Like other business areas, marketing has seen a true information revolution. Effective
and efficient use of heterogeneous data has become crucial, especially in highly com-
petitive markets. In this quest for information, the time factor is important: Knowledge
is most valuable when it is acquired before the competition gets it. The companies that
can design the best marketing campaigns in the shortest period of time are the winners
in the marketplace.

Computer systems currently available to companies offer a variety of data retrieval
and optimization procedures (such as production planning and supermarket shelf
space allocation). Although these systems are often adaptable in parameters, they are
mostly static representations of problems that do not fit the dynamic nature of the mar-
keting domain. As new types of data become available in increasing amounts and the
human factor in decision making becomes more central, attention seems to be shifting
to building adaptable systems that fit the mental models of decision makers.

A product manager is one important marketing decision maker who is responsible
for development, pricing, distribution, advertising, and sales promotion of one or
more products. Product managers make semistructured decisions, mostly under heavy
time pressure. To perform successfully, these managers need well-designed software
applications, based on their mental models, to support their decision making.

Mental models of product managers consist of building blocks that are typical matr-
keting concepts—brands, prices, advertisements, sales, market share—or typical mar-
keting actors—customers, competitors, producers, retailers. In this mental counterpart
of the real world, the product manager replays, simulates, and forecasts things that
happen in order to be able to respond to the opportunities and threats that occur.

8 Implementing Application Frameworks
—-__——-————‘__-’-_‘________—__—__—_—________—————-___——__

In order to facilitate the development of software applications for product man-
agers, we developed a domain framework of the mental models of product managers.
The framework focuses on sales promotion decision making, which is a prominent task
of product managers. Sales promotions are marketing events aimed at having a direct
impact on the buying behavior of consumers. Examples of sales promotions are price-
offs, premiums, cash refunds, samplings, and coupons. As the effects of mass media
~re diminishing, sales promotions are becoming an increasingly important tool for
product managers to increase sales [Blattberg-Neslin 1990].

Once constructed, the general domain framework can be reused to build a variety of
specific applications for the domain. In a multinational corporation a sales promotion
domain framework can serve as the basis for the development of applications for sales
promotion decision making in different countries, for different divisions, adapted to
the needs of individual managers, and for the various tasks that have to be performed
within the domain. The development of such a framework is possible and beneficial
because despite circumstantial differences (for example, individual differences in the
product they manage, their decision-making style), product managers tend to have
similar tasks and share a comparable mental model.

Early reports on object-oriented (OO) frameworks have mainly described system-
level frameworks (such as file-access or networking aids) and user interface application
frameworks. Recently, research into domain frameworks has emerged, primarily focus-
ing on more-structured and well-studied domains such as accounting or logistics. The
framework developed in the present study concerns a semistructured domain. In this
domain, as Table 2.1 shows, creativity and experience as well as hard data are important.

Table 2.1 Importance Ratings* of Factors of Sales Promotion Decision Making

“FACTORS AVERAGE
Creativity 6.0 |]

_ Experence 58 - B "-
Harddata 5.6

_Judgment 00053

_Softdata 5.0
Discussions 0

__Intution 4.9 — —
Heuristics 4.7
Experiments 4.0 — N
Models % 0 - q__________
Theory z 0 —

M

*Ratings obtained from 20 respondents in interviews that we report on later in this chapter (scale: 1-7).

Domain Framework for Sales Promotions

9

It is the objective of this chapter to describe and illustrate a method to develop
frameworks for semistructured domains such as sales promotions. The method has
three features that we argue are essential in building such frameworks successfully:

The development method should start with an analysis of the thinking processes
of the domain expert—the mental models underlying his or her actions. In this
chapter we show the use of think-aloud protocols, which subsequently are ana-
lyzed by means of content analysis.

The development method should employ an OO analysis and design methodelogy
in combination with the use of patterns. OO modeling enhances the correspon-
dence between the system and the problem domain. Encapsulation hides the inter-
nal details of the framework and inheritance facilitates extension and reuse of the
framework. The advantages of OO modeling are further enhanced by using analy-
sis patterns, which are documented solutions to common modeling problems.

The framework should be modeled in a computer-aided software engineering
(CASE) environment capable of translating the model into different program-
ming languages, In this way, the framework can be used in many different pro-
jects, regardless of specific platform or language needs. Furthermore, using,
adapting, and extending the model can be done at the design level (in the CASE
environment), preventing important semantic modeling information from being
lost [Fayad-Laitinen 1998].

The following section describes this development method in more detail and illus-
trates it by discussing the development of the sales promotion framework. In Section
2.2, a possible application (re)using the framework is shown. In Section 2.3, we evalu-
ate our approach, and in Section 2.4, we suggest possible extensions.

2.1 Framework Development

Figure 2.1 depicts the development method of the framework and the specific applica-
tion. Steps 1 to 3, which concern a general approach to the building of the framework,
are explained in the next section. In later sections, steps are illustrated for the sales pro-
motion domain. Section 2.2 shows the use of the framework for the development of a
specific client application.

