in of 30 s and after 20 minutes the stimulation was 

automatically deactivated with a fade out of 30 s. In the sham condition, participants received 

pseudo stimulation with a fade in of 30 s and after 40 s the stimulation was automatically 

deactivated with a fade out of 30 s. The average impedance was 23.7 ± 8.0 kΩ (mean ± SD) among 

participants. The cathode was placed over the right cerebellar cortex, 1 cm under and 4 cm lateral 

to the inion, which is defined as the location of the cerebellar lobule VII. The anode was placed 

over the right shoulder, that is, the right deltoid muscle.20  

 

Procedure 

The experiment was performed inside a quiet cubicle. Participants performed the three tasks in 

the following order: noun reading, verb generation and verb reading. For the reading tasks, 

participants were instructed to read the presented noun or verb aloud as soon as it appeared on 

the computer screen. For the verb generation task, they were instructed to produce an 

appropriate verb as quickly as possible in response to the noun presented on the screen. It was 

explained that an appropriate verb could be a verb that described what the presented noun may 

do or what it may be used for. It was emphasized that only one verb was to be produced. At the 

beginning of each task, one example was given and three test items were presented, which were 

items other than those in the experiment. For all tasks, responses were checked for accuracy by 

the researcher. All verbs produced during the verb generation task were written down by the 

researcher.  

After completion of the three tasks, 20 minutes of cathodal or sham c-tDCS was applied. 

The electrodes were placed by the researcher. Both the researcher and the participant were 

blinded for stimulation condition, which was achieved by using two 5-number codes that can be 

entered into the tDCS device. These 5-number codes are provided by the manufacturer of the 

tDCS device. One code is related to start the real tDCS stimulation condition and the other code is 

related to start sham tDCS. A researcher of our research team (JG), who was not involved in the 

assessment of the experiment, provided these two 5-number codes. During the 20 minutes 
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cathodal or sham c-tDCS, participants were instructed to look at a black computer screen. After 

the stimulation, participants performed the three tasks for the second time using parallel 

versions of word lists. In total, the experiment lasted approximately 90 minutes. After one week 

each participant took the experiment for the second time, in which the other stimulation 

condition was applied. Next to that, the word list previously presented after c-tDCS were now 

presented prior to c-tDCS.  

 

Statistical analysis 

Incorrect responses, missed responses, and outliers were removed before analysis. For the noun 

reading and the verb reading tasks, no incorrect responses were detected. For the verb 

generation task, non-words, multiple word responses and responses that were not 

Variable Effect df F p η2 

Verbal response 

time 

Condition 1, 23 4.81 0.038 0.173 

Task 1.16, 26.71 808.98 <0.001 0.9772 

Block 5, 115 121.63 <0.001 0.841 

Task x Block 4.22, 97.15 37.16 <0.001 0.618 

Session 1, 23 0.10 0.750 0.004 

Task x Session 1.38, 1.20 0.77 0.427 0.032 

Condition x Task x Block 4.33, 99,63 0.77 0.558 0.032 

Response variability Session 1, 23 6.49 0.018 0.220 

Task 1.19, 27.37 655.93 <0.001 0.966 

Block 5, 115 17,63 <0.001 0.434 

Task x Block 4.31, 99.12 8.65 <0.001 0.273 

Condition x Block 5, 115 0.62 0.689 0.026 

Condition x Task x Block 4.00, 91.96 1.42 0.233 0.058 

Learning Task 1.20, 27.52 21.76 <0.001 0.486 

Task x Session 1.22, 27.96 0.47 0.537 0.020 

Task x Condition 1.18, 27.11 1.48 0.240 0.060 

Session x Condition 1, 23 0.36 0.555 0.015 

Session x Task x 

Condition 

1.27, 29.10 0.35 0.608 0.015 

Learning variability Session 1, 23 5.45 0.029 0.192 

 Task 1.09, 25.00 6.66 0.014 0.225 

 Condition 1, 23 0.63 0.435 0.027 

 Task x Session 1.24, 28.44 7.09 0.009 0.236 

 Task x Condition 1.17, 26.84 0.34 0.600 0.014 

 Session x Condition 1, 23 0.70 0.411 0.030 

 Session x Task x 

Condition 

1.06, 24.34 0.44 0.524 0.019 

Table 1. Results of the study: verbal response time, response variability, learning and learning 

variability.  



Electrophysiology, genetics and neuromodulation 

105 
 

representative for what the noun may do or what it may be used for (e.g. ‘eyebrow – drawing’), 

were considered incorrect and were not included in the analysis. For each task, voice onset times 

were corrected manually from digital recordings if lip movement, swallowing and heavy 

breathing were prior to the verbal response, because this influenced the microphone recording. 

Outliers, responses exceeding more or less than 2 standard deviations from the mean of that task 

were removed. 

Although we used test items, a novelty effect was found for the first trials (i.e. first word 

presented) of each block, shown by a larger reaction time. Because the mean for each block 

consisting of 10 trials was calculated, we decided to exclude the first trial in order to get a 

representative mean of the data. Further, in case of violations of sphericity, a Greenhouse-Geisser 

correction was applied and adjusted degrees of freedom are reported in the text.  

In line with the study of Pope and Miall, the present study analyzed the data in terms of 

the mean and variability of verbal response times. Mean verbal response times for each block per 

task were analyzed with a repeated measures analysis of variance (ANOVA), using four factors. 

These factors are Condition (cathodal tDCS and sham), Session (pre-tDCS and post-tDCS), Task 

(noun reading, verb generation and verb reading) and Block (six blocks per task). The variability 

of verbal response times between the three tasks and six blocks per task was analyzed with 

pairwise comparisons; a Bonferroni correction was used. The level of significance was set at α = 

0.05. For the response variability, an ANOVA was performed on the within block standard 

deviations of the verbal response times across Block, Task, Session and averaged by Condition.  

Also in line with the study of Pope and Miall, the present study analyzed the data by computing 

the variables 'learning' and 'total learning variability'. The learning variable was computed by 

subtracting Block 5 from Block 1 and putting this as a variable in an ANOVA with Task x Session 

x Condition. For the total learning variability, the standard deviations of the learning variable 

(Block 5 – Block 1) across Task, Session and averaged by Condition, were entered into an ANOVA. 

The present within-subject design allows us to investigate the long term effects of 

stimulation by measuring the same subjects a week later. We therefore also performed an ANOVA 

including the between-subject factor visit-order. This between-subject factor indicates whether 

a participant received cathodal c-tDCS or sham c-tDCS at the first visit.  

 

Results 

In general, results are reported in the same way as in the study of Pope and Miall.20 Table 1 

presents an overview of the statistical results for the 4 variables that were analyzed: mean verbal 

response times, verbal response variability, learning and total learning variability. Table 1 only 

includes the factors and interactions that were reported as (near) significant in the study of Pope 

and Miall, and will be explained further in the following paragraphs. Values are reported as mean 

± standard error of the mean in the text unless otherwise specified.  

 

Response accuracy 

Participants made very few incorrect responses (1.9%) and very few missed responses (0.5%) 

were obtained. These incorrect and missed responses were excluded from further analysis.  

 

Verbal response times 

Figure 2 presents the results of the verbal response times for each task and across the 6 blocks, 

before and after tDCS. In general, the range of verbal response times of the present study (0.573 

s – 1.082 s) was higher than the study of Pope and Miall.20 A Condition x Task x Session x Block 
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ANOVA revealed a large main effect (see Table 1) of Condition, with larger verbal response times 

in the sham condition (0.730 ± 0.011 s) compared to the cathodal condition (0.709 ± 0.010 s). 

However, there was no main effect of Session and no interaction effect of Condition x Session, 

therefore indicating no overall effect of tDCS on verbal response times. 

In line with the study of Pope and Miall, a large main effect of Task was found, with 

larger verbal response times on the verb generation task (0.953 ± 0.016 s) compared to the noun 

reading (0.606 ± 0.007 s) and verb reading task (0.600 ± 0.008 s). Also in line with Pope and Miall, 

a large main effect of Block was found. This can be described as a priming effect for block 1-5, 

meaning that the verbal response times are reduced across block 1-5 because the same words 

are repeated, and a novelty effect from block 5 to block 6, meaning an increase in verbal response 

time because new words are presented. The priming effect and the novelty effect were greater 

for the verb generation task, as shown by a large Task x Block interaction. Specifically, the verbal 

response times across block 1-5 were reduced more during verb generation than during noun 

reading and verb reading. The increase in verbal response times from block 5 to 6, was greater 

for verb generation than for noun reading and verb reading.  

 

Response variability 

For the response variability, a Condition x Task x Session x Block ANOVA revealed no main effect 

of Condition. A large main effect of Session was found, such that the response variability was 

greater after tDCS (0.096 ± 0.002 s) than before (0.091 ± 0.002 s). However, there was no 

Condition x Session interaction, indicating no overall effect of tDCS on verbal response variability. 

In line with the study of Pope and Miall, there was a large main effect of Task, such that verbal 

response times were more variable during verb generation (0.168 ± 0.004 s) than during noun 

Figure 2. Results for the verbal response times (s), before and after tDCS, for each task and across the 6 

blocks. Error bars present the Standard Error of the Mean (SEM).  
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reading (0.054 ± 0.002 s) and verb reading (0.059 ± 0.002 s). Also, in line with Pope and Miall, a 

large main effect of Block was found, where response variability decreased across the 5 blocks of 

repeated words (i.e. priming effect), then increased in block 6, when new word lists were shown 

(i.e. novelty effect). This pattern for the priming effect and the novelty effect was greater for the 

verb generation task, as shown by a large Task x Block interaction. Specifically, the response 

variability across block 1-5 was reduced more during verb generation compared to noun reading 

and verb reading. The increase in response variability from block 5 to 6 was greater for verb 

generation than for noun reading and verb reading.  

 

Learning 

The results for learning, as reflected in the difference in response times between block 1 and 

block 5, are presented in Figure 3. A Condition x Task x Session ANOVA revealed no significant 

main effect of Condition and no significant main effect of Session, indicating there was no effect 

of tDCS. In line with the study of Pope and Miall, there was a large main effect of Task, such that 

there was a larger improvement of verbal response times across block 1-5 for the verb generation 

task (0.104 ± 0.015 s), compared to noun reading (0.029 ± 0.005 s) and verb reading (0.025 ± 

Figure 3. Results for the learning variable. Calculated by subtracting the verbal response times (s) in block 

5 from the verbal response times (s) in block 1. This difference is presented for each task, before and after 

tDCS. Error bars present the Standard Error of the Mean (SEM).  
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0.004 s). In contrast with the study of Pope and Miall, the present study did not demonstrate a 

Condition x Session x Task interaction. 

 

Change in variability 

For the total learning variability across block 1 to 5 (i.e. analyzing the standard deviations for the 

learning variable), a Condition x Task x Session ANOVA revealed no main effect of Condition. A 

large main effect of Session was found, such that the change in response variability was greater 

after tDCS (0.023 ± 0.004 s) than before (0.008 ± 0.005 s). However, there was no Condition x 

Session interaction, indicating no overall effect of tDCS on the change in variability. In line with 

the study of Pope and Miall, there was a large main effect of Task, such that the change in response 

variability between block 1 and 5 was greater for verb generation (0.035 ± 0.011 s), than for noun 

reading (0.005 ± 0.002 s) and verb reading (0.006 ± 0.002 s). A significant, large Task x Session 

interaction was found, such that the change in response variability between before and after tDCS 

was greater for the verb generation task, than for noun reading and verb reading. In contrast with 

the study of Pope and Miall, the present study did not demonstrate a Condition x Session x Task 

interaction. 

 

Long term effects - Verbal response times 

A Condition x Task x Session x Block ANOVA including block 1-5 and with visit-order as a 

between-subject factor (i.e. labeled as Visit) revealed a significant Condition x Visit interaction, 

F(1,22)=8.362, p=0.008, η2=0.275, such that the mean verbal response times showed a greater 

reduction for the group receiving sham in the first visit (first visit: 0.727 ± 0.016 s; second visit: 

0.681 ± 0.014 s), than for the group receiving cathodal stimulation in the first visit (first visit: 

 
Figure 4. Results for the long term effects. A shows the individual verbal response times on the verb 

generation task, for visit 1 and visit 2. B shows the mean verbal response times for each task, subtracting 

performance in the second visit from the first visit. Error bars present the Standard Error of the Mean (SEM).  
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0.717 ± 0.014 s; second visit: 0.715 ± 0.016 s). This effect was greater for the verb generation 

task, as shown by a Condition x Task x visit interaction, F(1.294,28.470)=25.266, p<0.001, 

η2=0.535. Figure 4 presents this interaction effect, showing the mean verbal response times for 

each task and stimulation condition, and comparing the first visit with the second visit. 

Specifically, the verbal response times for the verb generation task reduced more for the group 

receiving sham in the first visit (first visit: 0.963 ± 0.028 s; second visit: 0.864 ± 0.024 s), than for 

the group receiving cathodal first (first visit: 0.967 ± 0.024 s; second visit: 0.928 ± 0.028 s). 

In line with the immediate c-tDCS results, the long term analysis shows a priming effect 

across block 1-5. Specifically, there was a Condition x Block x Visit interaction, F(4,88)=3.026, 

p=0.022, η2=0.121, such that the verbal response times across block 1-5 reduced more for the 

group receiving sham the first time.  

  

 

Figure 5. Verbal responses times (s) across block 1-5 and for each task, for the time points pre-tDCS visit 1, 

post-tDCS visit 1, pre-tDCS visit 2 and post-tDCS visit 2. Blue presents the group starting with the cathodal 

condition in the first visit and grey presents the group starting with the sham condition in the first visit. Error 

bars present the Standard Error of the Mean (SEM).  
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Long term effects - Response variability  

For the response variability, the ANOVA analysis also revealed a large interaction of Condition x 

Visit, F(1,22)=14.274, p=0.001, η2=0.394, such that the response variability reduced more for the 

group receiving sham the first time (first visit: 0.094 ± 0.004 s; second visit: 0.082 ± 0.003 s), than 

for the group receiving cathodal tDCS in the first visit (first visit: 0.096 ± 0.003 s; second visit: 

0.089 ± 0.004 s). This effect was also more present for the verb generation task, as shown by a 

large, interaction effect of Stimulation x Task x Visit, F(1.558,34.280)=40.123, p<0.001, η2=0.646. 

Specifically, the response variability for the verb generation task reduced more for the group 

receiving sham the first time (first visit: 0.171 ± 0.009 s; second visit: 0.132 ± 0.007 s), than for 

the group receiving cathodal the first time (first visit: 0.186 ± 0.007 s; second visit: 0.152 ± 0.009 

s).  

In line with the immediate c-tDCS results, the long term analysis for the response variability also 

shows a priming effect across block 1-5. Specifically, there was a significant interaction effect of 

Condition x Block x Visit. F(4,88)=2.596, p=0.042, η2=0.106, such that the response variability 

across block 1-5 reduced more for the group receiving sham the first time. Finally, there was a 

significant interaction effect of Condition x Task x Block x Visit, F(3.728,82.018)=4.302, p=0.004, 

η2=0.164, such that for the verb generation task, response variability across block 1-5 reduced 

more for the group receiving sham the first time. 

