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SUMMARY
The preference of an individual in a paired comparison product test is
stochastic, i.e. the probability p, that he will prefer one of the two alter-
natives, is not 0 or 1, but lies somewhere between these values. It is shown
that the distribution of p, when approximated by a beta distribution, can be
obtained by means of a replicated paired comparison product test.
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1. INTRODUCTION

IN this paper, we consider paired comparison product tests (to be described as product
tests) in which the outcome of each individual preference test is a random 0-1 variate,
where each individual has his own probability distribution over the two possible
outcomes.

First, we will show that this probabilistic concept of individual preferences—as
opposed to a deterministic one where every individual is supposed to make always the
same choice—reflects reality as is demonstrated by empirical results.

We then investigate advantages of knowing more about the preference distribution
than just the proportion of the population preferring one of the alternatives.

It will be shown that, when a beta distribution is assumed for the distribution of
preference in the population, its parameters, which can provide useful information
about the preference situation, can be estimated by means of an extension of a paired
comparison product test.

The procedure for doing this is demonstrated for empirical data.

2. PAIRED COMPARISON PrRoODUCT TESTS

In a paired comparison product test, two products (throughout this text to be
designated 4 and B) are successively presented to randomly selected subjects. No
information is given to the subject about the identity of the products (e.g. brand
names) to prevent possible prejudice. After having observed (e.g. tasted or smelled)
the two alternatives, every subject is asked which of the two he (or she) prefers.
Because the order in which the two products are presented might influence the answers,
this order is alternated throughout the test.

If ties are not permitted (forced choice) there are two possible answers for each
subject: 4 and B. If a statement of no preference is permitted, there are three out-
comes: A, B and N (neutral). In the latter situation, we can still summarize these in
the two possibilities: 4 and A4, where A means that either B or N was chosen, and
not 4. It will be clear that by subsequent dichotomization the number of A-preferers
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as the outcome of the test may be different from the number which would have been
found if the subject could only choose between “A preferred” or ““B preferred””. The
effect of the so-called neutral vote is a well-known problem in marketing research.

Every subject is said to be either an A-preferer or an A-preferer. It is indifferent
which of the two alternatives is called A. In a forced-choice test 4 and B coincide.

The purpose of this kind of testing is to draw conclusions about the preferences—
with respect to the two products in question—in the population, on the basis of the
sample of persons in the product test. The population is the one in which we are
interested with regard to the particular product (target population), and the subjects
must be drawn from that population.

Paired comparison product tests are carried out for products judged on a number
of different dimensions, i.e. products for which a subject considers a number of
different features. Such features may be: shape, package, colour, smell, taste, etc.,
but other kinds of psychological connotations may also play a role. If a product is
judged on only one dimension and one wishes to have the relative preference for one
out of two alternatives of the product, it is possible to have each alternative judged by a
separate sample of subjects, who produce rating scores for each alternative. From
these rating scores, relative preferences can subsequently be established. When
judgments are multidimensional, however, the approach of letting each product be
judged separately leads to difficulties. It would be necessary to have a subject’s
opinion on a number of attributes, but often it will not be clear which attributes to
include. It is also difficult to determine the weights of the different attributes relative
to each other. One method would be to ask a subject’s general appreciation of a
product, but then the problem is that a subject may focus on one specific attribute or
make a comparison with a specific product known to him. In this case, however, the
reference-base of the judgment is not known and different subjects may apply different
reference-bases. Therefore, in cases of multidimensional judgments, paired com-
parison product tests are often used in which products are directly compared with
each other.

3. STOCHASTIC VS DETERMINISTIC APPROACH

The usual procedure after the completion of the product test is to compute the
fraction of subjects who preferred A. The “true” fraction of A-preferers in the
population can be called p .. Every subject can be seen as a drawing from a Bernoulli
distribution with parameter p . The number of subjects who prefer 4 in a product
test with sample size n is then a binomial random variate with parameters p and n.
On the basis of the computed fraction of A-preferers in the sample, a confidence region
for p4 can be obtained in the usual way. Because it is assumed that the population
contains only people who choose with probability one either 4 or 4 this can be called
a deterministic approach.

However, the stimuli produced by the two alternatives offered to the subject are
in general random variates, and the outcome of the comparison will not be fixed but
stochastic, see Thurstone, as quoted by David (1963, chapter 1). Generally, a subject
does not have a probability 0 or 1 to prefer 4, but this probability lies somewhere
between these two values. When the choice situation for the individual subject is
considered in this way we can say that a stochastic approach is followed.