2.1.1 The Framework Development
Method Step by Step

The framework development method consists of three major steps:

wm Solving sample problems
B Analyzing protocol contents

m (Creating the object-oriented framework using CASE tool

These steps are discussed in detail in the following sections.

ey ——

10

Implementing Application Frameworks

Pattern
A;igl%rzin'g Library
: HRTQLoco
|‘ Trﬁfﬁic;{';tjg ,,__..—»r Guntants [2} Content ot {
Protocols e Categories and
| Relationships ™ '
'ﬁ]‘ Bﬂﬂﬂg .@) \

< Framework In-:)
\ CAS E*tﬂ Ql {3)

s - I EE R T ;: q h‘l' """

Additional
Domaln
KHGWIBdgE ngain

Framework
i

— P

T E -.:' - '-‘.:-:;'.;i'
-:"' I '- 5 't

Taiiﬁj"lﬂ @'@
Framawaﬂs (5)

Framework Development

T

Appiication Development Domain

Framework

..............
e I T

Tailored :
Framework"“"‘b- éf ‘3' Analyala 3‘ ¥
et De&lgn (4)
Design and R
Generated Code
i - . New
Application ~—

— " iy

Figure 2.1 Development method.

Step 1: Experts Solve Sample Problems

Developing software to support decision making in semistructured domains without
involving domain experts easily leads to incomplete, poorly constructed, and unused
software. It has been widely recognized that it is essential to have domain experts
involved in OO modeling of software [Rumbaugh 1991; Yourdon 1994]. Framework
development also requires input from domain experts, but differs from application
development in that end users do not directly benefit from the results. Hence, they are
not likely to be available for extensive training and modeling sessions. Also, it is gen-
erally agreed that conceptual modeling of a framework is harder and more abstract
than modeling an actual application and therefore requires good modeling skills. Con-
ceptual modeling is probably the most difficult and expensive activity performed in
the process of framework development.

We propose an indirect yet thorough way to utilize domain expertise for framework
development. In this approach, think-aloud protocols of domain experts are used to
construct a domain framework. A set of sample problems that can, more or less, be con-
sidered representative for the domain are collected or constructed and presented to a
group of domain experts. The solutions the experts produce are recorded on tape and
transcribed so they can be used for further analysis. The output of this first step is the

transcribed think-aloud protocols.

Step 2: Analyzing Protocol Contents

The methodological framework of content analysis is used for the analysis of the pro-
tocol data, Content analysis is an accepted research technique in the social sciences and

Domain Framework for Sales Promotions

is concerned with the analysis of the content of communications. A central idea in con-
tent analysis is that the many words of a text can be classified into fewer content cate-
gories that are presumed to have similar meaning. On the basis of this categorization,
the researcher tries to draw valid inferences from the text. For an introduction to this
field see [Krippendorff 1980; Weber 1985].

The purpose of the analysis is to find out how domain experts conceptualize (make
mental representations of) their domain. In order to achieve this, the protocols gener-
ated previously are coded by applying two coding procedures. The first procedure is
meant to discover content categories. Coders are given instructions to look for nouns
related to the domain. The coding units (in other words, the pieces into which the text is
subdivided) in this procedure are word (such as, “budget”) or word sense (for example,
“the money that is available for the promotion”) [Weber 1985], the latter being the part
of a sentence that refers to a single entity but is expressed with more than one word.

The coders then classify the units in categories according to equal semantic mean-
ing. For example, “our budget,” “the available $300,000,” “the money we can spend,”
can be attributed the same semantic meaning (budget) and put into one category. Each
category receives a name that adequately covers the semantics of the units it contains.

We can now rank the categories based on the frequency with which they occur. If
several different cases were solved by various experts, the ranked (cumulative) fre-
quency gives us clear insight into the relative importance of the concepts as used by the
experts.

The second procedure is performed to find relationships among the content cate-
gories. Themes are used as coding units [Weber 1985]. A theme is a unit of text that has
no more than the following elements: (1) the perceiver, (2) the agent of action, (3) the
action, and (4) the target of action. For example, “I want consumers to pay attention to
my product” is divided as follows:

“I [the perceiver]| (want) consumers [agent of action] to pay attention to [action] my
product [target of action].”

A relationship consists of two or more themes (“If I want consumers to pay attention
to my product Theme 1, I could promote by giving an introduction discount Therme 2”).
All relationships should be coded from all collected transcripts.

Step 3: Creating the Object-Oriented
Framework Using a CASE Tool

The Unified Modeling Language (UML) [Booch-Rumbaugh 1997] can be used to
model the framework. The OO paradigm holds the promise of being highly suitable
for constructing applications for semistructured domains such as marketing, since
such domains cannot be modeled in a single proper way and are, moreover, inherently
dynamic. These factors impose strong demands on the adaptability of software. The
promise of OO to deliver adaptable software systems matches these demands [Gibson-
Senn 1989; Korson-McGregor 1990]. Reuse of OO components should enable quick
delivery of new system functionality, though adaptability must be explicitly engi-
neered into the system. Frameworks and patterns provide a vehicle to achieve adapt-
ability and reuse [Fayad-Cline 1996]. A framework can be used to build applications by
creating new subclasses [Johnson-Foote 1988]. Software developers often lack the

11

12 Implementing Application Frameworks - e

sulated in the framework. The knowledye imcorpaorated
ds that of other reusable components. Unlike other
rks incorporate object interaction and Jdehine

domain expertise that is encap
in a domain framework excee
reusable components, OO framewo

or [Taligent 1997].
deﬁilgtbgrgﬁalgsis %nethc)ds suggest that analysts should mark all the nouns they

find in domain-related texts as candidate classes. In semistructured domains, this vas-
ily leads to unmanageable numbers of classes. L o by

In our method, this problem is tackled by the initial reduction of the “t lﬁ'lf. I mn: "
putting them into content categories (Step 2 first prc}cefdum)_,_ {jmi t'n. a zluﬂmw .ﬁ;“-i., m
ton of the initial number of classes by mapping only the top 20 01 M ¢ ontent Categones
to object classes. This mapping is the first step in the actual construction of thee tramee-
work. The exact number of categories included in the initial phmﬁt z-ﬂxw,irl can e
decided by the developer while taking into consideration factors hike the estimated e
of the framework and the distribution of the frequencies over the categories The
classes selected in this way make up the initial object model, which, thu construgted.
forms the basis for the rest of the modeling process.

