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Chapter 1 

 

Introduction 

 
Warehouses play a critical role in supply chains. They are responsible for storing 

products and distributing them to customers. The performance of a warehouse 

depends on the storage and retrieval systems and their control methods. With the 

advent of new automated and robotic technologies, new storage and retrieval 

methods have emerged, which can help the warehouse to become more efficient and 

responsive. This thesis aims to develop new storage and retrieval policies and 

methods that benefit from such automated technologies. Section 1.1 reviews 

important trends that influence warehouse operations. Section 1.2 discusses 

different choices in storage assignment. Section 1.3 explains different types of 

automated storage systems that are studied in this thesis. Section 1.4 gives an 
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overview of research questions, corresponding methodologies and contribution of 

different chapters. 

 

1.1. Current Trends in Warehousing  
Over the last decades, market competition has put pressure on companies to reduce 

their customer order delivery time. In retail, single-day delivery has become a 

standard service. The so-called “Retail Apocalypse” in the U.S. 

(Washingtonpost.com, 2019) shows that customers are no longer satisfied with the 

limited assortment and services in brick-and-mortar stores and demand shifts to 

online shopping. In the Netherlands, 11% of the shops are closed since 2010 due to 

the shift towards online shopping (CBS, 2019). According to Brynjolfsson et al. 

(2011), the sales of retailers such as Amazon may no longer follow the Pareto 

principle, but rather exhibit a “long tail” curve. The long-tail theory, popularized by 

Anderson (2004, 2008), refers to the fact that customers demand a wider variety of 

products and tend to buy more niche products rather than the popular ones. 

Additionally, land shortage stimulates development of compact storage systems that 

increase space efficiency. However, this is often at the expense of lower throughput 

capacity. 

These developments, on one hand, result in distribution centers that grow in size, 

which leads to long order picking travel times. On the other hand, however, they 

should offer short delivery times. Therefore, distribution centers require operations 

that allow reduced throughput times. Since the labor cost is increasing while the 

technology is becoming more affordable than before, using new technologies and 

robotics may be a viable option. According to Tompkins et al. (2010), more than 

50% of the order picking time in manual warehouses is spent on traveling to the 
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inventory locations and retrieving requested quantities. Developing advanced 

storage and retrieval policies can reduce order retrieval time. The next section gives 

an overview of storage assignment policies used in practice and studied in the 

literature. 

 

1.2. Choices in Storage Assignment 
Products can be assigned to storage locations in various ways. A storage assignment 

policy decides to which location a product should be assigned and in what quantity. 

It thereby determines the distance of a product to the order drop-off point and hence 

impacts picking time. Extensive literature has studied the role of storage assignment 

policies in warehouses. Here, we review policies commonly used in practice. In a 

random storage policy, products are stored randomly in available storage locations 

in the warehouse. For convenience, the closest available location may be used which 

results in random storage after a longer period of use (Malmborg, 1998). The 

random policy is easy to implement and is widely used in practice. It requires a 

smaller storage space compared to other policies because each storage location can 

be used by the inventory of any product (Malmborg, 1996). However, it does not 

result in a fast retrieval process since customer demand is not random and often 

follows a pattern. Many papers study the random assignment, and it is often used as 

a benchmark to other policies (see De Koster et al., 2007; Roodbergen and Vis, 

2009; Onal et al., 2017). 

Turnover-based policies rely on historical data of customer demand to identify 

frequently requested products. Products may be ranked based on several criteria 

such as units picked, lines picked, or the cube-per-order index (COI, see Heskett, 

1963), which relates product turnover to the number of loads stored in the system. 
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The products are then assigned to a dedicated storage zone close to order delivery 

points, based on their rank. Products may be grouped first in storage zones, and then, 

stored randomly in storage locations within each storage zone. The turnover-based 

assignment using such zones is called a class-based policy (also known as ABC 

class-based storage, referring to classes A, B, and C, although more than three 

classes may be used). If the number of zones equals the number of products, the 

storage policy is called full turnover-based storage. The decision on the number of 

zones is a design choice for the warehouse. Yu et al. (2015) suggest that few zones, 

usually two or three, result in the minimum picking travel time. Compared to 

random assignment, turnover-based assignments result in shorter order picking 

retrieval time for popular products. 

Another assignment choice is to disperse a product over the storage locations, 

i.e. splitting the inventory of a product and spreading it over the storage system. 

Specifically, when orders contain more than one product, a dispersed approach can 

help to find the requested products at closer proximity compared to when each 

product is assigned to only one location (Weidinger and Boysen, 2018). However, 

this may require a higher replenishment effort when a received product must be 

spread over multiple locations each time. Another dispersion approach is to 

replenish a product to only one location, but different from the current inventory 

locations. This approach results in less dispersion compared to the other dispersion 

method but requires less replenishment effort. The main difference between random 

and dispersed assignments is that the inventory of one product is assigned to the 

required number of storage locations in random storage while it can be assigned to 

any desired number of storage locations in dispersed storage. Literature studying 

the impact of dispersed assignment policies is not yet abundant. 
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Correlated assignment is yet another different storage policy. It uses the 

information of product correlations in historical customer demand data on the 

frequency of joint requests for products in multiple line orders. This relative 

historical frequency is called product correlation. A correlated storage policy 

assigns highly correlated products in close proximity in order to reduce the total 

retrieval time in order picking. The correlated assignment is relatively new in the 

literature and is also known as similarity-based assignment (Bindi et al., 2009), 

cluster-based assignment (Jane and Laih, 2005) and affinity-based assignment (Li 

et al., 2016). 

Table 1 provides an overview of different storage assignment policies. The 

second column of the table shows the main decision factor for each policy. The third 

column shows some typical examples that study systems using such policies and 

their impact on retrieval time performance. 

 
Table 1. Storage assignment policies. 

Policy Decision Factor Papers 
Random Random De Koster et al. (2008), Fukunari and Malmborg 

(2008) 
Class-based Product Turnover 

Frequency 
Yu et al. (2015), Yu and de Koster (2009) 

Dispersed Random / Product 
Correlation 

Weidinger and Boysen (2018), Onal et al., (2017, 
2018) 

Correlated Product Correlation Garfinkel (2005), Chiang et al. (2011, 2014), Li 
et al. (2016) 

 

1.3. Automated Storage Systems 
Recently, new warehouse automation and robotic systems have been introduced to 

store and handle individual products and product loads. This thesis focuses on three 
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types of automated systems, puzzle-based storage (PBS), automated storage and 

retrieval (AS/R), and autonomous robotic mobile fulfillment (RMF) systems. 

A puzzle-based storage (PBS) system is a very compact storage system that 

stores loads on shuttles on the storage locations. Figure 1.1(a) shows a PBS system 

used in an automated parking garage where each car is stored on a mobile shuttle. 

The driver leaves the car at the entrance, and a shuttle will move the car inside the 

system and store it on an empty location. One or more lifts transport the cars in 

vertical direction, between the storage tiers. This type of system uses the available 

space very efficiently, as no transport aisles are needed for moving cars. It is used 

in areas where space is expensive, like city centers and airports. Figure 1.1(b) shows 

a mini-load AS/R system where loads are stored in bins which are stored in high-

rise shelves. AS/R systems are compact systems where cranes can move within 

narrow aisles to access the bins at different levels and bring them to pick stations. 

At a pick station, the requested quantity of a product is picked, after which a crane 

returns the bin to a storage location. Figure 1.1(c) shows an RMF system where 

products are stored on multi-level pods. Available space on each pod is divided into 

compartments that allow storing multiple products on each pod. Autonomous robots 

pick up the entire pod from the storage area and move it to a pick station, where 

customer orders are picked. After picking, robots return the pod to the storage area. 

Robots can travel underneath the pods when empty. RMF systems save labor costs 

compared to manual order picking systems and are easy to expand by adding more 

pods and robots to increase the storage capacity and throughput capacity, 

respectively. They have been adopted by big players in ecommerce such as Amazon 

and Alibaba. 
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Figure 1.1. (a) An automated compact parking lot (source: Japan Parking System 
Manufacturers Association Incorporated, 2019) (b) a mini-load AS/R system (source: 
Ferretto Group, 2019) (c) Autonomous robots carrying storage pods (source: Reuters.com, 
2019). 
 
1.4. Research Questions and Outline of the Dissertation 
Warehouses and distribution centers are increasingly adopting automated systems. 

Employing an efficient storage and retrieval policy is important to achieve short 

order throughput times and a high system throughput capacity. This thesis, 

therefore, focuses on developing advanced storage and retrieval policies that 

particularly support such automated systems. In the following sections, the outline 

of the dissertation, research questions and methodology of each chapter are 

discussed. 
 

Chapter 2. Modeling Load Retrievals in Puzzle-based Storage Systems 

Space is at a premium in many locations, such as densely populated areas. Compact 

storage systems are designed to achieve high space utilization. Puzzle-based storage 

(PBS) systems are very compact storage systems, without transport aisles. However, 

a major drawback of these systems is a long retrieval time due to lack of 

(b)  (c) (a)  
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transportation space. Chapter 2 studies retrieval time models in PBS systems with 

maximum space utilization. The system consists of loads stored on shuttles that are 

placed right next to each other, i.e. no access aisles for a robot or picker are 

available. There is only one open location available in the system that allows the 

reshuffling of the storage locations. This configuration resembles the well-known 

15-tile puzzle. Retrieval in such systems has been modeled for a single load by Gue 

and Kim (2007), but in this chapter, the problem of retrieving multiple loads is 

addressed. The following research question is answered. 

What is the optimal retrieval method in PBS systems (i.e. minimizing the number of 

required moves) to retrieve multiple requested loads, using one open location? 

A finite algorithm is developed for the optimal joint retrieval of two loads by 

joining them at an intermediary location first and moving them together afterward. 

Closed-form expressions are derived for joint retrieval of two adjacent loads (see 

Theorem 1). This chapter proves this is the optimal path. For the case of two 

requested loads, the position of the optimal intermediary locations is determined. 

For multiple loads, close-to-optimal joining locations are determined. Based on this, 

an efficient heuristic is developed for the retrieval of multiple loads simultaneously. 

The results show that large savings can be achieved using multiple-load retrievals 

compared to sequential single-load retrievals in these systems. 

 

Chapter 3. The Impact of Integrated Cluster-based Storage Assignment in 

Automated Warehouses 

Historical demand data can provide rich information on the customer demand 

profile. Various storage assignment policies, such as class-based and full turnover-

based storage take advantage of historical order information. However, they mainly 
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look at the turnover frequency of demand for a certain product and use it to identify 

popular products. Few studies look at the information on the correlation between 

products in customer demand. Correlated assignment models in the literature (such 

as those proposed by Garfinkel, 2005, Xiao and Zheng 2010, 2012 and Chiang et 

al., 2014) mainly take a sequential approach to find the clusters of correlated 

products and then assign them to storage areas/zones. These methods are 

suboptimal, as they first maximize the correlation of products in the clusters and 

then assign the clusters to storage areas. Additionally, because clusters of products 

are assigned to storage zones or aisles, these models are only applicable to manual 

order picking where a picker runs a picking tour of several lines. In robotic 

warehouses, a robot (or shuttle) visits a storage location and picks up the entire 

storage pod/bin which carries some of the requested products. Here, grouping 

correlated products is beneficial only if products in a group are stored on the same 

storage pod, not in the same storage zone. This chapter answers the following 

research question. 

How does integrated clustering and storage assignment of correlated products 

affect the order picking performance in automated warehouses? 

An integer linear program is developed that models the optimal integrated 

clustering and storage assignment of the products to minimize the total retrieval 

time. The model is solved with a general optimization solver and tested for multiple 

levels of correlation, turnover frequency and order size. The performance of the 

model is evaluated for both mini-load AS/R and for RMF systems (see Section 1.3), 

where each cluster of products is assigned to a storage bin or storage pod consisting 

of multiple compartments sufficient to house the number of products in the cluster. 

A comparison of the proposed integrated model with the sequential correlated 
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assignment and turnover-based assignment shows that integrated assignment can 

yield considerable benefits when the correlation of the products is high, and the 

product turnover frequency curve is not highly skewed. 

 

Chapter 4. Correlated Dispersed Storage Assignment in Robotic Warehouses 

This chapter builds on chapter 3, by not only looking at correlated storage 

assignment but also combining it with product dispersion. This combination of 

storage policies is applied to RMF systems (see Section 1.3). Chapter 4 investigates 

the effect of this combined policy on the expected retrieval time and compares it 

with random, class-based, correlated (but not dispersed), and dispersed (but not 

correlated) assignment policies. The following research questions are studied. 

What is the effect of product dispersion and storage clustering on the expected order 

picking retrieval time in RMF systems? How do product correlation and product 

turnover frequency contribute to the performance of the policies? 

First, a mixed-integer linear program is developed for optimal product to cluster 

and cluster to zone allocation to minimize the expected retrieval time to a closest 

pick station. Note that, if orders contain a large number of lines, downstream order 

consolidation may be needed before the order can be shipped. Such possible 

consolidation time is not included in the analysis. The retrieval time expressions are 

developed for different zone configurations and positions of pick stations. Solvers 

such as Gurobi 9.0 are able to solve small instances of the model. An efficient 

heuristic method is proposed to enable solving real size instances of the problem. 

Particularly, a thorough analysis of the impact of turnover frequency and correlation 

of the products on the performance of different storage policies is conducted using 

a dataset of the warehouse of a wholesaler in personal care products. The analytical 
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results show that, for this warehouse, the correlated dispersed assignment leads to a 

significantly shorter expected retrieval time compared to the benchmarks. 

Furthermore, the correlation in customer demand plays a major role in the 

performance of the models while the turnover frequency showed a minor influence 

in the cases we tested.  

 

Chapter 5. Summary and Conclusion 

Chapter 5 gives an overview of the results of previous chapters. This summary 

highlights the contribution of this dissertation by revisiting the main research 

questions and findings. The limitations of the conducted research are also discussed. 

An outlook of further research on storage and retrieval policies applicable to 

automated warehouses is also presented.  

 

Research Statement 

All the chapters of this dissertation are written by the author. The author is 

responsible for the research questions, methodology and analytical results of each 

chapter. The models and results have been validated using simulation, benchmarks, 

and numerical analysis. The promoters had a great impact on the quality of the 

chapters by providing continuous critical feedback during my Ph.D. program. 

Feedbacks from the doctoral committee helped to improve the quality of the 

dissertation. Chapter 2 is published as Mirzaei et al. (2017) which benefitted from 
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Chapter 2 

 

Modeling Load Retrievals in Puzzle-based 

Storage Systems 
 

2.1. Introduction 
Warehouses are important nodes in the supply chain as they allow to match supply 

with customer demand and to achieve economies of scale in transport. Warehouses 

are labor-intensive and consume much space. Bartholdi and Hackman (2016) state 

that the fundamental idea of warehouse management lies in two resources: space 

and labor.  While labor is usually available in urban areas, land is expensive.  Space 

efficient storage systems offer a solution to this problem. 

A conventional storage system consists of racks and aisles. Aisles are used for 

transporting goods to and from the storage racks. They take up space which could 
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alternatively be used efficiently for storing loads. If space is not used efficiently, 

larger distances may have to be traveled to transport loads, requiring more resources. 

According to Tompkins et al. (1996), Roodbergen and De Koster (2001) and De 

Koster et al. (2007), non-value adding travel forms the majority of an order picker’s 

time in such conventional storage systems. In the 60s, Automated Storage/ Retrieval 

(AS/R) systems were introduced. These systems can store a large number of unit 

loads on a limited footprint. These systems have received much attention from 

researchers focusing on, e.g., travel time models and system size optimization (see 

e.g. Bozer and White, 1984 and Lee, 1997). In order to use the space even more 

efficiently, very high density storage (or puzzle-based) systems were introduced by 

storing the loads multi-deep (De Koster et al., 2008).  

Recently, so called “puzzle-based” storage systems have been introduced. The 

term Puzzle-based Storage (PBS) system comes from Gue and Kim (2007).  PBS 

systems are very compact storage systems which are fully automated. Unit-loads are 

stored dense, without even a single aisle, yet each unit load can be retrieved 

independently. Applications of PBS systems can be found in warehouses and 

distribution centers (DCs), automated car parking systems, and container terminals 

(Zaerpour, Yu and De Koster 2015). 

 

2.1.1. Description of the PBS System 
The main components of a PBS system are: (1) shuttles that can move in horizontal 

x- and y- directions, carrying the unit loads, (2) a depot (I/O point), (3) a lift for 

vertical transportation in case of a multilevel system, and (4) one or more empty 

locations which provide sufficient maneuvering space for shuttles to move. Such an 

open location is also called an “escort” because of its role of escorting the load to 
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the destination. To bring a requested unit load to the I/O point, other shuttles have 

to move to first bring an escort next to the requested load. Then, the load is escorted 

to the I/O point by the escort. 

A PBS system with one escort is comparable to the well-known 15-tile puzzle 

game. This game consists of 15 numbered tiles which are randomly distributed in a 

4×4 square with one missing tile. The mission is to sort numbers by shuffling the 

tiles. In the same fashion, N2-1 unit loads can be stored at each level in an N×N PBS 

system. This results in very high space usage efficiency. 

Figure 1(a) shows the top view of a typical PBS system. Cars in the picture 

represent loads stored in the system and the white cell represents the escort. The 

escort is initially located at the lower left corner, next to the I/O point. Figure 1(b) 

shows a PBS car parking system. Each unit load (a car) is stored on its own shuttle 

which can move in both horizontal directions. When an order for retrieving a load 

is released, the escort moves towards the requested load. This means all shuttles on 

the path have to move in the opposite direction. Once the escort reaches a position 

next to the load (down or left), depending on the load’s location, the shuttle which 

contains the load will move to the empty location. Then the escort will end up at the 

right or top of the requested load. It again needs to move to either down or left of 

the requested load to provide space for it to move. This repeats until the load arrives 

at the I/O point. In this way, any load can be accessed individually with no more 

than one empty space unit in the storage area. Although PBS systems are extremely 

space efficient solution, they are not fast. Therefore it is of the utmost importance 

to furnish this solution with faster methods. The multiple load retrieval method 

proposed in this chapter addresses this drawback and makes PBS systems more 

responsive. 
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Figure 1. (a) A top view of a PBS, (b) A 3D view of a PBS car parking system (source 
Eweco, 2013). 
 

2.1.2. Literature Review  
Literature on unit-load compact storage systems is not abundant. In practice, most 

compact storage still have at least one aisle. A crane, or S/R machine, operates in 

the aisle and retrieves unit loads using a satellite connected to the crane. Sari et al. 

(2005) study a flow rack compact storage system where the pallets are stored and 

retrieved at different rack sides by two S/R machines responsible for storage and 

retrieval respectively. De Koster et al. (2008) and Yu and De Koster (2009, 2012) 

study a compact crane-based storage system with built-in multi-deep circular 

conveyors. The system is fully automated, and every pallet stored is accessible 

individually by rotating conveyors. Zaerpour et al. (2015) derive the optimal storage 

allocation for a crane-based compact storage system, operating in a cross-dock when 

all destinations of incoming loads are known. 

Carousel systems constitute another category of compact automated storage and 

retrieval systems in which accessing an item requires moving other items. These 

systems consist of a number of linked drawers carrying small and medium-sized 

products that rotate in a closed loop. Litvak (2006) proposes optimal picking of large 

I/O 
(b) (a) 
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orders based on the shortest rotation time and she studies the number of items 

collected before a turn. Hwang et al. (1999) study standard and double carousel 

systems and analytically measure the effect of double shuttles on throughput.  

Studies on PBS systems are new. Gue and Kim (2007) appear to be the first 

researchers to study PBS systems. They study a PBS system where unit loads are 

retrieved one by one using single or multiple empty locations. They compare storage 

density and retrieval time of puzzle-based systems with traditional low-density 

aisle-based warehouses. While traditional warehouses usually perform better than 

puzzle systems in terms of retrieval time, they have lower space efficiency. Kota, 

Taylor and Gue (2015) analytically derive the single-load retrieval time expression 

when multiple escorts are randomly placed within the system. They extend the 

expression to a system with two escorts and formulate an integer program for the 

general case with multiple escorts. Alfieri et al. (2012) propose heuristics for using 

a limited set of shared shuttles to transport unit loads in puzzle-based systems. They 

consider multiple I/O points, partition the storage area, and then assign shuttles to 

partitions based on expected workload. Shuttles move parallel where possible. Gue 

et al. (2013) propose a decentralized control for a deadlock-free puzzle system 

named GridStore. Loads arrive at one side of the system, can move individually 

within the system, and leave at the opposite side of the system. Each unit load 

communicates with neighboring locations to decide its route. Zaerpour, Yu and De 

Koster (2015) study the optimal configuration of a multi-level PBS system (they 

call them live-cube systems) by assuming sufficient empty locations exist at each 

level to create virtual aisles and multiple loads can move simultaneously. When a 

virtual aisle has been created, determining the retrieval time is similar to a 

traditional, aisle-based, warehouse. The minimum number of empty locations to 
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create a virtual aisle at a given storage level equals the maximum of the rows and 

columns of the system. Yu et al. (2016) propose a method to find the optimal 

retrieval path for a requested load, with multiple open locations and with so-called 

block load movement. All these studies assume the loads all have the same size. 

Flake and Baum (2002) and Hearn and Demaine (2005) study the rush hour problem 

in a PBS car parking system, with the objective to store as many cars of different 

sizes in a compact storage. 

While previous studies have focused on single load retrieval, in practice, 

information of multiple retrieval requests is usually available. Hence, multiple loads 

may be retrieved simultaneously, improving the performance of PBS systems 

significantly. In this chapter, we study multiple load retrieval in a PBS system. We 

answer questions like how and in which sequence loads should be retrieved in order 

to minimize total retrieval time. This question has not yet been addressed in 

literature. We develop an optimal method for this problem based on joint load 

retrieval. The results show that by using joint retrieval, the total retrieval time can 

be reduced significantly compared to individual retrieval. We first present a retrieval 

method for two loads that finds the minimum number of retrieval moves. Then, we 

extend this optimal method for jointly retrieving three loads and afterward, 

generalize it to retrieve multiple loads using approximate analysis. Table 1 

summarizes the literature on PBS systems and highlights the contribution of this 

chapter. The second column shows whether an optimal solution is provided or a 

heuristic. Column three defines the number of open locations assumed in the system. 

Column four shows whether there is a single move at a time or multiple loads can 

move simultaneously. The last column defines the number of loads that the system 

can retrieve together. 
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Table 1. Comparing the papers on PBS systems. 

Paper Optimal/ 
Heuristic 

Number of 
escorts 

Simultaneous 
load moves 

Single / 
Multiple Load  

Gue and Kim (2007)  Optimal One, many No Single 
Kota et al. (2015)  Optimal & 

Heuristic 
Many 
(randomly) 

No Single  

Alfieri et al. (2012)  Heuristic Many Yes Single 
Zaerpour et al. (2015)  Heuristic Many Yes Single 
Gue et al. (2014)  Heuristic Many Yes Single 
Yu. et al. (2016) Optimal One, many Yes Single 
This chapter Optimal & 

Heuristic 
One No Multiple 

 

The remainder of the chapter is organized as follows. Section 2.2 describes an 

optimal retrieval method for two arbitrary loads in the system. Section 2.3 extends 

the dual-load retrieval method to three or more loads. Section 2.4 compares the 

results with single- load retrieval. In the last section, conclusions are drawn. 

 

2.2. An optimal Dual-load Retrieval Method  
In case two loads need retrieval, it is possible to reduce travel time, as compared 

with individual retrieval, by retrieving them jointly. We propose a dual-load 

retrieval method for this and demonstrate optimality by enumeration. Three methods 

are distinguished for retrieving two loads: (1) moving loads individually towards 

the I/O point using the algorithm of Gue and Kim (2007), (2) moving loads A and 

B by alternating between them, requiring the escort to move back and forth between 

the loads, and (3) bringing both loads to a given joint location and then moving them 

together. Obviously, the method (2) is not optimal, due to unnecessary extra moves 
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of the escort traveling between the loads. We prove method (3) leads to an optimal 

solution, for a joint position where the loads are adjacent. 

We make the following assumptions for the system: 

(1)  All loads are stored on shuttles, which can move in both horizontal 

directions. This assumption is valid for particular types of PBS systems. 

(2)  The storage system has N rows and N columns. This can be extended to non-

square systems. 

(3)  The I/O point is located at the lower left corner. 