Day (1965) has also proposed the concept of stochastic preference, by suggesting
that a person has a preference for A if his probability to choose A in a pairwise
comparison product test is greater than 0-5.
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4. EMPIRICAL SUPPORT FOR THE STOCHASTIC APPROACH

It is useful to know if in product test situations subjects are consistent when asked
to make repeated choices between the same two products. According to the deter-
ministic view they would not change at all; in the stochastic view a certain number of
changes is likely.

We have the results of 12 product tests, which were provided by SOCMAR N.V.,
in Rotterdam.

The products in the test were:

Tests 1-3: a deep-frozen dessert product.
Test 4: beer.

Tests 5-7: margarine.

Tests 8-10:  bread.

Tests 10-12: biscuits.

In each of the 12 tests there were two alternatives: 4 and B. A subject was allowed
to choose from three possibilities:

A preferred; B preferred; No preference (N).

Every subject was submitted twice to the same test, with a time interval varying from
some hours to some days. The order of presentation was varied throughout the test,
and the subjects were not told that the alternatives in the second test were the same as
those of the first one.

The results of the tests with respect to change in preference are presented in
Table 1.

TABLE 1

Fractions of preference changers in 12 product tests for two different definitions of
preference change

Test No. 1 2 3 4 5 6 7 8 9 10 11 12

(1) Fraction preference

changers with three

categories: 4, B, N 0-52 0-39 0-43 0-58 0-37 0-38 0-44 0-47 0-32 0-33 0-29 042
(2) Fraction preference

changers with two

categories: 4, B 0-:30 0-28 0-25 0-27 0-20 0-20 0-30 0-31 0-17 0-20 0-18 0-25
(3) Sample size 100 101 100 161 100 160 160 100 100 100 100 100

We can define preference change in different ways:

(1) When we consider the three possible answers 4, B and N as separate preference
categories, we say that a person changed preference if his answers at the two occasions
belong to different preference categories. Inrow (1) of Table 1, one finds the number of
preference changers thus defined, expressed as a fraction of the total number of
subjects in each test. We see that preference changing is quite considerable: the
fraction ranges from 0-29 to 0-58 with a median of 0-41. So about 40 per cent of the
subjects changed preference.
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(2) We can also take the position that a change (vice versa) from 4 to N or from
B to N is less impressive than from 4 to B. Thus we may restrict the meaning of
preference changing to changes from 4 to B and B to 4. We report the number of
subjects who changed preference defined in this way in row (2) of Table 1 (again as a
fraction of the total number of subjects). Now the fraction preference changers
ranges from 0-17 to 0-31. In this more restricted concept of preference change, the
change is still substantial.

Thus, the empirical data suggest that a stochastic interpretation of individual
preference choice is more appropriate than a deterministic one.

5. THE PREFERENCE DISTRIBUTION
From now on our concept is that every person in the population has a certain
probability to prefer alternative A4 in a product test. We call this probability p. So:
p = Prob (4 preferred in a pairwise comparison product
test with alternatives 4 and B). €))

We assume that different persons may have different p’s, so we state that p is dis-
tributed in the whole population in a certain way and we call the probability density
function (p.d.f.) of p: g(p). For example, g(p) may have the form as designed in
Fig. 1 (because p is a chance, p can only take values in the interval [0, 1]).

/
L1
L1
A1
g(p) g(p) A ;
| e
o L1
| L
L1
0-0 . 00 .
p 1-0 p -0
Fi1G. 1. A possible pdf of p. Fi1G. 2. A special case: the probability mass

(shaded) is concentrated at the extremes.

A special case arises when the probability mass is fully concentrated at the extremes
0 and 1 (see Fig. 2). When this happens we are back into the deterministic situation
described in Section 3, so this is a special case in the stochastic approach.
It might be remarked that it makes no difference to the product test outcomes if
the situation is
(a) p is distributed in the population according to the density function g(p), with
expected value u,, or
(b) the population consists only of fully determined persons who prefer, with
probability 1, A4 or 4 and the fraction of people who prefer A4 is mu,.
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In case (a) the probability that a randomly selected person will prefer 4 is

f:pgcp) dp = @

while in situation (b) the probability to draw an A-preferer is also w,. Because the
probability distribution for the individual outcome is the same for the two situations,
this also holds for the results of the whole test.