 

Long term effects - Post-hoc tests: additional analysis of the long term effects 

To further study the performance over time and the effect of visit-order, we have performed some 

additional analysis. Figure 5 presents the performance over time, for each task and across block 

1-5, for the timepoints before tDCS visit 1 (pre-tDCS visit 1), after tDCS visit 1 (post-tDCS visit 1), 

before tDCS visit 2 (pre-tDCS visit 2) and after tDCS visit 2 (post-tDCS visit 2). Blue presents the 

group starting with the cathodal condition in the first visit and grey presents the group starting 

with the sham condition in the first visit. 

We studied specifically the performance from time point post-tDCS visit 1 to the time 

point pre-tDCS visit 2 in order to analyze whether performance improved between visits (i.e 

offline learning). Also, the same set of words was under examination for these 2 time points. An 

ANOVA including these timepoints, with visit-order as the between-subject variable, revealed 

that the average performance across block 1-5 improves from post-tDCS visit 1 (0.719 ± 0.014 s) 

to the pre-tDCS visit 2 (0.693 ± 0.012 s), shown by a large effect, F(1,22)=9.716, p=0.005, 

η2=0.306. This effect could be interpreted as an effect of offline learning, so participants become 

better in a task after a time interval. Furthermore, the group receiving sham the first time 

improves more for these time points (0.721 ± 0.020 s in visit 1 compared to 0.674 ± 0.016 s in 

visit 2) than the group receiving cathodal tDCS the first time (0.717 ± 0.020 s in visit 1 compared 

to 0.712 ± 0.016 s in visit 2). This was shown by a large Stimulation x Visit interaction effect, 

F(1,22)=6,467, p=0.019, η2=0.227. However, these results include only the mean of all blocks, 

and so it is not possible to discern if any improvements in performance are a result of continued 

practice or if in fact performance has improved between visits (i.e. offline learning). Therefore, a 

further step in our analysis was to specifically analyze the time point post-tDCS block 5 of visit 1 

and time point pre-tDCS block 1 of visit 2. An ANOVA including these timepoints, with visit-order 

as the between-subject variable, revealed that the performance on post-tDCS block 5 in visit 1 

(0.696 ± 0.015 s) actually decreased in the pre-tDCS block 1 in visit 2 (0.730 ± 0.012 s). This was 

shown by a large effect of Visit, F(1,22)=9,190, p=0.006, η2=0.295. Therefore, these data show no 

evidence for offline learning. 
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Discussion 

The aim of the present study was to replicate the results of Pope and Miall by demonstrating that 

cathodal stimulation of the right cerebellum improves task performance on a verb generation 

task.20 The task setup and outcome measures were similar to their study. Based on their results, 

showing a facilitatory effect immediately after cathodal c-tDCS, we compared cathodal c-tDCS and 

sham stimulation. In contrast with the between-subject design study of Pope and Miall, the 

present study used a cross-over within-subject design, in order to reduce the impact of individual 

variability.32 Participants had to complete two visits, with half of the group receiving cathodal c-

tDCS the first time and half of the group receiving sham c-tDCS the first time. Our results did not 

show a facilitating effect of cathodal c-tDCS on verb generation, either in terms of verbal response 

times or variability. In line with Pope and Miall, the verbal response times were larger for the 

verb generation task, compared to noun reading and verb reading. This effect can be explained 

with the idea that the verb generation task requires lexical search processes and verbal response 

selection, while noun and verb reading requires only reading processes. Interestingly, the verbal 

response times on our tasks were longer than those reported by the original study. These longer 

reaction times could be due to linguistic factors of the words,37 for example word length, i.e. 

words with more phonemes need more time to process.38 Indeed, on average, the words in our 

word lists were longer (mean ± SD: 6.13 ± 2.188 phonemes) than the lists of Pope and Miall (mean 

± SD: 4.77 ± 1.376 phonemes).20 Further, in line with Pope and Miall, there was a reduction in 

response time across block 1-5 (i.e. priming effect) and an increase in block 6 (i.e. novelty effect). 

The data of the present study do not confirm that cathodal c-tDCS over the right 

cerebellum lobule VII leads to disinhibition of the contralateral prefrontal regions and therefore 

to an improved performance on a cognitive demanding task (i.e. verb generation task). Previous 

studies have suggested that the Purkinje cells in the right cerebellum would have an inhibitory 

effect on the contralateral cortical prefrontal regions (i.e. cerebello-cortical inhibition).9,11–14 For 

language processing, right cerebellar involvement has also been suggested.22–24 Specifically, for 

the verb generation task, a PET scan study and an fMRI study showed that the contralateral 

cerebellar hemisphere was actively involved.25–27 However, when investigating the efficacy of c-

tDCS in modulating cerebello-cortical inhibition, motor-related studies demonstrate inconsistent 

findings. For example, one study demonstrates that anodal tDCS to the right cerebellum increases 

the inhibitory effect to the primary motor cortex whilst cathodal tDCS to the right cerebellum 

reduces this effect.15 In contrast, another study in this field report that anodal c-tDCS may reduce 

the inhibitory effect to the primary motor cortex.18  

Furthermore, the idea that the cerebellum constraints cortical activity which can be 

disinhibited by cathodal c-tDCS is also not consistently supported by cognition-related tDCS 

studies. For example, studies show contradictive results with regards to the application of tDCS 

to the right cerebellum and its effects on the performance on a verbal Working Memory (WM) 

task, i.e. forward and backward digit span task. One study shows that cathodal c-tDCS leads to 

reduced forward digit span and blocks the practice dependent increase in backward digit span,39 

while another study40 shows that both anodal and cathodal tDCS impairs practice dependent 

improvement in reaction times in a WM task. Further, Turkeltaub et al.19 found that both anodal 

and cathodal c-tDCS enhanced the performance on a phonemic fluency task, however, the anodal 

effect was found to be more robust. Taken together, it seems that c-tDCS studies are not yet 

consistent whether anodal or cathodal c-tDCS improves or disrupts task performance in healthy 

subjects. Future studies need to further explore the specific polarity effects of c-tDCS in order to 

understand its usage for cerebellar dependent cognitive processing. 
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Interestingly, we observe a long term effect of c-tDCS in our data. When analyzing the 

data further by taking into account visit-order, we found that the group receiving cathodal c-tDCS 

the first time demonstrated poorer performance in the second visit in comparison to those who 

received sham stimulation the first time. First of all, the group receiving cathodal c-tDCS in the 

first visit demonstrate less improvement from visit 1 to visit 2. Also, the group receiving cathodal 

c-tDCS in the first visit show less improvement during the second visit (i.e. performance across 

block 1-5) compared to the group receiving sham the first time. Regarding response variability, 

the same findings are found, thus the group receiving cathodal c-tDCS in the first visit show 

increased variability in verbal response times in the second visit and during the second visit (i.e. 

increased variability across block 1-5). In motor-related studies, this long term effect is often 

called a consolidation effect, meaning that after acquisition performance can become resistant to 

decay.41 To our knowledge, studies investigating consolidation effects of c-tDCS on a language 

task are scarce, whereas there are several motor-related c-tDCS studies that investigate the effect 

of c-tDCS on a longer time scale. For example, one such study demonstrated that anodal c-tDCS 

would enhance general motor skill learning and sequence-specific learning, 35 minutes after 

tDCS stimulation.42 Another study shows that anodal c-tDCS to the right cerebellum improves 

task performance on a temporal motor task in the follow-up tests (90 minutes and 24h after 

training).43 Furthermore, a recent study provides evidence that cathodal c-tDCS impairs 

overnight retention of a force field reaching task.44 Therefore, these motor-related studies show 

that, on a longer time scale, anodal c-tDCS may enhance performance, while cathodal c-tDCS may 

impair performance, which is in line with the long term results of the present study.  

Studies focusing on the adaptation of movements and tDCS have demonstrated a 

dissociation between the acquisition phase and the consolidation phase.45,46 Specifically, anodal 

tDCS to the right cerebellum leads to an increased acquisition of new internal models whereas 

anodal tDCS to the motor cortex leads to improved consolidation. Therefore, the cerebellum is 

believed to rapidly acquire new internal models that are also quickly forgotten whereas the 

motor cortex learns more slowly but retains better (i.e. consolidation). A similar transfer of 

learning from the cerebellar cortex to other structures has been proposed for other cerebellar 

dependent adaptation tasks such as eye-blink conditioning or adaptation of the vestibulo-ocular 

reflex.47 In the present study, it is possible that these two partially separable effects are at work: 

short terms changes in firing rate of the cerebellum and additional effects on plasticity. First, 

cathodal c-tDCS may indeed reduce the firing rate of Purkinje cells and the inhibitory tone on the 

prefrontal cortex, and therefore improve performance in tasks relying on these cortical areas, as 

found in the study of Pope and Miall. However, it should be noted that there is no direct 

neurophysiological evidence for this effect of c-tDCS specifically on the prefrontal cortex. 

Secondly, cathodal c-tDCS may also reduce plasticity in the cerebellar cortex and therefore retard 

the rate of learning there, subsequently reducing the amount that can be transferred to other 

areas for consolidation, which may be in line with the results of the present study.      

The present within-subject design with several time points allows us to evaluate 

different sub-concepts of consolidation. Consolidation can be described in terms of offline 

learning, i.e. improvements in performance between visits, and memory stabilization, i.e. reduced 

performance compared to the end of the previous visit but increased performance in comparison 

to the naïve state.48 However, the degree to which either or both of these is possible is dependent 

on task structure and the particular skill under consideration. An important consideration in 

interpreting our results is separating the effect of repeated practice from true offline learning. 

The results of the present study show that the average performance across block 1-5 improves 



Electrophysiology, genetics and neuromodulation 

113 
 

from time point post-tDCS in the first visit to time point pre-tDCS in the second visit. Furthermore, 

the group receiving sham the first time improves more for these time points than the group 

receiving cathodal stimulation the first time. Therefore these results may show an effect of offline 

learning, however, if only the mean of all blocks is used as a measure of performance it is not 

possible to discern if any improvements are a result of continued practice or if in fact 

performance has improved between visits.48 Further analysis demonstrates that performance in 

both groups (i.e. the group receiving cathodal stimulation the first time and the group receiving 

sham the first time) decreased between block 5 of the first visit and block 1 of the next, despite 

the fact that the same set of words was under examination. These data therefore show no 

evidence for offline learning but that may be due to the relatively long period of time between 

visits or because this particular task is not appropriate for such changes. In the future it will be 

interesting to test subjects again after a shorter interval to assay if offline learning is indeed 

possible with this task. It is important to note that offline learning has been investigated in an 

fMRI learning paradigm in which subjects had to learn a new lexicon and were tested 20 minutes 

later.49 The degree of offline learning was positively correlated with the level of activation of the 

right cerebellum. Therefore, these data provide evidence for a role of the cerebellum in 

consolidation of a learning task that includes language/linguistic aspects. The differences 

between learning a new lexicon and learning associations within a known lexicon (as here), 

especially when concerning the cerebellum, are unknown and it is vital for proper delineation of 

tDCS effects that the specific task demands are well understood.  

 

Limitations of the study 

First of all, it should be noted that the design of the present study with 1 week between 2 visits 

could interfere with replication of the original immediate effect reported by Pope and Miall. This 

interference could be due to effects of retesting the same words or a ceiling effect. Furthermore, 

in the present study the subjects had one block of novel words at the end of the five blocks of 

repeated words which may have also acted as an interfering factor. As the majority of the results 

found in both the present study and the original Pope and Miall study can be found within blocks 

1-5 it would be interesting to repeat the experiment with the omission of the novel words in block 

6 to test if any interference is occurring. Finally, it should be noted that the majority of (c-)tDCS 

studies are described in the context of motor tasks and we therefore used these studies in order 

to interpret our results, however, the analogy between motor learning, consolidation and the type 

of results presented here may be stretched.  

 

Conclusion and future recommendations 

The present study shows that long term effects of c-tDCS need to be taken into account when 

investigating the effect of c-tDCS on language task performance. Most tDCS studies with a motor 

or non-motor learning task focus on direct results rather than long term learning effects (i.e. 

consolidation). Our findings warrant further investigation into long term effects of c-tDCS, to 

better capture its effect and how we can use this application to understand the complex role of 

the cerebellum on cognitive/language processing. Therefore, we first need to understand c-tDCS 

in healthy subjects, before undertaking clinical studies with post-stroke patients with aphasia. To 

further explore the long term effect of c-tDCS on a cognitive language task, we would suggest to 

combine the design of Pope and Miall with the design of the present study. This combined design 

would describe the effect of c-tDCS in 3 conditions - anodal c-tDCS, cathodal c-tDCS and sham 

(between-subject) - and participants need to come twice in each condition (within-subject). This 
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design allows us to evaluate the effect of anodal c-tDCS compared to the effect of cathodal c-tDCS, 

on a longer time scale. Furthermore, techniques such as EEG may be used to explore the effect of 

cerebellar tDCS and its polarity specific effects on ongoing or induced activity in areas of the 

cortex associated with language. 
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4.4 BDNF Val66Met but not transcranial direct current stimulation affects 

motor learning after stroke 
Rick van der Vliet, Gerard M. Ribbers, Yves Vandermeeren, Maarten A. Frens and Ruud W. Selles 

 

Abstract 

Background: tDCS is a non-invasive neuromodulation technique that has been reported to 

improve motor skill learning after stroke. However, the contribution of tDCS to motor skill 

learning has only been investigated in a small number of studies. In addition, it is unclear if tDCS 

effects are mediated by activity-dependent BDNF release and dependent on timing of tDCS 

relative to training.  

Objective: Investigate the role of activity-dependent BDNF release and timing of tDCS relative to 

training in motor skill learning. 

Methods: Double-blind, between-subjects randomized controlled trial of circuit tracing task 

improvement (ΔMotor skill) in 80 chronic stroke patients who underwent tDCS and were 

genotyped for BDNF Val66Met. Patients received either short-lasting tDCS (20 minutes) during 

training (Short-lasting online group), long-lasting tDCS (10 minutes – 25 minutes break – 10 

minutes) one day before training (Long-lasting offline group), short-lasting tDCS one day before 

training (Short-lasting offline group), or sham tDCS. ΔMotor skill was defined as the skill 

difference on the circuit tracing task between day one and day nine of the study. 

Results: Having at least one BDNF Met allele was found to diminish ΔMotor skill (βBDNF,Met=-0.217 

95%HDI=[-0.431 -0.0116]), indicating activity-dependent BDNF release is important for motor 

skill learning after stroke. However, none of the tDCS protocols affected ΔMotor skill (βShort-

lasting,online=0.0908 95%HDI=[-0.227 0.403]; βLong-lasting,offline=0.0242 95%HDI=[-0.292 0.349]; 

βShort-lasting,offline=-0.108 95%HDI=[-0.433 0.210]). 

Conclusion: BDNF Val66Met is a determinant of motor skill learning after stroke and could be 

important for prognostic models. tDCS does not modulate motor skill learning in our study and 

might be less effective than previously assumed.  
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Introduction 

tDCS is a non-invasive neuromodulation technique that has been reported to improve upper limb 

rehabilitation after stroke in pilot studies 1–4, presumably by increasing the ability to learn a 

motor skill 5–14. The favorable effects of tDCS on motor skill learning after stroke are thought to 

rely on a polarity-specific release of brain-derived neurotrophic factor (BDNF) 8, down-

regulation of GABA 15–18 and restoration of the interhemispheric imbalance between the affected 

motor cortex and the unaffected motor cortex 19–22. In this study, we investigate the influence of 

BDNF Val66Met and tDCS on motor skill learning in chronic stroke patients. 