The modeling process proceeds by refining this initial framework using the rela-
tionships that were found in the protocols (Step 2, second procedure). Within relation:
ships, verbs relate one word or word sense to another, implying the way classes are
related to one another. The text of a relationship is mapped to the OO maodel by 11}
checking whether the classes the relationship refers to are correctly represented in the
initial object model and (2) modeling relevant verbs either as relattonships betwern
objects or as behavior.

It is hard to delimit the inferences that can and cannot be made by the modeler
There are two important criteria that can be set to judge modeling chowces [Rrippen-
dorff 1980]. First, the modeler should aim at as little impairment of the origimal test as
possible. Second, inferences based on few relationships yield a lower degree of cer
tainty than those often encountered, indicating more stable relationships. The maodeler
should administer the modeling choices that are made, for instance, by storing them in
tables or by administering them directly in the CASE tool, thus relating source text ret-
erences to classes, attributes, relationships, or behavior.

2.1.2 Using the Development Method
for the Sales Promotion Domain

This' section shows how to apply the framework development method in the sales pro
motion domain. '

We de.vised| two sample problems representative of the domain of sales promotions.
Each interviewee (10 product managers and 10 sales promotion authorities) had to
solve a prol.:wlem on the design of a sales promotion plan for the introduction of a new
salad d.ressmg (see Exhibit 2.1) and another one in which a saleg pmm.crtitm Iplaﬁ had to
be devised for a troubled fashion magazine (not displayed here). The resp mdém"f%
were asked to think aloud so their solutions could be recorded and transﬂ*rib?d .

Domain Framework for Sales Prumutmns _

13

e e e, b el L bl e T T e -

PR ESTO muass SAM PLE PRO B EM

. __Preste-nress is a new salad dressmg The producer has developed a hew package mncept
- using a transparent. plastlc box with a handy spout that allows the user to dose the salad
dressing very accurately, The market for salad dressmg has two submarkets' the regular
~dressings market and the SPECIEI dressmgs market Guals are’ makmg Presto-Dressa
- flourishing brand in the special dressmgs market, in terms of market share and profit,”
and "to promote brand-swutchmg from Creamyanress (a product in the sPeclaI dressmgs
) market that the producer wants to elimmate) to Presto-Dress." |
 The assignment Des:gn a sales premetlon plan for the mtroductmn 0f Prestd-Dress
The budget is $300, 000 o | S | |

Step 2: Analyzing Protocols Contents

The purpose of the interviews and the analysis of the protocols was to find out how
sales promotion managers conceptualize (make mental representations of) their
domain.

Exhibit 2.2 displays a small piece of protocol transcript collected in Step 1. The 20 tran-
scripts were coded by business school students enrolled in a course on sales promotion
decision making. Each interview was coded by two students to assess coding reliability.

The first coding procedure was meant to discover the important concepts in the
sales promotion domain. The instructions were to look for nouns, either related to
products or to sales promotions, in order to simplify the coding process and reduce the
number of categories beforehand, eliminating irrelevancies. Table 2.2 shows the top 30
content categories, indicating the number of units in each category. Brand, product,
and promotion name appeared so frequently that counting them would have dis-
tracted the coders (labeled N/ A in Table 2.2).

Categories with a high frequency for one problem and a zero frequency for the other
mark problem-specific concepts. For example, the concept of Package is relevant only for

.......
.......
- T

uoiIed07 _) IHEW
tr 8 O LOR WO 0f 61 43 € 1adiey

- P

R e S T i D b T B b e e ol st b T e e

A L B e o R R AT S e e MR T Y T T Eeloyar

1YS
v 0 8 10id 67 61 3 S§ EVTL Y

o ————] — T et e e,

-k e T e s e o e iy - S s ra e g TR BT

 juawoy
b % y PNpoId 87 ZT 0z v py £l

R - ———— — . P mm m—— e

——— e — o ——— - i . - —

e ——————— e . aw - r—n 1. - =7 agnr—ay jr— rrr -]

- padsoid
S 6 0 UOHOWOI] LT T4 b bt e Zl

L ¥ I L T el F

G Z L ssaualeny 97 62 0 85 33exyoed L1

. T L p—.

LOIIEIUNWILLOCY
S Q Ot UOROWOId T4 0% 6C 0% 9dUd Ol

S S S yoeay v 9¢ 1/ 0 I9SIUBAPY 6

S O Ol IN[EA PIppyY y X4 8% 95 6l IPUWNSUG) 8

il - - - Ny

jeon
3 O L uonnqglsi|g e St 6C 19 uonowold [

S350
[z L1 19onpoid |Z ot Zs ot uonowoid 9

8 0 S1 uonisodoid oz ¢S Zot ¢ S9]es G

yedpng
6 L1 0 iapeieys 61 LL 98 89 uonowoid i

A3a1ens LUPN] |
rd | 0 LT UORowold Q| Y/N v/N Y/N uonowoldd ¢

ade)oed
vl O LT J0 2deys L1 v/N v/N V/N PNpoid rd

81 ZL v ENTEI 9L v/N V/N V/N pueig 1

muzs_"_mmmzn>=oum:.<u=z_@¢uutﬁu:#________mu_.,.E.E_...mmmmn.>m00uh¢u=z¢=

<r
e

(0 = s{020301d jO JPGUNN) S|0J0J0Id Ul SH0331e] JO $92U3LNIDQ Jo taqunp aSessny pajuey T dfqel

Domain Frame_work for Sales Promotions

the salad dressing problem, and the concept of Advertiseris relevant only for the troubled
fashion magazine (see Table 2.3). These categories are deliberately included in further
analysis, since they indicate important problem-related concepts. When we design the
framework, such concepts point at hinges of the framework (in other words, places where
adaptability has to be engineered into the framework explicitly) [Fayad-Cline 1996].