This being true, it is important for a (potential) seller or producer of a product to
know how the preference for his product is structured: how many people are there
with a strong preference for his product and how many with a preference for the other
product. In other words: it is desirable to have more information about the dis-
tribution of p, in addition to an estimate of its expectation from the usual product test.

6. THE USE OF THE BETA DISTRIBUTION
To be able to work with g(p), i.e. the distribution of p in empirical situations, one
has to assume a special form for this distribution. Because the preference situation
can take most possible forms, in practice a distribution with a great flexibility is
needed and we therefore propose the beta distribution.
The beta distribution has two parameters, here indicated as a and b (a,5>0), and
we express the beta distribution of p in the population as follows:

p=p(a,b). ©)

The density function can take the U-form (0<a,b<1), the inverse U-form (a, 5> 1),
the J-form (0<b<1<a), the inverse J-form (0<a<1<b) and the rectangular form
{a = b = 1) (see Day, 1965, pp. 150, 151). Further advantages of the beta distribution
are:

Only values from 0 to 1 can be taken, which is a necessary condition for the

probability p.

Rather simple expressions for the moments.

This is not the first time that the beta distribution is used for modelling choice
behaviour of a population in a marketing context; in some brand choice models, the
beta distribution is used to describe the distribution in the population of the proba-
bility to choose a certain brand. For instance, Howard (1968) used it in his Dynamic
Inference Model, Aaker (1971) in his New Trier Model, and Massy, Montgomery and
Morrison (1970) discuss the wide variety of forms the beta distribution can take for
describing population heterogeneity in brand choice processes. A limitation is that
when the preference situation is not unimodal, the fit by the beta distribution may be
less good.

The probability density function of the beta distribution with parameters @ and b is

b(x) =

B@D) x2 Y 1—x)p1 (0<x<]), ()]

where B(a, b) is the well-known beta function with parameters a and b. We define

w=Ext (i=12..). 5)
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Then for the moments we have
a

= ©
_ a(a+1)
He=a+b)(@+b+1) 2
and, generally,
a+i .
M1 = M(rb-l-i) (=12..). ®

With the aid of the beta distribution, we can now give a numerical example to
show the importance of knowledge about the distribution of p in addition to the
expected value p,, estimated in a conventional product test.

Imagine the three following cases (in all three situations there is a choice situation
with products 4 and B, p is the probability to prefer 4, and p is distributed in the
population according to a beta distribution):

CaseI  p~p(28-2, 18-8),
Case II p~p(3-0, 2-0),
Case III  p~ B(0-4286, 0-2857).

In all these cases Ep = u, = a/(a+b) = 0-60, so in a product test the three situations
would all lead to a fraction A-preferers of 0-60. But as is shown in the Figs 3-5, where
the density functions are plotted, the preference situations are by no means identical.
In Case I almost all persons have a preference for A slightly over 0-50; in Case II
there are a number of persons who have a rather high probability of preferring 4; and
in Case III a high proportion of the population consists of either strong approvers or
strong disapprovers of 4. From a marketing point of view, these differences seem to
be important, for instance to the seller of product 4, when B is supposed to be a
competing brand. One could say that in Case I the situation is rather dangerous

50 5.0
b(p) b(p)
0-0 -0 - .
p | 00 » 10

FIG. 3. Case I: p~f(28-2, 18-8). FIG. 4. Case II: p~f(3-0, 2-0).
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because a slight change might convert the weak approvers of A to disapprovers. In
Case III, however, product 4 has a considerable part of the population rather firmly
tied to itself, which seems to be a decidedly comfortable situation.

5-0

b(p)

0-0 1-0
p

FiG. 5. Case III: p~f (0-4286, 0-2857).

This can be illustrated in another way. We define a person to be a net A-preferer
if his probability to choose A is greater than 0-5, a strong A-prefer if greater than
0-75, a strong A-preferer if P<0-25. (Of course these boundaries are somewhat
arbitrary.) We can compute now for each case the percentages of net A-preferers,
strong A-preferers and strong A-preferers in the population. For the three cases the
results can be found in Table 2. The percentages are computed by means of a series
expansion of the incomplete beta function (Abramowitz and Stegun, 1968, equation
26.5.4).