The role of BDNF as a link between tDCS and motor skill learning has been suggested 

by electrophysiological studies in mice and genetic analyses in healthy subjects. In mouse cortical 

 
Figure 1. tDCS timing hypotheses. A. Schematic representation of the three possible ways to time tDCS 

relatively to the skill training. The top row shows timing of tDCS, the middle row the cortical excitability 

changes that may result from tDCS, and the bottom row the potential motor skill learning changes that may 

results from this. For tDCS to improve motor skill learning in stroke patients, tDCS itself should overlap with 

training in which case short-lasting online tDCS is appropriate (left column), tDCS aftereffects should overlap 

with training, in which case long-lasting offline tDCS might be optimal (middle column) or tDCS should 

precede training without tDCS itself or the aftereffects overlapping with training in which case shorting-

lasting offline tDCS would suffice (right column). B. Potential implementation of the different tDCS protocols 

in motor rehabilitation. The top lines indicate when patients are doing arm or leg motor training. In case tDCS 

only improves motor skill learning when applied concurrently with training, short-lasting online tDCS should 

be applied during every single session (blue line). If, however, motor skill learning is facilitated during the 

aftereffects as well, patients could be stimulated every other day with long-lasting offline tDCS (orange line). 

Finally, if tDCS affects motor skill learning independently of the direct or aftereffects, short-lasting offline 

tDCS could be administered at any convenient moment during the rehabilitation program (red line). 
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slices, BDNF concentrations were shown to rise after direct current stimulation, increasing long-

term potentiation of horizontal connections 8, which underlies motor skill learning 23,24. Activity-

dependent release of BDNF has been related to motor skill learning in healthy subjects by 

studying the role of the common (approximately 30% of the Caucasian population 25,26) secretion-

limiting 27 BDNF Val66Met polymorphism. Agreeing with the function of BDNF in motor cortex 

long-term potentiation, carriers of this polymorphism were found to more slowly acquire a new 

motor skill 8,28. Since tDCS increases BDNF release in mouse brain slices and increased BDNF 

release is linked to faster motor skill learning in healthy subjects, tDCS may promote motor skill 

learning through BDNF release 8. However, whether activity-dependent release of BDNF plays a 

role in motor skill learning after stroke as well and could therefore mediate tDCS effects in this 

patient group has yet to be established. 

The contribution of tDCS to motor skill learning in chronic stroke patients has only been 

investigated in a small number of studies 9,11,14. In addition, the importance of timing of tDCS and 

tDCS aftereffects relative to training is currently unclear 29. Aftereffects of tDCS are periods of 

increased motor cortex excitability (usually measured with transcranial magnetic stimulation) 

following tDCS, which last up to 60 minutes for short-lasting protocols 30,31 and up to two days 

for long-lasting protocols 32,33. Currently, it is unknown if tDCS itself should overlap with training 
2,4,14,5–12 in which case short-lasting online (during training) protocols are appropriate, tDCS 

aftereffects should overlap with training, in which case long-lasting offline (before training) 

protocols might be optimal 1,3,13,34 or tDCS should just precede training without direct or 

aftereffects necessarily overlapping with training in which case short-lasting offline protocols 

would suffice (see Figure 1A). Resolving how timing relative to training influences the effect of 

tDCS on motor skill learning in stroke patients is therefore important because it determines the 

design of rehabilitation programs (see Figure 1B). 

In this study, we evaluated motor skill learning in chronic stroke patients who were 

genotyped for BDNF Val66Met and received tDCS. Design of the motor skill learning task was 

identical to Lefebvre et al. 9,11, who found performance improvements with short-lasting tDCS in 

chronic stroke patients. We hypothesized that non-carriers (no Met alleles) would learn better 

than carriers (at least one Met allele). The timing hypotheses were addressed by comparing 

short-lasting tDCS applied during training (short-lasting online group), long-lasting tDCS applied 

one day before training (long-lasting offline group), and short-lasting tDCS applied one day before 

training (short-lasting offline group), to a sham tDCS protocol.  

 

Materials and methods 

Participants 

Patients between the age of 18 and 80 who had suffered from stroke with hemiparesis at least 6 

months prior to the study were eligible for participation. We excluded patients incapable of 

voluntary movement (Medical Research Council scale < 2) or unable to understand verbal 

instructions; with a history of head injury, cranial irradiation, epilepsy, substance abuse or 

psychiatric disorders; taking anticonvulsant or antiepileptic medication at the time of the study 

or carrying intracranial metal or a pacemaker. 

We reviewed medical records of patients who were discharged from the Rijndam 

rehabilitation center between November 2008 and August 2015 to assess their eligibility. All 

patients who met the criteria were sent an invitation letter and called if they were willing to 

participate. After oral consent, visits to the rehabilitation center were planned at least 24 hours 

later. Patients were asked for written consent on the first day of the study. The study was 
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conducted in accordance with the 1964 Helsinki Declaration and approved by the medical ethics 

committee of the Erasmus MC university medical center. 

 
Figure 2. Study design. A. Study protocol. Chronic stroke patients visited the rehabilitation center on two 

consecutive days and again one week later (days one, two and nine of the study) to complete movement tasks 

and tDCS. Patients performed the circuit tracing task on day one to assess baseline performance, on day two 

to train and on day nine to determine ΔMotor skill. tDCS was added according to one of four tDCS protocols 

on day one during rest and on day two during training. B. Training circuit. Patients were seated behind a 

computer and asked to hold a computer mouse with their affected hand. The computer mouse controlled a 

cursor (blue arrow with a red dot in the center) on the screen which patients could freely move over a two-

dimensional background. This background consisted of a black surface and a gray circuit sheathed with a red 

and white striped line. A black and white blocked line drawn perpendicularly over the circuit direction 

indicated the start and finish. White triangles, marking the center of the circuit, reminded the subject of the 

correct movement direction. C. tDCS protocols. We used three different tDCS protocols in our study: 30 

seconds bihemispheric 1mA tDCS at t=0 and t=35.5 minutes (sham), 20 minutes bihemispheric 1mA tDCS at 

t=0 and 30 seconds bihemispheric 1mA tDCS at t=35.5 minutes (short-lasting tDCS) and 10 minutes 

bihemispheric 1mA tDCS at t=0 and t=35.5 minutes (long-lasting tDCS). All stimulation periods included a 15 

second ramp-up and a 15 second ramp-down period to ensure comfort. The tDCS protocols were combined 

in different ways to create four tDCS groups: sham tDCS on day one and day two (sham group), sham tDCS on 

day one and short-lasting tDCS on day two (short-lasting online group), long-lasting tDCS on day one and 

sham tDCS on day two (long-lasting offline group), and short-lasting tDCS on day one and sham tDCS on day 

two (short-lasting offline group). ARAT = action research arm test; FMA-UE = Fugl-Meyer assessment of the 

upper extremity; maxGF = maximum grip force; PPT = Purdue Pegboard Test; tDCS = transcranial direct 

current stimulation. 
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Study design 

Chronic stroke patients visited the rehabilitation center on two consecutive days and again one 

week later (days one, two and nine of the study). On the first day, we obtained a sputum sample 

(Oragene Discover OGR-500, DNA Genotek Inc., Ottawa, Ontario, Canada) for genetic analysis and 

quantified the patient’s arm hand performance with the Fugl-Meyer assessment of the upper 

extremity 35 and the action research arm test 36. All other procedures are described in more detail 

below. A schematic representation of the study is given in Figure 2A. 

 

Motor skill learning 

We measured motor skill learning with a circuit tracing task which has been used before to study 

the effects of tDCS 9,11. Patients were seated in front of a PC and asked to hold a computer mouse 

with their affected hand. The computer mouse controlled a cursor on the screen which patients 

could freely move over a two-dimensional background (see figure 2B). 

A trial started with the appearance of the circuit and cursor. The patient was instructed 

to move the cursor as fast and accurate as possible over the circuit in a clockwise direction for 30 

seconds. The circuit could be traced more than once. After the trial, the screen turned black for 

30 seconds, giving patients a short pause before the next trial. During some of these breaks, 

performance measures (cursor velocity, movement error and the skill score) of the previous trial 

were displayed on the screen.  

The skill learning task included habituation, baseline, regular and generalization trials. 

In habituation trials, the circuit was a simple square. Baseline trials and regular trials introduced 

a more challenging circuit made out of a polygon with right angles. The generalization circuit was 

a comparable but different polygon of equal difficulty 9. Performance scores were shown after 

regular and generalization trials but not habituation and baseline trials. Habituation blocks 

consisted of a single habituation trial, baseline blocks of two baseline trials, training and retention 

blocks of five regular trials and a generalization block of five generalization trials. The first day 

was comprised of a single habituation block (H) and a baseline block (B). The second day of nine 

training blocks (T1-T9), with T2-T6 preceded by brief pauses and T7-T9 by 5, 20 and 25 minute 

breaks. The ninth day consisted of two retention blocks (R1-R2) and a generalization block (G). 

Motor skill change (ΔMotor skill) was the primary outcome of this study. This measure 

was based on Lefebvre et al. 9, but modified to improve accuracy. We first resampled movement 

on a 40Hz time grid using piecewise cubic interpolation and discarded the first and last second 

of every trial. Next, movement error was calculated as the shortest distance between the cursor 

and the circuit with larger distances resulting in higher error. Movement error was converted 

into precision by taking the negative natural logarithm. This measure assigns a higher score to 

lower movement error. Precision was averaged over all data points in a single block consisting of 

either two trials (baseline block) or five trials (training and generalization blocks) resulting in 

error measures per block. We determined movement velocity by calculating the vector projection 

of cursor displacement per time step on the closest segment of the circuit. This approach ensured 

that only velocities in the correct direction were rewarded with a higher velocity score. 

Movement velocity was averaged per block and patient. 

Precision and velocity for all blocks were subsequently normalized into z-scores using 

the group mean and standard deviation of baseline precision and velocity. This normalization 

ensured improvements in error and velocity contribute equally to an improvement in skill score, 

with equal weighing factors for all patients. 
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Motor skill is the average of the two z-scores. This score gets higher with increased movement 

velocity and/or increased precision. Finally, we calculated ΔMotor skill by subtracting baseline 

motor skill for each patient. 

 

Manual dexterity 

We measured manual dexterity with the Purdue pegboard test (PPT, Lafayette Instrument 

Company, Lafayette, Indiana, USA). Patients had to place as many pegs as possible into vertically 

arranged holes in 30 seconds using the affected hand. This test was repeated three times on the 

first, second and ninth day of the study. The mean difference in number of pegs placed between 

the first and ninth day of the study (ΔPPT) was the outcome. 

 

Maximum grip force 

We determined maximum grip force with a digital hand dynamometer (Pattern medical, 

Warrenville, Illinois, USA). Patients had to squeeze down as hard as they could for a couple of 

seconds. This test was repeated three times on the first, second and ninth day of the study. The 

mean difference in maximum grip force between the first and ninth day of the study (ΔmaxGF) 

was the outcome. 

 

tDCS 

tDCS was applied using a Starstim device (Neuroelectrics, Barcelona, Spain) with 5 cm diameter 

sponge electrodes. Hand areas of both motor cortices were localized with transcranial magnetic 

stimulation (Neurosoft, Ivanovo, Russia). and thoroughly cleaned with Nuprep (Weaver and 

Company, Aurora, Colorado, United States). The positive sponge electrode was placed over the 

affected hemisphere, the negative sponge electrode over the unaffected hemisphere with an 

elastic headband (bihemispheric montage). We used bihemispheric tDCS because it (1) may have 

a larger effect on motor skill learning than unihemispheric tDCS 12 and (2) was also used by 

Lefebvre et al 9,11. Stimulation intensity was set to 1mA, in agreement with Lefebvre et al 9,11 and 

many other tDCS studies 2,6–8,10,32,33. 

We used three different tDCS protocols (see Figure 2C): 30 seconds bihemispheric 1mA 

tDCS at t=0 and t=35.5 minutes (sham), 20 minutes bihemispheric 1mA tDCS at t=0 and 30 

seconds bihemispheric 1mA tDCS at t=35.5 minutes (short-lasting tDCS), and 10 minutes 

bihemispheric 1mA tDCS at t=0 and t=35.5 minutes (long-lasting tDCS). The long-lasting protocol 

was based on 33. Duration of short-lasting tDCS was set to 20 minutes, which is a widely-used 

duration 2,6–8,10,14,37, to keep total tDCS duration of the non-sham protocols similar. Patients were 

blinded to the tDCS protocol with 30-second stimulation bursts that evoke a sensation similar to 

more prolonged tDCS sessions without affecting excitability 38. Because tDCS started at t=0 and 

t=35.5 minutes for the long-lasting protocol, 30-second stimulation bursts were included at t=0 

and t=35.5 minutes for the sham protocol, and at t=35.5 for the short-lasting protocols. All 

stimulation periods included a 15 second ramp-up and a 15 second ramp-down period to ensure 

comfort.  

The three tDCS protocols were combined in different ways to create four tDCS groups: 

sham tDCS on day one and day two (sham group), sham tDCS on day one and short-lasting tDCS 

on day two (short-lasting online group), long-lasting tDCS on day one and sham tDCS on day two 

(long-lasting offline group), and short-lasting tDCS on day one and sham tDCS on day two (short-

lasting offline group). 
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tDCS was controlled from a PC according to the patient’s tDCS group and the day of the 

experiment. The program only showed day and group numbers without protocol names to blind 

the experimenter and patient from the protocol. 

 

Randomization 

Patients were randomized to one of the four tDCS groups on the first day of the study using a 

minimization approach. Minimization is a randomization technique which aims to balance 

predefined patient characteristics and group sizes by adapting the allocation probability of 

groups. This way, group characteristics and size can be better controlled 39. We chose to minimize 

the difference between groups in the Fugl-Meyer assessment of the upper extremity 

(dichotomized: low < 50; high >= 50), stroke laterality (dominant/ non-dominant hand) and age 

(dichotomized: low < 60; high >=60). Minimization was implemented in MinimPy (freely 

available from: https://sourceforge.net/projects/minimpy/). 

 

Sample size calculation 

We powered our study to be 90% sure of finding a 95% highest density interval not containing 

zero for the short-lasting online tDCS group compared to sham given a ΔMotor skill of 0.4 and 

standard deviations of 0.35 based on Lefebvre et al. 9,11. This resulted in a minimum 18 patients 

per group. Based on this number, we decided to include a total 80 patients in this study.  

 

Genetics 

BDNF Val66Met was genotyped with Taqman Allelic Discrimination using the Assay-On-Demand 

service of Life Technologies. Reactions were performed in a 384-wells format in a total volume 

of 2 μL containing 2 ng DNA, 1x Taqman assay, and 1x genotyping master mix. Polymerase chain 

reaction cycling consisted of initial denaturation for 15 minutes at 95 C, and 40 cycles with 

denaturation of 15 seconds at 96 C and annealing and extension for 60 seconds at 60.0 C. Signals 

were read with the Taqman 7900HT and analyzed using the sequence detection system 2.4 

software. All materials and software were from Life Technologies (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA). 

 

Statistics 

We used Bayesian linear regression for our data-analysis. This analysis is similar to regular linear 

regression, but is able to deal with missing data points and therefore does not require imputation. 

In addition, the confidence intervals for the regression coefficients can be interpreted directly as 

probability intervals, as opposed to regular linear regression, which makes the analysis more 

intuitive. 