(4)  There is only one escort, which is initially located at position (1, 1), next to 

the I/O point. Usually, escort will be found here, after each retrieval. 

(5)  Only one load moves at a time, even when multiple loads need to move in 

the same direction. 

(6)  We distinguish only retrievals on a single storage level. For multiple levels, 

a lift fulfills the vertical transportations. 

We first define several concepts to ease the exposition. 

 

Definition 1 (Joining location for two loads in the PBS grid): A location where 

the two requested loads become adjacent for the first time in their retrieval path. The 

joining location is defined as the location of one of these two adjacent loads, namely 

the one which is the closest to the I/O point. 

 

Definition 2 (Dual load move): Moving two loads consecutively on the same 

retrieval path with no other loads between them.  
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Definition 3 (Optimal joining location): A joining location for two loads, which 

leads to the minimum total number of retrieval moves. 

Now we can formulate the following lemma. 

 

Lemma 1: Dual-load retrieval from an optimal joining location, always performs 

better than or equal to two single-load retrievals, in terms of the total number of 

moves. 

Proof: Setting the joining location at (1, 1), immediately transforms the dual-load 

retrieval problem into two single load retrievals. Indeed, a better joining location 

saves moves. 

■ 

As Lemma 1 shows, retrieving two loads using an optimal joining location 

always results in a total number of moves less than or equal to the number of moves 

of two individual single load retrievals. Gue and Kim (2007) propose an optimal 

method for single load retrieval, where each load first moves by several so-called 3-

moves, followed by so-called 5-moves when the load reaches the side of the system. 

In the 3-moves, the empty location moves from a location behind (above) the load 

one step down and one step left to reach a location below (in front of) the load. Now, 

it makes space available for the load. to approach the I/O point with one more step. 

It takes the empty location 4 moves to move around a load at the bottom or left side 

of the system. 

Therefore, in the optimal dual-load retrieval method, the loads are first brought 

together at an optimal joining location, using optimal single load moves, and are 

then moved toward the I/O point jointly by optimal dual-load moves. Figure 2 gives 

a flow diagram of the dual-load retrieval method. This procedure can be explained 
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in four steps. Algorithm 1 illustrates the steps in this method. Optimality of the 

joining location is ensured by enumerating all possibilities with a complexity of 

𝑂𝑂(𝑁𝑁2). Optimality of the adjacent location of the joining location, to which the 

second load will be brought, is ensured again by enumeration in step 2. Optimality 

of the single load moves is ensured by the method of Gue and Kim (2007). Moving 

the loads jointly in an optimal fashion in step 3 is explained in theorem 1.  The two 

requested loads are (i1, j1) and (i2, j2). The load closest to the I/O point is labeled as 

the first load and the other load is labeled as the second load. In the case of equal 

distances, they can be labeled randomly. 

 

 
Figure 2. Flow diagram of dual-load retrieval. 
 
 
Algorithm 1: Optimal dual-load retrieval method 

  Step 1 
1: for 𝑖𝑖 = 1: 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑖𝑖1, 𝑖𝑖2} 
2:  for 𝑗𝑗 = 1: 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑗𝑗1, 𝑗𝑗2}  
3:  let (𝑖𝑖, 𝑗𝑗) be the joining location. 
4:  calculate the minimum number of moves, 𝑀𝑀1(𝑖𝑖, 𝑗𝑗),

 needed to bring  the first load to (𝑖𝑖, 𝑗𝑗). 
  Step 2 
5:  for 𝑘𝑘 = 1: 4 

Request 
load 1 

Request 
load 2 

Find optimal 
joining 

location (JL) 

Bring the closer load to 
the I/O to JL 

Bring the other load 
next to JL  

Retrieve load 
1 and 2 
together 
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6:    calculate the minimum number of moves, 𝑀𝑀0(𝑘𝑘), 
needed to bring  the second load to one of the 4 
adjacent locations of (𝑖𝑖, 𝑗𝑗). 

7:  end for 
8: pick the location 𝑘𝑘: =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴{𝑀𝑀0(𝑘𝑘)| 𝑘𝑘 = 1,2,3,4}. 
9: 𝑀𝑀2(𝑖𝑖, 𝑗𝑗): = 𝑀𝑀0(𝑘𝑘). 
  Step 3 
10: calculate the minimum number of moves, 𝑀𝑀3(𝑖𝑖, 𝑗𝑗), needed 

to bring the loads jointly to the I/O point. 
11: 𝑀𝑀( 𝑖𝑖, 𝑗𝑗): = 𝑀𝑀1(𝑖𝑖, 𝑗𝑗)  + 𝑀𝑀2(𝑖𝑖, 𝑗𝑗)  + 𝑀𝑀3(𝑖𝑖, 𝑗𝑗). 
12:  end for 
13: end for 
  Step 4 
14: pick the solution with optimal joining location (𝑖𝑖, 𝑗𝑗) 
 which minimizes 𝑀𝑀(𝑖𝑖, 𝑗𝑗). 
 

Algorithm 1 determines the optimum joining location, by enumerating all 

possible locations and comparing the results. In a system of size N×N there are N2 

possible joining locations. But, in practice, certain areas can be excluded from 

enumeration, depending on the position of the loads. We show in lemma 2 the 

number of locations that need to be enumerated is actually less than N2. This 

accelerates the process of finding the joining location. Figure 4(a) shows two 

requested loads in the system. A joining location is marked by a ‘plus’ sign. The 

dashed lines show the boundary of locations to be enumerated. 

 

Lemma 2: The Manhattan distance to the I/O point of an optimal joining location, 

is less than or equal to the Manhattan distance of the requested loads (i1,j1) and (i2,j2) 

to the I/O point.  

Proof: a) Assume a location L= (𝑖𝑖0, 𝑗𝑗0) with a Manhattan distance larger than that 

of at least one of the loads, is nominated as the optimal joining location. See figure 

3. This means 𝑖𝑖0 + 𝑗𝑗0 > 𝑖𝑖1 + 𝑗𝑗1 or 𝑖𝑖0 + 𝑗𝑗0 > 𝑖𝑖2 + 𝑗𝑗2. Without loss of generality, we 
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assume 𝑖𝑖0 + 𝑗𝑗0 > 𝑖𝑖1 + 𝑗𝑗1 and  𝑖𝑖0 + 𝑗𝑗0 < 𝑖𝑖2 + 𝑗𝑗2. We show that joining location 

(𝑖𝑖1, 𝑗𝑗1) outperforms L in the required number of moves to retrieve the loads. The 

number of moves to bring the two loads to L equals to the number of moves needed 

to bring the load (𝑖𝑖2, 𝑗𝑗2) to L plus the number of moves to further move it next to 

(𝑖𝑖1, 𝑗𝑗1).  However, this, at most, equals to the minimum number of moves to bring 

(𝑖𝑖2, 𝑗𝑗2) directly to (𝑖𝑖1, 𝑗𝑗1). Furthermore, we know that, by definition, (𝑖𝑖1, 𝑗𝑗1) is closer 

to the I/O point than L. Therefore, less joint moves is required from there to the I/O 

point. Thus, L cannot be located farther than any of the two loads. 

 

 
Figure 3. The search area for the optimal joining location. 

■ 

In a number of situations, the joining location can be predefined, and no 

enumeration is needed. Table 2 provides a list of such conditions. In condition 1, 

when both requested loads are located at the left side of the system (i.e. i1, i2=1), the 

escort goes directly to the farther load and brings the closer load to (1, j1-1) on its 

. . 
(𝑖𝑖1, 𝑗𝑗1) 

(𝑖𝑖2, 𝑗𝑗2) 𝐿𝐿 = (𝑖𝑖0, 𝑗𝑗0) 

𝑥𝑥 + 𝑦𝑦 = 𝑖𝑖2 + 𝑗𝑗2 

𝑥𝑥 + 𝑦𝑦 = 𝑖𝑖1 + 𝑗𝑗1 
. 

𝑥𝑥 

𝑦𝑦 
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path. This is the joining location for the loads. The same procedure can be applied 

for condition 2. In condition 3, where both loads are on the diagonal, again the 

optimal path for the escort is to directly go to the farther load and bring it next to 

the closer one. This involves moving the closer load to either (i1, j1-1) or (i1-1, j1). 

In the worst case scenario of condition 4, one load is located anywhere at the left 

side of the system and the other one is anywhere at the bottom side. Then the joining 

location is (1,1) which basically means two individual retrievals. 

Table 2. Conditions that lead to a predefined optimal joining location. 

Nr. Condition Predefined optimal joining location 

1 i1, i2=1 and j1< j2 (1, j1-1) 

2 j1, j2=1 and i1< i2 ( i1-1,1) 

3 i1= j1 and i2= j2 (i1, j1-1) and (i1-1, j1) 

4 (1,j1) and (i2,1) (1,1) 

 

In the first step of algorithm 1, we need to know the number of steps to bring 

the first load to the joining location via the shortest path for each possible joining 

location. Figure 4(b) shows this transfer. This can be done by the single-load 

retrieval method of Gue and Kim (2007); the only difference is the I/O point as the 

destination has been replaced by the joining location.  

The second step brings the second load next to the first one. It selects the best 

locations adjacent to the joining location such that the total number of moves is 

minimized. It is determined by enumeration and comparing the results for each 

adjacent location. Figure 4(c) shows how the second load joins the first one. The 

enumerated locations are marked by ‘×’. Note that bringing the second load to some 

of these adjacent locations might alter the location of the first load. In Figure 4(c) 
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for example, moving the second load to the adjacent location on the left side of the 

first load, moves the first load one step down. We ignore this because such candidate 

joining locations lead to higher total retrieval moves (extra moves to make them 

adjacent again) and are not chosen as the optimal joining location. At the end of this 

phase, as shown in Figure 4(d), the loads are adjacent, in a horizontal position. 

However, depending on the position of the loads, vertical optimal joining 

configurations are possible. 

 

 
Figure 4. Joining procedure of two loads in dual-load retrieval: (a) joining location is 
selected, (b) first load moves there, (c) second load moves to its adjacent, (d) loads are ready 
to be retrieved together. 
 

The third step calculates the number of moves needed to bring the loads jointly 

to the I/O point. In lemma 3 we prove the optimal way to move two adjacent loads 

is via so-called “dual-load” moves. Regardless of a horizontal or vertical position 

of the loads at the joining location, two types of dual-load moves are available: 5-

moves and 7-moves. In the following, we explain them in detail. The smallest series 

of steps that is needed to perform a joint move is via 5-moves. As shown in Figure 

4(a), the escort takes three steps to reach the proper position that makes space for 

the loads to move closer to the I/O point. Then it takes two more steps to move both 

loads ahead. A series of 5-moves are performed until no more move of this type is 

possible, i.e. the loads reach one side of the grid. After that, 7-moves are performed 

as shown in Figure 5(b). Here, the escort takes 5 steps to reach the proper position, 
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and then two more steps are required to move the loads. This is repeated until the 

loads are retrieved. In the fourth step of the algorithm, the solution is picked with 

the total minimum number of moves. 

 

 
Figure 5. Demonstration of moves in dual-load retrieval: (a) 5-step, (b) 7-step. 
 

Lemma 3: Moving two adjacent loads to the I/O point is optimal when there is no 

load between them during the retrieval steps. 

Proof: We prove this lemma by contradiction. Suppose that one or more items are 

located between the two loads, we then show the number of steps can be reduced if 

there is no intermediary item. Assume there is one item between the loads, this 

means their rectilinear distance is two. As demonstrated in Figure 6(a), at least nine 

steps are required to move both loads one space unit. By simply eliminating the in-

between item, as shown in Figure 6(b), the number of steps reduces to seven. This 

single item between loads results in two extra escort steps merely to bypass this 

item. The same argument holds for the case where the loads are vertically aligned. 

In a similar fashion, having k >1 items between the loads will result in 2k extra 
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escort steps to reposition the loads one space unit. This means having no load 

between the loads leads to the minimum number of steps. 

■ 
           

(a)      (b)     

Figure 6. Moving loads with different amount of interspace: (a) one interspace, (b) no 
interspace. 
 

Theorem 1 formulates the number of moves needed in an optimal method of 

retrieving two adjacent loads. Before that, we make the following observations. 

 

Observation 1: In order to determine the number of steps required to retrieve loads 

from given positions, it is sufficient to track the number of moves made by the 

escort. This is because each load move corresponds to an escort move. 

 

Observation 2: Due to symmetry of the system, the number of moves required to 

retrieve two load at locations (i, j) and (j, i) are equal. 

 

Theorem 1: The minimum number of moves to retrieve two horizontally aligned 

adjacent loads in a puzzle system is: 

7𝑖𝑖 + 3𝑗𝑗 − 9 𝑖𝑖 > 𝑗𝑗  
10𝑖𝑖 − 9 𝑗𝑗 = 𝑖𝑖  
7𝑗𝑗 + 3𝑖𝑖 − 13 𝑖𝑖 < 𝑗𝑗  

where (i, j) is the location of the load closer to the I/O point and the escort is behind 

them. 
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Proof: According to Lemma 3, two adjacent loads should travel by dual-load 

moves.  In this strategy, we keep track of the route of the first load and the second 

load follows it. The first load can move either leftward or downward, using 5-moves 

and 7-moves. Figure 7 shows an example of a typical route in this approach. An 

observed property of the dual-load moves is that the route changes direction every 

time after two 5-moves. In the case of 𝑗𝑗 >  𝑖𝑖 there are i pairs of 5-moves necessary 

for a total of 5(2𝑖𝑖)  =  10𝑖𝑖 moves, after which the position of the first load should 

be (1, 𝑗𝑗 − 𝑖𝑖 − 2). Next, 𝑗𝑗 − 𝑖𝑖 − 2 7-moves are required to retrieve the first load for 

7(𝑗𝑗 − 𝑖𝑖 − 2) moves. In the end, an additional one move is performed to retrieve the 

second load, thanks to extra empty space obtained by retrieving the first load. 

Therefore, in total 10𝑖𝑖 +  7(𝑗𝑗 − 𝑖𝑖 − 2)  +  1 =  7𝑗𝑗 + 3𝑖𝑖 − 13 escort moves are 

necessary. In case j= i, and i is an odd number, the first load can reach the I/O point 

with i-1 pairs of 5-moves. An additional move is necessary to retrieve the second 

load for a total of 5 × 2(𝑖𝑖 −  1)  +  1 =  10𝑖𝑖 −  9 moves. If i is an even number, 

2i-3 5-moves is needed, and then an extra 7-move and an additional single move are 

needed to retrieve both loads. In total 5(2𝑖𝑖 −  3)  +  7 +  3 =  10𝑖𝑖 −  9 moves are 

needed which shows the results are the same for both even and odd i. the case for 

𝑗𝑗 <  𝑖𝑖 follows in a similar fashion.  

■ 

As a corollary to this theorem, according to the symmetry property stated in 

Observation 2, the same approach can be used for the case of vertical alignment of 

the loads. The formulation is as follows: 

 
 
 
 

7𝑗𝑗 + 3𝑖𝑖 − 9 𝑗𝑗 > 𝑖𝑖  
7𝑖𝑖 + 3𝑗𝑗 − 13 𝑗𝑗 < 𝑖𝑖  
10𝑖𝑖 − 9 𝑗𝑗 = 𝑖𝑖  
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         A  B       
                  
                  
                  
                  
                  
                  
                  

Figure 7. A typical dual retrieval route for two loads A and B. 
 

In the dual-load retrieval method of algorithm 1, the optimal joining location is 

not unique. For instance, when the adjacent loads are located at the diagonal, two 

optimal joining locations exist: one space unit to the left and one space unit to the 

south.   

Algorithm 1 helps to find the optimal solution. However, since the number of 

joining locations that are evaluated is 𝑂𝑂(𝑁𝑁2), and the number of steps to jointly 

retrieve the loads is 𝑂𝑂(𝑁𝑁), the algorithm is 𝑂𝑂(𝑁𝑁3), where N is the size of the system. 

Therefore, in addition to this optimal method, we propose a heuristic, that yields a 

near-optimal solution in a considerably shorter time. This heuristic can be easily 

adapted to retrieve more than 2 loads as will be explained in section 2.3. Algorithm 

2 shows the steps required for two loads (i1, j1) and (i2, j2). The location of the load 

closest to the I/O point is denoted by (ic, jc) and the location of the farther load is 

denoted by (𝑖𝑖𝑓𝑓 , 𝑗𝑗𝑓𝑓). The subroutine introduced in this algorithm finds J and L as the 

joining location and the location of the adjacent load respectively, based on location 

of the loads as the input. For (𝑖𝑖, 𝑗𝑗) ≠ (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐), either �𝑖𝑖𝑓𝑓 − 𝑖𝑖� = 0 or �𝑗𝑗𝑓𝑓 − 𝑗𝑗� = 0. 
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Therefore, the formula in line 5 results in (𝑖𝑖 + 1, 𝑗𝑗) or (𝑖𝑖, 𝑗𝑗 + 1), if 𝑖𝑖𝑓𝑓 > 𝑖𝑖𝑐𝑐 or 𝑗𝑗𝑓𝑓 >

𝑗𝑗𝑐𝑐 respectively. 

 
Algorithm 2: Heuristic method for two loads 

1: let (𝑖𝑖, 𝑗𝑗) =  (𝑚𝑚𝑚𝑚𝑚𝑚 {𝑖𝑖1, 𝑖𝑖2},𝑚𝑚𝑚𝑚𝑚𝑚 {𝑗𝑗1, 𝑗𝑗2}) be the joining location 
2: Subroutine 𝑱𝑱𝑱𝑱 (𝑱𝑱,𝑳𝑳, (𝒊𝒊𝟏𝟏, 𝒋𝒋𝟏𝟏), (𝒊𝒊𝟐𝟐, 𝒋𝒋𝟐𝟐)) 
3:  if (𝑖𝑖, 𝑗𝑗) ≠ (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐) then  
4:    𝐽𝐽 ∶=  (𝑖𝑖, 𝑗𝑗) 

5:   L:=(𝑖𝑖 + 𝑖𝑖𝑓𝑓−𝑖𝑖

�𝑖𝑖𝑓𝑓−𝑖𝑖�+�𝑗𝑗𝑓𝑓−𝑗𝑗�
 , 𝑗𝑗 + 𝑗𝑗𝑓𝑓−𝑗𝑗

�𝑖𝑖𝑓𝑓−𝑖𝑖�+�𝑗𝑗𝑓𝑓−𝑗𝑗�
) 

6:    else 𝐿𝐿: = (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐) 
7:   if 𝑖𝑖 >  𝑗𝑗 then 𝐽𝐽 ∶=  (𝑖𝑖 − 1, 𝑗𝑗) 
8:   else 𝐽𝐽: =  (𝑖𝑖, 𝑗𝑗 − 1) 
9:   end if 
10: end if 
11: End subroutine JL 
12: move the load located at (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐) to 𝐽𝐽 
13: bring the other load to 𝐿𝐿 
14: move the loads jointly to the I/O point 

 
To compare the performance of the heuristic with the optimal method, numerical 

results for 20 random instances of dual-load requests are presented in Table 3. To 

generate random requests, for any given N, two unique locations with random 

coordinates (i , j) are picked. Then, the loads stored at these locations are retrieved 

using both optimal and heuristic methods to compare the results. This is repeated 20 

times for each system size. The optimal and approximate number of moves for dual-

load retrieval are presented in column Avg. Opt. and Avg. Aprx., for systems of 

different sizes, averaged over 20 instances. The average gap between the number of 

optimal and heuristic methods is presented in column Avg. Gap, together with the 

minimum and maximum gap. The last column shows the average computation time 
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for the optimal method. The computation time for the heuristics is negligible. The 

heuristic method appears to perform near-optimal. In fact, it appears the heuristic 

performs optimally in more than half of the instances.  
 
Table 3. Comparison between optimal dual-load retrieval and the heuristic method. 

 System Size (N) Avrg. Opt. Avrg. Aprx. Avrg. Gap Compt. time (s) 
5 21.4 22.1 0.7, (0, 2) 0.18 
7 38.0 38.4 0.4, (0, 2) 0.61 

10 63.4 63.8 0.4, (0, 2) 1.64 
20 133.8 135.9 2.1, (0, 10) 18.62 
50 346.2 358.6 12.4, (0, 46) 273.10 

 

2.3. Multiple Load Retrieval Method  
In this section, we first consider retrieving three loads in the system and then 

generalize it to more than three loads. In the case of three requested loads, each load 

can be retrieved individually or together with one or two other loads. Lemma 4 

proves that joining loads is required to obtain the minimum number of moves, 

similar to lemma 1. 

Lemma 4: Retrieving three loads jointly from an optimal 3-load joining location, 

performs better or equal to retrieving one or all of them individually. 

Proof: Setting the joining location at (1, 1), immediately transforms the joint 

retrieval of three loads into three single-load retrievals, or a single-load retrieval and 

a dual-load retrieval. A better choice of joining locations saves moves. 

■ 

To join and retrieve three loads, different combinations and sequences for the 

loads A, B and C exist. For example (AB, ABC) means the loads A and B join first 
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at an intermediate joining location, and then they join C at a final joining location. 

Similarly, the other alternatives are (AC, ACB) and (BC, BCA). These are the main 

alternatives for joining the loads, but there are other alternatives that are sub-cases 

of these main alternatives. For instance, individual retrievals is a case when the 

joining location is set at (1, 1), or joining all loads at one location is a case when the 

intermediate and the final joining locations are at the same point. Therefore, we only 

evaluate the three main combinations in Algorithm 3. 

One way to obtain the optimal solution to the problem is enumerating all move 

sequences to all possible joining location. Therefore the number of moves would be 

𝑂𝑂(𝑚𝑚!𝑁𝑁𝑚𝑚)where m is the number of loads to be retrieved. As this number grows 

very rapidly with m and N we propose a heuristic method for three loads or more. 

Suppose that the third load (i3, j3) is requested in addition to the other two loads. 

Algorithm 3 shows the steps required to retrieve them together. (𝑖𝑖𝑎𝑎 ,  𝑗𝑗𝑎𝑎) and (𝑖𝑖𝑏𝑏 ,  𝑗𝑗𝑏𝑏) 

are the locations of the first two loads in the combination k. (𝑖𝑖𝑙𝑙 ,  𝑗𝑗𝑙𝑙) is the location 

of the last load in the combination k. 

 
Algorithm 3: Heuristic method for three loads 
1: let (𝑟𝑟, 𝑞𝑞) = (𝑚𝑚𝑚𝑚𝑚𝑚{𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3},𝑚𝑚𝑚𝑚𝑚𝑚{𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3}) be the joining location 
2: for 𝑘𝑘 =  1: 3  
3: Subroutine 𝑱𝑱𝑱𝑱 (𝑱𝑱,𝑳𝑳, (𝒊𝒊𝒂𝒂, 𝒋𝒋𝒂𝒂), (𝒊𝒊𝒃𝒃, 𝒋𝒋𝒃𝒃)) 
4: calculate the number of moves needed to bring the 

first two loads in the combination to 𝐽𝐽 and 𝐿𝐿 for 𝑀𝑀1(𝑘𝑘) 
moves. 

5: calculate the number of moves needed to bring these 
two loads jointly to the (𝑟𝑟, 𝑞𝑞) for 𝑀𝑀2(𝑘𝑘). 

6:  𝐿𝐿2 ≔ (𝑟𝑟 + 𝑖𝑖𝑙𝑙−𝑟𝑟
(𝑖𝑖𝑙𝑙−𝑟𝑟)+(𝑗𝑗𝑙𝑙−𝑞𝑞)

 , 𝑗𝑗 + 𝑗𝑗𝑙𝑙−𝑞𝑞
(𝑖𝑖𝑙𝑙−𝑟𝑟)+(𝑗𝑗𝑙𝑙−𝑞𝑞)

). 

7:  calculate the number of moves needed to bring the 
third load (𝑖𝑖𝑙𝑙 , 𝑗𝑗𝑙𝑙), to 𝐿𝐿2 for 𝑀𝑀3(𝑘𝑘). 
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8:  𝑀𝑀(𝑘𝑘): = 𝑀𝑀1(𝑘𝑘)  + 𝑀𝑀2(𝑘𝑘)  +  𝑀𝑀3(𝑘𝑘). 
9: end for 
10: pick the combination 𝑘𝑘: = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴{𝑀𝑀(𝑘𝑘)| 𝑘𝑘 = 1,2,3}. 
11: move the loads jointly from (𝑟𝑟, 𝑞𝑞) to the I/O point. 
 