TABLE 2

Percentages of different categories of preferers in the population for three cases,
all with Ep = 0-60

Net A-preferers Strong A-preferers Strong A-preferers
) (V) 78]
Case I 92 1 0
Case 1T 69 26 5
Case 111 61 47 27
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7. ESTIMATION OF THE PARAMETERS IN AN EMPIRICAL PrODUCT TEST SITUATION

In the previous section we demonstrated the use of the beta distribution for three
hypothetical cases. Now we want to estimate the parameters of the beta distribution
from empirical data, and, for this purpose, we propose the following pairwise com-
parison product test with replication.

Suppose we want to test two products 4 and B against one another. Let every
subject be submitted twice to a product test, where the alternatives in both tests are the
same. There should be some time between the tests to prevent conditioning, the order
of presentation should be varied and the subjects must be unaware of the fact that the
alternatives in the second test are the same as in the first. Because of the last condition,
the test products should not have very striking features, thus enabling recognition.

After all subjects have completed the test, two quantities can be computed:

£, = the fraction of the total number of subjects who preferred 4 once and 4 once,
f» = the fraction of the total number of subjects who preferred 4 both times.

With respect to f, we note that the likelihood that a subject with probability p
chooses A4 in both cases is p%. So the expected value of the fraction of the whole
population who prefers A twice is

f b(0)dp = b ©

the second moment of the beta distribution, and f; is an unbiased estimator for w,.
In an analogous way for f;, we find that the probability for a subject with para-
meter p to choose A once and 4 once = 2p(1 —p). Therefore f; is an unbiased estimator

for 2(uy, — o).
Now when f; and f, are known, estimates for the first two moments of the beta

distribution can be obtained from

fi=2Ap— 1) (10)
and
f2 = :a2’ (11)

where fi; and fi, are the respective estimates.

From {1, and fi,, estimates for the parameters of the beta distribution can be found.
For this purpose (6) and (7) are written in another way. The expressions for the
estimates d and b are

/\2_/\ A
a=t"H (12)
=g
B=E(IA__'“1). (13)
1

After estimation of @ and b the density function b(p) can be plotted to give a
picture of the preference distribution over the population. To make the interpretation
easier, a presentation like that in Table 2 may be useful.

Of course, fi, and @i, are not dependent on the beta distribution assumption and
their values are also interesting in themselves because the variance of p can be derived
from them.
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8. ACCURACY OF THE ESTIMATES

It is useful to know the accuracy of the estimates discussed in the previous section.
It is clear that this accuracy depends on the variance of f; and f;, which in turn depends
on the distribution of p and the same size N. In this section, we derive expressions for
the variance of f;, f;, fi; and fi, which can be evaluated when the true values a and b
of the beta distribution for p are known. Because fi, and @, determine & and b
(equations (12) and (13)), the variances of {; and fi, are important for the accuracy of
d and b, but direct expressions for var 4 and var b are difficult, as a consequence of the
rather complicated expressions (12) and (13).

Let s; be a random variate, which takes the value 1 if subject i—with probability
to prefer A = p—prefers 4 once and 4 once, and 0 otherwise. Then we have the follow-
ing possibilities for the values of s; and s? with the corresponding probabilities:

S; 52 probability
1 1 2p(1—p)
0 0 1-2p(1—p)
So
Es; = Es? = 2p(1—p)
and
vars; = Es?—(Es;)? = 2p—6p*+8p® —4p*.

When we now take the more general position that the probability that subject i will
prefer A is a drawing from a beta distribution with p.d.f. b(p), we get

1
vars; = f (2p— 6p*+8p*—4p* b(p) dp
0

= 21y — Optp+ 8y — dpsy.

Now from the definition of s; follows:

fi=(Zs)/N,
and because different subjects determine their preferences independent of each other:
var fy = (var s)/N = (2 — 6p5+ 8ug—4pg)/N. (14)

We define #; as a random variate, which takes the value 1 if test person i, whose
probability p is a drawing from a beta distribution with p.d.f. b(p), prefers 4 twice and
0 otherwise. Then in the same way as the foregoing, we can derive that

vart; = pp— iy

Now,
fo=(Zt)/N,
therefore
var fy = (uy—pg)/N. (1s)
Let

0, % 5,41 (16)
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so v; takes the value 0 if subject i prefers 4 twice and 1 otherwise. For the possible
values of v; and v} we then have

v; v2 probability

1 1 1-(1-p)*=2p—p*
0 | 0 | (1—p2

So
Ev; = Ev? =2p—p?
and
varv; = 2 — Spg+4ug — py.
When
S (So/N),
var fip = (2 — Spa +4pg — pg)/N. an
Because of (16) and the definition of f},:
Sfo =htfe

therefore

cov(fy, fp) = (var fip—var f;—var f;)/2. (18)