With the second coding procedure we intend to find relationships among the content
categories. Table 2.3 shows relationships and their references to content categories that
were extracted from the protocol fragment displayed in Exhibit 2.2.

Step 3: Creating the Object-Oriented
Framework in a CASE Tool

Marketing decision making is strongly oriented toward certain common concepts and
actors with characteristics and behavior. A strong mapping between the real world and
potential software objects exists. As is noted in the marketing literature {Wierenga-Van
Bruggen 1997], managers are not willing to accept systems based on models that are at

Table 2.3 Sample Relationships

ns1-1 Do | want a promotion the first year, Promotion, Date, Product
since I'm dealing with a new product
s ~ here? __
ns1-2 I'm going to do a promotion, since | Promotion, Consumer,
want consumers to make trial Trial Purchase
purchases. __ o B -
nsi-3 If I'm going to campaign, I'd probably ~ Promotion, Product
promote by giving an introduction- Introduction, Introduction
discount. Discount -
ns1-4 No added-value promotions because =~ Added-Value Promotion,
the added value is already in the Product Added Value,
product. o Product
nsi-5 If | want consumers to pay attention to Consumer, Attention,
my product | could promote by giving Product, Promotion,
an introduction discount. Introduction Discount
ns1-6 If | want consumers to pay attention to Consumer, Attention,
my product | could do a refund Product, Refund
promotion. Promotion
ns1-7 [f { want consumers to pay attention to Consumer, Attention,

my product | could promote by giving Product, Refund
an immediate refund.

Sl T e e .

ns1-8 | could promote by refunding the Retund, Product Price, Bar
entire product price if people sendin Code
the bar-code of the product.

15

16 Implementing Application Frameworks
—_—_—‘___________’_,_———-'——'—__——_——_ _ e o L -

variance with their own mental model. Object orientation makes it possible to build
systems that closely match reality as perceived by its users. Also, product managers act
in a dynamic environment where products and actors quickly appear, disappear, and
change position. The promise of QO to deliver adaptable software systems matches
this dynamic nature of the domain.

We started building the sales promotions framework by mapping the top 30 content
categories (see Table 2.2) to object classes. This initial object model forms the basis for
the rest of the modeling process.

We subsequently refined the framework with the use of the relationship that we
found in the protocols of the sales promotion decision makers (Step 2, Table 2.3). Fig-
ure 2.3, for example, displays an inheritance relation between Purchase and Trial. This
link was created during modeling when we came across the statement, “I'm going to
do a promotion since [want consumers to make trial purchases.” (see Table 2.3 [ref.
ns1-2]). In the initial model (top 30 classes), only the class Trial was modeled. By ana-
lyzing the relationships, we found that a trial purchase is a specialized version of a reg-
ular purchase; hence, we created Purchase and made Trial a specialization of this class.

The sales promotion domain framework model is too complex to remain compre-
hengible while being displayed in one diagram. The model is decomposed into six
smaller units (see Figure 2.2)—so-called packages—that can contain all kinds of mod-
eling elements [Booch-Rumbaugh 1997]. In partitioning the model, we strove for high
cohesion based on grouping classes addressing similar domain aspects and loose cou-
pling between distinct classes. Arrows between the packages indicate visibility rela-
tionships: If a client object in the Product package wants to make use of a server object
in the Consumer package, then a visibility relationship must exist between the client
and server classes [Fowler 1997]. The Consumer and Product packages have mutual
visibility. The framework is too extensive to be described here entirely. To illustrate
both the generic as well as the domain-specific classes of the framework, we highlight
the contents of the Consumer, Promotion, and QuantityHistory package in this section.

Figure 2.3 displays an explosion of the Consumer package. Consumer is one of the
central concepts of the framework and captures data on individual consumers and their
purchase histories. The interview results indicated that sales promotion managers have a
high interest in data on the level of the individual. Sales promotions and direct-market-
Ing activities (telemarketing, direct mailing) have increasingly been linked and merged.
Producers can buy individual data available either from scanners in stores (linked to con-

B “ R o e ; :"\‘E i =T
S bl

gy

ki —

Figure 2.2 The packages and their dependencies.

Domain Framework for Sales Promotions 17

EE P PP L S

HETE LI

Defined in Product

Package - -~

. PR LA .)
I L R AR R T TP
i H X
- - i 11 A
Bt AR [, L ERERL
A U R I VAR LI S PR AR
e [
ILIRTILYY: I *
Sl Wl Llinin
C . T

.........

Tt
; LT
W L 'E:-._'-:.:
et - DTG
L P [ER ," n
T aa s e
B A ey Y Py o o bt a5
:.. it ..;.:'E:::;.;;.;.;-:..:::. N .:._-_;::_1:. TR :;,:.;.-.:':'.: ;!;. :"' .:: :
e e gy : : RN :
SegmConsumer = - |
1 AR ; ' LEKEL™) BTH B 4 e
et o T P A 1 R T Ml TR !