In the heuristic method for three loads, usually, an intermediate joining location 

is established for combining two loads, in order to minimize the individual moves 

and maximize dual-load moves. Theorem 2 shows the number of moves required to 

retrieve the loads after they become adjacent. For more loads, the algorithm can be 

extended using the same approach. 

 

Theorem 2: The minimum number of moves to retrieve three adjacent loads in a 

puzzle system is: 

9𝑖𝑖 + 5𝑗𝑗 − 11 𝑖𝑖 > 𝑗𝑗 
14𝑖𝑖 − 13 𝑖𝑖 = 𝑗𝑗, 𝑗𝑗 = 3,6,9, … 
14𝑖𝑖 − 6 𝑖𝑖 = 𝑗𝑗 − 1, 𝑗𝑗 ≠ 4,7,10, … 
14𝑖𝑖 − 1 𝑖𝑖 = 𝑗𝑗 − 2, 𝑗𝑗 = 4,7,10, … 
14𝑖𝑖 + 8 𝑖𝑖 = 𝑗𝑗 − 3, 𝑗𝑗 = 4,7,10, … 
9𝑗𝑗 + 5𝑖𝑖 − 17 O.W. 

where (i, j) is the location of the load closest to the I/O point and loads are 

horizontally aligned, having the escort behind them. 

Proof: The proof is similar to theorem 1. Again, the moves of the first load are 

tracked, and the other two loads follow it. The only difference is that the loads move 

using 7-moves and 9-moves due to an extra load.  

■ 

According to the symmetric property stated in Observation 2, the same approach 

applies to the case of the vertically aligned loads. The formulation is as follows: 
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9𝑗𝑗 + 5𝑖𝑖 − 11 𝑗𝑗 > 𝑖𝑖 
14𝑗𝑗 − 13 𝑗𝑗 = 𝑖𝑖, 𝑖𝑖 = 3,6,9, … 
14𝑗𝑗 − 6 𝑗𝑗 = 𝑖𝑖 − 1, 𝑖𝑖 ≠ 4,7,10, … 
14𝑗𝑗 − 1 𝑗𝑗 = 𝑖𝑖 − 2, 𝑖𝑖 = 4,7,10, … 
14𝑗𝑗 + 8 𝑗𝑗 = 𝑖𝑖 − 3, 𝑖𝑖 = 4,7,10, … 
9𝑖𝑖 + 5𝑗𝑗 − 17 O.W. 

 

2.4. Numerical Results  
To evaluate the performance of the multiple load retrieval method presented in this 

chapter, we here compare the total number of moves required to retrieve the loads 

with single load retrieval method. All calculations are done in MATLAB. 

For any given system size, two unique locations are randomly generated. These 

random locations represent requested loads. For the case of three-load retrieval, 

three unique locations are randomly generated. The numbers of steps required for 

retrieval of these loads by different methods are calculated. This is repeated for 100 

instances. 

Table 4 compares the dual-load retrieval method to individual retrieval and 

shows savings the dual-load retrieval method can obtain. AvgSL and AvgDL are 

the averages of the total number of moves in single-load and dual-load retrieval, 

respectively. The maximum savings are obtained when the loads are positioned at 

(1, N) and (1, N-1). The average saving is calculated as (AvgSL- AvgDL)/ AvgSL 

× 100%. According to Table 4, for large values of N, the maximum savings are 

about 33% and the average savings are about 17% of the number of moves needed 

for individual retrieval. Note that the savings for small systems are higher than for 

large systems. This is caused by the effect of the second empty spot that appears 

next to the I/O point, after the first load has been retrieved, and which makes the 
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distance of the second load to the I/O point one unit shorter. This effect disappears 

for systems larger than 10. 

 
Table 4. Savings for the optimal dual-load retrieval compared to individual retrieval. 

N AvgSL AvgDL Max savings (%) Avrg. savings (%) 
5 31.3 24.5 41 20 
7 45.6 36.4 38 20 

10 82.5 65.8 35 19 
15 129.2 105.9 35 19 
20 157.4 129.5 34 18 
50 437.1 367.3 33 17 

100 911.5 755.6 33 17 
 

 
Figure 8. Savings achieved for a given first load located at (a) (1,10), and  (b) (5,5), and the 
second load is at (𝑖𝑖, 𝑗𝑗). 

 

Based on the experiment and Figure 8, we can make the following observation. 
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Observation 3:  when one load is located at (1,j) for j=1..N and the other load at 

(i,1) for i=1..N, savings in dual-load retrieval are not significant (see Figure 8(a)). 

Apparently, too many single-load moves are required before the loads become 

adjacent. On the other hand, when the loads are located at (1,j) and (1,j-1) for j=1..N 

or (i,1) and (i-1,1) for i=1..N, savings are substantial. This is due to the fact that they 

are already adjacent, and they are located at the very end of the grid.  

 

Table 5 shows the saving that can be obtained by the three-load retrieval method, 

as compared to individual retrieval. AvgTL is the averages of the total number of 

moves in three-load retrieval. The maximum saving is calculated when the loads are 

located at (1, N) and (1, N-1). The average savings are shown in the last column. 
 
Table 5. Savings for three-load retrieval heuristics. 

N AvgSL AvgTL Max savings (%) Avrg. savings (%) 
5 41.6 29.1 59 30 
7 75.3 54.2 52 28 

10 113.4 83.5 49 26 
15 179.5 134.6 47 25 
20 254.8 193.9 46 24 
50 886.9 682.3 45 23 

100 1683.1 1296.4 45 23 
 

Savings achieved by three-load retrieval shows significantly better performance 

than single-load. Based on the results, the performance is on average 6% higher than 

the dual-load retrieval. The values converge as the size of the system grows. 
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2.4.1. A Parking Lot Case Study  
In the numerical study, we considered random load requests. However, in a real 

system, where a pool of retrieval requests is available, there is an opportunity to 

group the loads that are close together and gain higher savings. To demonstrate such 

benefits and to illustrate the effect of joint retrieval in practice, we apply the multiple 

load retrieval method to a medium-sized car parking system. We consider a 10×10 

and a 20×20 single-tier puzzle-based car parking system (total capacity of 99 and 

399 cars respectively), where the size of each shuttle is 2.5×4.8 m (see multi-story 

car parks, 2016). The shuttle speed is 52 m/min in x-direction and is 100 m/min in 

y-direction. Given these specifications of the system, each move in both directions 

takes 2.88 seconds. Therefore, although the system’s shape is rectangular (25×48 m 

and 50×96 respectively), it is square in terms of travel time. The system follows the 

dual-load retrieval method when possible. We assume always 3 people are waiting 

to retrieve their car with a flexible first-come first-served policy, which means for 

every retrieval, we take the first car request and pair it with the closer one of the 

other two car requests. The parking lot operates 24/7 and we perform a Monte Carlo 

simulation for 1000 random car requests. Table 6 shows the time it takes to retrieve 

cars individually and in pairs. The total retrieval time for 1000 cars using the dual-

load retrieval method is 23.59 hours for the 10×10 105.44 hours for the 20×20 case. 

On the other hand, the total retrieval time using the individual retrieval method is 

30.80 and 132.78 hours respectively. Thus, we can obtain at least 20% improvement 

in total retrieval time using the dual load retrieval method. This basically means 

more than 7 hours less retrieval time on a daily basis. Note that these savings are 

even higher than the average saving for the random case in Table 4, as we first 

examine the location of the three retrieval request and then pair the closer cars.  
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Table 6. Savings for a real car parking system. 

Number 
of Bays 

Individual 
retrieval time (h) 

Dual-load 
retrieval (h) 

Average 
saving (%) 

 99   30.80   23.59 23 
399 132.78 105.44 20 

 

2.5. Conclusions  
Puzzle-based storage systems are fully automated, unit-load, high-density storage 

systems that pair a small footprint with high efficiency in retrieval. In this chapter, 

we first proposed an optimal dual-load retrieval method that, compared to single-

load retrieval, saves on average 17 % in retrieval time by bringing the loads first 

together to an optimal joining location. In addition, a heuristic method is proposed 

for retrieving loads in pairs that finds a near-optimum solution much faster. This 

heuristic is then extended to retrieve three and more loads. For three-load retrieval, 

the results show that on average a 23% saving can be achieved compared to single-

load retrieval. Puzzle-based storage systems are still quite rare in practice. However, 

as the technology becomes less expensive, space becomes scarcer, and as we move 

into a 24/7 economy, these systems provide a great opportunity to provide high 

fulfillment performance. Our algorithms and insights can help to realize such high 

performance, by properly grouping requests and retrieving them jointly. 

This chapter makes some assumptions which may be relaxed in future research. 

First, we study retrieval of loads on a single storage tier. In multi-tier systems, our 

results will apply per tier. Second, we assume a single escort. Extension of exact 

results to systems with multiple escorts is not straightforward, but heuristics results 

may be possible. Third, the proposed algorithms can be embedded in a simulator to 

obtain the cycle time savings of different system configurations. Last, we assume 
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loads move only one step at a time, and only one load can move at a time. This 

assumption is valid, depending on the type of mechanical retrieval system, but it 

may be possible to extend results to systems with simultaneous load movements. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Chapter 3 

 

The Impact of Integrated Cluster-based 

Storage Assignment in Automated 

Warehouses 
 

3.1. Introduction 
Warehouses decouple supply from demand in supply chains. In order to make the 

warehouse operation more efficient, focus on the order picking process is a prime 

candidate. Order picking is the most labor-intensive process in a manual warehouse 

and the most capital intensive in an automated warehouse (Goetschalckx and 

Ashayeri, 1989; De Koster et al., 2007) and it may take up to 60% of the labor 

activities (Coyle et al., 1996). In manual warehouses, travel time is typically 
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responsible for almost half of the order picking time (Tompkins et al., 2010). The 

storage assignment policy, which determines how the products are assigned to 

storage locations, influences the order picking efficiency. Several storage 

assignment policies are used in practice to improve the order picking. Below, we 

review the main policies. 

The random storage policy is the most commonly used policy and has been 

widely studied in the literature (Hausman et al., 1976; Bozer and White, 1984; De 

Koster et al., 2008). In such a system, products are randomly allocated to the 

available storage locations. The class-based (ABC) storage policy considers two 

product attributes to assign products to storage locations, namely turnover speed 

and storage space needed. The turnover speed of a product refers to how often it is 

ordered in a certain period of time and the storage space needed refers to the average 

amount of space that is required to store the inventory of the product. The COI 

(Cube-per-Order Index) is a measure that is used to rank the products based on these 

two attributes. The COI determines how frequently a product is requested per unit 

of stock space required (Heskett, 1963). In ABC storage, products are first classified 

into several turnover frequency classes (commonly two or three) based on their COI. 

Then, the product class with the highest COI is assigned to a block of storage 

locations (a storage zone) which is most readily accessible. Within each zone, 

products of the same class are assigned randomly to the locations of the storage 

zone. In the full turnover-based (FTB) policy, products are sorted in descending 

order based on COI and assigned to storage locations that are sorted in ascending 

order based on the travel distance to the depot.  

Compared to random storage, ABC and FTB policies can reduce picking travel 

time substantially by considering the product turnover. However, they ignore the 



Chapter 3. The Effect of Integrated Cluster-based Storage Assign.                                   43 

affinity between products in the orders. The affinity of two products is defined as 

the “correlation” of two products in customer orders, i.e. how frequent two products 

are ordered together. Next to turnover and storage space needed, affinity is another 

important attribute of the products, which is derived from order history and/or 

demand forecast. If this attribute is ignored in the assignment, two products that are 

frequently requested together (e.g. peanut butter and jelly) might be assigned to 

storage locations far from each other. This might unnecessarily increase the order 

picking time. By measuring the affinity between every two products, it is possible 

to cluster them in a number of groups based on this correlation. These clusters then 

can be allocated to the storage locations to reduce the order picking time. 

 

(a)  (b)  (c)  

Figure 1-(a) An Amazon Robotics robot carrying a pod, (b) An AS/R system, (c) A storage 
bin with nine sub-bins 

 

In robotic mobile fulfillment (RMF) systems, products are typically stored on 

mobile inventory pods, each holding several dozens of products. When a product is 

needed for a customer order, the entire inventory pod is transported to a picking 

station by a robot (Lamballais et al., 2019). An inventory pod carried by a robot is 
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shown in Figure 1(a). The system can benefit if the products ordered together 

frequently are clustered on the same pod. Another example can be found in AS/R 

(Automated Storage and Retrieval) systems, where multiple small products may be 

stored in the same bin, each in a sub-bin. Figure 1(b) shows an AS/R system with 

aisle-captive cranes and products stored in bins. Figure 1(c) shows a storage bin 

with nine sub-bins, each containing a different product. Picking products of an order 

requires visits of the crane to the bins that store the requested products. The number 

of visits to the bins can be reduced by storing highly correlated products in the same 

bin. 

The dominant approach in the literature, which decomposes the travel time 

minimization problem into a clustering problem and an allocation problem, consists 

of two sequential steps. In the first step, products are clustered based on their 

correlation. In the second step, the products in a cluster (i.e. a pod or a multi-product 

bin) are assigned to locations close to each other. Note that optimizing both 

problems in the decomposition approach does not guarantee an overall optimal 

solution. We show this by using an illustrative example. Assume that four products 

A, B, C, and D are stored in a warehouse. A small set of customer orders is given: 

{AC, ABD, BC, AD, ABD, AC, BC, AB, BC, AD, ABD}, with resulting popularity 

of 8, 7, 5 and 5 for products A, B, C, and D, respectively. Each cluster can contain 

two products. Clustering them using the decomposition approach leads to the 

following result. The most popular product is A, which has the highest correlation 

with D, namely 5 times requested jointly. Therefore A and D form the first cluster 

and B and C form the second cluster. The first cluster with the total popularity of 13 

is allocated to the first storage location at 1 distance unit from the depot and the 

second cluster with the total popularity of 12 is allocated to the second storage 
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location at 2 distance units. Picking all orders, for example, in an AS/R system 

sequentially, requires 26 distance units travel, whereas by swapping the locations of 

the clusters, the travel distance is reduced to 25 units. 

In this chapter, we propose a new Integrated Cluster Assignment (ICA) storage 

assignment policy that minimizes the total order retrieval time by considering both 

product turnover and affinity concurrently. In particular, we consider storage 

systems where each storage location (e.g. storage bin) accommodates multiple 

products. 

Note that randomness is not always harmful. Next to the benefits such as easy 

implementation and replenishment, random and ABC storage policies provide 

higher space efficiency. This is possible due to the fact that products can share the 

storage space in such systems. According to Hausman et al. (1976) and Rosenblatt 

and Eynan (1989), for an infinite number of products per storage class, the required 

storage space per product is equal to the average inventory level. Therefore, for a 

limited number of products, the required storage space varies between the quantity 

ordered from the supplier and the average inventory level (Yu et al., 2015). In the 

literature, the space-saving effect of the random and ABC policies compared to an 

FTB policy is either ignored (Heskett, 1963, 1964) or underestimated (Hausman et 

al., 1976; Eynan and Rosenblatt, 1994; Yu and de Koster, 2009). Space sharing has 

a high impact on space requirements and consequently on the dimensions of the 

system and travel times. In order to provide a realistic and more accurate comparison 

of different systems, we include the space sharing in our numerical experiment. This 

is further explained in section 3.4.1. The remainder of this chapter is structured as 

follows. Section 3.2 reviews the literature on storage assignment policies based on 

product affinity and turnover. In section 3.3, we introduce the mathematical model. 
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Section 3.4 describes extensive numerical experiments in order to evaluate the 

performance of the proposed policy. In section 3.5, the results and managerial 

implications are discussed. 

 

3.2. Literature Review  
In this section, we first review the literature on general storage assignment policies 

and then focus on cluster-based storage assignment. 

 

3.2.1. General Storage Assignment  
A storage assignment policy determines the allocation of products to storage 

locations. It determines the responsiveness of the warehouse and consequently the 

supply chain (Roodbergen and Vis, 2009). Hausman et al. (1976) and Graves et al. 

(1977) compare the performance of an automated storage system for three storage 

policies, namely random, ABC and FTB. The results show that turnover based 

policies perform better for a unit load warehouse. While the FTB assignment has 

the lowest expected travel time, the ABC assignment offers comparative benefits 

too, as it allows weaker assumptions regarding the product turnover frequencies 

(they do not have to be constant). Yu et al. (2015) prove that the FTB policy is not 

optimal if the total required storage space does not equal the average inventory level 

of all products. In fact, given a finite number of products, a small number of storage 

classes already provides the minimum picking travel time. Since it balances the need 

for extra storage space that more storage classes require, with the travel time saving 

due to better storage slotting of the faster moving products. Weidinger and Boysen 

(2018) propose a scattered allocation that spreads the units of the products in the 

warehouse to increase the chance for the picker to have the next item in the pick run 
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close by. Lamballais et al. (2019) study the effect of spreading the inventory of a 

product among multiple pods on order throughput time in an RMF system. 

 

3.2.2. Cluster-based Storage Assignment  
Products in customer orders may be correlated and it may not be optimal to assign 

the premium locations to products with higher turnover. Some researchers (Frazelle, 

1989; Sadiq et al., 1996; Ballou, 2004) have looked into family-group based 

assignment policies, where certain products can be grouped and allocated to a 

subsection of the warehouse according to some shared properties. This strategy is 

common in retail warehouses, where the objective is to load the roll cage used in 

the store replenishment such that the shelf replenishment time within the stores is 

minimized. Amirhosseini and Sharp (1996) introduce several measures to find the 

correlation between products. An optimal assignment is possible by enumerating all 

assignment combinations pairs, which only works for warehouses with a very small 

number of products. Frazelle (1989) proposes a heuristic for the stock location 

assignment problem (SLAP) that minimizes the order picking travel time by looking 

at the correlation between products. He applies a decomposition approach. In the 

first step, products are sequentially clustered, beginning with the most popular 

products and adding the highest correlated products until the capacity of the cluster 

is reached. In the second step, clusters with the highest total popularity are allocated 

to the closest available locations. Amirhosseini and Sharp (1996) propose another 

decomposition approach using a simultaneous clustering heuristic, in which two 

clusters with the highest correlation merge repeatedly until they reach the maximum 

allowed size. Zhang (2016) creates storage clusters using a so-called ‘sum-seed’ to 

calculate the correlation between all the remaining SKUs and those allocated to the 
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cluster. He also introduces a ‘static-seed’ that selects an SKU with the biggest 

turnover frequency as the seed and assigns products with the highest correlation 

with the seed to the current cluster. 

Sadiq et al. (1996) consider a correlated assignment in a dynamic environment 

and propose the dynamic Stock Location Assignment Algorithm (SLAA) that 

addresses product re-slotting when demand changes and product life cycles are 

short. They show that SLAA performs better than a static COI rule. They use a two-

step hierarchical clustering that improves the clusters. Sharp et al. (1998) propose a 

heuristic that improves existing hierarchical clustering algorithms. It is used to 

assign an assortment of up to 700 products. Garfinkel (2005) studies correlated 

storage for zone picking, where products are assigned to the zones based on their 

correlation, in order to minimize the number of zones visited for all orders. Jane and 

Laih (2005) define similarity measurement as co-appearance of two items in the 

order set and use it to spread similar items over different zones. They maximize the 

utilization of a ‘synchronized’ zone order picking system by formulating an integer 

program and solving it using a heuristic. Xiao and Zheng (2012) compute item 

correlation from the bill of materials (BOM) and use it in a mathematical model to 

minimize zone visits. They use heuristics and a genetic algorithm to solve the model. 

Xiao and Zheng (2010) use the same correlation measure and present a 

mathematical model to minimize the travel distance of BOM tours in the production 

warehouse. 

Rao (1971) and Hansen and Jaumard (1997) use a mixed-integer program to 

assign products to cluster so that the total affinity in the clusters is maximized. Such 

a model can be used in the first step of the decomposition approach since it does not 

allocate the products to storage locations. Liu (1999) looks at these different 
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clustering techniques and proposes a primal-dual algorithm to solve the general 

clustering model as formulated by Rao (1971). Chiang et al. (2011) propose the 

mining-based storage assignment approach (DMSA) that uses a fitness value that is 

a function of correlation, turnover, and distance as an association index. Chiang et 

al. (2014) introduce a new measure for correlation between products called weighed 

support, which is then maximized by applying two heuristics. First, the modified 

class-based heuristic (MCBH) maximizes the aggregated score within each storage 

zone, and then the association seed-based heuristic (ASBH) maximizes the 

aggregated score within each aisle. Bindi et al. (2009) take a data mining approach 

to define a similarity measure that is used in a clustering algorithm and assignment 

rules. They show in a case study that a similarity-based strategy performs better than 

class-based and random strategies. Li et al. (2016) use a product affinity-based 

technique in a dynamic storage assignment problem (DSAP). A greedy genetic 

algorithm (GA) is used to solve the mathematical model that maximizes the total 

affinity between products of each zone and the total weighted popularity (a higher 

weight is given to zone A compared to zone B and C). Table 1 shows an overview 

of the previous studies on cluster-based assignment policy and highlights the 

research gap.  

Table 1. Overview of papers using a cluster-based storage assignment policy. 

Paper Approach Solution Objective 
Garfinkel (2005) Decomposition Heuristic Number of zone visits 
Frazelle (1989) Decomposition Heuristic, sequential 

clustering 
Travel time 

Jane and Laih (2005) Decomposition Heuristic Zone picking utilization 
Zhang (2016) Decomposition Heuristic, sum/static seed Travel distance 
Xiao and Zheng (2010) Decomposition Multi-stage heuristic Travel distance 
Xiao and Zheng (2012) Decomposition Heuristic, GA Zone visits 
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Liu (1999) Decomposition Heuristic Sum of similarity 
measure 

Chiang et al. (2011) (partly) 
Integrated 

Heuristic, DMSA Sum  of fitness values  

Chiang et al. (2014) Decomposition Heuristic, MCBH, and 
ASBH 

Weighed support 
score/travel distance 

Li et al. (2016) (partly) 
Integrated 

Heuristic, DSAP-GA Sum of affinity and 
turnover/travel distance 

Amirhosseini and 
Sharp (1996) 

Decomposition Heuristic, simultaneous 
clustering 

Travel distance 

Sharp et al. (1998) Decomposition Heuristic Travel distance 
Sadiq et al. (1996) Decomposition Heuristic, SLAA Travel time 
Bindi et al. (2007) Decomposition Heuristic Travel distance 
This chapter Integrated ICA / heuristic Total travel time/ 

number of bin visits 

 
The studies summarized in Table 1, improve the storage assignment by using 

affinity between products. The contribution of this chapter is to introduce an 

integrated approach that considers both product turnover and affinity 

simultaneously to the storage assignment problem. Additionally, we show for which 

order and product characteristics an ICA policy is beneficial compared to turnover 

frequency-based policies as well as compared to decomposition approaches. Partly 

integrated approaches in the literature combine the information regarding the 

affinity, turnover, and distance into a simplified fitness value. These three sets of 

information have the same weight in the optimization model. In contrast, this 

chapter concurrently uses this information in an integrated model, which allocates 

the products to storage locations while assigning them to the clusters at those 

locations. In addition, we consider the effect of space sharing to evaluate the impact 

of storage policies taking into account the capacity constraints. In the next section, 

a mathematical model is proposed for the integrated approach. 
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3.3. Problem Description and Mathematical Formulation  
To reduce the order picking travel time, products can be clustered in the storage area 

based on the correlation observed in the order history. Products of each cluster are 

assigned to a bin consisting of multiple sub-bins. We make the following 

assumptions: 

• Each product is assigned to only one cluster. 

• Each storage location (e.g. bin) consists of multiple sub-locations (e.g. sub-

bins) accommodating multiple products 

• The order history is sufficiently large to accurately capture product turnover 

and affinity.  

• Products are picked by order. 

• The retrieval machine (i.e. AS/R crane or a robot) brings an entire storage 

bin or pod to the depot.  

We propose a mathematical model for the integrated cluster-assignment policy 

that uses historical order set O to allocates product 𝑖𝑖 ∈ 𝑃𝑃 to the cluster (a storage bin) 

at location 𝑙𝑙 ∈ 𝐿𝐿, in order to minimize the total retrieval time. The following notation 

is used. 

Parameters: 
P The set of available storage locations in the system. 