We applied Bayesian linear regression with ΔMotor skill on day nine (two training 

blocks and one generalization block) as the dependent variables and tDCS group (short-lasting 

online, long-lasting offline and short-lasting offline), BDNFMet (non-carriers or carriers), 

generalization (retention block or generalization block), age (<60 years or >=60 years), stroke 

dominance (dominant or non-dominant hand), gender and Fugl-Meyer assessment of the upper 

extremity (<50 points or >= 50 points) as the independent variables. The intercept for this model 

was calculated for each patient individually (“individual training effect”) from a group prior 

(“group training effect”) to account for differences in ΔMotor skill between patients unexplained 

by the independent variables. In addition, we calculated an unadjusted model including only the 
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tDCS groups and generalization. Because BDNF results were missing in eight patients, we 

modeled BDNFMet as a Bernoulli distribution with a beta prior. 

 
Figure 3. Patient inclusion flow diagram. Out of a total sample of 1661 screened chronic stroke patients, we 

invited 85 patients to participate. We excluded an additional four patients who were unable to control the 

computer mouse with their affected hand leaving 81 patients for randomization. One subject could not attend 

the last session but was kept in the analysis. A single subject quitted the study after the first day without notice 

and was removed from further analysis. 
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 As secondary analyses, we investigated with a similar adjusted (independent variables: 

tDCS group, BDNFMet, age, stroke dominance, gender and Fugl-Meyer assessment of the upper 

extremity) and unadjusted (independent variable: tDCS group) linear regression model the 

effects of tDCS on manual dexterity (ΔPPT) and maximum grip force (ΔmaxGF) of the affected 

hand. This model includes a single intercept for the entire patient group (“group training effect”). 

 Finally, we calculated the Akaike information criterion to investigate whether our 

patient population could be separated in responders and non-responders. The Akaike 

information criterion indicates how likely a model is, corrected for the number of free parameters 
40. More likely models have a lower Akaike information criterion. We compared a null model and 

a responder / non-responder model using the mean score in R1 and R2 for patients in the sham 

and short-lasting online group. The null model, which assumes no effect for all patients, consisted 

of a single normal distribution. The responder / non-responder model, which assumes a 

population of responders and non-responders, was composed of two separate normal 

distributions with a shared standard deviation. Patients in the sham group were constrained to 

the non-responder group as they could not respond to tDCS.  

 Sham 

(n=21) 

Short-lasting 

online 

(n=20) 

Long-lasting 

offline (n=18) 

Short-lasting 

offline (n=21) 

Demographic 

Age – yr (M±SD) 62±11 64±11 59±9 60±8 

Male sex – (%) 67 75 67 40 

 

Hand 

    

Right hand dominance –(%) 86 95 78 86 

Paresis in right hand – (%) 52 45 39 57 

Paresis in dominant hand – 

(%) 

52 60 61 57 

Fugl-Meyer assessment of 

the upper extremity 

55±15 58±10 51±17 57±12 

Action research arm test 50±14 52±10 45±19 50±13 

Purdue pegboard test 

affected hand – pins 

6.8±3 6.2±4 5.8±4 6.7±4 

Maximum grip force affected 

hand – N 

267±106 280±104 212±113 226±123 

     

Genetics     

BDNF >= 1 Met allele (%) 28 58 29 45 

 

Stroke 

    

Time post stroke – yrs.  4±5 3±3 2±2 2±2 

Table 1. Characteristics of the study population with chronic stroke, N = 80. 
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Markov chain Monte Carlo simulation was performed with freely available software 

(Openbugs version 3.2.3, Openbugs Foundation). Results are presented as the mean of the 

posterior distribution with 95% highest density intervals (95%HDI). These intervals are the 

Bayesian equivalent to 95% confidence intervals. Any regression coefficient estimated to have a 

95%HDI not containing a zero was considered statistically significant. Summaries of individual 

patient data are reported as group medians with interquartile ranges. 

 
Figure 4. Effect of BDNF Val66Met on ΔMotor skill. A. Average motor skill learning for the BDNF Val66Met 

groups (M±SEM). Non-carriers have two Val alleles, carriers have at least one Met allele. ΔMotor skill is shown 

for day two and day nine of the study. Results on day nine were compared between BDNF Val66Met groups 

to investigate the role of the polymorphism in motor skill learning. BDNF Val66Met was found to negatively 

affect motor skill learning. B-C. Individual motor skill learning curves for non-carriers (B) and carriers (C). 
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Results 

Patients 

Patients were enrolled from February 2015 to May 2016 (see Figure 3). Out of a total screening 

sample of 1661 chronic stroke patients, we invited 85 patients to the rehabilitation center. We 

excluded an additional four patients who were unable to control the computer mouse with their 

affected hand, leaving 81 patients for randomization. One patient was unable to attend the last 

session but was included in the analysis. Another patient who quitted the study after the first day 

without notice was removed from further analysis. BDNF genotyping failed in eight out of 80 

patients. 

Our treatment groups were comparable in demographic, performance and stroke 

characteristics and representative of a mild to moderately affected chronic stroke group (see 

Table 1). Forty-two patients were genotyped as non-carriers (two Val alleles) whereas 30 

patients were genotyped as carriers (at least one Met allele). 

 

Motor skill learning 

Overall, patients improved on the circuit tracing task with training (see Figures 4 and 5 and Table 

2). 70 out of 80 patients had a positive ΔMotor skill during R1 and R2 (all patients: ΔMotor skill 

median=0.494 IQR=[0.194 - 0.772]). Additionally, we found a “group training effect” in both the 

unadjusted and adjusted model (see Table 2). Motor skill also generalized to an untrained circuit, 

as the median ΔMotor skill did not differ between the retention blocks (R1 and R2) and G1 (G1-

Dependent 

variable 

Independent variable βadjusted 95%HDIadjusted βunadjusted 95%HDIunadjusted 

ΔMotor skill Group training effect 0.467 0.0493 0.877 0.511 0.280 0.727 

Short-lasting online 0.0908 -0.227 0.403 0.0332 -0.284 0.350 

Long-lasting offline 0.0242 -0.292 0.349 0.0451 -0.280 0.372 

Short-lasting offline -0.108 -0.433 0.210 -0.0706 -0.394 0.243 

Generalization -0.00041 -0.0496 0.0514 -0.00035 -0.0521 0.0492 

BDNFMet -0.217 -0.431 -0.0116   

ΔPPT (#) Group training effect 0.460 -0.364 1.272 0.511 0.280 0.727 

Short-lasting online 0.249 -0.379 0.88 0.0332 -0.284 0.351 

Long-lasting offline -0.138 -0.786 0.489 0.0451 -0.2796 0.372 

Short-lasting offline 0.188 -0.449 0.826 0.270 -0.357 0.901 

ΔMaxGF (N) Group training effect 1.350 -6.180 8.9909 3.254 -0.670 7.187 

Short-lasting online -2.044 -7.858 3.839 -1.166 -6.796 4.452 

Long-lasting offline 1.570 -4.664 7.440 2.058 -3.891 7.849 

Short-lasting offline -4.170 -10.467 1.825 -4.411 -10.164 1.079 

Table 2. Linear regression models for ΔMotor skill, ΔPPT and ΔMaxGF. The coefficients of an adjusted 

and an unadjusted model are presented as the mean with 95%HDIs. The adjusted model includes the 

dependent variables listed in the table as well as stroke dominance, gender, age and FMA-UE score, and an 

intercept (“group training effect”). Significant effects are printed in bold. BDNF = Brain-derived neurotrophic 

factor; HDI = highest density interval; MaxGF = maximum grip force; PPT = Purdue pegboard test. 
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(R1+R2)/2 = -0.0278 with IQR=[-0.123 0.107]). In line with this result, both the adjusted and 

unadjusted model indicated no effect of the generalization circuit on ΔMotor skill (see Table 2). 

Having at least one BDNF Met allele was found to negatively affect ΔMotor skill (see 

Figure 4 and Table 2). This difference was already visible on the second day during T1 (non-

carriers median=0.180 IQR=[-0.0689 – 0.355]; carriers median=0.0052 IQR=[-0.234 0.316]) and 

became most apparent one week later during R1 (non-carriers median=0.506 IQR=[0.193 – 

0.902]; carriers median=0.347 IQR=[0.0644 0.589]). No effect of tDCS on ΔMotor skill was found 

(see Figure 5 and Table 2). 

Figure 5. Effect of tDCS on ΔMotor skill. A. ΔMotor skill for the four tDCS groups (M±SEM). ΔMotor skill is 

shown for day two (training (T) block 1 to 9) and day nine (retention (R) block 1-2 and generalization (G)) 

of the study. Results on day nine were compared between tDCS groups to quantify tDCS motor skill learning 

effects. No effect of any tDCS group compared to sham on motor skill learning was found. B-E. Individual 

motor skill learning curves for chronic stroke patients in the sham (B), short-lasting online (C), long-lasting 

offline (D) or short-lasting offline group (E). 
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tDCS effects on manual dexterity and maximum grip force 

Patients improved manual dexterity but not maximum grip force as a result of training (see 

Figure 6 and Table 2). 60 out of 80 patients had a ΔPPT larger than 0 (all patients: ΔPPT change 

median=1 IQR=[0.33 1.33] pegs). The “group training effect” from the unadjusted model similarly 

indicated more pegs were placed with the affected hand (see Table 2). In contrast, maximum grip 

force increased in 44 out of 80 patients for the affected hand (all patients: ΔmaxGF change=7.0 

IQR=[-8.0 27.6] N) without a group training effect (see Table 2). No effect of tDCS on manual 

dexterity or maximum grip force was found (see Figure 6 and Table 2). 

  

Figure 6. Effect of tDCS on manual dexterity and maximum grip force. A. Whisker plot of ΔPPT for the 

different tDCS groups. B. Whisker plot of ΔMaxGF for the different tDCS groups. 
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Evidence for a null effect 

We calculated from the parameter estimates of the adjusted model how likely the effects of tDCS 

on ΔMotor skill reported in earlier studies 9,11 would be in our patient population. The probability 

of a ΔMotor skill of at least 0.4 (corresponding to the smallest effect size reported in Lefebvre et 

al. 9,11) in our study was 3% (Short-lasting online group), 0.9% (Long-lasting offline group) and 

0.1% (Short-lasting offline group). Second, the null model with M=0.511 had an Akaike 

information criterion=54.22, while the responder / non-responder model with 

MNonResponder=0.485 and MResponder=0.529 had an Akaike information criterion=56.20. The lower 

Akaike information criterion for the null model provides evidence against the presence of 

responders and non-responders. 

 

Discussion 

In this study, we investigated the role of BDNF Val66Met and tDCS in motor skill learning after 

stroke 9,11. We found that non-carriers (no Met alleles) outperformed carriers (at least one Met 

allele) on day nine of the study. This result indicates activity-dependent release of BDNF is 

important for motor skill learning after stroke. Second, our results showed that none of the tDCS 

protocols affected motor skill learning, manual dexterity (ΔPPT) or maximum grip force 

(ΔmaxGF). 

 

Role of BDNF in motor skill learning after stroke 

Our finding that carriers of the BDNF Val66Met polymorphism more slowly acquire a motor skill 

is consistent with results in healthy subjects. BDNF modulates long term potentiation and 

synaptic plasticity 41,42, which is important for motor skill learning through strengthening of 

horizontal connections in the motor cortex 23,24. Activity-dependent release of BDNF is decreased 

in BDNF Val66Met carriers 27 which explains why carriers have impaired motor skill learning 8,28 

and reduced motor map expansion after motor training 43. Our results indicate that interventions 

which can increase BDNF release might improve rehabilitation after stroke. However, even 

though tDCS has been suggested to promote BDNF release 8, we do not find an effect of tDCS on 

motor skill learning in our study (in contrast to 9,11,14, see below for a discussion) and therefore 

cannot conclude that BDNF is a likely mediator of tDCS. 

 Screening for BDNF Val66Met after stroke might improve models of stroke recovery 44 

as motor skill learning is thought to play an important role in recovery after stroke 45. Stroke 

patients who carry the BDNF Val66Met polymorphism will (re)learn motor skills more slowly 

than non-carriers and are therefore intuitively expected to recover less well. However, it has also 

been proposed that carriers do not have an overall worse clinical recovery but rather a different 

recovery pattern relying more on subcortical mechanisms 46. Adding genetic screening to clinical 

prediction models of stroke such as the PREP model could be of great clinical interest 44 to 

increase predictive accuracy and help personalize rehabilitation programs. 

 

Why did tDCS not affect motor skill in the current study? 

Our tDCS results are at odds with previous studies showing a favorable contribution of short-

lasting online tDCS to motor skill learning using (1) the exact same paradigm in a similar chronic 

stroke population 9,11 and (2) comparable paradigms in healthy subjects 5–8 and chronic stroke 

patients 14. This might be related to a high percentage of non-responders in our study or training 

repetition. In addition, we should not preclude the possibility that tDCS plays a limited role in 

motor skill learning. 
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Absence of a favorable effect of tDCS on motor skill learning might be explained by a 

high proportion of non-responders in our sample population. First, one rationale behind tDCS in 

stroke patients is restoration of the interhemispheric imbalance in cortical activity 21, which has 

been found in chronic stroke patients 22. This view was recently challenged as more severely 

affected patients might rely on their unaffected hemisphere for motor performance with their 

affected hand 19. According to this idea, tDCS should be used to increase activity of the affected 

hemisphere in mildly affected patients, and of the unaffected in severely affected patients, which 

we did not do. However, our population consisted of well-recovered stroke patients capable of 

voluntary movement, for whom the applied tDCS protocol should be optimal. In addition, our 

patients were comparable to Lefebvre et al. 9,11. Second, tDCS effects on motor skill learning might 

depend critically on the strength and orientation of the electric field in the motor cortex. These 

electric field parameters will differ between individuals because of anatomy of the skull, position 

and folding of the motor cortex and lesion characteristics which could explain why only some 

patients benefit from tDCS. Since we do not have imaging data for individual patients, this 

explanation cannot be further investigated. Statistically however, we found no evidence for 

separate “responder” and “non-responder” groups. We used a mixture modeling approach to 

compare a model of a single group with a model separating responders and non-responders in 

the sham and short-lasting online tDCS groups. The Akaike information criterion indicated the 

null model was a better description of the data than the responder / non-responder model, 

arguing against tDCS responders and non-responders in our sample. 

A second hypothesis is that tDCS needs multiple days of training to develop its full effect 

on motor skill learning. However, all previous multiple day motor skill learning studies using 

motor sequence learning or a tracing task found a difference in motor performance already 

present at the start of the second training session 5–8,10,37. In addition, our experimental design 

was identical to Lefebvre et al. 9,11 who did find favorable results after a single training session. It 

is thus unlikely that this hypothesis could explain the observed results. 

Finally, it may be that tDCS has a limited contribution to motor skill learning. We 

calculated that the probability of a 0.4 ΔMotor skill improvement was smaller than 5% for all the 

tDCS groups, indicating large group differences found in earlier studies 9,11 are unlikely in our 

patient sample. Possibly, the effectiveness of tDCS in its contemporary form is lower than 

previously assumed. For successful neuromodulation in stroke patients, it might be necessary to 

characterize patients more carefully with for example transcranial magnetic stimulation 47, MRI 

diffuse tensor imaging 44,48, MRI spectroscopy 18,49 or EEG 50. Research efforts in this direction will 

be important to develop tDCS into a reliable therapeutic intervention.  