ListCompetingProducts BelongsTa -~ GheckitSwitched

: i .
R
HEL LR T
A I e e ieaan .
. oaE, s S, b ' ...
....... M) i i T
_____ :...:".;!_':_;_:::-:-::.'.';' . 1 orrn) T

O o -
it NS !"!E;-'E'-El;:;? .u.:;-;.?;..::;.;:j- T A
= LT T L I. i .
AT Lo L A s e e
~E=5;..3.:<_P'-5,-.-;.-;.;..: Fiioaz ottt ooy w T S
U LI B A IR R . :
Euys oo KT TRAT QUG Lo _ 9 .
Sear o T '--'-::-.:.'-'-'--:'-:-:-I.'---.;.-
A N T T I P R A
e LU, P HLE- L AP e
S
Sue

..........
o
et

Aot

| Bougnizy Froductontlaiel

Al

s

Al
faRH
-

3
r

' aaan

cts

S

......

el Lt

Quantil This Innheritance i [

Lo Ny
PR RN
LT T L
- PR TL L P S -
we el

I HE

........

EN

refationship

"
'
1

.
LTy
T
[
LRI
i

........

HEETTTH

T T T TP

Figure 2.3 The Consumer package. The frequencies of the corresponding categories are
displayed in the top-left comner of the class.

sumer data by electronic cards) or from consumer panels (samples of consumers whose
purchases, media consumption, preferences, and so on, are recorded over a longer period
of time). This individual data can be represented by the Purchase class. The subclasses Ad
and Advertiser illustrate how a simple extension to the framework enables the manager
to store data on a special consumer: an Advertiser that buys an Ad in a Magazine.

An example of framework behavior that was modeled in the Consumer package
pertains to the activity of segmenting. Many relationships extracted from the protocols
addressed this prominent marketing strategy, which concerns the finding groups of
more or less homogeneous consumers according to some prespecified characteristic(s).
Figure 2.4 zooms in on this behavior in the Consumer package, by showing how the
manager interacts with the system when he or she wants to segment consumers, based
on their Purchases.

S i " i i

Baar:Market Smiths:Consumer SmithsAmstel:Purchase SmithsAmstel,PurchListQuantityList 030196#01:Money
I

SegmConsumer {)

o)

SegmOnPurchases {(Amstal), U1fﬂifﬂﬁ-01:’5i}ﬂ?, Dallars)
>

l

I
| rH
GetTotalForSegm (01/01/96-01/01/97, Dollara)
-

HIT-I

CaleTotal (01/01/88-01/01/97, Doilars)

u - - >

BatAmount (Dollars)
e -
| | ConvertToUnlt (Dollars)

[Ir-q——l

e A ATl ek kb P Syl Pl L el e L P o

Figure 2.4 A sequence diagram of how the framework handles segmenting consumers.
Note: Interaction with files and GUI components are not shown in order to simplify this figure.

18

Implementing Application Frameworks

Suppose a product manager of Amstel Beer wants to gain insight into how consumers
are grouped over categories based on how much Amstel they purchased in the year 1996
(for example, divide them into three segments: heavy, medium, and light users).

First, the manager is presented a list of attributes by which consumers can be seg-
mented (method: SegmConsumer). In this example, the manager chooses the variable
Purchases, also indicating the period and currency he or she wants to consider. This
request generates a message that is sent to each consumer of Amstel (in the diagram
the message is sent to consumer Smiths, invoking the method SegmOnPurchases,
passing the arguments 01/01/96-01/01/97, Dollars). Each consumer object now
retrieves its total purchases of Amstel in that year (message to Purchase objects, invok-
ing the method GetTotalForSegm, arg 01/01/96-01/01/97, Dollars). If necessary, the
currency is converted to Dollars (message to Money objects, invoking the method
ConvertToUnit, arg Dollars). The CalcTotal message illustrates how polymorphism is
used, since the message can be sent to any consumer characteristic for which a history
is kept (for example, TotalExpenditures, NrOfVisitsToStore).

Figure 2.5 shows an explosion of the Promotion package and displays the sales pro-
motion types the managers commented on in the interviews. The promotion types
were grouped based on similarity in characteristics and behavior, as extracted from the
protocols. Promotions based on price discounts, for example, were put in one group,
since they all share a mechanism that influences the product price. The other sales pro-
motion types influence the added value of the product. A (virtual) pricing method
(Pricing) was defined on the level of the abstract class (Price) and was overridden at
the subclass level: Discount directly lowers the price, Coupon discounts the price when
a coupon is handed over, ProductP’lus promotions give an extra quantity of the prod-
uct for the same price, and Refund gives a discount on the sale directly or after send-

r‘_ L L ma Y e —— i,

[R il VUt UL, + o e e
i S
;Y -{ll ¥ Dn su r: ll- ':.l:-ll:
IR - - . 2, SEE DS L
T R L R e
I L
T L T

M
T tea
o B H:
.'.'-.:l. :.._E .'_i.._.
=
EETE .
el :
:'-'“EI LA L DT 1 ..._.l.;.l:-'l

I I AR
AddQuantity:
: .l
b . i
PP I P P N L
rEr i P IR TR
'

NrSlaresToReach

........ o

2 GaloPaiStors. -

..............................