I is the set of products in the assortment, 

𝒪𝒪 is the set of given orders over a certain period of time, 

Cp The number of sub-locations (sub-bins) available in the cluster (bin) at location 𝑝𝑝 ∈

 𝑃𝑃. 

𝜇𝜇𝑖𝑖 The number of sub-bins needed to store the required inventory of product i ∈ I. 

𝜏𝜏𝑝𝑝 The one-way travel time from the I/O point to location p ∈ P. 
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Variables: 
𝑥𝑥𝑖𝑖𝑖𝑖 =1 if product i ∈ I is assigned to the cluster at location p ∈ P, xip =0 otherwise. 

𝑦𝑦ℴ𝑝𝑝  =1 if picking order ℴ ∈ 𝒪𝒪 requires a visit to location p ∈ P, 𝑦𝑦ℴ𝑝𝑝 = 0 otherwise. 

 
The proposed ICA mathematical model is as follows:  

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝜏𝜏𝑝𝑝𝑦𝑦ℴ𝑝𝑝
𝑝𝑝∈𝑃𝑃 ℴ∈𝒪𝒪

 (2) 

Subject to  

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

= 1 , ∀𝑖𝑖 ∈ 𝐼𝐼 (3) 

�𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼

≤ 𝐶𝐶𝑝𝑝, ∀𝑝𝑝 ∈ 𝑃𝑃 (4) 

𝑦𝑦ℴ𝑝𝑝 ≥ 𝑞𝑞𝑖𝑖ℴ𝑥𝑥𝑖𝑖𝑖𝑖, ∀𝑖𝑖 ∈ 𝐼𝐼,∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃 (5) 

𝑥𝑥𝑖𝑖𝑖𝑖  = 0,1, ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃 (6) 

𝑦𝑦ℴ𝑝𝑝 = 0,1, ∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃 (7) 

 
The objective function (2) minimizes the total travel time to pick all customer 

orders. This travel time depends on the clustering and allocation of the products in 

the model. The objective forces products with high affinity to be assigned to the 

same cluster and products with higher turnover frequency will be stored closer to 

the depot. The ICA model uses the information of customer demand in the data 

history, 𝑞𝑞𝑖𝑖ℴ, which basically provides necessary information on affinity and turnover 

frequency to cluster and allocate the products. Constraint (3) ensures that each 

product is assigned to exactly one storage location. Constraint (4) ensures that the 

capacity of each storage location is not exceeded. Constraint (5) guarantees 

necessary visits to storage locations of the requested products for all customer 
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orders. Constraints (6), (7) define the binary variables. The storage assignment 

strategy resulting from the ICA model is called the “ICA policy” in this chapter. 

 

3.3.1. Solution Approaches  
In terms of complexity, this model essentially consists of two problems, namely 

clustering and assignment of the products. Since the assignment problem is 

comparable to the bin packing problem which is proven to be NP-hard (Garey and 

Johnson, 1979), it can be shown that the ICA model is NP-hard too. The solution 

approach is a combination of a greedy heuristic and a general optimization solver. 

In order to speed up the solution process and reduce the optimality gap, we use an 

effective heuristic to generate an initial solution that is used by the solver. Solution 

approaches in the literature (see Table 1) generally decompose the problem into two 

sub-problems, clustering the correlated products and then assigning the clusters to 

the storage locations or to the zones. These methods are developed for manual 

warehouses and are not directly applicable to an automated warehouse. We adopt 

this reasoning and develop a sequential heuristic approach fit for part-to-picker 

warehouses that alternates between assignment and clustering, in Section 3.3.2. We 

use this heuristic as a benchmark to the performance of the ICA model.  

 

3.3.2. A Sequential Alternating (SA) Heuristic  
In this section, we develop a fast heuristic solution, inspired by existing picker-to-

part sequential methods (Garfinkel, 2005; Zhang, 2016), but adopted to part-to-

picker systems. In order to consider both turnover frequency and affinity of the 

products, the heuristic alternates between assigning products to locations and 

clustering products together. Clusters may defined according to several affinity 
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measure (see Amirhosseini and Sharp, 1996). We define the affinity between 

products 𝑖𝑖 and 𝑗𝑗 as follows. 

𝜌𝜌𝑖𝑖𝑖𝑖 =
∑ 𝑞𝑞𝑖𝑖ℴ × 𝑞𝑞𝑖𝑖ℴℴ∈𝒪𝒪

|𝒪𝒪|
, 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, 𝑖𝑖 < 𝑗𝑗, (1) 

where 𝑞𝑞𝑖𝑖ℴ = 1 if order ℴ ∈ 𝒪𝒪 contains a request for product i ∈ I, 𝑞𝑞𝑖𝑖ℴ = 0 otherwise. 

This heuristic is described in Algorithm 1. Note that empty bins are preassigned 

to locations, so we refer to the, as locations. Let the storage location set 𝐿𝐿 be sorted 

based on increasing distance to the depot. Each storage location consists of multiple 

sub-locations that can house a cluster of products. The algorithm assigns the product 

𝑖𝑖 with the highest turnover frequency to an available sub-location at the location 

closest to the depot. Then, while the remaining capacity of the location allows, 

products with the highest affinity with the assigned product, 𝜌𝜌𝑖𝑖𝑖𝑖 , are added to this 

cluster. The capacity of the location and the set of unassigned products are updated 

each time. In the case of more than one product with the highest correlation with 𝑖𝑖, 

product 𝑗𝑗 with the highest 𝜏𝜏𝑖𝑖 is selected (Line 13). If a product is not correlated with 

any other product (Line 14), a product with the highest turnover frequency is 

assigned to the respective cluster. In this way, highly correlated items are clustered 

while popular products are assigned to locations closer to the depot. This procedure 

is repeated until all the products are assigned to locations and clusters.  

Algorithm 1: Pseudocode for a sequential alternating (SA) heuristic 

1: input P, 𝜏𝜏𝑝𝑝, Cp, 𝜇𝜇𝑖𝑖, I and 𝒪𝒪 
2: for each product 𝑖𝑖 ∈ 𝐼𝐼 
3:  Compute the turnover frequency Fi over 𝒪𝒪. 
4: end for 
5: Λ=: set of products i ∈ I sorted in descending order of Fi. 
6: Π=: set of locations p ∈ P sorted in ascending order of 𝜏𝜏𝑝𝑝. 
7: for each pair of products 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼 
8:  Compute the affinity ρij. 
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9: end for 
10: while 𝛬𝛬 ≠ ∅ do 
11: Assign the first 𝑖𝑖 ∈  𝛬𝛬 to the first 𝑝𝑝 ∈  𝛱𝛱, 𝑥𝑥𝑖𝑖𝑖𝑖 = 1. 
12: 𝛬𝛬 =  𝛬𝛬 − {𝑗𝑗}. 
13: 𝐶𝐶𝑝𝑝 = 𝐶𝐶𝑝𝑝 − 𝜇𝜇𝑖𝑖. 
14: while Cp > 0 do 
15:  Select 𝑗𝑗 ≔ Argmax{𝜌𝜌𝑖𝑖𝑖𝑖|𝑗𝑗 ∈ 𝛬𝛬, 𝜇𝜇𝑗𝑗 < 𝐶𝐶𝑝𝑝}. 
16:  if 𝑗𝑗 is not unique then 
17:    assign the product with highest 𝐹𝐹𝑗𝑗 to location𝑝𝑝, 𝑥𝑥𝑗𝑗𝑗𝑗 = 1. 

18:  elseif 𝜌𝜌𝑖𝑖𝑖𝑖 = 0 then 
19:    Assign the first 𝑗𝑗 ∈  𝛬𝛬|𝜇𝜇𝑗𝑗 < 𝐶𝐶𝑝𝑝 to location p, 𝑥𝑥𝑗𝑗𝑗𝑗 = 1. 
20:  else Assign j to location p, 𝑥𝑥𝑗𝑗𝑗𝑗 = 1. 
21:  endif 
22:  𝛬𝛬 =  𝛬𝛬 − {𝑗𝑗}. 
23:  𝐶𝐶𝑝𝑝 = 𝐶𝐶𝑝𝑝 − 𝜇𝜇𝑗𝑗. 
24: end while 
25: Π = Π – {p}. 
26: end while  
27: return all 𝑥𝑥𝑖𝑖𝑖𝑖. 

 
The ICA model is programmed in AIMMS and solved using Gurobi 7.5. The 

solution generated by Algorithm 1 is used as an initial solution to speed up the 

procedure. Since the problem is NP-hard, large instances are not solvable to 

optimality. Using a machine running windows 7 with 4GB of RAM, we were able 

to solve instances consisting of up to 300 orders and 500 products in a time window 

of two hours. 

 

3.4. Numerical Experiments  
In this section, we investigate the impact of parameters such as customer demand 

and cluster size on the performance of the ICA policy. Two types of systems are 

studied: we first look at the application of the ICA policy in a conventional 

warehouse where AS/R system is used. Then, we look at the application of the ICA 
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policy in a modern warehouse run by the RMF system, such as Amazon’s. We take 

a realistic approach by including the effect of space sharing in the class-based 

storage system. This leads to smaller storage space and shorter average travel times 

in such systems, compared to FTB and ICA assignment which do not use the storage 

space as flexibly. 

 

3.4.1. Space Sharing in the Class-based System  
We compare the ICA policy with the full turnover-based (FTB), ABC class-based 

storage systems, and the sequential alternating heuristic. Although FTB, the 

sequential heuristic, and ICA storage all have the advantage of more precise 

assignment and shorter travel time, ABC storage has an advantage of space sharing. 

In order to incorporate the space sharing effect in our experiment, we use the 

formula of Yu et al. (2015). They show that the required storage space for product 

i in storage zone 𝑘𝑘 ∈ 𝑍𝑍, where 𝑍𝑍 is the set of the zones, with a given order quantity 

of Qi sub-bins is estimated as: 
𝑎𝑎𝑖𝑖(𝑁𝑁𝑘𝑘) = 0.5(1 + 𝑁𝑁𝑘𝑘−𝜀𝜀)𝑄𝑄𝑖𝑖 , (8) 

where 𝑁𝑁𝑘𝑘 ,𝑘𝑘 ∈ 𝑍𝑍 is the number of items that share storage zone 𝑘𝑘, and 0 < 𝜀𝜀 ≤ 1 is 

the space sharing factor. Safety stock is excluded in all policies. Therefore, the total 

required storage space needed for storing all products is ⌈∑ 𝑎𝑎𝑖𝑖(𝑁𝑁𝑘𝑘)𝑖𝑖 ⌉, expressed in 

the number of sub-bins. Although ε depends on initial inventory, the Pareto demand 

curve, and other factors, it is shown by Yu et al. (2015) that it is fairly constant and 

that it can be estimated between 0.17 and 0.25. We assume 𝜀𝜀 = 0.20 in our 

experiment. The storage space requirement of all items in the class-based policy is 

adjusted according to Equation (8). We calculate the space requirement for the AS/R 

and RMF systems upfront according to the policy. Therefore, the dimensions and 
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travel time of the system are known according to the assortment, inventory and 

storage policy. For instance, in our base example, using a class-based policy 

consisting of two classes, the required space per product (in sub-bins) equals 69% 

and 67% of the economic order quantity for each item in zones A (120 SKUs) and 

B (180 SKUs), respectively. These values are adjusted in the experiments 

accordingly when the number of products or classes changes. Note that for the ICA 

or FTB policies, space cannot be shared, so for each product i space for the whole 

lot size Qi must be reserved. 

 

3.4.2. Sample Generation  
We consider two system configurations for AS/R and RMF systems. A based 

example and a number of scenarios are generated for the experiment.  

 

AS/R system: We consider a single-deep mini-load AS/R system, similar to the 

one demonstrated in Figure 1(b), consisting of one aisle with racks on both sides. 

Figure 2 shows a side view of the racks.  The required one-way travel time in 

seconds to reach each storage location, according to a Chebyshev distance metric, 

i.e. the maximum of vertical and horizontal distance, is used to compute the travel 

time. The black square shows a requested bin which is retrieved by the crane 

traveling on the dashed arrow. The crane drives and lifts/lowers simultaneously. The 

horizontal speed of the S/R crane is 2 m/s and the vertical speed is 0.5 m/s and each 

storage location (slot) is 1 meter wide and 1 meter high. The system dimensions are 

square in time, i.e. the travel times of the crane from the I/O point to the farthest 

horizontal and vertical storage locations are equal. Popular products take up 2 sub-
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bins and less popular products take up 1 sub-bin. We assume the total storage 

capacity is enough to accommodate all products.  

             

             

             

             

I/O             

Figure 2- (a) side view of the rack in an AS/R system showing the storage locations and an 
example travel path of the crane. 
 

RMF system: We consider a robotic mobile fulfillment system, where products 

are stored on pods, grouped in blocks and where the pods are transported using 

robots. Figure 3 shows an example of the system layout in this experiment. It 

consists of six blocks of 10 storage pods. The system is flexible and the number of 

blocks and the number of pods in each block can easily be adapted. A robot travels 

to one of these locations and brings a pod that contains one or more of the requested 

products to the I/O point. The robot returns the pod to its location after picking. The 

black square shows a requested pod. The dashed line shows the path of the robot to 

retrieve the requested load. To avoid deadlocks and reduce congestion, aisles are 

one-directional, except the front and back aisles. To retrieve a pod, the empty robot 

can travel underneath the pods. There are one robot and one pick station. This 

assumption is not limiting the results as we look at the total travel time. The average 

speed of the robot is 1.5 m/s and the required time for a full turn is 2.5s. The time 

needed for lifting or storing a pod is ignored since it is equal across different 

systems. Acceleration and deceleration are also ignored. Each pod is 1×1 meter and 

contains one cluster of products. The inventory level for popular products is 2 slots, 
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and for less popular products 1 slot. The total storage capacity is enough to 

accommodate all products. 

                    
                    
                    
I/O                     
                    
                    
                                          

Figure 3- A top view of the RMF system 
 

Data set and scenarios: In order to evaluate the performance of the ICA policy 

in these two systems, a customer demand data set of a wholesale distributor of office 

products available at Warehouse Science (2018), is used. We create a base example 

of 200 orders that captures the characteristics of this data set such as the average 

order size, turnover, and affinity. Table 2 shows the parameter values for the base 

example and different scenarios based on varying five different parameters: order 

size, assortment, capacity of the bins, the skewness of the ABC curve and the 

affinity between products. Algorithm 2 in the appendix shows how the instances are 

generated. For each instance, we only vary one input parameter at a time. The order 

size has a discrete uniform distribution with the lowest value of 1 and the maximum 

value denoted in Table 2. Next, the number of stock-keeping units (SKUs) in the 

assortment is varied. The number of sub-bins per bin that defines the cluster capacity 

is also varied. We consider four distributions of the ABC curve: random, moderate 

skewness of 20/40, and higher skewness of 20/60 and 20/80. A 20/40 ABC curve 

means 20% of the products account for 40% of the demand. The affinity between 



60                                 Advanced Storage and Retrieval Policies in Automated Warehouses 

products is measured according to Equation (1). We generate instances of zero, low, 

moderate and high affinity by manipulating the chance of ordering a correlated 

product when a specific product is requested. Table 3 shows the frequency of 

affinity scores among all pairs of products for these generated instances. A zero 

affinity which is generated by a set of single-line orders is included to test an 

extreme case.  

Table 2-Parameters related to base example and scenarios of the AS/R and RMF systems 

Parameters Base examples Range for scenarios 
Maximum order size 3 1, 2, 3, 4 
Assortment size (# SKUs) 300 100, 200, 300, 500 
Number of sub-bins per bin 6 (AS/R), 10 (RMF) 1, 2, 4, 6, 8, 16 
Skewness of ABC curve 20/40 Random (20/20), 20/40, 20/60, 20/80 
Affinity Moderate zero, low, moderate, high, very high 

 
Table 3-Frequency per affinity score for the datasets when varying affinity 

ρ Zero Low Moderate High Very high 
0.013 0 0 0 0 2 
0.010 0 0 0 2 6 
0.007 0 0 3 12 34 
0.003 0 268 262 238 995 
0.000 44850 44582 44585 44598 43813 

 

3.4.3. Results of the AS/R Systems  
The order picking travel time of the AS/R system is obtained for all scenarios. The 

execution time to solve the ICA model is limited to two hours per instance except 

for the base model which is run two days to obtain a smaller optimality gap. The 

linear programming (LP) relaxation is used to obtain a lower bound on the solution 
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quality of the ICA algorithm. The execution time of the SA heuristic is a fraction of 

a second. Table 4 shows the results for different scenarios defined in Table 2.  

Table 4-Travel time of different policies (SA, ABC, FTB and ICA) in an AS/R system in 
comparison. 

Scenarios SA (s) ABC (s) FTB (s) ICA (s) * LP Gap 
% 

Savings % 
ICA/SA 

Savings % 
ICA/ABC 

Savings % 
ICA/FTB 

Max order size         
1 434.5 355.2 434.5 433.7 0.0 0.2 -22.1 0.2 
2 647.0 556.1 675.0 560.0 1.7 13.4 -0.5 18.4 
3 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
4 1044.5 994.2 1193.5 856.3 15.9 16.0 13.9 28.3 

Assortment size         
100 648.3 559.5 706.7 555.0 13.2 14.4 0.8 21.5 
200 759.5 719.0 879.2 653.2 10.0 14.0 9.1 25.7 
300 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
500 933.5 945.5 1119.2 725.7 5.4 22.3 23.2 35.2 

Nr. of sub-bins         
(no cluster) 1 2248.0 1758.2 2248.0 2248.0 0.0 0.0 -27.9 0.0 

2 1338.8 1301.5 1645.0 1212.7 10.9 9.4 6.8 26.3 
4 877.8 890.7 1043.5 739.2 6.3 15.8 17.0 29.2 
6 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
8 696.3 706.5 825.7 560.5 9.4 19.5 20.7 32.1 

16 501.3 517.7 639.0 390.0 1.2 22.2 24.7 39.0 
Affinity         

Zero 434.5 355.2 434.5 433.7 0.0 0.2 -22.1 0.2 
Low 880.8 787.2 1044.2 692.2 11.6 21.4 12.1 33.7 

Moderate 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
High 578.0 608.5 702.0 512.0 6.7 11.4 15.9 27.1 

Very high 478.8 576.5 413.5 329.5 0.0 7.9 42.8 20.3 
ABC curve         

20/20 1443.7 1282.2 1567.5 1160.7 10.6 19.6 9.5 25.9 
20/40 1506.2 1353.2 1701.5 1265.2 9.4 16.0 6.8 25.6 
20/60 1421.5 1366.2 1678.0 1295.0 0.0 8.9 5.2 22.8 
20/80 1239.0 1138.2 1460.5 1211.7 12.5 2.2 -6.5 17.0 

*The results in bold print for ICA are optimal values.  

 
The first column in each part of the table shows the parameter varied. The SA, 

ABC and FTB columns show the one way travel time in seconds, for the sequential 
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heuristic, ABC and FTB storage policies, respectively. The solution of the ICA 

model is given in column ICA. The solution gap with the LP relaxation bound, which 

is obtained by relaxing constraint (6) and (7), is given in column LP Gap. The 

savings achieved by applying the ICA policy, compared to the sequential, ABC and 

FTB policies are given in the last three columns. The results for the base example 

are repeated in each part of the table to facilitate the comparison. From Table 4, we 

can make the following observations. 

 

Observation 1: the ICA and SA policies consistently perform equal or better than 

the FTB policy. This is expected since the ICA and SA policies use affinity as a 

complementary criterion next to turnover frequency. In the case of zero affinity (no 

clusters), these policies perform equally. On the other hand, the ICA and SA policies 

do not always outperform the ABC storage. In the instances of zero affinity and a 

highly skewed ABC curve, the ABC policy is preferred over the ICA policy. In 

addition, the ABC policy is preferred over the SA policy, except when the affinity 

between products is high. This is to a large extent due to the space sharing effect in 

the ABC storage which reduces the storage space requirement in the warehouse and 

consequently the travel time.  

 

Observation 2: the relative savings are quite sensitive to the order size. The ICA 

policy outperforms both ABC and FTB policies even for small-sized orders (e.g. for 

orders with maximum 2 lines). This is due to the fact that ICA policy benefits from 

identifying affinity between products in orders and assigns them to the same cluster, 

to reduce travel time.  
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Observation 3: with an increasing assortment, the savings increase. Although 

considering more products implies more travel time for all systems, in larger 

assortments, randomness in the ABC policy becomes a disadvantage and higher 

marginal benefits are observed in the ICA policy. 

 

Observation 4: larger number of sub-bins i.e. larger cluster sizes, increases the 

benefits of the ICA policy. This observation supports the fact that clustering 

correlated products improves the performance of order picking. 

 

Observation 5: the results show that the samples with higher affinity are candidate 

for higher savings when ICA policy is used. In the conditions of no affinity, there is 

clearly no benefit of the policy. When the products are strongly correlated we 

observe higher benefits. 

 

Observation 6: the savings reduce for more skewed ABC curves. Turnover-based 

storage systems such as ABC, have better performance opportunities and suffer less 

from lack of information regarding affinity. 

 

Observation 7: the ICA policy outperforms the SA policy by 13% on average. This 

confirms that when including the affinity between products in the assignment 

model, using an integrated approach brings more benefits than a sequential 

approach. 
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3.4.4. Results of the RMF System  
To obtain the order picking travel time of the RMF system for all scenarios, the 

same execution procedure is used as in section 3.4.3. The results are presented in 

Table 5. In general, the same trends are observed as the results from AS/R systems. 

The key points of these results are that the achievable savings by applying the ICA 

policy increase when affinity, order size, assortment size, and cluster size increases. 

The achievable savings decreases when the skewness of the ABC curve increases. 

This supports the findings in the AS/R system. 

Table 5- Travel time of different policies (SA, ABC, FTB and ICA) in an RMF system in 
comparison 

Scenarios SA (s) ABC (s) FTB (s) ICA (s) * LP Gap 
% 

Savings % 
ICA/SA 

Savings % 
ICA/ABC 

Savings % 
ICA/FTB 

Max order size         
1 3929.0 3200.5 3929.0 3847.2 0.0 2.1 -20.2 2.1 
2 5443.9 4951.8 6241.2 4633.0 0.0 17.5 6.4 25.8 
3 7228.5 6971.0 8573.3 5959.7 7.2 25.2 14.5 30.5 
4 8987.9 8459.2 10579.8 7229.7 21.4 24.3 14.5 31.7 

Assortment size         
100 5756.5 5122.6 6577.7 4956.0 14.5 16.2 3.3 24.7 
200 7228.5 6971.0 8573.3 5959.7 7.2 25.2 14.5 30.5 
300 7561.9 7985.2 9199.5 6038.2 6.2 25.2 24.4 34.4 
500 8758.3 10246.8 10863.8 6557.3 3.7 33.6 36.0 39.6 

Nr. of sub-bins         
4 10281.4 9679.9 11517.7 8648.8 11.2 16.2 10.7 24.9 

10 7228.5 6971.0 8573.3 5959.7 7.2 25.2 14.5 30.5 
16 5661.3 5512.0 6765.7 4593.7 8.4 23.2 16.7 32.1 

Affinity         
Zero 3929.0 3200.5 3929.0 3847.2 0.0 2.1 -20.2 2.1 
Low 7548.3 6769.6 8747.5 6056.5 11.9 24.6 10.5 30.8 

Moderate 7228.5 6971.0 8573.3 5959.7 7.2 25.2 14.5 30.5 
High 4881.5 5130.3 6281.2 4240.2 1.1 15.1 16.2 32.5 

Very high 4350.8 4528.5 5931.3 3867.3 0.0 12.5 14.6 34.8 
ABC curve         

20/20 6961.3 6394.2 7934.5 5508.7 7.2 26.9 13.8 30.6 
20/40 7228.5 6971.0 8573.3 5959.7 7.2 25.2 14.5 30.5 
20/60 6857.6 6082.9 7727.5 5826.5 14.3 24.6 4.2 24.6 
20/80 5961.5 5225.5 6546.7 5136.2 13.2 16.2 1.7 21.5 

*The results in bold print for ICA are optimal values. 
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3.4.5. Sensitivity of the ICA Policy to Changes in Demand 

Pattern 
This section evaluates the performance of the ICA storage policy when the customer 

demand pattern changes. First, the base example dataset is used to assign products 

to the storage locations using the ICA policy, for both the AS/R and RMF systems 

described in section 3.4.2. Then, a number of orders from the base example is 

replaced with new random orders generated following the characteristics of the base 

example such as order size, affinity and the ABC curve, using the method outlined 

in algorithm 3 in the appendix. We do this for 10% up to 100% change in the base 

example orderset. Using Monte Carlo simulation, 100 new order sets are generated 

per scenario, in order to calculate the savings in order picking travel time. 