 

Limitations 

Our experimental design did not include direct physiological measurements of cortical 

excitability. Furthermore, we did not collect imaging data of stroke lesions. We were therefore 

not able to correct for differences in lesion volume or location between patients. Finally, because 

we investigated the effects of tDCS on motor skill learning in the more stable chronic phase after 

stroke, in line with previous comparable studies 9,11,14, our results cannot be directly extrapolated 

to the subacute phase. Reorganizational processes in the first months after the lesion are not 

present in the chronic phase 19 and might be affected by tDCS in the subacute phase after stroke 
1,2. 
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4.5 Long-lasting offline tDCS for upper extremity motor rehabilitation in the 

subacute phase after stroke: double-blind, randomized clinical trial 
Rick van der Vliet, Zeb D. Jonker, Maarten A. Frens, Ruud W. Selles and Gerard M. Ribbers 

 

Abstract 

Background: Stroke is a common global health-care problem that is serious and disabling. A 

promising new tool in motor rehabilitation is transcranial direct current stimulation (tDCS), a 

safe, non-invasive technique that delivers low-intensity current to the scalp through a pair of 

electrodes. The most common approach to tDCS in clinical stroke rehabilitation trials has been to 

stimulate daily for 15-30 minutes either during (online) or just before (offline) rehabilitation 

training. However, a more efficient approach might be to utilize offline stimulation protocols that 

evoke longer-lasting increases in motor cortex excitability and therefore have the potential to 

support motor learning and rehabilitation beyond the stimulation sessions. 

Objective: To investigate the effects of long-lasting tDCS on upper extremity motor recovery in 

first-ever, ischemic, subacute stroke patients. 

Methods: In this parallel, placebo-controlled intervention trial with two arms, patients were 

assigned in a 1:1 ratio to either sham tDCS (placebo group) or long-lasting offline tDCS 

(intervention group). The regular upper extremity rehabilitation program (on Mondays, 

Wednesdays, and Fridays) was interspersed with tDCS (on Tuesday and Thursdays) for four 

weeks, adding up to a total eight stimulation sessions. The primary outcome was the Fugl-Meyer 

of the upper extremity (measured at baseline, 5, 8, and 12 weeks post-stroke, and 26 weeks for a 

subset of patients), which was analyzed with a longitudinal mixture model of FM-UE recovery to 

sensitively estimate the treatment effect over usual care. Secondary outcomes included (1) 

functional activity (action research arm test), (2) walking ability (10-meter walk test), (3) 

dependence in activities of daily living (Barthel index), (4) mood disorders (hospital anxiety and 

depression scale) at 12 weeks post-stroke. 

Results: No effect of long-lasting tDCS on the upper extremity motor impairment was found. In 

addition, no differences were found in (1) action research arm test, (2) 10-meter walk test, (3) 

Barthel index, (4) hospital anxiety and depression scale. Adverse events were uncommon and 

comparable between treatment arms. 

Conclusion: We found no evidence for the superiority of long-lasting offline tDCS over sham tDCS 

on upper limb recovery in the subacute phase after stroke. Based on this result we recommend 

future studies to (1) focus on online tDCS rather than offline tDCS, and (2) enroll larger patient 

populations for stroke severity subgroup analyses.  
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Introduction 

Stroke is a common global health-care problem1 that is serious and disabling.2 However, as most 

patients with stroke survive the initial injury,3 the largest effect on patients and families is usually 

through long-term impairment, limitation of activities (disability), and reduced participation 

(handicap).4,5 Motor impairment after stroke, defined as a loss or limitation of function in muscle 

control or movement or a limitation in mobility,6 typically affects the control of movement of the 

face, arm, and leg of one side of the body in about 80% of patients. 7,8 Therefore, much of the focus 

of stroke rehabilitation is on the recovery of movement and associated functions with high-

intensity, repetitive task-specific practice.7,8 

A promising new tool in motor rehabilitation is transcranial direct current stimulation 

(tDCS), which is a safe9 and non-invasive technique that delivers low-intensity current to the 

scalp through a pair of electrodes.10,11 Depending on the polarity of the electrodes and the spatial 

orientation of the underlying neurons,12,13 direct current was found to alter the excitability of the 

motor cortex, as measured with transcranial magnetic stimulation, for approximately an hour.14–

16 Since then, tDCS has been reported to improve motor skill learning in healthy subjects17–24 and 

chronic stroke patients,25,26 and upper limb rehabilitation in subacute and chronic stroke patients 

with moderately severe cortical damage.27–31 Presumably, tDCS effects result from  releasing 

brain-derived neurotrophic factor20, down-regulating GABA32–35 and restoring the 

interhemispheric imbalance between the affected motor cortex and the unaffected motor 

cortex.36–39 However, more research is still needed to establish the clinical relevance of tDCS for 

upper limb rehabilitation as well as to establish the optimal protocol for stimulation. 

The most common approach to tDCS in clinical stroke rehabilitation trials has been to 

stimulate daily for 15-30 minutes either during (online) or just before (offline) rehabilitation 

training.27–31 However, a more efficient approach is offline stimulation protocols, which evoke 

longer-lasting increases in motor cortex excitability40,41 and therefore have the potential to 

support motor learning and rehabilitation beyond the stimulation sessions. Central to long-

lasting stimulation protocols is the introduction of a short break in between two brief stimulation 

sessions, which induce after-effects for up to two days (termed late LTP-like plasticity),40,41 rather 

than the 30-60 minutes found for conventional continuous stimulation. Long-lasting stimulation 

could, therefore, facilitate distributed practice with high task variability, thus complying with 

fundamental insights on robust motor learning 6,42 and minimize patient discomfort as well as 

the demand for stimulation equipment. 

In this study, we investigate the effects of a long-lasting tDCS protocol on upper 

extremity motor recovery in subacute stroke patients. The primary outcome is upper extremity 

motor impairment, as measured with the Fugl-Meyer assessment of the upper extremity (FM-UE) 

in the subacute phase after stroke. Secondary outcomes include (1) upper limb capacity (action 

research arm test), (2) walking ability (10-meter walk test), (3) dependence in activities of daily 

living (Barthel index), (4) mood disorders (hospital anxiety and depression scale) and (5) 

adverse events. 

 

Materials and methods 

Patients 

The trial was conducted at the Rijndam Rehabilitation Centre (Rotterdam, The Netherlands), 

which offers inpatient and outpatient stroke rehabilitation. The recruitment period ran from 

January 2015 until July 2019. Patient inclusion criteria were: acute hemiparesis with a first-ever, 

non-hemorrhagic infarction documented by a neurologist, no more than four weeks post-stroke 
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at start of the study, between the ages of 18 and 79. Exclusion criteria were: absence of voluntary 

movement of the affected upper extremity, head injury or the presence of intracranial metal or 

intracranial lesions, history of cranial irradiation, history of epilepsy, presence of a pacemaker, 

taking anticonvulsant or neuroleptic medication, substance abuse, and the inability to 

understand instructions.  

 

Randomization and blinding 

In this parallel, placebo-controlled intervention trial with two arms, patients were assigned in a 

1:1 ratio to either sham tDCS (placebo group) or long-lasting offline tDCS (intervention group) 

using a minimization approach. Minimization is a randomization technique designed for 

relatively small studies which aims to balance predefined patient characteristics and group sizes 

by adapting the allocation probability of groups. This way, group characteristics and size can be 

better controlled.43 We chose to minimize the difference between groups in the baseline FM-UE 

(dichotomized: low<33 points; high>=33 points), stroke laterality (dominant/non-dominant 

hand) and age (dichotomized: low<60 years; high>=60 years). Minimization was implemented in 

MinimPy (freely available from: https://sourceforge.net/projects/minimpy/). 

 

Treatment 

All patients received standard upper extremity rehabilitation treatment according to the Dutch 

rehabilitation guidelines44,45 twice a day on Mondays, Wednesdays, and Fridays. In addition, 

participants were administered a total eight sessions of tDCS on Tuesday and Thursdays spread 

over four weeks. 

tDCS was applied using a Starstim device (Neuroelectrics, Barcelona, Spain) with 5 cm 

diameter sponge electrodes. The scalp areas overlying the motor cortices were localized with the 

International 10/20 Electroencephalogram System and the identified area was thoroughly 

cleaned with Nuprep (Weaver and Company, Aurora, Colorado, United States). The positive 

sponge electrode was placed over the affected hemisphere and the negative sponge electrode was 

placed over the unaffected hemisphere with an elastic headband (bihemispheric montage). We 

used bihemispheric tDCS because it (1) may have a larger effect on motor skill learning than 

unihemispheric tDCS22,46 and (2) and has been previously-used in tDCS trials with stroke 

patients.25,26,30 Stimulation intensity was set to 1mA, which is also in agreement with many tDCS 

studies.18–21,28,40,41 The long-lasting protocol was based on work by Monte-Silva et al.40 and 

consisted of two stimulation blocks of 10 minutes separated by a 25-minute break. Both periods 

included a 15 s ramp-up and a 15 s ramp-down period to ensure comfort. In the sham protocol, 

only the ramp up and ramp down period was provided with stimulation bursts that evoke a 

sensation similar to more prolonged tDCS sessions, thus ensuring blinding without affecting 

excitability.47 The tDCS was controlled from a PC according to the patient's tDCS group. The 

program only showed day and group numbers without protocol names to blind the experimenter 

and patient from the protocol. 

 

Outcomes 

Measurements were performed at baseline (within four weeks post-stroke), and 5, 8, and 12 

weeks post-stroke and included the Fugl-Meyer assessment of the upper extremity48 (FM-UE; 

baseline, 5, 8, and 12 weeks post-stroke), the Action Research Arm Test49 (ARAT; 12 weeks post-

stroke), 10-meter walk test (12 weeks post-stroke), Barthel index50 (baseline and 12 weeks post-

stroke) and the hospital anxiety and depression scale (baseline and 12 weeks post-stroke). The 
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FM-UE difference between inclusion and 12 weeks post-stroke (ΔFM-UE) was a secondary 

outcome. A subset of patients was also measured at 26 weeks post-stroke because they 

participated in the PROFITS study. The 26 weeks FM-UE measurements of these patients were 

included in our analysis. Patients were assessed for adverse events (new-onset convulsion, 

central pain, mood disorder or headache) at 12 weeks post-stroke.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Flow chart. 
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Statistical methods 

Statistical analysis of the primary outcomes (FM-UE) was based on a recently developed 

longitudinal mixture model of spontaneous neurological recovery after stroke. Details of this 

approach can be found in van der Vliet et al. In short, FM-UE at different time points post-stroke 

is modeled as five distinct subgroups which recover over time with a specific rate up until a fixed 

proportion of their potential recovery (66-baseline FM-UE) plus a study effect for the usual care 

(sham tDCS) and the intervention care (long-lasting tDCS) groups. This approach allows 

estimating treatment effects for all patients combined or for the poor (subgroup one), moderate 

(subgroups two and three) and good (subgroups four and five) FM-UE recovery clusters 

separately. For this study, we chose to estimate overall study effects rather than cluster-specific 

effects. Output of the model, therefore, includes the overall study effects for the sham tDCS group 

and the long-lasting tDCS group as well as the invention effect, which is obtained by subtracting 

the study effect of the sham tDCS group from the study effect of the intervention group. As shown 

precisely,51 advantages of this approach include the increased study power compared to cross-

sectional approaches, the incorporation of the exact timing of measurements after stroke, the 

handling of missing values and robustness to outlier data.  

An intention-to-treat approach was used for the analysis of this randomized-controlled 

trials. Once randomized, each patient was analyzed in the group they were assigned to, 

independent of potential drop-out or compliance to the protocol. The only reason for post-

randomization exclusion was erroneous inclusion. 

 The baseline demographics, clinical characteristics, and secondary outcomes (ΔFM-UE, 

ARAT, 10-meter walk test, Barthel index, and the HADS) were analyzed with independent sample 

t-tests for continuous, normally-distributed outcomes, with Mann-Whitney U tests for continuous 

non-normal data and with Fisher exact tests for proportions. Normality was checked for with the 

Kolmogorov-Smirnov test. The threshold for statistical significance was set to 0.05 for all 

analyses.  

 

Sample size 

We based our power calculation on a clinically-important difference for the FM-UE, which has 

been estimated at 5.25 points,52 and four repeated measurements (3, 5, 8 and 12 weeks after 

stroke), with a residual error of 3.9.51,53 We calculated 42 patients should be sufficient to obtain 

85% power. Accounting for a drop-out rate of 10%, we aimed to include 48 patients in total. 

 

Results 

Between January 2015 until July 2019, 676 patients were screened and 48 patients were enrolled. 

Twenty-five individuals were randomized to sham tDCS and 23 patients to long-lasting tDCS 

(Figure 1). Two patients were excluded from the study after inclusion because they were 

erroneously enrolled. One individual suffered from a hemorrhagic stroke rather than an ischemic 

stroke and the other individual was diagnosed with a functional neurological disorder rather than 

an ischemic stroke. Out of the remaining 46 patients, six patients were lost to follow-up at 12 

weeks. Therefore, FM-UE measurements of 40 patients were available at 12 weeks post-stroke. 

Baseline demographics and clinical characteristics were similar between the two 

treatment arms (see Table 1). Our typical patient was close to 60 years of age, male and right-

handed. Stroke risk factors were often found, with hyperlipidemia being the most common. 

Average stroke severity was mild to moderate, as can be deduced from the Bamford scale, the 

NIHSS and the baseline FM-UE.54 Only a minority of patients was treated with either thrombolysis  
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or thrombectomy. Most patients (30/46) underwent all stimulation sessions and 40 patients 

missed no more than two treatments. Out of the six patients missing at least three tDCS sessions, 

one patient withdrew from the intervention because of head injury before the first session, one 

patient backed out of the study because of headache, and the other four were discharged early 

from the rehabilitation centre. 