Y
R A
RS -:_:E..-!:-
iy
FE

1 e

1t sl s ‘.‘

-2 car.
R nnieie st

0“ 1
':'I H

~ AlteredBy

v L TIORLT -
roguct

Itvi - il I e
T s kot R A
PR] P e TR
HaE 3 abe) skl s
i’%@%ﬁéﬁl ’- 4 e e,
; e RaL Ay
SR R piliele i e
. Hon
e BEsesy AR

rrprem—————
: : : ‘fr%}
e - -]
R i
Ir

o

= L "
'ﬁ "...13 il '{?I
A *'}5 %
! ek

dmeneanl e e
ekt s e 1] W e S
st donnll L i
) U

LT R

T R B AT A

PRl T h'F ' Lt it

ER G |-'f‘*u-'iwr--'.;"aaz:':s-’w-.,-=.n..
Firrsamanbls i e b L
s

e ?““5‘
r '

-
P

R e B)
-!::-\.-;'.'..._'\‘:r?-J _:r E’rE’I i .-F .hi". 1 e

Epga s e 5z prtiras] W RSt ra
et Sl e .

=
I:' :-'-_!_
Vil

—

Figure 2.5 The promotion package.

Domain Framework for Sales Promotions

19

ing in a proof of purchase. The Pricing method is another example of how poly-
morphism is used in the framework.

A special type of promotion often used by our interviewees was the joint promotion.
A joint promotion can be any type of promotion and is a coordinated effort among sev-
eral different producers. The solutions managers proposed to the Presto-Dress sample
problem (see Exhibit 2.1) often had a joint character: giving away samples of the salad
dressing when consumers buy lettuce, or gluing coupons on packages of other prod-
ucts of the producer’s product range (WithOwnProduct).

The managers choose a promotion type based on the goal of the promotion and,
among other things, the available time and the budget. In specifying their promotion
they set attributes such as the period in which the promotion will be executed, the dis-
tributors with whom they will operate, the trade conditions, the displays they will pro-
vide to the stores that adopt the promotion, media expenditures, and many others, not
displayed in Figure 2.5 for reasons of clarity.

The Quantity History package shown in Figure 2.6 includes classes that allow the
storage of a variety of data over time. The interview data showed that product man-
agers depend heavily on real-world data such as product sales, consumer purchases,
market share, and awareness. Variations in product and market require different units
of measurement. For example, a bottle of spring water has a price in U.S. dollars and a
volume in gallons in the United States, whereas in the Netherlands guilders and liters
would be used. These diverse measurements are not present in the programming sys-
tems currently available. Anticipating that many analysts have to deal with this prob-
lem, Fowler proposed Quantity patterns: analysis patterns describing solutions to this
problem based on his experience in modeling hospital systems [Fowler 1997]. As sug-
gested in these patterns, a general Quantity class is introduced, containing a number
and a unit of measurement. Specific quantity types we needed for the framework were
subclassed. The Money class, for instance, contains Amount and (a currency) Unit.
Typical needs of the Money type, such as displaying the quantity using a fixed-point
notation, are implemented in the Money class itself. We elicited the subclasses of Quan-
tity from the protocol data: Share (for example, market share), BooleanFactor (for
example, a consumer is aware or not aware of a product), and different units for mea-

Sitsin
0.1

L

1 Containg
2
.;H.l !

': 5 TR T g . . .:;'q;' r g _'-‘ rgf]}?@ i i :, A o
Far i i:"".-': S A Ty i e =155
$~;-a%%% 1 mﬁ%ﬁﬁﬁ“ﬁ*?ﬁﬁ._ﬁk

S : o ; AR

: ; s e
E. i ioprs :-"’"‘ ol 'E‘-‘ - TEL aoee | b . L 'i':..- S
: im0 H ff_rww%'
SHEED rﬁﬁ i o o A ‘ﬁﬁ dbacdllict- o
: DAt R

Figure 2.6 Quantity History package.

20 Implementing Application Frameworks | o

Product managers look at data from difft*rmt cou neries 4 mi
els. This requires conversion of quantities
itConverter class is designed to perform
object, ExchangeRates, that pertorms

suring sizes and confents. '
view quantities on different aggregation lev
to other units. As suggested by Fowler, a Un
such conversions. Figure 2.6 shows a sample

such unit conversions for Money objects. |
The manager is not only interested in current in

his or her decisions on historical developments——that is, .
months. A system built for the sales promotion domain must be able to store a vanety

of quantities over a period of time. The QuantityHiﬁatc;r}*. class xf.*a.a d t,_".’“'.*iaigg;“it;."ij %Im{a mui _ q *_Ijq
Fowler’s Historic Mapping patterns. This class can contain any number % cbje s from
the quantity hierarchy and the dates at which the quantities are vahd Ih:.f a.'igag.h VO
tains methods like CalcAverage, a method that calculates the average over the Qhaante-
Hes within a specified time period. Many classes in the framework- tor example
Purchase and Awareness—are descendants of QuantityHistory and thus are able tu
store histories data.