 

(a) (b)  

Figure 4- Results of the Monte Carlo simulation of savings obtained using the ICA policy in 
(a) AS/R system and (b) RMF system, when the demand is disturbed 
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Figure 4 shows the change of the average saving in the simulation. For each 

scenario, 95% confidence intervals are calculated. Figure 4(a) shows the average 

saving achieved by applying the ICA policy in an AS/R system compared to FTB 

policy (top curve), and class-based policy (bottom curve). The dashed lines show 

the 95% confidence intervals. Figure 4(b) shows the average saving achieved in a 

RMF system. The horizontal axis represents the percentage change in the order set 

compared to the base case and the vertical axis shows the percentage of savings. 

Both graphs show that the ICA policy remains beneficial despite large changes in 

the demand pattern. More specifically, in the AS/R system one can benefit from the 

proposed policy when the customer demand pattern is prone to random changes up 

to 55% and in the RMF system up to 65%. 

 

3.5. Conclusion  
This chapter uses concurrent information on product affinity and turnover frequency 

to develop an integrated cluster assignment (ICA) algorithm. The ICA method may 

be applied in environments where multiple products can be stored on a single 

storage shelf, such as robotic mobile fulfillment systems, where retrieval systems 

retrieve inventory shelves or totes and bring them to pick stations. The model is NP-

hard but can be solved approximately, using a greedy construction heuristic and a 

standard commercial solver. We compare the system retrieval time for the ICA 

policy with those for class-based and full turnover-based policies, taking into 

account the space-sharing effect of class-based storage (which leads to a smaller 

required storage area than the ICA policy). We also compare the ICA policy with a 

sequential alternating (SA) heuristic and conclude that the ICA outperforms the SA 

approach by up to 26%. For the instances we tested, the ICA policy generally leads 
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to shorter retrieval times, even for low and moderate values of product affinity. The 

travel time reduction may be as large as 40% and depends on customer order 

characteristics, in particular, the affinity and the skewness of the product turnover 

frequency curve. We also show that the ICA storage policy is fairly insensitive to 

changes in the composition of the orders (while preserving the conditional average 

affinity and skewness of the ABC curve).  

 

A
ffinity 

H ICA Class-based / ICA 

L ICA / Class-based Class-based 

  L H 
  Skewness of the turnover frequency curve 

Figure 5- A decision typology on storage assignment policy by considering popularity and 
affinity of the products 

 

Figure 5 shows a framework that helps to select the best storage policy, based 

on the skewness of the turnover frequency curve and the conditional average product 

affinity. A low affinity L, means lower than the moderate affinity in the base 

example and a high affinity H, means higher than the moderate affinity in the base 

example. We particularly find that for orders with high product affinity, the ICA 

policy consistently outperforms the ABC and FTB storage strategies. This is shown 

in the top left corner of the framework. In this case, one can slightly benefit even by 

implementing a sequential approach. However, the benefits of ICA are higher than 
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SA. The bottom left corner of the framework shows that the ICA policy is favorable 

in case of orders with low skewness of the turnover frequency curve and a low 

product affinity. However, when the affinity is very low, i.e. for small order sizes, 

class-based storage is preferred which benefits from the space-saving effect. For a 

highly skewed product turnover frequency curve and low affinity level, a class-

based storage policy is recommended. This is shown in the right bottom corner. 

However, if the affinity is very high, a cluster-based assignment can be used, as 

shown in the top right corner. 

Future research should look at a more dynamic storage assignment, in 

combination with a changing assortment. In addition, more efficient solution 

methods may be used to solve the ICA model, e.g. based on metaheuristics, to find 

better product allocations that help to reduce the optimality gap and solve larger 

instances. 
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Appendix 
 

Algorithm 2: Pseudocode for generating the order sets for the base example and 
scenarios 

1: input Order set 𝒪𝒪, maximum order size θ, product set I, 
correlated product  subset Ii’, affinity level indicator* ξ and 
Pareto curve Ω. 
2: while the number of generated orders < |𝒪𝒪| do 
3:  Generate the number of lines ηo from discrete uniform 
distribution U[1, θ]. 
4: Generate SKU 𝑖𝑖 ∈ 𝐼𝐼 according to Ω. 
5: Number of generated SKUs for current order NO=1. 
6: while NO < ηo do 
7:  Generate a random number R from U[0, 1]. 
8:  if R < ξ then 
9:   Generate a SKU from the subset Ii’. 
10:  else generate a SKU from 𝐼𝐼 according to 𝛺𝛺. 
11:  NO= NO+1. 
12:  end while 
13: end while  
14: return generated orders 
*Affinity level indicator is 0, 0.2, 0.6, 0.8 and 0.9 for zero, low, moderate, high and very high affinity levels 
respectively. 
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Algorithm 3: Pseudocode for generating a new order set by changing the base 
example by 𝛥𝛥%, while affinity level is controlled 

1: input Order set 𝒪𝒪, maximum order size θ, product set I, affinity 
level  indicator ξ and Pareto curve Ω, base example 𝒪𝒪�, rate of 
change 𝛥𝛥. 
2: Generated order subset 𝒪𝒪’ with |𝒪𝒪’| = 𝛥𝛥. |𝒪𝒪�| using Algorithm 2. 
3: Replace randomly 𝛥𝛥.|𝒪𝒪�| orders from the base example by 𝒪𝒪’. 
4: Calculate the conditional average affinity* of 𝒪𝒪�, 𝜉𝜉𝒪𝒪� and 𝒪𝒪’, 𝜉𝜉𝒪𝒪’. 

5: Calculate 𝛿𝛿 =  |𝜉𝜉𝒪𝒪� − 𝜉𝜉𝒪𝒪’|  𝜉𝜉𝒪𝒪�� . 
6: while 𝛿𝛿 > 5% do 
7:  Divide 𝒪𝒪’ into 4 chunks. 
8:  Calculate the 𝜉𝜉𝑐𝑐 for each chunk. 
9:  Eliminate the chunk with the largest δc 

10:  Generated a new subset 𝒪𝒪 c’ 
11:  Add 𝒪𝒪 c’ to 𝒪𝒪’ 
12:  Recalculate 𝛿𝛿. 
13: end while 
14: return updated orders 

* The conditional average affinities are calculated for 1 |𝒪𝒪|� < 𝜌𝜌𝑖𝑖𝑖𝑖 < 0.1|𝒪𝒪|, where 𝜌𝜌𝑖𝑖𝑖𝑖 is derived from Formula 1, 

because frequency of affinity levels beyond these limits are either too small or too large. 

 

 

 

 

 

 



 

 

 

 

 

 

Chapter 4 

 

Correlated Dispersed Storage Assignment 

in Robotic Warehouses 
 

4.1. Introduction 
Many warehouses, particularly in ecommerce retail, compete for short order 

throughput times. Order picking time is a critical component of order throughput 

time. It depends on several factors, in particular on the storage assignment policy, 

which defines where the products are stored in the warehouse. Random storage is a 

simple and straightforward policy. However, a product turnover frequency-based 

storage policy, where products with higher turnover frequency are stored closer to 

the depot, typically leads to shorter throughput times. Storage policies such as class-

based storage and full turnover-based storage use the product ranking by turnover 
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frequency. With class-based storage, products are grouped in a number of classes 

and locations are grouped in the same number of storage zones. Products with higher 

turnover speed are grouped in a class and stored in a zone closer to the depot. Within 

a zone, storage is random. The gain from implementing such turnover frequency-

based storage policies is particularly high when orders consist of few products and 

when product turnover speeds are known and relatively constant. For larger orders 

picked from large assortments (or when small orders are picked in batch), it may 

pay off to also focus on correlated storage assignments. Items appearing jointly in 

such orders can be stored close together and, particularly when items are dispersed 

over the storage area, a product may be retrieved in close proximity to another 

product that has to be picked for the same order. Several studies suggest that 

dispersing product units in the warehouse improves the order picking travel time 

(Onal et al., 2017, 2018; Weidinger and Boysen, 2018). When replenishing a 

product, the incoming batch is divided into smaller quantities which are spread over 

the storage area. Spreading products typically requires a higher replenishment 

effort, but it can decrease the average proximity to the next pick location or to the 

pick stations.  

The impact of storage assignment policies, based on the historic turnover 

frequency, correlation of products based on past customer demand and product 

dispersion, on order picking time has been studied in the literature, but usually in 

isolation. This chapter aims to combine these storage assignment decisions and see 

what their joint effect is on the total order retrieval time. Advanced automation 

technologies, such as autonomous shuttles and robots, provide more opportunities 

to take advantage of combined storage policies. Such systems are relatively flexible, 

as the throughput capacity can be adjusted by adding or withdrawing robots. Often, 
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also the storage space is flexible and can be expanded by adding more racks. In a 

robotic mobile fulfillment (RMF) system (Lamballais et al., 2017), like Amazon 

RoboticsTM,  or QuicktronTM by Alibaba, the autonomous robots transport mobile 

storage racks, called storage ‘pods’, to the work stations. Figure 1(a) shows robots 

waiting at the aisle entrance to pick orders. Each storage rack (a “cluster”) contains 

a group of products, which can be clustered based on historical correlation. The 

inventory of each product can be split into smaller quantities and assigned to 

multiple clusters to increase the dispersion in the system. The pod clusters are then 

assigned to storage locations and zones, taking into account turnover frequency. The 

problem is formulated as a mixed-integer program that determines the optimal 

assignment to minimize the expected order picking time. The problem is NP-hard, 

making it impossible to solve real-life instances (with large numbers of racks, 

locations, and products) efficiently. We, therefore, propose a simple construction 

and improvement heuristic to solve large problem instances efficiently. 

A real dataset of a warehouse storing personal care products is used to evaluate the 

performance of the model. Numerical results show that significant improvement in 

order picking retrieval time is achieved compared to commonly used policies in 

practice. The remaining of the chapter is structured as follows. In Section 4.2, 

relevant research on storage policies and warehouse robotics is reviewed. Section 

4.3 introduces the robotic mobile fulfillment system studied in this chapter. Section 

4.4 presents the mathematical model for the correlated dispersed storage policy. 

Section 4.5 discusses the solution approach, and the numerical analysis is presented 

in Section 4.6. Section 4.7 draws conclusions and discusses further research. 
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4.2. Literature review  
This section reviews literature on storage assignment policies in warehouses and 

their application in robotic systems. A vast amount of literature has been dedicated 

to the design and analysis of different storage assignment policies. We therefore 

limit ourselves to data intensive storage policies. De Koster et al. (2007) gives a 

comprehensive review of literature investigating design choices, including storage 

assignment, in manual order picking warehouses. The review paper of Roodbergen 

and Vis (2009) investigates topics such as storage assignment and travel time 

estimation in automated storage and retrieval (AS/R) systems. 

Research on storage assignment policies widely studies the class-based 

assignment that uses the turnover frequency of the products to rank them, group 

them into different classes and to assign these classes to storage locations (Hausman 

et al., 1976; Graves et al., 1977; Zaerpour, Yu and R. B. M. de Koster, 2017; Zou 

et al., 2018). Several studies discuss the optimal number of classes in the class-based 

storage assignment (Van den Berg and Gademann, 2000; Petersen et al., 2004; Yu 

et al., 2015). A full turnover-based assignment uses rules such as the cube-per-order 

index (COI) introduced by Heskett (1963, 1964), to fully rank the products based 

on their turnover frequency per unit of stock space required (e.g. per pallet stored). 

Products at a higher rank are assigned closer to the depot. While some papers 

(Malmborg and Bhaskaran, 1987, 1990) prove the optimality of COI-based storage, 

Yu et al. (2015) prove for finite number of products, a class-based storage with tiny 

number of classes is already optimal. Nearly all papers that study storage assignment 

rules, also study random (or variants, such as closest open location) assignment, 

often as a benchmark to compare with other policies (Petersen et al., 2004; Onal et 

al., 2017, 2018; Weidinger and Boysen, 2018). 
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Correlated storage assignment uses the information of demand correlation 

between products in addition to information on product turnover frequency. The 

correlation, or ‘affinity’, between products, can be calculated in different ways 

based on the joint frequency by which the products occur in a single order (see 

Amirhosseini and Sharp, 1996). One common approach in modeling correlated 

assignment is to sequentially group the correlated products in a number of clusters, 

and assign the clusters to storage locations to minimize the picking travel time 

(Frazelle, 1989; Amirhosseini and Sharp, 1996; Sharp et al., 1998; Zhang, 2016). 

The sequential approach cannot guarantee the optimality of the correlated 

assignment because it decomposes the problem into a clustering and assignment 

problem. A similar approach is to assign correlated products to the same picking 

zone to minimize the number of zone visits in order picking (Garfinkel, 2005; Xiao 

and Zheng, 2012). Conversely, Jane and Laih (2005) assign correlated products to 

different zones, which increases the workers’ utilization. A different approach to 

correlated assignment is with semi-integrated models that define a so-called 

similarity or fitness measure as a function of relevant measures such as correlation, 

turnover, and distance, to assign the products to the optimal storage location (Chiang 

et al., 2014; Li et al., 2016). The performance of these semi-integrated models 

depends on the relevance of the defined fitness values because they maximize the 

sum of the fitness value. Mirzaei et al., (2020) propose an integrated model that 

optimally clusters and assigns products to storage locations to minimize the total 

picking travel time, based on historical demand. 

Dispersed assignment, splitting the inventory of each product and assigning 

them to several locations, also referred to as scattered or explosive storage, may help 

to improve the order picking process. Weidinger and Boysen, (2018) show that 
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evenly spreading product inventory over a manual warehouse, reduces the expected 

travel time of order picking by reducing the expected distance to location of the next 

requested product. When a product needs replenishment, they minimize the 

maximum distance between each pick station and the closest inventory location of 

the product. Lamballais Tessensohn et al. (2019) show that the pod-inventory 

reorder level of products in robotic mobile fulfillment systems (see Section 4.3.1) 

has a significant impact on the throughput time, for the cases of dispersed and non-

dispersed products. They recommend replenishing a pod before the inventory level 

becomes zero. (Onal et al., 2017) split the inventory of a product into several storage 

lots and randomly assign them to as many unique storage locations as possible. They 

show a higher explosion ratio up to 80%, that is the total ratio of the number of 

storage lots to the inventory per product, leads to shorter mean fulfillment time. A 

drawback of the limited existing dispersed assignment methods is that they do not 

consider the information available on the customer demand to optimally spread the 

inventory over the storage area. Using the joint-order correlation between products 

can help to disperse products in such a way that products which are more likely to 

be requested together are assigned in close proximity to reduce the travel time 

between sequential picks of order lines.  

Choices of appropriate storage assignment in automated systems has been 

extensively investigated since the introduction of such systems (Hausman et al., 

1976; Zaerpour et al., 2015; Mirzaei et al., 2017; Zaerpour, Yu and R. de Koster, 

2017; Zou et al., 2018; Lamballais Tessensohn et al., 2019). Azadeh et al. (2019) 

provide an overview of recent developments in automated warehouse systems. 

Storage assignment in robotic and automated warehouses may differ from storage 

assignment in manual warehouses because of technological and operational 
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differences. For instance, in these automated systems, products are stored on 

movable storage units such as bins or pods, which can contain multiple products. 

This means a robot transports the whole storage unit when a product on it is 

requested. The inventory and combination of products on each storage unit has a 

high impact on the order picking performance. This chapter introduces a storage 

assignment method in robotic warehouses that optimally spreads the inventory of 

products over multiple storage units while clustering highly correlated products on 

the same storage unit, to minimize the retrieval time, based on historical customer 

demand. 

 

4.3. System Description  
Section 4.3.1 describes the robotic mobile fulfillment system and introduces the 

assumptions. Section 4.3.2 explains four choices for storage assignment that are 

considered in this chapter to investigate the operational performance of the order 

picking process in robotic systems. 

 

4.3.1. Robotic Mobile Fulfillment Systems  
In part-to-picker robotic mobile fulfillment (RMF) systems, products are stored on 

mobile pods that are transported by automated vehicles. Each pod contains multiple 

stock-keeping units (SKU), each in a compartment at different height levels, 

accessible for a manual picker. The stored pods are grouped in storage blocks. Each 

storage block consists of multiple floor locations that can each store a pod. Figure 

1(b) shows six storage blocks, each consisting of twelve floor locations. The grey 

cells represent the floor locations occupied by pods. The white cells represent open 

locations that can accommodate pods. The black cell shows a pod that is requested 
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to fulfill a customer order. In case, the order consists of more products, more pods 

may be required. The pod positions are accessible from the horizontal aisles, but not 

from (vertical) cross-aisles. All the aisles are single-directional, except the front and 

end cross-aisles, (the most left and right cross-aisles), to save aisle space and avoid 

congestion. An empty robot can travel underneath the pods. The allowed driving 

directions for the robots within the aisles and underneath the pods are shown on the 

left and top of Figure 1(b). Two pick stations are shown on the left and right sides. 

The dashed line shows a path that a robot can take from the left pick station to 

retrieve a requested pod. At the pick station, the requested products are picked from 

the pod. The robot then returns the pod to an open location in the storage area. 

 

 
Figure 1. (a) Robots idling next to storage pods (Source: insidelogistics.ca), and (b) a top 
view of the storage locations in a typical RMF system.  

 

The storage locations may be grouped in storage zones based on their distance 

to the pick stations. Figure 2 shows a division in two zones 1 and 2 for the system 

of Figure 1(b). Zone 1 is dedicated to the pods with higher turnover frequency and 

(a) 

(b) 
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Zone 2 to the remaining pods. The turnover frequency of a pod is defined as the 

collective turnover speed of the products it carries. Within each zone, the pods are 

randomly assigned to storage locations.  

 

 
Figure 2. A top view of the storage locations divided into two zones, zone 1 is shown in 
black, and zone 2 is shown in gray.  
 

4.3.2. Inventory Allocation Choices for RMF Systems  
Several inventory allocation policies can be applied in RMF systems. Each pod can 

carry one or multiple products. Three allocation decisions should be made: 1) 

allocation of products to pods, 2) allocation of pods to zones, and 3) dispersion of a 

product over multiple pods. The quantity of a product stored in the picking storage 

area can be dispersed over multiple pods. A product is called ‘dispersed’ when it is 

spread over more than minimum required number of pods to house its inventory. 

Table 1 shows an overview of possible inventory allocation choices in different 

storage policies. The simplest and most commonly used approach is the random 

(RND) allocation of products to pods and pods to zones. In this policy, products are 

not dispersed and the entire pick inventory is stored on the minimum required 

number of pods. A turnover-based (or ABC) assignment policy allocates pods to 

zones using the pod turnover frequency. However, the allocation of products to pods 

is random and products are not dispersed. On the other hand, a correlated storage 

assignment (CRL) allocates products to pods based on the correlation between 

products, but the pod to zone allocation is random. Products are dispersed over 



80                                 Advance Storage and Retrieval Policies in Automated Warehouses 

multiple pods such that products with a higher correlation share the same pod. The 

correlated dispersed assignment (CDA) policy, purposefully allocates products to 

pods, pods to zones and disperses products over pods, using both product correlation 

and product turnover speed. This policy is explained in detail in Section 4.4. 

Table 1. Four inventory allocation choices for RMF. 

Policy Product to pod  Pod to zone Product Dispersion 
Random (RND) Random Random No 
Turnover-based (ABC) Random Turnover Frequency No 
Correlated (CRL) Product Correlation Random Yes 
Correlated dispersed (CDA) Product Correlation Turnover Frequency Yes 

 

4.4. Correlated Dispersed Assignment Model Description  
Section 4.4.1 presents a mathematical model is to minimize total expected retrieval 

time to the closest pick station, by deploying a CDA policy. In Section 4.4.2, 

symmetry breaking constraints are introduced to increase the efficiency of the 

model. In Section 4.4.3, we develop expressions for the expected retrieval time for 

various zone and pick station configurations. 

 

4.4.1. Mathematical Model of CDA  
In this section, we present a mathematical model for the correlated dispersed 

assignment (CDA) policy that clusters correlated products by assigning them to the 

same storage pod. The model aims to minimize the expected retrieval time of the 

customer orders. We make the following assumptions: 1) the total storage capacity 

is sufficiently large to accommodate the required number of pods; 2) one order is 

picked at a time at a pick station and all products of that order sitting on the retrieved 



Chapter 4. Correlated Dispersed Storage Assignment in Robotic Warehouses                81 

pod are picked at once. If an order consists of many order lines, it can be broken 

down over multiple pick stations, depending on the proximity of the inventory to 

other pick stations. In this case, orders need a downstream consolidation before 

dispatching, which is not considered in this chapter; 3) the total inventory of a 

product is sufficient to pick all orders during the replenishment horizon; 4) the 

inventory of a product can be dispersed over multiple pods, but its inventory on each 

such pod is sufficiently large to pick each line; 5) each pod is assigned to a 

dedicated location and will return to that location after each retrieval. This 

assumption is relaxed in Section 4.2. The notation used in the model is as 

follows: 

 

Parameters: 
P the set of available storage pods in the system. 
I the set of items in the assortment. 
𝒪𝒪 the set of given customer orders over a certain period. 
𝑞𝑞𝑖𝑖ℴ  =1 if product i ∈ I is requested in order ℴ ∈ 𝒪𝒪, 𝑞𝑞𝑖𝑖ℴ = 0 otherwise. 
𝜋𝜋𝑖𝑖 the volume of product i ∈ I, in terms of fraction of the pod capacity. 
𝜇𝜇𝑖𝑖 the inventory of product i ∈ I in terms of the number of units received during the 

replenishment horizon. 
𝑙𝑙𝑖𝑖  the minimum allowed quantity of item i ∈ I to be assigned to a pod. 
𝑢𝑢𝑖𝑖  the maximum allowed quantity of item i ∈ I to be assigned to a pod. 
𝜏𝜏𝑝𝑝 the retrieval time of pod 𝑝𝑝 ∈ 𝑃𝑃 to the closest pick station. 
𝐶𝐶𝑝𝑝 the fraction of storage capacity available on the pod 𝑝𝑝 ∈ 𝑃𝑃. 

Variables: 
𝑎𝑎𝑖𝑖𝑖𝑖 =1 if item i ∈ I assigned to pod p ∈ P, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 otherwise. 
𝑣𝑣𝑖𝑖𝑖𝑖 the quantity of item i ∈ I assigned to pod p ∈ P. 
𝑥𝑥𝑖𝑖ℴ𝑝𝑝 =1 if pod 𝑝𝑝 ∈ 𝑃𝑃 is retrieved to pick item i ∈ I in order ℴ ∈ 𝒪𝒪, 𝑥𝑥𝑖𝑖ℴ𝑝𝑝 = 0 otherwise. 
𝑦𝑦ℴ𝑝𝑝 =1 if pod 𝑝𝑝 ∈ 𝑃𝑃 is retrieved to pick one or more lines in order ℴ ∈ 𝒪𝒪, 𝑦𝑦ℴ𝑝𝑝 = 0 

otherwise. 
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The mathematical model of the CDA policy is now formulated as follows. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝜏𝜏𝑝𝑝�𝑦𝑦ℴ𝑝𝑝
ℴ∈𝒪𝒪𝑝𝑝∈𝑃𝑃

 (1) 

Subject to  

�𝑥𝑥𝑖𝑖ℴ𝑝𝑝
𝑝𝑝∈𝑃𝑃

≥ 1,∀𝑖𝑖 ∈ 𝐼𝐼,∀ℴ ∈ 𝒪𝒪: 𝑞𝑞𝑖𝑖ℴ > 0 (2) 

𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 𝑥𝑥𝑖𝑖ℴ𝑝𝑝 ,∀𝑖𝑖 ∈ 𝐼𝐼,∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃 (3) 

𝑀𝑀𝑦𝑦ℴ𝑝𝑝 ≥�𝑥𝑥𝑖𝑖ℴ𝑝𝑝
𝑖𝑖∈𝐼𝐼

,∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃 (4) 

�𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

= 𝜇𝜇𝑖𝑖 ,∀𝑖𝑖 ∈ 𝐼𝐼 (5) 

�𝑣𝑣𝑖𝑖𝑖𝑖 .𝜋𝜋𝑖𝑖
𝑖𝑖∈𝐼𝐼

≤ 𝐶𝐶𝑝𝑝,∀𝑝𝑝 ∈ 𝑃𝑃 (6) 

𝑣𝑣𝑖𝑖𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 ,∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃 (7) 

𝑣𝑣𝑖𝑖𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 ,∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃 (8) 

�𝑥𝑥𝑖𝑖ℴ𝑝𝑝
ℴ∈𝒪𝒪

≤ 𝑣𝑣𝑖𝑖𝑖𝑖 ,∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃 (9) 

𝑦𝑦ℴ𝑝𝑝 ∈ {0,1},∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃  

𝑥𝑥𝑖𝑖ℴ𝑝𝑝 ∈ {0,1},∀𝑖𝑖 ∈ 𝐼𝐼,∀ℴ ∈ 𝒪𝒪,∀𝑝𝑝 ∈ 𝑃𝑃  

𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃  

𝑣𝑣𝑖𝑖𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑝𝑝 ∈ 𝑃𝑃  

The objective function (1) minimizes the total expected retrieval time to pick all 

the products in the given order set. Constraints (2) make sure that at least one pod 

containing the requested product in each order is retrieved. Constraints (3) ensure 

that a product may be picked from a pod only if it is already assigned to that pod. 