Variable Sham tDCS Long-lasting tDCS p 

Patients no. 24 22  

   Age M (SD) 57.8 (10.6) 58.8 (12.5) 0.755 

   Male no. (%) 18 (75.0) 20 (90.9) 0.247 

   Right handed no. (%) 19 (79.2) 20 (90.9) 0.418 

Vascular risk factors    

   Diabetes no. (%) 3 (12.5) 6 (27.3) 0.276 

   Hypertension no. (%) 17 (70.8) 18 (81.8) 0.497 

   Dyslipidemia no. (%) 22 (91.7) 18 (81.8) 0.405 

   Current smoker no. (%) 11 (45.8) 9 (40.9) 0.774 

   Heart attack no. (%) 0 (0.0) 3 (13.6) 0.101 

   Atrial fibrillation no. (%) 7 (29.2) 5 (22.7) 0.742 

Stroke characteristics    

   Lacunar infarcts no. (%) 6 (25.0) 12 (54.5) 0.116 

   Partial anterior circulation infarcts no. (%) 16 (66.7) 9 (40.9)  

   Total anterior circulation infarcts no. (%) 2 (8.3) 1 (4.5)  

   Right side affected no. (%) 13 (54.2) 11 (50.0) 1.000 

   Dominant side affected no. (%) 12 (50.0) 13 (59.1) 0.568 

Baseline stroke severity    

   FM-UE M (SD) 26.4 (19.6) 31.2 (20.9) 0.421 

   NIHSS M (SD) 6.5 (4.7) 6.2 (2.5) 0.790 

   Barthel index M (SD) 14.2 (4.8) 15.9 (4.3) 0.213 

   MoCA M (SD) 21.8 (4.7) 23.0 (4.1) 0.389 

   HADS M (SD) 5.4 (4.8) 7.0 (4.3) 0.597 

   Thrombolysis no. (%) 3 (12.5) 6 (27.3) 0.276 

   Thrombectomy no. (%) 1 (4.2) 1 (4.5) 0.736 

Intervention details    

   Days from stroke to treatment M (SD) 21.6 (8.0) 21.3 (9.4) 0.918 

   Number of treatments M (SD) 6.8 (1.9) 7.3 (1.5) 0.194 

Table 1. Baseline demographics and clinical characteristics. Abbreviations: FM-UE, Fugl-Meyer 

assessment of the upper extremity; HADS, hospital anxiety and depression scale; MoCA, Montreal cognitive 

assessment; NIHSS: National institute of healthy stroke scale. 
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No effect of long-lasting tDCS on the upper extremity motor impairment was found (see 

Table 2). Both the sham tDCS group (3.4 95%ETI=[1.3 5.3]) and the long-lasting tDCS group (1.9 

95%ETI=[0.5 3.5]) performed slightly better than the reference group for spontaneous recovery, 

but the long-lasting tDCS group did not outperform the sham tDCS group (-1.5 95%ETI=[-3.8 

1.2]). In addition, no differences were found in any of the secondary outcomes, which measured 

(1) the difference in FM-UE between inclusion and 12 weeks post-stroke, (2) functional activity 

(Action Research Arm Test), (3) walking ability (10-meter walk test), (4) dependence in activities 

of daily living (Barthel Index), and (5) mood disorders (Hospital Anxiety and Depression Scale) 

(see Table 3). Finally, adverse events occurred rarely, and the rates did not differ between both 

treatment arms (see Table 4).  

Discussion 

In this study, we investigated the effects of long-lasting offline tDCS on upper extremity motor 

recovery in 48 subacute, ischemic, stroke patients. No difference was found between the sham 

tDCS and long-lasting offline tDCS groups in motor impairment (FM-UE) or in any of the 

secondary outcomes (functional activity, walking ability (10-meter walk test), dependence in  

activities of daily living (Barthel index), and mood disorders). Adverse events were uncommon 

and unrelated to the treatment modality. 

 
Figure 2. Fugl-Meyer upper extremity measurements. 

Variable Mean (95%ETI) 

Sham tDCS 3.4 (1.3 to 5.3) 

Long-lasting tDCS 1.9 (0.5 to 3.5) 

Intervention effect -1.5 (-3.8 to 1.2) 

Residual error standard deviation 3.0 (2.3 to 3.9) 

Degrees of freedom 2.3 (1.4 to 3.9) 

Table 2. Primary outcome. 
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 The non-superiority of long-lasting offline tDCS compared to sham tDCS agrees with a 

previous study that found no benefit of a single session of long-lasting offline tDCS to motor 

learning in chronic stroke patients.55 Together, these studies, therefore, do not support 

application of long-lasting offline tDCS for promoting motor learning or rehabilitation outcomes 

after stroke. However, no conclusions on the relevance of online tDCS protocols, which apply 

stimulation during training, for rehabilitation after stroke can be drawn from our current results. 

It is possible that online tDCS has a stronger effect on rehabilitation when stimulation is 

concurrent with training-related neural activity,20 although increased motor cortex excitability 

after tDCS has been specifically found in people at rest.14–16 Indeed, improvement of motor 

impairment with online tDCS has been found in populations of subacute27 and chronic stroke 

patients,28–31 even though these positive results have also not been consistently replicated56,57 

and the overall evidence is still relatively low.58,59 

 Limitations of this study include the lack of physiological markers of motor cortex 

excitability, which could have been obtained through transcranial magnetic stimulation. These 

measurements of motor cortex excitability might have helped in attributing the null effect to 

either the absence of neuromodulation or the lack of translation from neuromodulation to clinical 

effect. 14–16 Second, our sample size was based on the detection of an overall intervention effect 

across recovery subgroups and was therefore insufficient for estimating separate intervention 

effect in the poor (subgroup 1), moderate (subgroups 2 and 3) or good (subgroups 4 and 5) FM-

UE recovery groups. Third, we did not have MRI brain scans of our patients, which restricts the 

exact description of stroke lesion volumes and location. Finally, generalizability of our results is 

restricted to first-ever, ischemic, subacute stroke patients.  

In conclusion, we found no evidence for the superiority of long-lasting offline tDCS over 

sham tDCS on motor recovery in the subacute phase after stroke. Based on this result we 

recommend future studies to (1) focus on online tDCS rather than offline tDCS, and (2) enroll 

larger patient populations for stroke severity cluster analyses. 

Scale Sham tDCS Long-lasting tDCS 95%CI p 

Endpoint Fugl-Meyer 47.1 (20.3) 49.2 (17.3) 0.0 (-7.0 to 11.0) 0.966 

ΔFugl-Meyer 22.0 (15.3) 21.9 (14.8) -0.1 (-9.8 to 9.7) 0.991 

ARAT M (SD) 37.3 (22.2) 35.2 (24.6) 0.0 (-11.0 to 9.0) 0.988 

10-meter walk M (SD) 13.0 (7.8) 9.9 (4.1) -1.0 (-4.9 to 0.9) 0.343 

Barthel M (SD) 19.8 (0.5) 19.5 (1.9) 0.0 (0.0 to 0.0) 0.559 

HADS M (SD) 8.1 (6.7) 5.1 (5.6) -2.9 (-7.3 to 1.4) 0.181 

Table 3. Secondary outcomes. Abbreviations: ARAT: action research arm test; HADS, hospital anxiety and 

depression scale. 

Adverse event Sham tDCS Long-lasting tDCS p 

Convulsion no. (%) 0 (0.0) 0 (0.0) 1.000 

Central pain no. (%) 1 (4.2) 0 (0.0) 1.000 

Mood disorder no. (%) 2 (8.3) 1 (4.5) 1.000 

Headache no. (%) 1 (4.2) 0 (0.0) 1.000 

Table 4. Adverse events. 
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Chapter 5. General discussion 
 

Optimal control models of movement 

The optimal control model of movement has been successful in providing a unified explanation 

of motor control and motor learning.1 In this framework, the motor system sets a motor goal 

(possibly in the prefrontal cortex) and judges its value based on expected costs and rewards in 

the basal ganglia.2 Selected movements are executed in a feedback control loop involving the 

motor cortex and the muscles which runs on an estimate of the system’s states.2 Both the 

feedback controller and the state estimator are optimal in a mathematical sense. The feedback 

controller because it calculates optimal feedback parameters for minimizing motor costs and 

maximizing performance, given prescribed weighting of these two criteria.3 The state estimator 

because it optimally combines sensory predictions from a forward model (cerebellum) with 

sensory feedback from the periphery (parietal cortex), similar to a Kalman filter. 4,5 In the optimal 

control model of movement, motor adaptation is defined as calibrating the forward model, which 

is optimal in the same sense as the state estimator.6 

In Chapter 2 of this thesis, we showed that is both possible and useful to model 

(components of) the optimal control model of movement on an individual level. Possible, because 

recent statistical and computational advances have provided us with Bayesian tools which can be 

used to fit complex models to movement data, as we did for a state-space model of movement 

adaptation. Useful, because we could uncover optimal relations between movement variability 

and adaptation rate and between movement variability and EEG activity. Therefore, our studies 

build upon earlier findings on optimal movement behavior in humans1,2,7,8 and on the role of theta 

activity during adaptation,9–11 and extend the explanatory power of the optimal control model of 

movement to between-subject variations in motor learning ability. 

How could we further harvest the capabilities of our modeling approach for motor 

learning and recovery after stroke? First, we could use the very precise estimates of learning 

parameters for the evaluation of new interventions. This might help increase study power 

relative to more crude averages of learning processes, such as used in Chapter 4 of this thesis, 

and allow for more natural perturbations in the experimental design. Second, the model could aid 

in mapping brain lesions to specific motor learning deficits. Currently, it is unknown whether 

motor learning itself is affected in stroke patients relative to healthy subjects. Finally, 

understanding of individual differences in motor learning ability between healthy individuals 

could be deepened by relating the learning parameters to variations in genetic make-up (for 

example the BDNF Val66Met polymorphism studied in Chapter 4) or cortical anatomy. 

Indeed, we are currently implementing the visuomotor adaptation experiment on a 

large scale in the Generation R cohort study. This requires minimization of the number of trials 

to limit the duration of the experiment as much as possible while maintaining reliable parameter 

estimation. We have already seen in a comparably complex study of eye movements during 

reading and social responsiveness in Generation R, that implementation is indeed possible (see 

the additional publications 12-13 at the end of this thesis for further reference). We expect this 

project to provide us with a rich and unique dataset that will help us further investigate genetic 

and anatomical determinants of motor learning ability. 
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Proportional recovery models of stroke 

Longitudinal studies have repeatedly demonstrated the time-dependency of neurological 

recovery after stroke, including upper12,13 and lower limb motor impairment,14,15 visuo-spatial 

neglect,16 and speech.17 This suggests that recovery follows a predictable pattern, which is often 

described as spontaneous biological recovery.18,19 Understanding the mechanisms and individual 

dynamics that drive stroke recovery is vital for developing better prognostic models and more 

effective, personalized therapeutic interventions.20–23 The proportional recovery rule has been 

instrumental in modeling spontaneous upper extremity recovery by linking baseline motor 

impairment24 to the observed motor recovery.25 More specifically, the proportional recovery rule 

states that in three to six months (1) the majority of patients (recoverers) gain a fixed proportion, 

estimated between 0.55 and 0.85,13 of their potential recovery, calculated as the difference 

between baseline FM-UE and the scale's maximum score of 66, while (2) the minority of patients 

(non-recoverers) show only very moderate improvement which cannot be linked to potential 

recovery.12,13,25 Mechanistically, the key underlying difference between recoverers and non-

recoverers is currently understood as the intactness of the corticospinal tract early after 

stroke.26–29 

In Chapter 3 of thesis, we extended the concepts of proportional recovery to a 

longitudinal mixture model which captures recovery on the FM-UE in the subacute phase after 

stroke with an exponential recovery function and five subgroups, which we organized in clusters 

of poor, moderate and good FM-UE recovery. This model will be useful for (1) refining the search 

for causal and prognostic biomarkers of spontaneous motor recovery8; (2) informing patients 

early about their clinical prognosis for motor recovery; (3) estimating clinical intervention effects 

with greater sensitivity; and (4) selecting patients for clinical studies to increase study 

homogeneity9,10. Addressing point (3), we amended the longitudinal mixture model with an extra 

term that covers participation in an intervention trial and found a much higher sensitivity to 

detect intervention effects compared to a classical cross-sectional model in a series of 

simulations. In addition (point (4)), we showed that selecting patients from FM-UE recovery 

clusters increases the power to detect intervention effects in those clusters specifically. We tested 

the robustness of this new approach in multiple ways. First, we violated the basic assumption on 

the time course of the intervention effect and identified a negligible effect on study power. 

Second, we simulated data with 25% more residual error and found that the number of patients 

needed for 90% power was still four times smaller than the number needed for the cross-

sectional test. Third, the real-world implementation of the model presented in Chapter 4.5 shows 

that the confidence intervals on the intervention effect agree with the expected values. 

How could we use our model to gain a better understanding of recovery after stroke? 

Currently, it is still unknown whether any therapeutic intervention impacts recovery of 

impairment. Using our models, it is possible to find differences in both the amount and timing of 

recovery as well as in shifts between FM-UE recovery subgroups, either for the entire study 

population or for specific subgroups or clusters. Therefore, either reanalysis of already 

completed studies or analysis of upcoming studies with our model of FM-UE recovery could 

indicate which therapies are effective for specific patients. In addition, the model of FM-UE 

recovery could be used to identify determinants of individual differences in spontaneous 

recovery after stroke, which could help to (1) improve prognostic accuracy and (2) open new 

avenues towards drug development. These open questions rely on large cohort studies for their 

answer. 
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Neuromodulation 

At the outset of this thesis, a promising new neuromodulation tool in motor rehabilitation was 

transcranial direct current stimulation (tDCS), a safe30 and non-invasive technique that delivers 

low-intensity current to the scalp through a pair of electrodes.31,32 Depending on the polarity of 

the electrodes and the spatial orientation of the underlying neurons,33,34 direct current had been 

found to alter the excitability of the motor cortex, as measured with transcranial magnetic 

stimulation, for approximately an hour.35–37 In addition, tDCS had been reported to improve 

motor skill learning in healthy subjects38–45 and chronic stroke patients,46,47 and upper limb 

rehabilitation in subacute and chronic stroke patients with moderately severe cortical damage.48–

52 tDCS was presumed to improve motor learning by releasing brain-derived neurotrophic 

factor41 and down-regulating GABA53–56 and support motor rehabilitation after stroke through 

restoration of  the interhemispheric imbalance between the affected motor cortex and the 

unaffected motor cortex.57–60 

In Chapter 4 of this thesis, we found little supportive evidence for a positive effect of 

single-session motor cortex tDCS or single-session cerebellar tDCS on motor learning, or repeated 

motor cortex tDCS on upper extremity rehabilitation after stroke. Only for the very basic task of 

eyeblink conditioning did we replicate61 a supporting role for cerebellar tDCS in people with a 

BDNF Val66Met polymorphism. Although this general conclusion might have been surprising in 

light of the early tDCS experiments which inspired this thesis, recent studies have increasingly 

found negative results on both an electrophysiological, a behavioral and a clinical level. First, a 

meta-analysis of the electrophysiological changes following motor cortex tDCS has shown that 

the increase in excitability has sharply declined over the last decade,62 with recent studies failing 

to establish an effect.63 Therefore, the basic finding which fueled tDCS research is now under 

question. Second, behavioral gains found for single-session cerebellar tDCS on visuomotor 

adaptation64 and forcefield adaptation65 and for single-session motor cortex tDCS on motor skill 

learning, have not been replicated by later studies,66–68 although the results for motor cortex 

stimulation and multiple day skill learning have been more consistent.38–41,69 Third, the 2016 

Cochrane review on tDCS in the subacute phase after stroke found very small effects in activities 

of daily living but not in physical or cognitive functioning based on studies of very low to 

moderate quality.70 In addition, theoretical concerns regarding interhemispheric inhibition as 

target for neuromodulation in stroke patients have been recently brought up. The concept behind 

interhemispheric inhibition is that following a lesion, the affected motor cortex is suppressed by 

the unaffected motor cortex to a larger extent than in a healthy brain.57–60 Suppressing the 

unaffected cortex, with for example cathodal tDCS, and activating the affected cortex, with for 

example anodal tDCS, might therefore be effective for alleviating symptoms in stroke patients. Xu 

et al. have investigated interhemispheric inhibition in a longitudinal study of mildly to 

moderately affected stroke patients.71 Their primary findings were that interhemispheric 

inhibition only appears in the chronic phase after stroke and is actually more apparent in people 

with better recovery.71 This means the specific rationale for application of motor cortex tDCS 

after stroke, is no longer supported by empirical evidence. 

Given the conflicting evidence on motor cortex and cerebellar tDCS, how do we proceed? 