Now, from the variances of f; and f, and cov (f}, f3), the variances of i, and {i, can be
derived. From (10) and (11) we have

= fo+ 31

By = f3
$0
var iy = var f,+}var f;+cov(f;, fo), (19)
var fi, = var f. (20)

For a specific beta distribution with given parameters a and b the moments yu,, uy, ...
can be found by means of (6)—(8). Then, for a given sample size N: var f;, var f, and
cov (fy, f2) can be computed with (14), (15), (17) and (18). After that by means of (19)
and (20) var {1, and var fi, can be obtained.

To give an idea about the accuracy of the estimated moments, we give in Table 3
the standard deviations of i, and fi,, computed in the way just described, for a number
of combinations of @ and » when the sample size is 100. For sample size 100x the
standard deviation is 1/y/x times the corresponding value for sample size 100. In an
empirical product test situation, the true values of @ and b are of course unknown.
Therefore we cannot use Table 3 to produce exact standard deviations for fi; and fi,,
but an approximation of these standard deviations can be obtained by entering
Table 3 with the estimated parameters d and . Moreover, the figures in Table 3 are
useful to know the order of magnitude of the standard deviations. It appears, for
example, that for N = 100 almost all standard deviations lie between 0-01 and 0-05,
which constitutes useful general information when a and b are not known.
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TABLE 3

Computed standard deviations of the estimators fi, and fi, for a number of values of
a and b, parameters of the beta distribution for p; N = 100

b

a SD 01 05 1 2 3 4 5 6 7 8 9 10
01 p, 0014 0016 0015 0012 0011 0010 0-009 0008 0008 0-007 0007 0-007
ps 0019 0019 0015 0011 0008 0007 0006 0005 0-004 0004 0003 0-003

05 p, 0016 0025 0026 0024 0022 0020 0019 0018 0017 0016 0015 0014
ps 0023 0032 0030 0024 0019 0016 0014 0012 0010 0009 0-008 0-008

1 pg 0015 0026 0029 0029 0027 0026 0024 0023 0022 0021 0020 0020

pe 0022 0036 0037 0032 0027 0023 0020 0018 0016 0014 0013 0012

2 m 0012 0024 0029 0032 0032 0031 0030 0029 0028 0027 0026 0025

pe 0020 0036 0041 0040 0036 0032 0029 0026 0024 0022 0020 0019

3 w0011 0022 0027 0032 0033 0033 0032 0032 0031 0030 0029 0029

gy 0018 0-035 0041 0043 0041 0038 0035 0032 0030 0028 0026 0024

4 p 0010 0020 0026 0031 0033 0033 0033 0033 0033 0032 0031 0031

ps 0017 0033 0041 0045 0044 0041 0039 0037 0034 0032 0030 0028

5 py 0009 0019 0024 0030 0032 0033 0034 0034 0034 0033 0033 0032

pe 0016 0032 0040 0045 0045 0044 0042 0040 0038 0-036 0034 0032

6 0008 0018 0023 0029 0032 0033 0034 0034 0034 0034 0034 0033

gy 0015 0031 0039 0045 0046 0045 0044 0-042 0040 0038 0:037 0035

7 m 0008 0017 0022 0028 0031 0033 0034 0034 0034 0034 0034 0034

ps 0014 0029 0038 0045 0046 0046 0045 0044 0042 0041 0039 0037

8§ p, 0007 0016 0021 0027 0030 0032 0033 0034 0034 0034 0034 0034

pe 0014 0028 0037 0044 0047 0047 0046 0045 0044 0042 0041 0039

9 py 0007 0015 002 0026 0029 0031 0-033 0034 0034 0034 0034 0034

gy 0013 0027 0036 0043 0046 0047 0047 0046 0045 0-044 0043 0041

10 0007 0014 0020 0025 0029 0031 0032 0033 0034 0034 0034 0035
pe 0013 0026 0035 0043 0046 0047 0047 0047 0046 0045 0-044 0043

9. EVALUATING THE FIT OF THE BETA DISTRIBUTION

When there are doubts about the fit of the beta distribution in a particular
situation, one may wish to extend the test by asking each subject to state his preference
three times; it is then possible to estimate the third moment of the beta distribution.