Constraints (4) guarantee that a pod will be retrieved for an order if at least one 

product from that order is requested from the pod. 𝑀𝑀 = |𝐼𝐼|. Constraints (5) ensure 
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that partial assignments of each product to different pods add up to its inventory. 

Constraints (6) ensure that partial assignments respect the capacity limit of each 

pod. Constraints (7) and (8) define the quantity assigned to each pod. Constraints 

(9) ensure that each pod can serve as many orders as its inventory allows. 

 

4.4.2. Symmetry Breaking Constraints  
The model introduced in Section 4.4.1 provides the optimal assignment for the stock 

quantities of products to pods, pods to locations, and inventory to orders. It can be 

shown that the CDA model is NP-hard because it can be reduced to a bin packing 

problem when the order set is reduced to one order. Suppose that pods are equivalent 

to bins with the same capacity and 𝜏𝜏𝑝𝑝 = 1, 𝑝𝑝 ∈ 𝑃𝑃. Volume of the items are calculated 

as 𝜇𝜇𝑖𝑖𝜋𝜋𝑖𝑖 for all the products in the order. Now, the optimal assignment of all products in 

the order to pods in order to minimize the retrieval time of items in the order is 

equivalent to the minimum number of bins needed to pack inventory of the items. 

This is a bin packing problem which is a classic NP-hard problem (Garey and 

Johnson, 1979). 

We can simplify the model by assuming we no longer assign pods to locations 

but to storage zones, i.e. groups of locations in a certain proximity to the pick 

stations. The retrieval time of a pod assigned to a random location in a zone is then 

estimated by calculating the average retrieval time of the pods in that storage zone 

to the closest pick station. This simplification reduces the search space, as pods are 

now identical. However, this introduces symmetry in the problem, as all pods in the 

zone have the same expected retrieval time, which gives many identical (optimal) 

solutions in product allocation. We, therefore, add symmetry breaking constraints 

to the model. 
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The assignment of a cluster of products to pod p1 in zone 1 with expected 

retrieval time of 𝜏𝜏1, for instance, is similar to the assignment of this cluster to pod 

p2 in the same zone. This symmetry arises for each given set of correlated products 

within each zone and makes the solution space large and complex to solve. Jans 

(2009) addresses a similar issue in lot-sizing problem at identical parallel machines 

and includes a set of lexicographic ordering constraints to break the symmetry of 

assigning jobs to identical machines. In a similar fashion, we use the following 

constraint to assign product 1 to the identical pods, with smaller ordinal numbers. 
𝑎𝑎11 ≥ 𝑎𝑎12 ≥ ⋯ ≥ 𝑎𝑎1𝑝𝑝. 

This constraint breaks the symmetry by assigning product 1 to the pods with smaller 

ordinal number such that 𝑎𝑎11 = 𝑎𝑎12 = ⋯ = 𝑎𝑎1𝑏𝑏 = 1 and 𝑎𝑎1𝑏𝑏+1 = 𝑎𝑎1𝑏𝑏+2 = ⋯ =

𝑎𝑎1𝑝𝑝 = 0, where 𝑏𝑏 is the required number of pods. Extra hierarchical constraints are 

needed to break the tie for the remaining products. The following constraint imposes 

the ordering on product 2. 
2𝑎𝑎11 + 𝑎𝑎21 ≥ 2𝑎𝑎12 + 𝑎𝑎22 ≥ ⋯ ≥ 2𝑎𝑎1𝑝𝑝 + 𝑎𝑎2𝑝𝑝. 

The coefficients are powers of two and ensure the assignments of different products 

are distinguished. This is done for all the items to obtain a unique ordering. All the 

ordering constraints can be summarized in Constraint (10).  

� 2|𝐼𝐼|−𝑖𝑖𝑎𝑎𝑖𝑖,𝑝𝑝−1
𝑖𝑖∈𝐼𝐼

≥ � 2|𝐼𝐼|−𝑖𝑖𝑎𝑎𝑖𝑖,𝑝𝑝
𝑖𝑖∈𝐼𝐼

,∀𝑝𝑝 ∈ 𝑃𝑃\{1}. (10) 

Constraint (10) ensures each product is assigned to the pods with smaller 

ordinal number. This constraint can strengthen the model by eliminating 

equivalent solutions via ordering and speeds up the solution finding. Note 

that if assignment of a product leads to a different correlation rank of 
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products on the pods, the pods orders should be adjusted according to 

decreasing correlation of the pods. 

 

4.4.3. Retrieval Time Calculation of the Pods  
A key parameter in the model is the retrieval time of the pods. The model assigns 

the pods to zones, but within each zone, they are stored randomly. The average 

retrieval time of pods in each zone is denoted by 𝜏𝜏𝑚𝑚,𝑚𝑚 ∈ 𝑍𝑍 where 𝑍𝑍 represents the 

set of all zones. Given a rectangular storage area, 𝜏𝜏𝑚𝑚 depends on the zone size, the 

layout of the zones, and the position of the zones with respect to the pick stations. 

We assume the size of the zones is given. The impact of the layout of the zones and 

position of the pick stations on the expected retrieval time of the pods are studied in 

this section. 

 For each storage location, we calculate the travel time to the closest pick station 

using Manhattan distance. However, the aisles only allow one-directional traffic. 

Pods stored at some of the storage locations will move away from the closest pick 

station in the first part of the retrieval process. The Manhattan distance travel time, 

therefore, must be adapted accordingly as 𝜏𝜏𝑙𝑙 = 𝑡𝑡𝑙𝑙 + 𝛿𝛿𝑙𝑙 ,  ∀𝑙𝑙 ∈ 𝐿𝐿, where L is the set of 

storage locations, 𝑡𝑡𝑙𝑙 is the one-way travel time from location l to the closest pick 

station according to the Manhattan distance and 𝛿𝛿𝑙𝑙 is the additional retrieval time of 

this location due to single-directional traffic in the aisles. The value of 𝛿𝛿𝑙𝑙 depends 

on many factors, including storage capacity, size of the storage blocks and the 

number and position of the pick stations. For the system shown in Figure 1(b) for 

instance, 𝛿𝛿 is on average smaller than the travel time along 3 storage space units. 
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This implies that the Manhattan distance can be used to access each storage location, 

with a fixed penalty.  

 
Figure 3. Storage zones for 2-class (top) and 3-class (bottom) storage when there is/are (a) one pick 
station on the middle-left, (b) many pick stations on the left side and (c) many pick stations on the left, 
top and right sides. 
 

Figure 3 illustrates how the storage area can be zoned in two storage zones (top) 

and in three storage zones (bottom), depending on the number and position of the 

pick stations. The aisles are removed from the figure for simplicity. We consider 

three configurations of the pick stations. Figure 3(a) shows one pick station on the 

left side in the middle. Figure 3(b) shows the zones and boundaries for a storage 

system with many pick stations on the left side, i.e. equal to the number of aisles. 

The system in Figure 3(c) has many pick stations on the left, top and right sides. 

The black-colored area shows the pods with fast-moving products and the light gray-

colored area shows the pods with slow-moving products. The dark gray-colored area 
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in the 3-zone systems is used for pods with medium turnover speed. These areas are 

defined based on the Manhattan distances travel time of each storage location to the 

closest pick station. Figure 3 shows that in the system with one pick station, the fast-

moving class has a triangular shape and in the system with many pick stations, the 

fast-moving area has a rectangular or reverse U shape. 

 

Retrieval Time Distribution Functions. To simplify calculations, we assume a 

continuous storage location space for each zone. Figure 4(a) shows a continuous 

representation of a rectangular zone. The area within the dashed triangle, set 𝛥𝛥𝑡𝑡 =

{𝑇𝑇|𝑇𝑇 ≤ 𝑡𝑡}, includes all the locations within travel time t of the closest pick station, 

where 𝑇𝑇 is a random variable representing the retrieval time of a pod at those storage 

locations. The conditional expected retrieval time from a random location in the 

storage zone 𝑚𝑚 ∈ 𝑍𝑍 is computed as: 

𝜏𝜏𝑚𝑚 = 𝐸𝐸(𝑇𝑇 ≤ 𝑡𝑡|𝑠𝑠𝑚𝑚−1 < 𝑇𝑇 ≤ 𝑠𝑠𝑚𝑚) = � 𝑡𝑡𝑡𝑡(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑠𝑠𝑚𝑚

𝑡𝑡=𝑠𝑠𝑚𝑚−1

, , 𝑠𝑠𝑚𝑚−1 < 𝑡𝑡 < 𝑠𝑠𝑚𝑚 , (11) 

where 𝑓𝑓(𝑡𝑡) is the conditional probability density function (pdf) of 𝑇𝑇, 𝑠𝑠𝑚𝑚 is the travel 

time to the furthest storage location of zone m and 𝑠𝑠0 = 0. The conditional 

cumulative distribution function (CDF) of retrieval time 𝑇𝑇, given that 𝑇𝑇 is in zone 

𝑚𝑚, is computed as:  

𝐹𝐹𝑚𝑚(𝑡𝑡) =  𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡|𝑠𝑠𝑚𝑚−1 < 𝑇𝑇 ≤ 𝑠𝑠𝑚𝑚) = 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 {𝑇𝑇 ≤ 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑚𝑚−1 < 𝑇𝑇 ≤ 𝑠𝑠𝑚𝑚}

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 {𝑠𝑠𝑚𝑚−1 < 𝑇𝑇 ≤ 𝑠𝑠𝑚𝑚}
, 𝑠𝑠𝑚𝑚−1 < 𝑡𝑡 < 𝑠𝑠𝑚𝑚 (12) 

The expressions for the expected retrieval time of the pods in each zone can be 

obtained. Now, we derive the corresponding expressions for the configurations 

shown in Figure (3). 
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Figure 4. A continuous representation of the storage area (in travel time units) divided into zone 1 and 
zone 2. 

 

Retrieval Time Expressions for a Single Pick Station on the Left Side in the 

Middle. The conditional CDF for the system with one single pick station (denoted 

as S) can be derived using Formula (12). Figure 4(a) shows that the area of zone 1 

has a triangular shape with the hypotenuse of 2𝑠𝑠1 and height of 𝑠𝑠1. We assume 𝐴𝐴 ≤

𝐵𝐵 for calculation purposes, where 𝐴𝐴 and 𝐵𝐵 denote the height and the width of the 

system respectively. 𝐴𝐴 and 𝐵𝐵 are sufficiently large. We also assume 𝑠𝑠1 ≤
𝐴𝐴
2
 and 𝑠𝑠2 ≥

𝐴𝐴
2
, because it is not common to dedicate more than 25% of the storage area to zone 

1, or to assign less than that to zone 1 and zone 2. 𝑠𝑠𝑚𝑚,𝑚𝑚 ∈ 𝑍𝑍 are given. If these 

assumptions are violated, it is still possible to derive relevant retrieval time 

expression for each zone. The area that covers set 𝛥𝛥𝑡𝑡 also has a triangular shape, 

with the hypotenuse of 2𝑡𝑡 and height of 𝑡𝑡. In figure 4(b), the area that covers set 𝛥𝛥𝑡𝑡 

has a pentagon shape. The conditional CDF can be derived for the retrieval time in 

a storage area with two and three zones as follows: 

 

𝐹𝐹2−𝑧𝑧 
𝑆𝑆 (𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡|𝑇𝑇 ≤ 𝑠𝑠1) =

⎩
⎪
⎨

⎪
⎧𝑡𝑡

2

𝑠𝑠12
, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴 �𝑡𝑡 − 𝐴𝐴
4� − 𝑠𝑠12

𝐴𝐴.𝐵𝐵 − 𝑠𝑠12
, 𝑖𝑖𝑓𝑓 𝑠𝑠1 ≤ 𝑡𝑡 ≤ 𝐵𝐵.
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𝐹𝐹3−z 
𝑆𝑆 (𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡|𝑇𝑇 ≤ 𝑠𝑠1) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑡𝑡

2

𝑠𝑠12
, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴 �𝑡𝑡 − 𝐴𝐴
4� − 𝑠𝑠12

𝐴𝐴 �𝑠𝑠22 −
𝐴𝐴
4� − 𝑠𝑠12

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 ≤ 𝑡𝑡 ≤ 𝑠𝑠2,

𝐴𝐴 �𝑡𝑡 − 𝐴𝐴
4� − 𝑠𝑠22

𝐴𝐴.𝐵𝐵 − 𝑠𝑠22
, 𝑖𝑖𝑖𝑖 𝑠𝑠2 ≤ 𝑡𝑡 ≤ 𝐵𝐵,

, 

where 𝐹𝐹2−𝑧𝑧 
𝑆𝑆  and 𝐹𝐹3−z 

𝑆𝑆  are the conditional CDFs of retrieval time in systems with 2 

and 3 storage zones respectively, and single pick station. The corresponding 

conditional pdfs can be derived as follows: 

𝑓𝑓2−z 
𝑆𝑆 (𝑡𝑡) =

𝑑𝑑𝐹𝐹2−z 
𝑆𝑆 (𝑡𝑡)
𝑑𝑑𝑑𝑑

=

⎩
⎪
⎨

⎪
⎧2𝑡𝑡
𝑠𝑠12

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴
𝐴𝐴.𝐵𝐵 − 𝑠𝑠12

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 ≤ 𝑡𝑡 ≤ 𝐵𝐵.
 

𝑓𝑓3−z 
𝑆𝑆 (𝑡𝑡) =

𝑑𝑑𝐹𝐹3−z 
𝑆𝑆 (𝑡𝑡)
𝑑𝑑𝑑𝑑

=

⎩
⎪⎪
⎨

⎪⎪
⎧

2𝑡𝑡
𝑠𝑠12

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴

𝐴𝐴 �𝑠𝑠22 −
𝐴𝐴
4� − 𝑠𝑠12

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 ≤ 𝑡𝑡 ≤ 𝑠𝑠2,

𝐴𝐴
𝐴𝐴.𝐵𝐵 − 𝑠𝑠22

, 𝑖𝑖𝑖𝑖 𝑠𝑠2 ≤ 𝑡𝑡 ≤ 𝐵𝐵.

 

The conditional expected retrieval time of an arbitrary pod stored in zone 1 and zone 

2 in a 2-zone system can now be calculated using Formula (11) respectively as:  

𝜏𝜏𝑆𝑆2−𝑧𝑧,1 = � 𝑡𝑡𝑓𝑓2−z 
𝑆𝑆 (𝑡𝑡)𝑑𝑑𝑑𝑑 = �

2𝑡𝑡2

𝑆𝑆12
𝑠𝑠1

0
𝑑𝑑𝑑𝑑 =

2𝑠𝑠13

3𝑠𝑠12
=

2
3
𝑠𝑠1 ,

𝑠𝑠1

0
 

𝜏𝜏𝑆𝑆2−𝑧𝑧,2 = � 𝑡𝑡
𝐴𝐴

𝐴𝐴.𝐵𝐵 − 𝑠𝑠12
=

𝐴𝐴
2(𝐴𝐴.𝐵𝐵 − 𝑠𝑠12)

(𝐵𝐵2 − 𝑠𝑠12),
𝐵𝐵

𝑠𝑠1
 

where 𝜏𝜏𝑆𝑆2−𝑧𝑧,1 and 𝜏𝜏𝑆𝑆2−𝑧𝑧,2 are the conditional expected retrieval times of zone 1 and 

2 respectively, in a 2-zone system with single pick station. Similarly, the conditional 
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expected retrieval time for each zone in a 3-zone system can be calculated as 

follows:  

𝜏𝜏𝑆𝑆3−𝑧𝑧,1 =
2
3
𝑠𝑠1 , 

𝜏𝜏𝑆𝑆3−𝑧𝑧,2 =
𝐴𝐴(𝑠𝑠22 − 𝑠𝑠12)

𝐴𝐴 �2𝑠𝑠22 −
𝐴𝐴
2� − 2𝑠𝑠12

 ,  

𝜏𝜏𝑆𝑆3−𝑧𝑧,3 =
𝐴𝐴

2(𝐴𝐴.𝐵𝐵 − 𝑠𝑠22)
(𝐵𝐵2 − 𝑠𝑠22), 

where 𝜏𝜏𝑆𝑆3−𝑧𝑧,1, 𝜏𝜏𝑆𝑆3−𝑧𝑧,2 and 𝜏𝜏𝑆𝑆3−𝑧𝑧,3 are the conditional expected retrieval times of zone 

1, 2 and 3 respectively, in a 3-zone system with single pick station. In the special 

case of 𝐴𝐴 = 𝐵𝐵, we have 𝜏𝜏𝑠𝑠2−𝑧𝑧,2(𝑡𝑡) = 𝜏𝜏𝑠𝑠3−𝑧𝑧,3(𝑡𝑡) = 𝐴𝐴
2
. 

 

Retrieval Time Expressions for Many Pick Station on the Left Side. In a similar 

fashion, we can derive the conditional CDF in the case of a system with many pick 

stations on the left side of the system (denoted as ML). Let 𝐴𝐴 be the length of the left 

side of the area in Figure 3(b) and 𝑠𝑠𝑚𝑚 be the depth (in travel time) of zone m in the 

aisle. Each zone has a rectangular shape with the length of 𝐴𝐴 and width of (𝑠𝑠𝑚𝑚 −

𝑠𝑠𝑚𝑚−1). The area that covers set 𝛥𝛥𝑡𝑡 has a rectangular shape with the following 

conditional CDFs: 

𝐹𝐹2−𝑧𝑧𝑀𝑀𝑀𝑀 (𝑡𝑡) =

⎩
⎨

⎧
𝑡𝑡
𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝑡𝑡 − 𝑠𝑠1
𝐵𝐵 − 𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 < 𝐵𝐵.
 

𝐹𝐹3−𝑧𝑧𝑀𝑀𝑀𝑀 (𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑡𝑡
𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝑡𝑡 − 𝑠𝑠1
𝑠𝑠2 − 𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 ≤ 𝑠𝑠2,

𝑡𝑡 − 𝑠𝑠2
𝐵𝐵 − 𝑠𝑠2

, 𝑖𝑖𝑖𝑖 𝑠𝑠2 < 𝑡𝑡 < 𝐵𝐵,
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where 𝐹𝐹2−𝑧𝑧𝑀𝑀𝑀𝑀  and 𝐹𝐹3−𝑧𝑧𝑀𝑀𝑀𝑀  are the conditional CDFs of retrieval time in systems with 2 

and 3 storage zones respectively, and many pick stations on the left side. The 

respective conditional pdfs can be derived as: 

𝑓𝑓2−𝑧𝑧𝑀𝑀𝑀𝑀 (𝑡𝑡) =

⎩
⎨

⎧
1
𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

1
𝐵𝐵 − 𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 < 𝐵𝐵.
 

𝑓𝑓3−𝑧𝑧𝑀𝑀𝑀𝑀 (𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

1
𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

1
𝑠𝑠2 − 𝑠𝑠1

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 ≤ 𝑠𝑠2,

1
𝐵𝐵 − 𝑠𝑠2

, 𝑖𝑖𝑖𝑖 𝑠𝑠2 < 𝑡𝑡 < 𝐵𝐵.

 

Thus, the conditional expected retrieval time of the systems with 2 zones, is 

computed as: 

 𝜏𝜏𝑀𝑀𝑀𝑀2−𝑧𝑧,𝑚𝑚 = 𝑆𝑆𝑚𝑚−1+𝑆𝑆𝑚𝑚
2

. 

where 𝜏𝜏𝑀𝑀𝑀𝑀2−𝑧𝑧,𝑚𝑚 is the conditional expected retrieval time of zone 𝑚𝑚 ∈ 𝑍𝑍 in a 2-zone 

system with many pick stations on the left side. For a 3-zones system, identical 

expressions are derived. 

 

Retrieval Time Expressions for Many Pick Station on Three Sides. In a similar 

fashion, the conditional CDFs in the case of a system with many pick stations on 

the left, top and right sides of the system (denoted as M3) can be obtained. 

𝐹𝐹2−𝑧𝑧𝑀𝑀3 (𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝐴𝐴 + 2𝑡𝑡(𝐵𝐵 − 𝑡𝑡)
𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴𝐴𝐴 + 2𝑡𝑡(𝐵𝐵 − 𝑡𝑡) − [𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)]
(𝐴𝐴 − 2𝑠𝑠1)(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 < 𝐵𝐵.
 



92                                 Advance Storage and Retrieval Policies in Automated Warehouses 

𝐹𝐹3−𝑧𝑧𝑀𝑀3 (𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐴𝐴𝐴𝐴 + 2𝑡𝑡(𝐵𝐵 − 𝑡𝑡)
𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴𝐴𝐴 + 2𝑡𝑡(𝐵𝐵 − 𝑡𝑡) − [𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)]
𝐴𝐴𝑠𝑠2 + 2𝑠𝑠2(𝐵𝐵 − 𝑠𝑠2) − [𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)]

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 ≤ 𝑠𝑠2,

𝐴𝐴𝐴𝐴 + 2𝑡𝑡(𝐵𝐵 − 𝑡𝑡) − [𝐴𝐴𝑠𝑠2 + 2𝑠𝑠2(𝐵𝐵 − 𝑠𝑠2)]
(𝐴𝐴 − 2𝑠𝑠2)(𝐵𝐵 − 𝑠𝑠2)

, 𝑖𝑖𝑓𝑓 𝑠𝑠2 < 𝑡𝑡 < 𝐵𝐵,

 

where 𝐹𝐹2−𝑧𝑧𝑀𝑀3  and 𝐹𝐹3−𝑧𝑧𝑀𝑀3  are the conditional CDFs of retrieval time in systems with 2 

and 3 storage zones respectively, and many pick stations on three sides. The 

respective conditional pdfs can be derived as: 

𝑓𝑓2−𝑧𝑧𝑀𝑀3(𝑡𝑡) =

⎩
⎨

⎧
𝐴𝐴 + 2𝐵𝐵 − 4𝑡𝑡

𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)
, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴 + 2𝐵𝐵 − 4𝑡𝑡
(𝐴𝐴 − 2𝑠𝑠1)(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 < 𝐵𝐵.
 

𝑓𝑓3−𝑧𝑧𝑀𝑀3(𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐴𝐴 + 2𝐵𝐵 − 4𝑡𝑡
𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑠𝑠1,

𝐴𝐴 + 2𝐵𝐵 − 4𝑡𝑡
𝐴𝐴𝑠𝑠2 + 2𝑠𝑠2(𝐵𝐵 − 𝑠𝑠2) − [𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)]

, 𝑖𝑖𝑖𝑖 𝑠𝑠1 < 𝑡𝑡 ≤ 𝑠𝑠2,

𝐴𝐴 + 2𝐵𝐵 − 4𝑡𝑡
(𝐴𝐴 − 2𝑠𝑠1)(𝐵𝐵 − 𝑠𝑠1)

, 𝑖𝑖𝑖𝑖 𝑠𝑠2 < 𝑡𝑡 < 𝐵𝐵.