For starters, it seems important to replicate in well-powered, placebo-controlled studies the most 

consistent and essential electrophysiological and behavioral findings. That is, motor cortex tDCS 

effects on (1) motor evoked potentials and (2) multiple day motor skill learning,38–41,69 and 

cerebellar tDCS effects on eyeblink conditioning. Replication results could help steer the design 

of future tDCS studies. If the behavioral results are replicated, this would suggest that tDCS can 

5 



 

146 
 

in fact improve learning, but only in tasks spanning multiple days or in very simple paradigms 

such as eyeblink conditioning. A failure to replicate these behavioral results would leave very 

little evidence for positive effects of tDCS on motor learning and invite questions on its usefulness. 

Replication of the electrophysiological results in addition to the behavioral results would suggest 

that motor cortex excitability and motor learning are interconnected and validate attempts to 

optimize tDCS for motor cortex excitability. A failure to replicate the motor cortex excitability 

findings in light of positive behavioral results, would necessitate a search for alternative 

electrophysiological markers of treatment success. For example, it might make sense to quantify 

motor excitability after combined stimulation and motor training or use alternative techniques 

such as fMRI, MRI spectroscopy or EEG. To address replicability of tDCS-induced increases in 

motor evoked potentials, we are currently finishing a placebo-controlled motor cortex 

excitability study in a group of 60 healthy individuals, with results expected at the end of 2020. 
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Chapter 6. Summary 

 

In this thesis, we aimed to integrate recent insights on motor learning, stroke recovery and 

neuromodulation with the ultimate goal to improve upper limb rehabilitation after stroke. 

 

Optimal control models of movement 

In Chapter 2, we considered the optimal control model of movement to quantify individual 

differences in motor learning ability. 

In Chapter 2.1, we investigated the relation between components of motor noise and 

visuomotor adaptation rate across individuals. If adaptation approximates optimal learning from 

movement error, it can be predicted from Kalman filter theory that planning noise correlates 

positively and execution noise negatively with adaptation rate.1 To test this hypothesis, we 

performed a visuomotor adaptation experiment in 69 subjects and extracted planning noise, 

execution noise and adaptation rate using a state-space model of trial-to-trial behavior. Indeed, 

we found that adaptation rate correlates positively with planning noise and negatively with 

execution noise. In addition, the steady-state Kalman gain calculated from planning and execution 

noise correlated positively with adaptation rate. Therefore, individual differences in adaptation 

rate can be understood to a large extent from an individual's motor noise which means any effort 

to identify determinants of motor learning ability should include a decomposition of motor noise. 

 In Chapter 2.2, we found that, in the context of visuomotor adaptation, frontal midline 

theta activity (FM) does not act as a ‘top-down teaching signal’, but rather as ‘bottom-up alarm 

signal’. The EEG analysis showed that the feedback-related FM in each trial was better explained 

by the absolute error size in the corresponding trial, than by the correction in the following trial, 

or a combination of both variables. The positive relation between frontal midline EEG activity 

and the absolute error size (EEG-error sensitivity) corroborates earlier work. This study expands 

on that earlier work in two ways. First, this study shows that EEG-error sensitivity is also present 

in the absence of external perturbations i.e. in response to small self-made errors during natural 

movements. Furthermore, this study shows that FM is directly involved in error detection, but 

not directly involved in error correction.  

 

Proportional recovery models of stroke 

In Chapter 3, we investigated statistical models of recovery in the subacute phase after stroke. 

In Chapter 3.1, we developed a longitudinal mixture model of motor impairment 

recovery which describes the time course of the Fugl-Meyer assessment of the upper extremity 

(FM-UE ) after a first-ever ischemic stroke and does not suffer from mathematical coupling.6,7 

Based on this model, we analyzed a large FM-UE dataset of 412 first-ever ischemic stroke patients 

collected in prospective cohorts. Subsequently, we identified five subgroups, which we organized 

in three clinically relevant clusters of poor, moderate and good recovery. Using cross-validation, 

our paper provides first-ever estimates of predictability of endpoint FM-UE between three and 

six months poststroke, as well as subgroup assignment as a function of time poststroke.  

In Chapter 3.2, we amended the longitudinal mixture model of FM-UE recovery to 

account for participation in a stroke rehabilitation trial. Using this amended model, we simulated 

different randomized controlled studies and estimated study power. The longitudinal mixture 

model has a much higher power to detect intervention effects than a Mann-Whitney U-test 

applied to the endpoint FM-UE at 26 weeks poststroke. More specifically, based on a study design 
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with a limited number of repeated measurements (at one week and 26 weeks poststroke), 

without between-patient variability in timing of measurements or treatment start, we found a 

study sample of 70 patients to be sufficient for obtaining 90% power to detect a 4.25 point 

difference versus a study sample of 510 for the cross-sectional analysis. 

 

Electrophysiology, genetics and neuromodulation 

In Chapter 4, we investigated transcranial direct current stimulation as a neuromodulator for 

improving motor learning and rehabilitation after stroke. 

 In Chapter 4.1, we developed a new method for generating motor maps with 

transcranial magnetic stimulation. The golden standard for motor generation relied on a counting 

analysis of motor evoked potentials acquired with a predefined grid. However, with the 

development of digital reconstruction methods, it should now be possible to acquire motor maps 

with a much faster pseudorandom procedure. We compared the absolute reliability of the 

reconstruction methods with the golden standard by performing both grid and pseudorandom 

acquisition on two subsequent days in 21 healthy subjects. The standard error of measurement 

was at least equal using digital reconstructions. Pseudorandom acquisition and digital 

reconstruction can therefore be used in intervention studies without sacrificing reliability. 

 In Chapter 4.2, we undertook two cerebellar tDCS studies in subjects genotyped for 

BDNF Val66Met. Subjects performed an eyeblink conditioning task and received sham, anodal or 

cathodal tDCS or a vestibulo-ocular reflex adaptation task and received sham and anodal tDCS. 

For the eyeblink conditioning task, we found distinct groups of learners and non-learners. 

Carriers of the BDNF Val66Met polymorphism were more likely to be learners. Within the group 

of learners, anodal tDCS supported eyeblink conditioning in BDNF Val66Met non-carriers, but not 

in carriers. For the vestibulo-ocular reflex adaptation task, we found no effect of BDNF Val66Met 

or cerebellar tDCS. Therefore, the BDNF Val66Met polymorphism is important for some, but not 

all, cerebellar-dependent components of motor learning. Furthermore, cerebellar tDCS supports 

eyeblink conditioning only in non-carriers of the BDNF Val66Met polymorphism who have 

genetically determined slower conditioning rates. 

In Chapter 4.3, we aimed to replicate the result that cathodal stimulation of the right 

cerebellum improves task performance on a verb generation task.9 In contrast with the between-

subject design study of the original study, we used a cross-over within-subject design, in order to 

reduce the impact of individual variability.10 Participants had to complete two visits, with half of 

the group receiving cathodal c-tDCS the first time and half of the group receiving sham c-tDCS the 

first time. However, our results did not show a facilitating effect of cathodal c-tDCS on verb 

generation, either in terms of verbal response times or variability. 

In Chapter 4.4, we investigated the role of BDNF Val66Met and motor cortex tDCS on 

motor skill learning of a circuit tracing task for which favorable effects of stimulation had been 

found in a similar chronic stroke patient group.11,12 First, we were interested if the BDNF 

Val66Met polymorphism affects motor skill learning in patients with chronic stroke as observed 

in healthy subjects13,14 and could serve as a mediator of motor cortex tDCS effects.13 Indeed, non-

carriers (no Met alleles) outperformed carriers (at least one Met allele) on day nine of the study. 

This result indicates activity-dependent release of BDNF is important for motor skill learning 

after stroke and could potentially mediate motor cortex tDCS effects. Second, we addressed if 

motor cortex tDCS affects motor skill learning and whether these effects depend on timing of 

stimulation relative to training. More specifically, we compared motor skill learning in patients 

receiving conventional stimulation during training (hypothesis “direct effects”), long-lasting 
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stimulation one day before training (hypothesis “aftereffects”) or conventional stimulation one 

day before training (hypothesis “intermediate effects”), with sham stimulation. However, none of 

the tDCS protocols affected motor skill learning. In addition, we found no effect of any of the tDCS 

protocols on manual dexterity or maximum grip force. 

In Chapter 4.5, we investigated the effects of long-lasting offline motor cortex tDCS on 

upper extremity motor recovery in 48 subacute ischemic stroke patients. No difference was found 

between the sham tDCS and long-lasting offline tDCS groups in motor impairment (FM-UE) or in 

any of the secondary outcomes on: (1) functional activity, (2) walking ability (10-meter walk 

test), (3) dependence in activities of daily living (Barthel index), (4) mood disorders.  
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Samenvatting 

 

In dit proefschrift hebben we recente inzichten over motorisch leren, revalidatie en 

neuromodulatie gecombineerd om het herstel van arm- handfunctie na een beroerte te 

verbeteren. 

 

Modellen van bewegingssturing uit de meet- en regeltechniek 

In hoofdstuk 2 hebben we optimale regeltheorie gebruikt om individuele verschillen in 

motorische foutcorrectiesnelheid te kwantificeren.  

In hoofdstuk 2.1 onderzochten we de relatie tussen verschillende componenten van 

bewegingsruis in een reiktaak en de foutcorrectiesnelheid. Als foutcorrectiesnelheid de optimale 

leersnelheid benadert, voorspelt Kalmanfiltertheorie dat ruis in de planning van reikbewegingen 

positief correleert met foutcorrectie en ruis in de uitvoering van bewegingen negatief correleert 

met foutcorrectie.1 Om deze hypothese te testen hebben we bij 69 proefpersonen 

reikbewegingen gemeten en met een specifiek leermodel (state-space model) de plannings- en 

uitvoerruis en de foutcorrectiesnelheid bepaald. Inderdaad vonden we een positieve correlatie 

tussen planningsruis en foutcorrectie en een negatieve correlatie tussen uitvoerruis en 

foutcorrectie. Verder berekenden we de optimale leersnelheid (Kalman gain) uit de twee 

ruistermen en stelden een positieve correlatie met de gemeten foutcorrectiesnelheid vast. De 

conclusie is dat verschillen in foutcorrectiesnelheid tussen individuen begrepen kunnen worden 

uit variaties in bewegingsruis. Voor studies naar individuele determinanten van leersnelheid is 

het daarom van belang een gedetailleerde analyse van de bewegingsruis uit te voeren.  

In hoofdstuk 2.2 hebben we met behulp van elektro-encefalografie geconstateerd dat 

bepaalde hersenactiviteit (thetagolven frontaal in de middellijn) niet fungeert als een direct 

leersignaal, maar eerder als een toezichthouder voor het optreden van onverwachte fouten. 

Theta-activiteit gerelateerd aan foutterugkoppeling werd namelijk beter verklaard door de 

absolute afwijking van de huidige beweging dan door de correctie van de volgende beweging of 

een combinatie van de twee. De positieve correlatie tussen thetagolven frontaal in de middellijn 

en de absolute bewegingsfout (aangeduid als foutgevoeligheid van elektro-encefalografie) is in 

overeenstemming met resultaten uit eerder onderzoek. Wij voegen hier twee bevindingen aan 

toe. Ten eerste dat zelfs de kleinste, natuurlijk optredende bewegingsfouten terug te vinden zijn 

in thetagolven. Ten tweede dat thetagolven betrokken zijn bij herkenning maar niet bij correctie 

van fouten. 

 

Modellen van proportioneel herstel na een beroerte 

In hoofdstuk 3 hebben we statistische modellen van herstel in de subacute fase na een 

herseninfarct onderzocht.  

In hoofdstuk 3.1 hebben we een longitudinaal groepsmodel van herstel van arm- 

handfunctie na een herseninfarct ontwikkeld. Dit model beschrijft het beloop van de Fugl-Meyer 

score (een maat voor beperking van arm- en handfunctie) na het optreden van een eerste 

herseninfarct en kampt niet met de wiskundige problemen van eerdere modellen.6,7 Om de 

parameters van het model te schatten hebben we een bestand van 412 patiënten met een eerste 

herseninfarct samengesteld uit eerder uitgevoerde prospectieve cohortstudies. We vonden vijf 

subgroepen die we verder hebben gegroepeerd in voor ons klinisch relevante clusters van slecht, 

matig en goed herstel. Met behulp van kruisvalidatie hebben we voor het eerst de 
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voorspelbaarheid van toekomstig herstel op de Fugl-Meyerschaal, uitgedrukt als de absolute 

score of als het herstelcluster, uitgerekend.  

In hoofdstuk 3.2 hebben we het longitudinale groepsmodel van herstel na een 

herseninfarct uitgebreid met een term die de effecten van deelname aan een klinische studie 

beschrijft. Met behulp van dit gewijzigde model hebben we gerandomiseerde klinische studies 

met verschillende onderzoeksprotocollen gesimuleerd. We vonden dat het longitudinale 

groepsmodel veel gevoeliger is in het vaststellen van interventie-effecten dan een gangbare 

cross-sectionele (Mann-Whitney U) test. Bijvoorbeeld, voor een onderzoeksopzet met een 

beperkt aantal metingen (op één en 26 weken na een beroerte) berekenden we een minimum 

van 70 patiënten voor het longitudinale model en 510 patiënten voor het cross-sectionele model 

om met 90% zekerheid een interventie-effect van 4.25 punten terug te kunnen vinden.  

 

Elektrofysiologie, genetica en neuromodulatie 

In hoofdstuk 4 hebben we onderzocht of een specifieke vorm van neuromodulatie, transcraniële 

gelijkstroomstimulatie, motorisch leren en revalidatie na een beroerte kan verbeteren.  

In hoofdstuk 4.1 hebben we een nieuwe methode ontwikkeld voor het in kaart brengen 

van het hersenoppervlak dat betrokken is bij de aansturing van een enkele spier op basis van 

transcraniële magnetische stimulatie. De gouden standaard was gebaseerd op een rasteranalyse 

waarbij per vakje werd bepaald of de meerderheid van een vast aantal stimulatiepulsen wel of 

niet tot spieractiviteit leidde om zo tot een oppervlak te komen. Met de ontwikkeling van digitale 

reconstructiemethoden zou het nu echter mogelijk moeten zijn om het oppervlak te verkrijgen 

met een veel snellere pseudo-willekeurige procedure. We vergeleken de absolute 

betrouwbaarheid van de twee reconstructiemethoden door zowel raster- als pseudowillekeurig 

transcraniële magnetische stimulatie uit te voeren op twee opeenvolgende dagen in 21 gezonde 

proefpersonen. De standaardmeetfout van pseudowillekeurige stimulatie met digitale 

reconstructie was ten minste gelijk aan de gouden standaard. Pseudowillekeurige stimulatie in 

combinatie met digitale reconstructie kan daarom gebruikt worden in interventiestudies zonder 

aan betrouwbaarheid in te boeten.  