The expected fraction of subjects who prefer 4 three times is

f Pb0)dp = @1

so with the fraction of subjects who prefer A three times we have an estimator for s,
which is denoted as fi;, With this third moment we have the means to check the
appropriateness of the beta distribution: with the aid of i, and fi, we can compute the
estimates 4 and b and then (with (8)) the third moment. This computed values for s,
denoted as u¥, can be compared with . If the beta distribution fit is satisfactory these
two values should not differ much. An indication of the size of this difference can be
obtained by comparing it with the standard deviation of fi;. In the same way as was
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followed in Section 8 to derive the variances of fi, and fi,, it can be found that

var fig = (ug— pg)/N. (22
Again in an empirical situation we do not know the exact value of var fi,, because the
true values of @ and b are not known, but by using 4 and b an approximation can be
obtained.
10. APPLICATION ON DATA

The 12 replicated product tests, discussed in Section 5, provide us with the empirical
data for an application of the beta distribution approach.

We can look at every test in two different ways:

(a) We examine the alternative, called 4, and divide the responses into 4 and A.
In doing so, we consider the distribution of the probability to prefer 4.

(b) We examine the alternative B and divide the responses into B and B. Now we
study the probability to prefer B.

One is usually more interested in one of the test products (for example the own
brand) and finding the preference distribution for that alternative may be sufficient.
For completeness, we give in Table 4 the results for the two approaches just mentioned.

TABLE 4
Results of 12 product tests

Net Strong Strong
Fixed X-preferers  X-preferers  X-preferers
Test  alternative (p=0-50) (»=0-75) (p<0-25) Sample
No. (X Pr P @ b () ) ) size
1 A 0435 0240 1-67 217 39 10 24 100
B 0415 0200 3-21 453 31 3 17 100
2 A 0-337 0-178 0-82 162 27 8 45 101
B 0594 0416 1-68 1-15 64 33 11 101
3 A 0:360 0200 082 145 30 11 42 100
B 0460 0-280 1-21 1-42 44 17 26 100
4 A 0360 0-155 290 514 20 1 27 161
B 0-404 0-180 527 778 76 0 12 161
5 A 0570 0-430 076 0-57 59 38 23 100
B 0295 0-150 068 1-62 22 7 53 100
6 A 0:544 0-394 083 070 56 33 24 160
B 0272 0-131 067 179 19 5 56 160
7 A 0441 0250 1-50 191 40 12 25 160
B 0400 0-219 123 185 34 10 32 160
8 A 0-:305 0-120 2:09 477 13 1 42 100
B 0-565 0-360 284 219 62 21 7 100
9 A 0700 0-570 1-14 049 75 54 10 100
B 0-205 0-090 049 191 12 3 68 100
10 A 0645 0-500 111 061 69 46 13 100
B 0250 0-130 044 1-33 19 7 61 100
11 A 0340 0-210 047 091 30 15 50 100
B 0-:375 0270 030 0-51 36 23 50 100
12 A 0-:315 0-130 189 412 16 1 41 100
B 0460 0-310 070 0-82 45 24 33 100
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For every case we report: the estimated moments {I; and fi,, the estimates for the beta
parameters d and b and the percentages of the consumers who are net X-preferers,
strong X-preferers and strong X-preferers, where X stands for the alternative con-
cerned. The latter quantities, which are derived as in Section 6, give an idea about the
preference distribution.

By inspection of the values for 4 and 5 in Table 4 we see that almost all types of
beta distribution are present: U-shaped, inverse U-shaped, |-shaped and inverse
J-shaped. For marketing policy, the most interesting figures seem to be the percentages
of the different categories of preferers in the population. The importance of the
information this type of analysis can provide is once more demonstrated if one com-
pares, for example, the results of the tests 4B and 7B. We see for both cases that the
expected fraction of subjects who prefer B in a product test is 0-40. Yet the preference
distributions are quite different. In the first case, there are few consumers with strong
preferences either for B or B whereas in the second case their percentage is quite
considerable. This kind of informations will have its impact on marketing policy.
Because the subjects were asked to state their preferences only twice, the check—with
the aid of the third moment—to determine the measure to which the beta distribution
fits the preference distribution could not be carried out for these data.

11. CONCLUSION

A probabilistic interpretation of personal preferences reflects empirical reality.
This being the case, insight into the preference structure can be enriched by knowing
the distribution of preference in the population. When this distribution may be
approached by a beta distribution, the necessary information about the preference
distribution can be obtained by a pairwise product test with replication.
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