 

The conditional expected retrieval time of an arbitrary pod stored is zone 1 or 2 in 

a 2-zone system can now be calculated respectively as:  

𝜏𝜏𝑀𝑀32−𝑧𝑧,1 =
�𝐴𝐴2 + 𝐵𝐵� 𝑠𝑠2 − 4

3 𝑠𝑠1
3

𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)
 , 

𝜏𝜏𝑀𝑀32−𝑧𝑧,2 =
�𝐴𝐴2 + 𝐵𝐵� 𝐵𝐵2 − 4

3𝐵𝐵
3 − [�𝐴𝐴2 + 𝐵𝐵� 𝑠𝑠12 −

4
3 𝑠𝑠1

3]
(𝐴𝐴 − 2𝑠𝑠1)(𝐵𝐵 − 𝑠𝑠1)

, 

where 𝜏𝜏𝑀𝑀32−𝑧𝑧,1 and 𝜏𝜏𝑀𝑀32−𝑧𝑧,2 are the conditional expected retrieval times of zone 1 

and 2 respectively, in a 2-zone system with many pick stations on three sides. 

Similarly, the conditional expected retrieval time for each zone in a 3-zone system 

can be calculated as follows:  
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𝜏𝜏𝑀𝑀33−𝑧𝑧,1 =
�𝐴𝐴2 + 𝐵𝐵� 𝑠𝑠12 −

4
3 𝑠𝑠1

3

𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)
, 

𝜏𝜏𝑀𝑀33−𝑧𝑧,2 =
�𝐴𝐴2 + 𝐵𝐵� 𝐵𝐵2 − 4

3𝐵𝐵
3 − [�𝐴𝐴2 + 𝐵𝐵� 𝑠𝑠12 −

4
3 𝑠𝑠1

3]
𝐴𝐴𝑠𝑠2 + 2𝑠𝑠2(𝐵𝐵 − 𝑠𝑠2) − [𝐴𝐴𝑠𝑠1 + 2𝑠𝑠1(𝐵𝐵 − 𝑠𝑠1)]

, 

𝜏𝜏𝑀𝑀33−𝑧𝑧,3 =
�𝐴𝐴2 + 𝐵𝐵� 𝐵𝐵2 − 4

3𝐵𝐵
3 − [�𝐴𝐴2 + 𝐵𝐵� 𝑠𝑠12 −

4
3 𝑠𝑠1

3]
(𝐴𝐴 − 2𝑠𝑠1)(𝐵𝐵 − 𝑠𝑠1)

, 

where 𝜏𝜏𝑀𝑀33−𝑧𝑧,1, 𝜏𝜏𝑀𝑀33−𝑧𝑧,2 and 𝜏𝜏𝑀𝑀33−𝑧𝑧,3 are the conditional expected retrieval times of 

zone 1, 2 and 3 respectively, in a 3-zone system with many pick stations on three 

sides. The expected retrieval time expressions are used in Section 4.5 to conduct the 

analysis.  

 

4.5. Solution Approach  
Grouping pods into zones and introducing symmetry breaking constraints do not 

reduce the complexity of the model. General-purpose optimization solvers can only 

solve small instances for this model. In our tests, Gurobi 9.0 was able to solve 

instances up to 50 order lines from 20 products within one day of execution. In 

reality, one may face instances of thousands of products and order lines. Due to the 

complexity of the model, we propose an efficient and effective construction and 

improvement heuristic that enables us to solve the model for real size instances.  

 

4.5.1.  Preprocessing the Data  
In order to design an efficient solution algorithm, the available data of assortment 

and historical customer orders should be processed to generate useful data. We 

compute the COI, 𝐹𝐹𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼 based on product turnover frequency in historical orders 
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and volume of the product. The product loads are sorted in decreasing order so that 

𝑖𝑖1 represents the most popular product. Since all the products have the same rank in 

a product load, we use the term products rank instead of product loads rank. 

Additionally, we compute the product correlation measure 𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ 𝑞𝑞𝑖𝑖ℴ × 𝑞𝑞𝑗𝑗ℴℴ∈𝒪𝒪 , 𝑖𝑖 ≠

𝑗𝑗 ∈ 𝐼𝐼, based on the joint turnover frequency of each pair of products in the historical 

order set. A subset ℐ𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼 includes all the products correlated with product 𝑖𝑖 ∈ 𝐼𝐼 

where 𝑅𝑅𝑖𝑖𝑖𝑖 > 1, 𝑗𝑗 ∈ 𝐼𝐼. To maintain dispersion of product units over the pods, at most 

𝑢𝑢𝑖𝑖 units of a product are allowed in each pod. In this algorithm we store the 

maximum allowed quantity in each pod. The maximum number of pods needed to 

store product 𝑖𝑖 ∈ 𝐼𝐼 is therefore 𝑛𝑛𝑖𝑖 = �𝜇𝜇𝑖𝑖
𝑢𝑢𝑖𝑖
�. This means that (𝑛𝑛𝑖𝑖 − 1) batches of size 𝑢𝑢𝑖𝑖 

of product 𝑖𝑖 are assigned to (𝑛𝑛𝑖𝑖 − 1) pods and one batch of size 𝜇𝜇𝑖𝑖 − (𝑛𝑛𝑖𝑖 − 1)𝑢𝑢𝑖𝑖 is 

assigned to another pod.  

 

4.5.2. Step I: Initial Feasible Solution Construction 
Conventionally, products with higher turnover frequency are assigned to locations 

with shorter travel times to a pick station. However, we use both turnover frequency 

and correlation of products to construct an initial feasible solution for the model. 

The procedure of constructing solution is demonstrated in Algorithm 1. The empty 

pods are pre-assigned to two zones, such that 𝑏𝑏% and (100 − 𝑏𝑏)% of the pods are in 

zone 1 and zone 2, respectively. The value of 𝑏𝑏 is usually less than 20 (Hausman et 

al., 1976; Zaerpour, Yu and R. B. M. de Koster, 2017). In Step I, we first assign 

product pairs i and j with the highest correlation to min(𝑛𝑛𝑖𝑖,𝑛𝑛𝑗𝑗) pods. 𝑢𝑢𝑖𝑖 and 𝑢𝑢𝑗𝑗 are 

small enough for pairs i and j to fit on a pod. The remaining batches of 𝑖𝑖 or 𝑗𝑗 are 

assigned randomly to �𝑛𝑛𝑖𝑖 −  𝑛𝑛𝑗𝑗� empty pods. 𝑖𝑖 and 𝑗𝑗 are then removed from 𝐼𝐼. Then, 

we select the next product 𝑘𝑘 ∈ 𝐼𝐼 with the highest total correlation with products in 
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𝐼𝐼𝑐𝑐, the complement of set 𝐼𝐼 with regards to the assortment. Assign k to 𝑛𝑛𝑘𝑘 pods with i 

and j on them. In doing so, we only compute the correlation of k with the products 

on the pods with positive remaining capacity (see Algorithm 1 line 8). If there are 

multiple products with the same total correlation with assigned products, we 

prioritize the one with the most homogeneous individual correlation, i.e. the one 

with correlations close to the average. The capacity and product set are updated 

afterward, and the procedure is repeated until all the products are assigned to pods. 

 

4.5.3. Step II: Improvement of Feasible Solution 
To improve the solution, we propose two types of procedure which update the 

storage assignment and evaluate the solution. Based on the initial assignment, we 

define for each pod an aggregated pod turnover frequency and pod correlation 

measures. The aggregated pod turnover frequency is computed by ℱ𝑝𝑝 = ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∈𝐼𝐼|𝑎𝑎𝑖𝑖𝑖𝑖=1 . 

Pod correlation is computed by ℛ𝑝𝑝 = ∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑖𝑖𝑖𝑖=1,𝑎𝑎𝑗𝑗𝑗𝑗=1 . The improvement policies 

that work with these two measures toward a better solution are as follows. 

 

Within Zone Update Policy: Pods in the same zone, have the same expected 

retrieval time to the closest pick station. A higher pod correlation increases the 

benefit of the correlated assignment. In this iterative updating policy, we try to 

increase ℛ𝑝𝑝 as much as possible by swapping products among the pods within a 

zone. Pods of each zone are sorted according to ℛ𝑝𝑝 in descending order.  For the 

first 𝜌𝜌-th percentile of the pods, this policy removes product c from the pod if 𝛦𝛦𝑐𝑐 =

∑ 𝑅𝑅𝑐𝑐𝑐𝑐𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑗𝑗𝑗𝑗=1 < 𝜀𝜀𝑧𝑧, where 𝜀𝜀𝑧𝑧 is the threshold for the minimum acceptable pod 

correlation level of zone z. Ideally, this product should be replaced with product 𝑐𝑐′ 
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with the highest correlation with existing products on the pod, 𝛦𝛦𝑐𝑐′ = ∑ 𝑅𝑅𝑐𝑐′𝑗𝑗𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑗𝑗𝑗𝑗=1 . 

Then, starting from the pod with the lowest ℛ𝑝𝑝, the first pod that contains 𝑐𝑐′ is 

selected. A product swap of c and 𝑐𝑐′ takes place if ∑ ℛ𝑝𝑝𝑝𝑝∈𝑃𝑃  increases by doing so. 

Swapping is repeated until the improvement is marginal at a given level. 

 

Across Zone Update Policy: The pods (cluster of products) with a higher ℱ𝑝𝑝 should 

generally be assigned closer to the pick stations, namely to a zone with a lower 

ordinal position. However, the initial solution might deviate from this to achieve a 

higher correlation. Therefore, in this updating policy, we sort the pods according to 

ℱ𝑝𝑝 in descending order, and re-assign them to the zone accordingly. 

 

Algorithm 1: Pseudocode for Correlated Dispersed Storage Assignment 

1: input  𝐼𝐼,𝑃𝑃,𝑅𝑅𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑝𝑝 and 𝑛𝑛𝑖𝑖 
  Step I- initial feasible solution 
2: Select the product pair with the highest 𝑅𝑅𝑖𝑖𝑖𝑖. 
3: Assign batches of this pair to min(𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗) random pods. 
   %Batches are defined in Section 4.5.1% 
4: Assign the remaining batches of these products to �𝑛𝑛𝑖𝑖 −  𝑛𝑛𝑗𝑗� random  
   empty pods. 
5: Reduce 𝐶𝐶𝑝𝑝 by 𝑢𝑢𝑖𝑖𝜋𝜋𝑖𝑖 and 𝑢𝑢𝑗𝑗𝜋𝜋𝑗𝑗 for the pods carrying 𝑖𝑖 and 𝑗𝑗. 
6: Update 𝐼𝐼 = 𝐼𝐼/{𝑖𝑖, 𝑗𝑗} 
7: while 𝐼𝐼 ≠ ∅ do 
8: Select the product 𝑘𝑘: = Argmax{∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑐𝑐 |𝑘𝑘 ∈ 𝐼𝐼}; in case of a tie 
 𝑘𝑘: = Argmax{∏ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑐𝑐 }. 
9: Assign 𝑘𝑘 to 𝑛𝑛𝑘𝑘 pod with the lowest 𝐶𝐶𝑝𝑝, sufficient to fit a 
 batch of 𝑘𝑘. 
10: Update 𝐶𝐶𝑝𝑝 = 𝐶𝐶𝑝𝑝 − 𝑢𝑢𝑘𝑘𝜋𝜋𝑘𝑘 for pods carrying 𝑘𝑘, and Set 𝐼𝐼 = 𝐼𝐼/{𝑘𝑘}. 
11: end while  
  Step II- improvement within/across zone 
12: Compute ℛ𝑝𝑝 = ∑ 𝑅𝑅𝑖𝑖𝑖𝑖,𝑖𝑖,𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑖𝑖𝑖𝑖=1,𝑎𝑎𝑗𝑗𝑗𝑗=1 , 𝑝𝑝 ∈ 𝑃𝑃. 
13: Sort ℛ𝑝𝑝,G:= 𝜌𝜌-th percentile of the pods. 
14: while 𝐺𝐺 ≠ ∅ do 
15:  On pod 𝑝𝑝 ∈ 𝐺𝐺, find the product with the lowest 𝛦𝛦𝑐𝑐 = ∑ 𝑅𝑅𝑐𝑐𝑐𝑐𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑗𝑗𝑗𝑗=1 . 
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16:  Removes product c from the pod 𝑝𝑝. 
17: Find product c’ with the highest 𝛦𝛦′𝑐𝑐′ = ∑ 𝑅𝑅𝑐𝑐′𝑗𝑗𝑗𝑗∈𝐼𝐼|𝑎𝑎𝑗𝑗𝑗𝑗=1 . 
18: If ∑ ℛ𝑝𝑝𝑝𝑝∈𝑃𝑃  increases then 
19:  Swap c and c’. 
19: 𝐺𝐺 = 𝐺𝐺 − 𝑝𝑝. 
20: end while 
22: Compute ℱ𝑝𝑝 = ∑ 𝐹𝐹𝑖𝑖𝑖𝑖∈𝐼𝐼|𝑎𝑎𝑖𝑖𝑖𝑖=1 , 𝑝𝑝 ∈ 𝑃𝑃. 
23: Re-assign the pods to the zones according to ℱ𝑝𝑝. 
24: return product assignment 

 

The algorithm is demonstrated through a simple example of a set of 10 orders 

from 10 products with homogeneous size: {1, 2, 3}, {4, 5}, {1,2}, {2, 3}, {6, 7}, {8}, 

{1, 8}, {9, 10}, {1, 2, 8, 10}, {5, 9}. We can compute 𝐹𝐹𝑖𝑖 = 4, 4, 2, 1, 2, 1, 1, 3, 2, 2 for 𝑖𝑖 =

1 … 10 respectively, and 𝑅𝑅12 = 3,𝑅𝑅13 = 1,𝑅𝑅18 = 2,𝑅𝑅110 = 1,𝑅𝑅23 = 2,𝑅𝑅28 = 1,𝑅𝑅210 =

1,𝑅𝑅45 = 1,𝑅𝑅56 = 1,𝑅𝑅67 = 1,𝑅𝑅810 = 1,𝑅𝑅910 = 1. The products should be assigned to 4 

pods with 6 compartments. Assume that each product unit fits in one compartment. 

Pod 1 is in zone 1 with 𝜏𝜏1 = 1s and pod 2,3 and 4 are in zone 2 with 𝜏𝜏𝑝𝑝 = 4𝑠𝑠 ,𝑝𝑝 =

2,3,4. 𝑅𝑅12 is the product pair with the highest correlation. According to Step I of 

Algorithm 1, we first assign one pair of products 1 and 2 to pods 1-4. Then product 

3 which has the highest total correlation with products 1 and 2 is assigned to pod 1 

and 2. See Figure 5(a). This is repeated until all the products are assigned. A dashed 

line separates zone 1 and 2. The results of assignment Step I is shown in Figure 5(b), 

which leads to total order picking time of 23s. In Step II, we start with within zone 

improvement. The total correlation on each pod is ℛ1 = 13,ℛ2 = 12,ℛ3 =

8 and ℛ4 = 4. Pod 4 has the lowest total correlation. Products 5 and 6 from this pod 

can be swapped with products 8 and 10 from pod 2 which changes the total 

correlation on each pod to ℛ1 = 13,ℛ2 = 7,ℛ3 = 8 and ℛ4 = 11. Since the collective 

correlation has increased by two, they swap. The results of assignment Step I is 

shown in Figure 5(c), which leads to total order picking time of 21s. No across zone 
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improvement can be made since the collective turnover frequencies of the pods ℱ1 =

17,ℱ2 = 15,ℱ3 = 15 and ℱ4 = 16, are already in good order.  

 
(a)  1 3    1 3   1    1   

  P1 2    P2 2   P3 2   P4 2   

                 

(b) 1 3 10   1 3 10  1 8 6  1 5  

P1 2 8 9  P2 2 8 4 P3 2 5 7 P4 2 9  

                 

(c) 1 3 10   1 3 5  1 8 6  1 8  

P1 2 8 9  P2 2 9 4 P3 2 5 7 P4 2 10  

                 

Figure 5- Illustrative progressive example of assignment of 10 products to 4 pods: (a) Step 
I one iteration, (b) Step I result, (c) Step II within zone improvement result. 
 

4.6. Numerical Analysis  
Correlation and turnover frequency of products have a significant impact on the 

performance of the storage policies. (Hausman et al., 1976)) and Bender (1981) 

propose two different functions to approximate the turnover frequency of stored 

products. Hausman et al. (1976) formulate the ranked cumulative demand 

percentage, G, versus the percentage of inventoried items, i, as 𝐺𝐺(𝑖𝑖) = 𝑖𝑖𝐴𝐴, 0 < 𝐴𝐴 ≤ 1. 

Bender (1981) shows experimentally that 𝐺𝐺(𝑖𝑖) = (𝐵𝐵 + 1)𝑖𝑖 (𝐵𝐵 + 𝑖𝑖)⁄ ,𝐵𝐵 ≥ 0 provides a 

better fit to the ABC curve. Parameters A and B represent the shape factor of the 

demand curve of the two functions, respectively. For both cases, a smaller shape 

factor means the demand curve is more skewed to the left, which corresponds to 

larger contribution to the demand of smaller inventoried items. Inspired by these 
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functions, in Section 4.6.1, we introduce two expressions to approximate the 

correlation level of the product pairs in customer demand. Section 4.6.2 presents the 

case description. Section 4.6.3 presents the numerical results. 

 

4.6.1. Assortment Correlation Expressions 
The correlation of each product pair 𝑅𝑅𝑖𝑖𝑖𝑖 is the number of times products i and j are 

jointly ordered. To approximate the ranked cumulative correlation 𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑), as a 

function of the cumulative percentage of product pairs 𝜑𝜑, we introduce two 

correlation expressions as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑) = 𝜑𝜑𝑠𝑠, 0 < 𝑠𝑠 ≤ 1 (13) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑) =
(𝑟𝑟 + 1)𝜑𝜑
(𝑟𝑟 + 𝜑𝜑)

, 𝑟𝑟 ≥ 0 
(14) 

 

where s and r are the shape factors of the correlation curve. Smaller shape factors 

mean a more skewed correlation curve. This indicates a smaller number of pairs 

contribute to a larger cumulative correlation. In Section 4.6.2, we show that both 

expressions fit well and are statistically significant for the case tested. However, 

expression (14) provides a better fit. 

 

4.6.2. Case Description  
We use a dataset of an international distributor of personal care products in our 

numerical analysis to obtain realistic insights into the proposed models. In the 

dataset, there are requests for pallet and case pickings. The pallet picking is excluded 

from the analysis because it is picked from a different inventory. The data are 
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anonymized due to the privacy concerns of the company. It includes customer 

demand for three consecutive months in 2018. 

Analysis of the Dataset: Table 2 summarizes the order profile in the dataset. The 

number of active products in the distribution center and the number of orders in the 

three-month period are given. Each order consists, on average, of 37 product lines. 

Each line requests on average 1.5 units of a product. Units of products on average 

require 8 liters of storage space. Figure 6(a) shows the turnover frequency curves of 

the products in the dataset. The solid-line curve represents the real data points. The 

dashed-line curve shows the Hausman's Pareto curve and the dotted-line curve 

shows the Bender’s Pareto curve (Hausman et al., 1976 and Bender, 1981). The 

goodness-of-fit statistics which are presented below each curve support the 

significance of both fits. Figure 6(b) shows the turnover frequency curve of the 

training dataset and Figure 6(c) for a random sample of 325 orders from the test 

dataset. The training and test datasets are obtained by dividing the company’s 

dataset into two sets. See Section 4.6.3 for details. All three analyses in Figure 6 

support a statistically significant fit of Bender’s function with a higher R2 value. 

Therefore, we use the Bender’s curve with this coefficient B to parameterize the 

turnover frequency.  

 
Table 2. Information of order profile in the dataset. 

# Products # Orders # Order Lines Order Line Quantity Product Volume (liter) 

2,362 28,139 (37.2, 47.9)* (1.5, 1.4)* (8, 13)* 
* (Average, Standard Deviation) 
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Figure 6. Turnover frequency curve for (a) full dataset, (b) training set, and (c) a random 
sample. 
* Coefficients with 95% confidence bounds. ** SSE: Sum of squares due to error, SE: standard error 
 

 

The analysis result of the correlation between products is presented in Figure 7. 

The solid-line curve represents the real data points. The dashed-line curve is 

obtained using Formula (13), and the dotted-line curve is obtained using Formula 

(14) which are called M1 and M2, respectively. Figure 7(a) shows the correlation in 

the dataset, 7(b) shows the correlation in the training set and 7(c) shows the 

correlation in a random sample from the test set. The coefficients of M1 and M2 are 

set out below each graph with a 95% confidence interval. The goodness-of-fit 

statistics presented below each graph support the fit. We choose model M2 with 

parameter r to approximate the correlation curve in our experiment. Because, the 

results in Figure 7(a) and (b) show a better visual fit, lower sum of squared errors 

and higher 𝑅𝑅2 for M2 compared to M1, while Figure 7(c) shows a nearly equal 

performance of the two models. 

(a) 
B = 0.0594 (0.0589, 0.0599)* 
SSE: 1.1, R2: 0.986, SE: 0.022 ** 
 
A = 0.1662 (0.1625, 0.17) * 
SSE: 17.0, R2: 0.788, SE: 0.085 

(b) 
B = 0.0636 (0.0631, 0.0642)

*
 

SSE: 1.0, R
2
: 0.988, SE: 0.021** 

 
A = 0.1732 (0.1694, 0.177)

 *
 

SSE: 15.7, R
2
: 0.801, SE: 0.084 

(c) 
B = 0.1248 (0.1243, 0.1253)

* 
SSE: 0.1, R

2
: 0.998, SE: 0.008** 

 
A = 0.2548 (0.2499, 0.2597)

* 
SSE: 5.2, R

2
: 0.905, SE: 0.066 
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Figure 7. Correlation curve for (a) full dataset, (b) training set, and (c) a random sample. 
* Coefficients with 95% confidence bounds. ** SSE: Sum of squares due to error, SE: standard error 
 

MRF System Set-Up: We consider a system with 1300 pods, sufficiently large to 

accommodate all inventoried products.  Each storage pod has a size of 1.5×1.5×1.8 

meters, with 20 compartments of 100-liter capacity each. At least one unit of each 

product in the assortment fits in one compartment. In order to maximize space 

utilization, once a compartment is allocated to a product, the maximum number of 

units that fits into the compartment 𝑞𝑞𝑖𝑖, will be assigned to that pod. The storage area 

has a square shape and is divided into two storage zones. The capacity of zone 1 is 

20% of the total capacity. We use the zoning and pick station configuration shown 

in Figure 3(b) with many pick stations on the left side. The robots move with a speed 

of 1.5 m/s. Acceleration, deceleration, turning, lifting and congestion are ignored. 

 

4.6.3. Analytical Models of the Retrieval Times 
We split the dataset randomly into two parts. 70% of the data is used as the training 

set (to assign products to pods and pods to storage zones), and the remaining data is 

(a) 
r = 0.04713 (0.04712, 0.04715)* 
SSE: 238.4, R2: 0.991, SE: 0.015** 

 
s = 0.1458 (0.1456, 0.1459)* 
SSE: 4687, R2: 0.819, SE: 0.068** 

(b) 
r = 0.05372 (0.0537, 0.05374)

* 
SSE: 242.3, R

2
: 0.991, SE: 0.016

** 
 
s = 0.1575 (0.1573, 0.1576)

* 
SSE: 4244, R

2
: 0.841, SE: 0.066

** 

(c) 
r = 0.2131 (0.2128, 0.2134)

* 
SSE: 175.1, R

2
: 0.975, SE: 0.033

** 
 
S = 0.3342 (0.3340, 0.3344)

* 
SSE: 134.5, R

2
: 0.981, SE: 0.029

** 
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used as the test set (to calculate the expected order retrieval time). This means that 

we solve the assignment model using the training set and use the test set to validate 

the model. Products and pods are assigned using the information from the training 

set according to all storage policies in Table 1. Then, we draw 500 random samples 

of 325 orders, equal to average daily demand, from the test order set. In the next 

sections, the expected retrieval times are calculated and analyzed. 

 

Retrieval Time Comparison of the Assignment Policies: The total expected order 

picking retrieval times of the sample orders for the RND, ABC, CRL and CDA 

policies are presented in Table 3. The first row shows the average and the standard 

deviation of the expected retrieval times of the sample order sets using each policy. 

The next rows show the relative benefits (in percentage) of using this policy 

compared to other policies together with the minimum and maximum savings in 

percentage. The results show that the policies can be ranked according to their 

performance as CDA, CRL, ABC, and RND, where CDA outperforms the other 

three policies by up to 58% on average. CRL takes the second place after CDA, 

indicating that correlation-based policies perform better than turnover-based ones 

in this experiment.  
 

Table 3. Evaluation results of the effect of using different storage assignment policies on 
order picking retrieval time. 