In hoofdstuk 4.2 hebben we twee cerebellaire transcraniële gelijkstroomstimulatie-

experimenten uitgevoerd bij personen die zijn geanalyseerd voor dragerschap van het BDNF 

Val66Met polymorfisme. Een deel van de proefpersonen nam deel aan een klassiek 

conditioneringsexperiment van de oogknipperreflex en ontving placebo, anodale of kathodale 

gelijkstroomstimulatie. Een ander deel onderging een adaptatie-experiment voor de vestibulo-

oculaire reflex en ontving placebo of anodale gelijkstroomstimulatie. In het klassiek 

conditioneringsexperiment vonden we een duidelijke tweedeling in een groep responsieve en 

een groep niet-responsieve proefpersonen. Dragers van het BDNF Val66Met polymorfisme 

behoorden vaker tot de responsieve groep. Binnen de responsieve groep verhoogde anodale 

gelijkstroomstimulatie de snelheid van conditioneren in niet-dragers van het BDNF Val66Met 

polymorfisme maar niet in dragers van het polymorfisme. In het adaptatie-experiment van de 

vestibulo-oculaire reflex vonden we helemaal geen effect van dragerschap van het BDNF 

Val66Met polymorfisme of van transcraniële gelijkstroomstimulatie. De conclusie is daarom dat 

BDNF Val66Met belangrijk is voor sommige, maar niet voor alle vormen van 

cerebellumafhankelijk motorisch leren. Verder vonden we een bescheiden rol voor cerebellaire 

gelijkstroomstimulatie in conditionering van de oogknipperreflex in individuen die door hun 

genetische achtergrond trager leren.  
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In hoofdstuk 4.3 wilden we het prestatiebevorderende effect van kathodale stimulatie 

van het rechter cerebellum op werkwoordproductie reproduceren.9 In tegenstelling tot de 

oorspronkelijke studie maakten we in ons experiment gebruik van een binnen-proefpersoon 

opzet om de impact van individuele verschillen te verminderen.10 Deelnemers voerden de 

oefening twee keer uit en werden tijdens het eerste of het tweede bezoek gestimuleerd met 

kathodale gelijkstroom over het rechter cerebellum en tijdens het andere bezoek met placebo. In 

tegenstelling tot de oorspronkelijke studie toonden onze resultaten geen bevorderend effect van 

kathodale gelijkstroomstimulatie op het genereren van werkwoorden, noch in responstijden 

noch in variabiliteit.  

In hoofdstuk 4.4 hebben we de rol van BDNF Val66Met en gelijkstroomstimulatie van 

de motor cortex op het aanleren van een traceerbeweging onderzocht. Eerder onderzoek had bij 

deze zelfde taak een gunstig effect van stimulatie gevonden in een vergelijkbare groep patiënten 

met een al langer geleden doorgemaakte beroerte.11,12 Ten eerste wilden we uitzoeken of 

dragerschap van het BDNF Val66Met polymorfisme invloed zou kunnen hebben op de 

leersnelheid, net zoals eerder is vastgesteld in gezonde proefpersonen13,14 en of BDNF betrokken 

zou kunnen zijn bij de positieve effecten van gelijkstroomstimulatie.13 Inderdaad presteerden 

niet-dragers (geen Met-allel) beter dan dragers (minstens één Met-allel) op dag negen van de 

studie. Dit resultaat geeft aan dat activiteitafhankelijke afgifte van BDNF belangrijk is voor het 

leren van motorische vaardigheden na een beroerte en daarmee berokken zou kunnen zijn bij 

positieve effecten van gelijkstroomstimulatie. Ten tweede hebben we onderzocht of 

gelijkstroomstimulatie van de motor cortex het aanleren van een motorische vaardigheid 

beïnvloedt en of deze effecten afhangen van de timing van stimulatie in relatie tot training. Meer 

specifiek vergeleken we motorische leersnelheid bij patiënten die conventionele stimulatie 

tijdens training (hypothese "directe effecten"), langwerkende stimulatie een dag voor training 

(hypothese "na-effecten") of conventionele stimulatie een dag voor training (hypothese 

"indirecte effecten") kregen met een placebogroep. Geen van de 

gelijkstroomstimulatieprotocollen had echter invloed op het aanleren van de motorische 

vaardigheid. Bovendien vonden we geen effect van gelijkstroomstimulatie op handvaardigheid 

of maximale grijpkracht.  

In hoofdstuk 4.5 onderzochten we de effecten van langwerkende tDCS op motorisch 

herstel van de bovenste extremiteit bij 48 patiënten met een recent doorgemaakt herseninfarct. 

Er werd geen verschil gevonden tussen placebo en langwerkende gelijkstroomstimulatie in arm-

handvaardigheid (FM-UE) of in een van de secundaire uitkomstmaten: (1) functionele arm- 

handactiviteit, (2) loopvaardigheid (10-meter looptest), (3) afhankelijkheid in het dagelijks 

activiteiten (Barthel-index) of (4) stemmingsstoornissen. 

 

Referenties 

1. Kalman, R.E. J. Basic Eng. 82, 35 (1960). 

2. Anguera, J.A., Seidler, R.D. & Gehring, W.J. J. Neurophysiol. 102, 1868–1879 (2009). 

3. Vocat, R., Pourtois, G. & Vuilleumier, P. Neuropsychologia 49, 360–367 (2011). 

4. Torrecillos, F., Albouy, P., Brochier, T. & Malfait, N. J. Neurosci. 34, 4845–4856 (2014). 

5. Arrighi, P. et al. PLoS One 11, 1–27 (2016). 

6. Hope, T.M.H. et al. Brain 306514 (2018).doi:10.1093/brain/awy302 

7. Hawe, R.L., Scott, S.H. & Dukelow, S.P. Stroke 50, 204–211 (2019). 

8. Boyd, L.A. et al. Int. J. Stroke 12, 480–493 (2017). 

9. Pope, P.A. & Miall, R.C. Brain Stimul. 5, 84–94 (2012). 

10. Wiethoff, S., Hamada, M. & Rothwell, J.C. Brain Stimul. 7, 468–475 (2014). 



Summary 

155 
 

11. Lefebvre, S. et al. Front. Hum. Neurosci. 6, 343 (2012). 

12. Lefebvre, S. et al. Brain 138, 149–63 (2015). 

13. Fritsch, B. et al. Neuron 66, 198–204 (2010). 

14. McHughen, S.A. et al. Cereb. Cortex 20, 1254–62 (2010). 

  

6 



 

156 
 

 



 

157 
 

Chapter 7. Epilogue 

 

Publications 

 

This thesis 

1. Individual differences in motor noise and adaptation rate are optimally related. R. van 

der Vliet, M.A. Frens, L. de Vreede, Z.D. Jonker, G.M. Ribbers, R.W. Selles, J.N. van der 

Geest and O. Donchin. Eneuro 5 (4) (2018) 

2. Frontal midline theta activity acts as a bottom-up alarm signal and not as a top-down 

teaching signal in the context of motor adaptation. Z.D. Jonker, R. van der Vliet, G. 

Maquelin, J. van der Cruijsen, G.M. Ribbers, R.W. Selles, O. Donchin and M.A. Frens. In 

preparation. 

3. Predicting upper limb motor impairment recovery after stroke: a mixture model. R. van 

der Vliet, R.W. Selles, E.-R. Andrinopoulou, R. Nijland, G.M. Ribbers, M.A. Frens, C. 

Meskers and G.Kwakkel. Annals of Neurology 87 (3), 383-393 (2020) 

4. Improving statistical power of subacute upper limb motor rehabilitation trials. R. van 

der Vliet, G. Kwakkel, E.-R. Andrinopoulou, R. Nijland, G.M. Ribbers, M.A. Frens, E.E.H. 

van Wegen, C. Meskers and R.W. Selles. Submitted. 

5. TMS motor mapping: Comparing the absolute reliability of digital reconstruction 

methods to the golden standard. Z.D. Jonker, R. van der Vliet, C.M. Hauwert, C. Gaiser, 

J.H.M. Tulen, J.N. van der Geest, O. Donchin, G.M. Ribbers, M.A. Frens and R.W. Selles. 

Brain stimulation 12 (2), 309-313 (2019) 

6. Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in 

motor learning. R. van der Vliet, Z.D Jonker, S.C. Louwen, M. Heuvelman, L. de Vreede, 

G.M. Ribbers, C.I. De Zeeuw, O. Donchin, R.W. Selles, J.N. van der Geest and M.A. Frens. 

Brain stimulation 11 (4), 759-771 (2018) 

7. Cerebellar cathodal transcranial direct stimulation and performance on a verb 

generation task: a replication study. K. Spielmann, R. van Der Vliet, W.M.E. van de Sandt-

Koenderman, M.A. Frens, G.M. Ribbers, R.W. Selles, S. Van Vugt, J.N. van der Geest and P. 

Holland Neural plasticity (2017) 

8. BDNF Val66Met but not transcranial direct current stimulation affects motor learning 

after stroke. R. van der Vliet, G.M. Ribbers, Y. Vandermeeren, M.A. Frens and R.W. Selles. 

Brain stimulation 10 (5), 882-892 (2017) 

9. Long-lasting tDCS in the subacute phase after stroke: double-blind randomized clinical 

trial. R. van der Vliet, Z.D. Jonker, M.A. Frens, R.W. Selles and G.M. Ribbers. In 

preparation. 

 

Additional publications 

10. Recovery of arm-hand capacity after stroke: a dynamic prediction approach. R.W. Selles, 

E.-R. Andrinopoulou, R.H.M. Nijland, R. van der Vliet, J. Slaman, C. Meskers, D. 

Rizopoulos, G. Ribbers and G. Kwakkel. In preparation. 

11. The role of the BDNF Val66Met polymorphism in recovery of aphasia after stroke. R.G.A. 

de Boer, K. Spielmann, M.H. Heijenbrok-Kal, R. van der Vliet, G.M. Ribbers and W.M.E. 

van de Sandt-Koenderman. Neurorehabilitation and neural repair 31 (9), 851-857 

7 



 

158 
 

12. Eye movement behaviour and silent reading: motor and cognitive correlates in a 

population-based study of pre-adolescents. S.C. Louwen, R. van der Vliet, H.H. Adams, 

S.P.C. Koenraads, M.C.J.P. Franken, M.H.J. Hillegers, J.N. Van der Geest and H. Tiemeier. 

In preparation. 

13. Cortical Thickness and Surface Area correlates of Reading Profiency in pre-adolescents: 

A Population-Based Study. S.C. Louwen, R. van der Vliet, M.H.J. Hillegers, M.A. Frens, H. 

Tiemeier and R. Muetzel. In preparation. 

  



Epilogue 

159 
 

PhD portfolio 
Name PhD student   Rick van der Vliet 

Erasmus MC Departments   Neuroscience 

     Rehabilitation Medicine 

PhD period    May 2013 

     April 2020 

Promotors    Prof.Dr. M.A. Frens 

     Prof.Dr. G.M. Ribbers 

Co-promotor    Dr. R.W. Selles 

 

1. PhD training Year Workload 

General courses   

Master of Science in Medicine 2013-2019 180 

Premaster Biomedical Engineering 2011-2014 67 

Master of Science in Biomedical Engineering 2014-2017 120 

BROK course 2014 2 

   

Conferences   

Neuromodulation conference New York 2013 1 

Biomedical Engineering conference 2015 1 

Motor control conference Be’er Sheeva 2015 1 

Neurorehabilitation and neural repair conference Maastricht 2015 1 

Biomedical Engineering 2016 1 

Biomedical Engineering 2017 1 

   

Workshops, meeting and symposia   

Summer school Chicago 2016 2 

   

2. Teaching activities Year Workload 

Supervision   

Suzanne Louwen (master thesis) 2013-2014 3 

Linda de Vreede (master thesis) 2014-2015 3 

Suzy Margaretha (master thesis) 2014-2015 3 

Zeb Jonker (master thesis) 2014-2016 3 

Anne Geelhoed (bachelor thesis) 2015 2 

Noor Gieles (bachelor thesis) 2015 2 

Yiyi Zhang (bachelor thesis) 2015 2 

Annelot van der Meulen (bachelor thesis) 2016 2 

Christopher Hauwert (master thesis) 2016-2018 3 

Marco Hoog (master thesis) 2016-2017 2 

Charlotte Viëtor (master thesis) 2016-2018 3 

7 



 

160 
 

Guido Maquelin (master thesis) 2016-2018 3 

Junior Med School 2015 1 

Junior Med School 2016 1 

   

Lecturing   

Linear systems 2014-2016 6 

Minor Medicine 2015-2017 2 

 

  



Epilogue 

161 
 

 

Dankwoord 
 

Iets minder dan zeven jaren scheiden het einde van deze thesis van het begin. Ongetwijfeld heeft 

dat alles te maken met de ingewikkelde keuze voor het juiste moment van afronden tegenover de 

veel sneller genomen beslissing voor het starten met onderzoek. Ieder hoofdstuk biedt ruimte 

voor nieuwe vragen en met de uitwerking van sommige van deze vragen zijn we ook nu nog bezig. 

Enfin, in ieder geval geeft het aan dat ik hier altijd met veel plezier gewerkt heb onder leiding van 

Gerard, Maarten en Ruud. 

 

Maarten kende ik al voor mijn promotie. Van Junior Med School, nog op de middelbare school. En 

van de Honours Class, tijdens de bachelor geneeskunde. Altijd heb ik van Maarten de ruimte 

gekregen om creatieve vragen te bedenken en naar antwoorden te zoeken met alle in ons lab 

beschikbare onderzoeksopstellingen. Sommige opstellingen waren al een tijd buiten gebruik 

maar dan kreeg ik ze met Jos, Suzanne en Zeb weer werkend door te ontwerpen, bouwen en 

programmeren. Met Claire was het altijd gezellig, door haar volume leek het lab op thuis. Opher, 

die net was verhuisd naar Rotterdam toen ik aan mijn master neurowetenschappen begon, hield 

ons scherp met kritische vragen die in het begin frustreerden, maar onze onderzoeksvoorstellen 

altijd beter maakten. Alle complexe statistiek uit hoofdstuk drie heb ik van Opher geleerd: 

misschien wel de leukste tijd in het lab. Voor het gestructureerd opzetten van studies en 

opschrijven van resultaten kon ik altijd rekenen op Ruud. Het hardst hebben we samen met Gert 

gewerkt aan het duidelijk uitleggen van de modellen uit hoofdstuk drie aan een klinisch publiek. 

Tenslotte waren de twee projecten met patiënten uit hoofdstuk vijf nooit tot stand gekomen 

zonder Gerard, die als ervaren clinicus ook de fundamentele wetenschap van motor leren 

beheerst. Enorm inspirerend. 

 

Het meest genoot ik van de studie geneeskunde tijdens de Honours Class. Met Hieab, Lennard, 

Sirwan en Zeb heb ik gereisd, geskied, gegeten en gedronken en eindeloos veel plannen gesmeed. 

 

Het laatste deel van mijn promotie heb ik gecombineerd met klinisch werk op de afdeling 

neurologie van het Ikazia ziekenhuis, de afdeling van Laus en Dick. Met veel respect en plezier 

heb ik geleerd van hun oprechte betrokkenheid, humor en klinische ervaring. 

 

Dit boek is voor mijn ouders en mijn broertje, die mij hebben geholpen drie studies en een 

promotieonderzoek af te ronden. Omdat ze erop vertrouwden dat ik dat kon. En omdat ze wisten 

dat ik met die kennis kan gaan doen wat ik interessant vind, op het snijvlak van techniek en 

geneeskunde, als arts en als ingenieur. En dit boek is voor Anne, die mij met haar kenmerkende 

niet-aflatende energie aanmoedigde om dit onderzoek toch eindelijk eens af te ronden. Om zo 

ook weer aan nieuwe dingen te kunnen beginnen. Nou ja. Oké. Goed dan. 

  

7 



 

162 
 

 