The framework was modeled in MetaEdit, a CASE tool that supports UM whach
allows methodology engineering and methodology adaptation, and genuvrates source
code in different programming languages such as C++, Smalltalk, and Dxlphy In case
source code cannot be generated for the programming environment the system is bt
in, custom instructions can be programmed in the CASE tool in order to do so {Bmaolan.
der 1991]. We discovered that using the CASE tool (in combination with UML) had a
number of advantages. First, UML support gave us a combination of well-known dha-
gramming techniques. Useful in handling the complexity of design, tor instance, the
package construct serves as an entry point to lower-level diagrams. Second. the meta-
level adaptability permits extra documentation fields (such as extra commuents, reter-
ences to protocol relationships) to be added to UML concepts. This domamiintormation
is crucial to enable future users (developers) to understand the framework Thard,
source code generation facilitates adaptation of the framework on the design level
whenever a new application is being created. The class operations are implemented in
a pseudocode, CASE tools exist that allow source code (or a generic formal language to
be entered directly into the CASE environment. However, including this level of detal
into a framework can easily distract the designers from the domain issues and m ay
destroy the advantage of working at a higher level of abstraction. Delivering the frame.
work as programming code would cause a loss of much semantic information

formation, but tends ta base many of
product sales in the last siw

2.2 Application Development

e B B P T T T L R A TS A TR B A & R R TR o T Fa

ms section will bl'i?ﬂ,y describe Steps 4 through 6 of the development method (sev
Figure 2.1) by describing the Sales Promotion Intelli gence Data EngineeR (SPIDER)
sample application. | .

The sales promotion framework can be used for the development of a whole

of appli'cations. Software can be designed for different tasks that need to be
In relation to sales promotions, such as an a he §

range
. performed
pplication for calculating the profitability
different promotional events through the
uild sales promotion software for difterent

Domain Framework for Sales_r_’l:om_otions

industries like banking, automobiles, or fast food. The sample application we devel-
oped 1s SPIDER, a system that can store and retrieve sales promotion events for man-
agers who need to design sales promotion plans for products in fast-moving
consumer-good markets. The remainder of this section elaborates on this system.

Product managers can gather a lot of experiential data on their sales promotion
activities. Most managers manage multiple brands, each of which has multiple vari-
ants (different sizes, flavors, packages). Each product has its own promotional agenda
that often comprises multiple promotional events a year, executed in different markets,
in different regions, and for different customers. Promotional events are considered
great learning opportunities by managers. One problem with the available promotion
data is that the information is scattered over various sources throughout the organiza-
tion: databases, market research reports, videotapes, documentation maps, and the
manager’s mind. In markets where competition is fierce, decisions have to be made
fast and information has to be available instantly. A product manager is generally
unable to recollect all relevant experiences that can be used for decisions.

For SPIDER, we needed both a technique to represent the domain and its knowledge
and a reasoning mechanism for using that knowledge in the proper way. The sales pro-
motion framework was used for the representation of the domain. This provided the
developers, for instance, with the semantics for storing data, organizing it on the basis
of the domain knowledge. Promotion Package objects (see Figure 2.5) are used to store
data on the promotion itself (for example, Type, Budget, Media), Consumer Package
objects (see Figure 2.3) store data on consumers who participate in the promotion (such
as Name, Address, AmountPurchased), Distribution objects store data on the retailers
that adopt the promotion (for example, Allowance, NrOfStores), and so on.

SPIDER is based on the problem-solving technique known as case-based reasoning.
Put simply, case-based reasoning is the computerized equivalent of what we refer to as
reasoning on the basis of analogy when it is performed by humans. New problems are
solved by using previously designed solutions to similar problems. A case-based rea-
soning system can serve as a central repository in which experiences can be collected.
Algorithms are available for retrieval of the right cases at the right time. Certain case-
based reasoning systems have functionality for adapting cases to the new problem sit-
uations, which is useful since problems are seldom identical. [Aamodt-Plaza 1994;
Schank 1982] provide a good introduction into the field of case-based reasoning.

The domain framework is used by SPIDER, by having its data stored in, and
retrieved from, the framework’s objects. Objects once defined (as specific consumers,
products, and retailers) can remain stored in the system, making entry of new cases an
easy job. Most data can be reused: A new sales promotion occurs in an already defined
market, was held by a known competitor, and so on.

Figure 2.7 shows the basic architecture of SPIDER and its use of the sales promotion
domain framework.

The system is implemented in KAPPA-PC, a hybrid environment combining multi-
ple representation paradigms, including objects, rules, and procedures, The CASE tool
we used (MetaEdit) could not generate code for this environment, but provides the
possibility to customize code generation. We used this possibility and put in custom-
made instructions that are used by the CASE tool to generate KAPPA-PC code.

We performed a UML-use scenario analysis [Booch-Rumbaugh 1997] for finding out
the scope and required functionality of SPIDER. The use scenarios comprise the basic

-2-1

SALES PROMOTION
FRAMEWORK

?\;jq

Y -"'-nlrr._.'i':.
#J,:Ei:.. :
il

! f._

Figure 2.7 Architecture of SPIDER,

functional elements of the system (Exhibit 2.3 shows a textual example of such a sce-
nario). The scenarios were input for the rest of the modeling process: drawing class

diagrams and interaction diagrams (see Figure 2.1, Step 4). After this stage, an assess-
ment is made of how the framework can be tailored for the specific application (Step

. Then, modeling trajectory source code was generated and final implementation
issues were addressed (Step 6).

2.3 Lessons Learned

We learned a number lessons in applying the framework development method.
As opposed to our initial expectations, new candidate classes were still found after

analyzing a substantial number of expert protocols (see Figure 2.8). We think this will
be the case in many semistructured domains, since there is not an objective, fixed set of

CEXHIBIT 2.3 B B
AN EXAMPLE USE SCENARIO FOR BUILDING SPIDER

LA
[[} '
L

f

5
; €ac

Domqin Iframework for Sales Promotions

Percentage of concepts found
100 —————————

O
S5
oo

)
T

DD OSSO0 0
M +on
- o)

123456 176 8101 1215314 1516 17 18 19 20
Number of case protocols

Figure 2.8 The percentage of concepts found
against the number of protocals.

elements that play a role. Structured domains, on the other hand, have such a set, mak-
ing modeling more easy. Ninety-five percent of the candidate objects were found after
analyzing 17 protocols. Though such an analysis is a considerable eifort, it eliminates
the need for expensive domain experts to undergo OO training and modeling sessions.
In our approach, each expert spends only about one hour.

In refining the model, we find the recent developments of analysis patterns very
useful. We feel that future developments in this area can be of benefit to all OO devel-
opers. The CASE tool and methodology (UML) we use provide enough power and
flexibility for modeling frameworks. Frameworks for semistructured domains, such as
sales promotion, require the use of abstraction techniques like bottom-up design and
information hiding, which are supported by CASE tools. We found that creating
sequence diagrams is very useful in validating the classes designed.

Reuse is an important theme when building software for domains such as market-
ing. Although no two product managers have the exact same job, the vast majority of
what such a manager does is the same across companies, products, markets, and coun-
tries. A sales promotion domain framework can serve as the basis for the development
of applications for sales promotion decision making in different companies, markets,
and countries, adapted to the needs of specific products, of individual managers, and
for the various tasks that have to be performed within the domain. This type of struc-
ture probably exists for many such domains, making the development of a domain
framework, as we have shown in this chapter, very beneficial.

2.4 Summary

In this chapter we have presented a methodology for developing domain frameworks
in semistructured domains, such as marketing. The procedure starts from protocols of
experts solving sample problems, after which content analysis is used to derive con-
cepts and relationships between concepts from these texts. In building the OO model,
content analysis provides a vehicle for finding classes and relationships that is much

23

24 Implementing Application Frameworks
_‘___-____—___——-_————-_—-——“—'-'—_——__-“'————-————_‘__

more powerful than those specified by many of the guidelines given in OO literature.
Once developed, such a framework can be used for building different applications
within the task domain of the user. The illustration of the framework development
method presented in this paper concerns decision making about sales promotions.

The work described here can be extended in several directions. For example, the
number of sample problems (in this case, two) and the number of experts (20) can be
increased. Also, this methodology can be applied to other decision domains with a
semistructured character, for example, investment decisions, management develop-
ment, personnel selection, and legal problem solving.

This chapter has shown that the development of a domain framework, combining
methods from behavioral sciences such as content analysis with OO modeling, can
make a major contribution to the development of software applications for supporting
decision makers in semistructured domains,

2.5 References

[Aamodt-Plaza 1994] Aamedt, A., and E. Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AICOM 7(1), January 1994.

[Blattberg-Neslin 1990] Blattberg, R.C., and S.A. Neslin. Sales Promotion: Concepts,
Methods, and Strategies. Englewood Cliffs, NJ: Prentice Hall, 1990.

[Booch-Rumbaugh 1997] Booch, G., and]J. Rumbaugh. Unified Modeling Language:
Metamodel Description Version 1.0. Rational Software Corporation, www.rational
com/uml/.

[Fayad-Cline 1996] Fayad, M., and M.P. Cline. Aspects of software adaptability. Commu-
nications of the ACM, Theme Issue on Software Patterns, Douglas Schmidt, Mohamed
Fayad, and Ralph Johnson, editors, 39(10), October 1996:58—59.

[Fayad-Laitinen 1998] Fayad, M.E., and M. Laitinen. Transition to Object-Oriented Soft-
ware Development. New York: John Wiley & Sons, 1998.

[Fowler 1997] Fowler, M. Analysis Patterns: Reusable Object Models. Reading, MA: Addi-
son-Wesley, 1997,

|Gibson-Senn 1989] Gibson, V.R., and J.A. Senn. System structure and software main-
tenance performance. Communications of the ACM 32(3), March 1989:347-358.

[Johnson-Foote 1988] Johnson, R.E., and B. Foote. Designing reusable classes. Journal of
Object-Oriented Programming 2(1), January-February 1988.

[Korson-McGregor 1990] Korson, T.D., and J.D. McGregor. Understanding object-

orientation: A unifying paradigm. Communications of the ACM 33(9), September
1990: 40-60.

[Krippendorff 1980] Krippendorff, K. Content Analysis: An Introduction to Its Methodol-
0gy. Thousand Oaks, CA: Sage Publications, 1980.

[Rumbaugh 1991] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

[Schank 1982] Schank, R. Dynamic Memory: A Theory of Learning in Computers and Peo-
ple. New York: Cambridge University Press, 1982.

[Smolander 1991] Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti
Marttiin. MetaEdit—A flexible graphical environment for methodology modeling.
Advanced Information Systems Engineering, Third International Conference CAiSE 1991

_Domain Framework_fqr_ S_ales_P_r__omotions 25

Pl ¥l

Proceedings, pp. 168-193, R. Andersen,]J.A. Bubenko, Jr., A. Solvberg, editors. Berlin:
Springer-Verlag, 1991.

[Taligent 1997] Taligent, 1. Building Object-Oriented Frameworks. Taligent, www.taligent
.com, 1997,

[Weber 1985] Weber, R.P. Basic Content Analysis. Beverly Hills, CA: Sage Publications,
1985.

[Wierenga-Van Bruggen 1997] Wierenga, B., and G.H. Van Bruggen. The integration of
marketing problem solving modes and marketing management support systems.
Journal of Marketing, July 1997, pp. 21-37.

[Yourdon 1994] Yourdon, E. Object-Oriented Systems Design: An Integrated Approach.
Englewood Clitfs, NJ: Prentice Hall, 1994.