Policy CDA CRL  ABC RND 
 (69,570, 4,242) * (77,850, 4,369) * (86,901, 5,744) * (167,853, 10,614) * 
CDA**  11 (9, 12) 20 (14, 37) 58 (56, 61) 
CRL**   10  ( 4, 15) 54 (51, 56) 
ABC**    48 (46, 51) 

* (Average, Standard Deviation). ** Average relative savings (Minimum Value, Maximum Value) in percentage. 
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Prediction of Performance of Policies with varying r and B: To explain the 

variation in expected retrieval times when using different assignment policies, a 

multivariate regression analysis is used. We investigate the relationship between 

variables, namely the turnover frequency coefficient (B) and correlation coefficient 

(r) as the explanatory variables and the expected retrieval time per order line of the 

sample orders as the dependent variable. The expected retrieval time per order line 

is obtained by normalizing the expected retrieval time of each sample order over the 

total number of order lines in the sample order. This normalization eliminates the 

influence of varying order size on the total retrieval time of each sample. When the 

interaction effect r×B was included in the regression models, the p-values of the 

coefficients were not significant at a 95% confidence level. Therefore, we exclude 

the interaction effect from the regression models. This change did not weaken the 

explanatory power of the regression model and R2 remained at the same level.  

Figure 8 shows the 3D graphs of the regression analysis of 500 sample order sets 

for all the policies. The vertical axis shows the expected retrieval time per order line 

for each assignment policy. Below the graphs, the statistical results of regression 

models are set out. We make the following observations. 

 

Observation 1- The regression of the CDA policy shows that the expected retrieval 

times per order line increases when r increases. This supports that when the products 

are highly correlated in the order set (smaller r), the CDA policy has a better 

performance. 

 

Observation 2- The regression of the CRL policy has a similar behavior as CDA, 

with a steeper curve. This means the performance of the CRL policy is very sensitive 
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to r values. This is expected behavior since the correlation is the main decision 

factor in this policy. 

 

 
Figure 8. Multivariate regression results of the retrieval times with respect to r and B for 
different storage policies. 
* Significant at 0.95 confidence level. ** Significant at 0.995 confidence level. 
 

(c) ABC 
R2: 0.10, F: 17.70, p-value: 0.00 
 Coef. S.E t Stat P-value 
b0 7.34 0.10 74.55 0.00** 
r 2.69 0.38 7.09 0.00** 
B -1.22 0.76 -1.60 0.11 
 

(a) CDA 
R

2
: 0.34, F: 84.30, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 5.37 0.08 68.37 0.000** 
r 4.57 0.30 15.11 0.000** 
B -1.18 0.61 -1.94 0.05* 

 

(b) CRL 
R

2
: 0.54, F: 194.05.49, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 5.73 0.07 76.45 0.000** 
r 6.60 0.29 22.87 0.000** 
B -1.64 0.58 -2.83 0.005** 
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Observation 3- The regression of the ABC policy has a much smaller r coefficient. 

The coefficient B is not significant at 95%. The small range of B values can serve 

as an explanation for an insignificant correlation. 

 

Observation 4- The regression curve of the RND policy is flat. This policy is not 

sensitive to any of the factors, and the expected retrieval time per order line remains 

constant. 

 

Comparison of Performance of Policies for varying r and B: To explain the 

variation in relative savings in total retrieval time of different assignment policies, 

a multivariate regression analysis is used. For example, the relative saving of the 

CDA policy compared to the ABC policy is defined as (TABC - TCDA) / TABC. The 

turnover frequency coefficient (B) and correlation coefficient (r) are used as 

explanatory variables, and the relative saving of each two methods is used as the 

dependent variable. Figure 9 shows the 3D graphs of the regression analysis of 500 

sample order sets. The interaction effect of the explanatory variables is excluded 

due to insignificant p-values. We make the following observations. 

 

Observation 5- The relative savings of the CDA policy compared to CRL policy 

increase with r. This can be explained by the fact that CRL policy loses power with 

an increasing r while CDA policy is less sensitive to it. 

 

Observation 6- The relative savings of the CDA and CRL policies compared to 

ABC and RND policies decrease with r. This shows that for order sets with smaller 

r (higher correlation), implementing the CDA or CRL policy can make a big 
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difference compared to ABC and RND policy. The relative savings of CDA and 

CRL compared to RND are always substantially higher than when compared to 

ABC. 

 
Figure 9. Multivariate regression results of relative savings of different storage policies with 
respect to r and B. 

(c) CDA vs RND 
R2: 0.34, F: 128.47, p-value: 0.00 
 Coef. S.E t Stat P-value 
b0 0.64 0.01 122.53 0.00 
r -0.30 0.02 -15.11 0.00 
B 0.08 0.04 1.94 0.05 

 

(a) CDA vs CRL 
R

2
: 0.32, F: 118.80, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 0.07 0.00 21.02 0.00 
r 0.19 0.01 14.55 0.00 
B -0.04 0.03 -1.56 0.12 

 

(b) CDA vs ABC 
R

2
: 0.07, F: 18.67, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 0.26 0.01 18.40 0.00 
r -0.31 0.06 -5.63 0.00 
B 0.03 0.11 0.23 0.82 
 

(d) CRL vs ABC 
R

2
: 0.16, F: 46.50, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 0.21 0.02 13.59 0.00 
r -0.54 0.06 -8.96 0.00 
B 0.07 0.12 0.58 0.56 

 

(e) CRL vs RND 
R

2
: 0.54, F: 290.42, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 0.62 0.00 123.65 0.00 
r -0.44 0.02 -22.87 0.00 
B 0.11 0.04 2.83 0.00 

 

(f) ABC vs RND 
R

2
: 0.10, F: 26.36, p-value: 0.00 

  Coef. S.E t Stat P-value 
b0 0.51 0.01 77.88 0.00 
r -0.18 0.03 -7.09 0.00 
B 0.08 0.05 1.60 0.11 
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Observation 7- Coefficient r is always significant. B is either insignificant or has a 

small effect size which can be due to a small variation domain. This means that r is 

the primary determinant in the variation in relative saving. 

 

4.7. Conclusion and Research Directions 
This chapter studies the design and analysis of storage assignment policies in robotic 

and automated warehouses, based on historical customer orders, in order to reduce 

the order picking retrieval time. Previous literature has studied correlated 

assignment and dispersed assignment separately, mainly in a manual warehouse 

environment, where an order picker walks along the storage locations and picks the 

orders. In this chapter, we study the effect of using correlated and dispersed storage 

policies on retrieval times in robotic mobile fulfillment systems. The correlation 

between products is derived from the joint requests of products in historical 

customer demand. Dispersing a product involves assigning its inventory to more 

than the minimum required number of storage units. A mixed-integer linear program 

is formulated that clusters highly correlated products on the storage pods while 

allowing inventory to be dispersed at the desired level. The model assigns clusters 

to storage zones, and inventory to customer orders in order to minimize the total 

order picking retrieval time. This model is NP-hard and can be solved for small 

instances by Gurobi 9.0. A construction and improvement heuristic is developed 

that can solve real size problems. To evaluate the performance of the model, we use 

a real dataset of a warehouse distributing personal care products. We define two 

parameters, 𝐵𝐵 and 𝑟𝑟, based on Bender’s Pareto curve function to capture the product 

turnover frequency and the correlation between them in the orderset. Regression 
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models are developed for predicting the total retrieval time using these 𝐵𝐵 and 𝑟𝑟 

values. 

The analytical results show that the correlated dispersed assignment (CDA) 

outperforms the random (RND), class-based (ABC), and correlated (CRL) 

assignments. In the case we tested, with large order sizes, the CRL policy has better 

performance than the ABC and RND policies. The regression models show that the 

total retrieval time for the CDA and CRL policies increases when 𝑟𝑟 increases. 

Additionally, we observe that the relative savings of the CDA policy compared to 

the CRL policy increase with r, but decreases compared to the ABC and RND 

policies. In the case tested, 𝑟𝑟 has always a significant effect while 𝐵𝐵 has rather a 

small or insignificant effect, which may be due to small variation in 𝐵𝐵. These results 

suggest that managers should pay special attention to the customer order profile, 

such as turnover frequency and correlation of the products to reduce the operational 

time and cost. In automated warehouses, the correlated dispersed assignment may 

result in shorter retrieval times than common policies such as ABC and RND. 

Furthermore, when the correlation of the products has a highly skewed Pareto curve, 

the performance of the CDA increases.  

Future research should evaluate the performance of correlated dispensed 

assignment for different cases, especially where 𝐵𝐵 and 𝑟𝑟 show higher variation than 

in the case we tested. This chapter does not include the replenishment effort in the 

model and focuses primarily on retrieval effort to reduce the customer response 

time. Since dispersing inventory may have a high impact on the replenishment time, 

future research should study the effect of inventory dispersion on the total effort. 
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Chapter 5 

 

Summary and Conclusion 
 

5.1. Summary 
Automated storage and retrieval systems are adopted by many companies to 

reduce the operational costs in warehouses and to rapidly fulfill customer demand. 

Automation technology also allows better space usage, e.g. by more narrow 

transport aisles. Compact automated storage systems do not need transport aisles 

and allow very high density storage. Deciding on storage and retrieval policies in 

such systems is an important choice as it affects product retrieval time 

performance. Chapter 2 discusses optimal and near-optimal retrieval methods in 

compact storage systems. Chapters 3 and 4 model correlated and dispersed storage 

and retrieval methods using information on the historical customer demand. 
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Chapter 2 studies efficient retrievals in puzzle-based storage (PBS) systems, a 

new type of compact storage system that operates without transport aisles. In these 

systems, loads are stored on shuttles. Retrieving loads resembles solving a 15-tile 

sliding puzzle. These systems bring extreme space usage efficiency but can result 

in long storage and retrieval times. Previous research studies optimal retrieval 

methods for single loads in which only one load is retrieved at a time. In practice, 

often, multiple loads are requested together. This chapter proposes a multiple-load 

retrieval method that minimizes the total retrieval time. The main research 

question is “What is the optimal retrieval method in PBS systems (i.e. minimizing 

the number of required moves) to retrieve multiple requested loads, using one 

open location?” This question is answered by first modeling simultaneous 

retrieval of two requested loads. The optimal retrieval paths for two loads, which 

go through an intermediary joining location, are obtained. Based on this model, an 

efficient heuristic is developed that obtains near-optimal retrieval paths for 

multiple requested loads. Numerical analysis shows that up to 23% savings in total 

retrieval time can be achieved compared to sequential optimal single-load 

retrievals. 

Chapter 3 studies a correlated storage policy, which assigns product pairs that 

are ordered frequently together to the same storage bin to save retrieval time. This 

assignment policy considers information on both turnover frequency of products 

and correlation between them. In the literature, models use a sequential approach 

that first cluster correlated products, and then assigns the clusters to storage zones. 

These models are suboptimal because the objectives of the decomposed problems 

are to maximize the total product correlation in clusters and then minimize the 

order picking time. On the other hand, in an integrated approach, the objective is 
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to minimize the order picking time by simultaneously considering product 

turnover and correlation.  Furthermore, current models are developed for manual 

order picking and are not directly applicable to automated storage and retrieval 

systems, where each cluster is assigned to a storage pod that is retrieved 

automatically. The main research question in this chapter is “How does integrated 

clustering and storage assignment of correlated products affect the order picking 

performance in automated warehouses?” To answer this question, an integrated 

mathematical model is developed that clusters the products and assigns the cluster 

to storage locations in order to minimize the total order picking retrieval time. The 

model is tested for two types of automated systems: crane-based automated 

storage and retrieval (AS/R) systems and robotic mobile fulfillment (RMF) 

systems. The performance of the integrated model is evaluated by comparing it to 

product turnover-based assignment and sequential correlated assignment. The 

model is solved using Gurobi 7.5. The numerical analysis shows that applying the 

integrated model, saves up to 40% and 26%, respectively, on retrieval time 

compared to the benchmark policies. 

Chapter 4 studies a dispersed correlated storage policy, which clusters 

correlated products and, in addition, allows the inventory of each product to be 

broken up and spread over the forward storage area. Several papers have studied 

the benefits of random dispersion (Onal et al., 2017, 2018) and evenly spreading 

(Weidinger and Boysen, 2018) product inventory, but not dispersion considering 

historical order information. RMF systems, that use robots to move storage pods, 

are good candidates for implementing such policies for the reason that each pod 

has several compartments, each providing space for part of product inventory. 

RMF systems, additionally, are good candidates for the correlated assignment 
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because each storage pod can carry multiple correlated products, which can be 

retrieved to pick order lines requesting those products. The main research 

questions in this chapter are “What is the effect of product dispersion and storage 

clustering on the expected order picking retrieval time in RMF systems? How do 

product correlation and product turnover frequency contribute to the performance 

of the policies?” to answer this, we develop travel time expressions for different 

warehouse layouts in robotic mobile fulfillment systems. A mixed-integer program 

is presented to disperse the inventory, cluster correlated products on pods, and 

assign the inventory to customer orders. The objective function of the model 

minimizes the total expected retrieval time of picking all orders. The performance 

of the dispersed correlated assignment (CDA) policy is compared with random, 

class-based, correlated and dispersed assignments using a real warehouse dataset. 

The results show significant benefits of using the CDA policy. Further numerical 

analysis reveals that a more skewed product correlation (Pareto curve) results in 

higher performance of the CDA model. 

 

5.2. Outlook  
Developments in automation and robotic technology are moving fast. This 

suggests an increasing need for advanced storage and retrieval policies to control 

such systems. This section gives an overview of research directions on storage 

assignment and retrieval methods in compact storage robotized systems. 

Puzzle-based storage systems are very compact with a long throughput time. 

To reduce the throughput time, in addition to optimal two-load retrieval, chapter 2 

studies near-optimal multiple-load retrieval in presence of one open location. 

Future research should study the retrieval methods of such systems when multiple 
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open locations are available. High space utilization may result in reduced system 

performance due to sub-optimal storage assignment and additional internal 

relocation which, in general, elongates the storage and retrieval time. Since the 

number of open locations has a strong effect on the performance of the system, 

presence of more open locations may speed up the operations. Future research 

should particularly consider multiple load retrievals in systems with multiple open 

locations. Also, note that different variants of these systems exist, e.g., a system 

that allows ‘block’ movements, that is all loads is a row or column can move 

simultaneously. We assume the loads move sequentially. Numerical analysis and 

simulation models can be used to evaluate the performance of such systems. 

Chapter 3 highlights the benefits of using correlated storage assignment in 

AS/R and RMF systems that can facilitate simultaneous picking of multiple lines 

of an order from the same retrieved storage unit. In the model presented, products 

are stored using dedicated storage. A dedicated storage policy requires a system 

with higher storage capacity and longer replenishment time compared to systems 

using shared storage allocations such as a class-based storage policy. In addition, 

this model only considers the assignment problem and does not consider the 

replenishment. Future research should investigate a ‘dynamic’ correlated storage 

assignment that takes into account the changing assortment and is flexible in 

inventory allocation. Faster and more robust solution approaches are needed to 

handle real size problems. 

Chapter 4 introduces the correlated dispersed assignment (CDA) policy that 

allows inventory to be spread over multiple locations. Numerical analysis on one 

case, with a large number of lines in each order, shows considerable benefits of 

such a policy. Further numerical analysis is needed to support the applicability of 
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CDA to more general cases, especially where orders have smaller sizes, or the 

order profile has a different turnover and correlation pattern. Furthermore, this 

chapter does not consider the extra replenishment effort required due to inventory 

dispersion which may be addressed in further research. Another research direction 

is to evaluate and optimize the sequencing and assignment of orders to pick 

stations so that pick requests at each station include correlated products, which are 

already assigned to the same storage pod, in order to minimize the retrieval times. 
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Summary 
Warehouses are key components in supply chain.  They facilitate the product flow 

from production to distribution. The performance of supply chains relies on the 

performance of warehouses and distribution centers. Being able to realize short 

order delivery lead times, in retail and ecommerce particularly, is important for 

warehouses. Efficient and responsive storage and retrieval operations can help in 

realizing a short order delivery lead time. Additionally, space scarcity has brought 

some companies to use high-density storage systems that increase space usage in 

the warehouse. In such storage systems, most of the available space is used for 

storing products, as little space is needed for transporting loads. However, the 

throughput capacity of high-density storage systems is typically low. New robotic 

and automated technologies help warehouses to increase their throughput and 

responsiveness. Warehouses adapting such technologies require customized storage 

and retrieval policies fit for automated operations. This thesis studies storage and 

retrieval policies in warehouses using several common and emerging automated 

technologies. 

Chapter 2 studies puzzle-based storage systems, in which loads are stored on 

transport shuttles, which carry the unit loads autonomously in a high-density storage 
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system. Loads are stored next to each other. The system does not have transport 

aisles. Only few open locations are available for the shuttles to move. The system 

shuffles loads consecutively to make space available to retrieve a requested load. 

As such, it resembles the traditional 15-tile sliding puzzle. The system has been 

studied in literature, in particular how to retrieve one load at a time. This chapter 

proposes a multiple-load retrieval method that brings two or more requested loads 

together to an optimal joining location, and then retrieves them simultaneously. 

Closed form expressions are derived for the number of moves required to retrieve 

multiple loads. A fast heuristic is developed to find near-optimal joining locations 

for the loads. Numerical analysis shows that multiple-load retrieval results in a 

shorter retrieval time than optimal sequential single-load retrieval. 

Chapter 3 studies the impact of correlated storage assignment on order retrieval 

time in automated storage and retrieval (AS/R) systems. In an AS/R system, 

automated cranes move within narrow aisles and transport storage bins between 

storage shelves and pick stations. The assignment of products to storage bins 

impacts the order retrieval time, especially multiple line orders. A correlated storage 

policy groups product that appear jointly in customer orders frequently in product 

clusters. These clusters are then assigned to storage bins. Each bin has multiple 

compartments that can house the products of a cluster. This correlated policy can 

reduce the number of bin retrievals required to pick all the lines of an order. In this 

chapter, an integrated linear program is formulated that clusters the correlated 

products and assigns the clusters to storage bins to minimize the total retrieval time. 

The numerical analysis shows that it performs better than sequentially clustering 

products and assigning clusters to storage bins. Additionally, it outperforms the 

turnover frequency-based assignment when the skewness of the Pareto curve of the 
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turnover frequency of the products in the assortment is low to moderate, for even 

low correlation between products. 

 Chapter 4 extends the correlated storage policy of the previous chapter by 

including dispersion of product inventory. In such a case, the inventory of each 

product is split and dispersed over multiple storage locations. Dispersion makes 

each product more accessible from different pick stations. A product can now also 

be stored in multiple product clusters, depending on its correlation with other 

products. This can reduce the order picking retrieval time, especially for robotic 

mobile fulfilment systems where autonomous robots move the storage pods carrying 

inventory of multiple products to a pick station and return it after the customer order 

has been picked. This chapter formulates a integer linear program for correlated 

dispersed storage in which products are assigned to storage pods, storage pods are 

assigned to storage locations and the inventory is assigned to customer orders to 

minimize the total retrieval time. Retrieval time expressions are developed for 

different layouts of the warehouse. Since the model is NP-hard, a simple and 

efficient heuristic is developed that is capable to solve real size problems. To 

evaluate the performance of the model, we apply it to a dataset consisting of three-

month order history of a warehouse in personal care products. The outcome is 

compared with that of random, class-based, correlated but not dispersed, and 

dispersed but not correlated storage policies. The results show that the correlated 

dispersed storage outperforms the other policies for the instances tested. We use 

regression models to predict the performance of the policies based on correlation 

and turnover frequency Pareto curves. The results show significant association 

between the total retrieval time and the skewness of the correlation Pareto curve in 

the correlated dispersed policy for the case tested. 
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Samenvatting (Summary in Dutch) 
Magazijnen zijn een belangrijk onderdeel van de supply chain. Ze ondersteunen de 

productstroom van productie naar distributie. De prestatie van een supply chain 

hangt af van de prestaties van magazijnen en distributiecentra. Het realiseren van 

korte levertijden is belangrijk voor magazijnen, met name in de detailhandel en e-

commerce. Efficiënte en responsieve opslag- en orderverzamelprocessen kunnen 

helpen bij het realiseren van een korte levertijd van bestellingen. Gebrek aan 

beschikbare ruimte heeft sommige bedrijven ertoe gebracht zeer compacte 

opslagsystemen te gebruiken die de ruimte in het magazijn maximaal benutten. In 

dergelijke opslagsystemen wordt het grootste deel van de beschikbare ruimte 

gebruikt voor het opslaan van producten, aangezien er weinig ruimte nodig is voor 

het transport van ladingen. De doorzet van compacte opslagsystemen is echter 

laag. Nieuwe robot- en geautomatiseerde technologieën helpen magazijnen hun 

doorzet en responsiviteit te vergroten. Dergelijke magazijnen vereisen 

bedrijfsspecifieke in- en uitslagstrategieën die geschikt zijn voor geautomatiseerde 

processen. Dit proefschrift bestudeert in- en uitslagstrategieën in magazijnen voor 

verschillende veelgebruikte en nieuwe geautomatiseerde technologieën. 
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Hoofdstuk 2 bestudeert ‘puzzelgebaseerde’ compacte opslagsystemen, waarin 

ladingen worden opgeslagen op shuttles, die zich autonoom kunnen verplaatsen in 

een compact opslagsysteem. Ladingen worden dicht naast elkaar opgeslagen. Het 

systeem heeft geen transportgangen. Om de shuttles zichzelf te laten verplaatsen is 

een beperkt aantal open locaties beschikbaar. Het systeem verplaatst 

achtereenvolgende ladingen zodat er ruimte ontstaat om een gevraagde lading op 

te halen. Dit systeem heeft wat weg van de bekende schuifpuzzel met 15 tegels. 

Een dergelijk systeem is al eerder onderzocht in de literatuur, met name hoe één 

lading tegelijk kan worden opgehaald. In dit hoofdstuk wordt een ophaalmethode 

voorgesteld voor meerdere ladingen, waarbij twee of meer gevraagde ladingen 

telkens naar een optimale verbindingslocatie worden gebracht en vandaar 

gezamenlijk worden opgehaald. Analytische uitdrukkingen worden afgeleid voor 

het aantal bewegingen dat nodig is om meerdere ladingen op te halen en een snelle 

heuristiek wordt ontwikkeld om een nagenoeg optimale verbindingslocaties voor 

de ladingen te vinden. Numerieke analyse toont aan dat het gecombineerd ophalen 

van meerdere ladingen resulteert in een kortere ophaaltijd dan het optimale 

sequentiële ophaalplan met één lading per keer.  

In Hoofdstuk 3 bestudeert de impact van gecorreleerde opslagtoewijzing op de 

benodigde uitslagrijtijd voor het ophalen van ladingen in geautomatiseerde 

opslagsystemen (zogeheten automated storage and retrieval, AS/R, systemen). In 

een AS/R-systeem verplaatsen geautomatiseerde kranen zich in smalle gangpaden 

en transporteren ze opslagladingen (bakken of pallets) tussen opslaglocaties en 

pickstations. De toewijzing van producten aan opslagbakken en opslagbakken aan 

locaties heeft invloed op de benodigde tijd voor het ophalen van orders, met name 

orders bestaande uit meerdere regels. Een (vraag)gecorreleerde opslagstrategie 
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groepeert producten die vaak gezamenlijk voorkomen in klantorders, in 

productclusters. Deze clusters worden vervolgens toegewezen aan opslagbakken. 

Elke bak heeft meerdere compartimenten waarin de verschillende producten van 

een cluster kunnen worden ondergebracht. Deze gecorreleerde opslagstrategie kan 

het aantal ophaalopdrachten verminderen dat nodig is om alle regels van een 

bestelling te verzamelen. In dit hoofdstuk wordt een geïntegreerd lineair 

programma geformuleerd dat de gecorreleerde producten clustert en de clusters 

toewijst aan opslagbakken om de totale ophaaltijd te minimaliseren. Uit de 

numerieke analyse blijkt dat deze methode beter presteert dan sequentiële 

clustering van producten en het vervolgens toewijzen van clusters aan 

opslagbakken. Bovendien overtreft het de op omloopsnelheid gebaseerde 

toewijzing wanneer de scheefheid (skewness) van de Pareto-curve van de 

omzetfrequentie van de producten in het assortiment laag tot matig is, zelfs als de 

vraagcorrelatie tussen producten laag is. 

Hoofdstuk 4 breidt het gecorreleerde opslagbeleid van het vorige hoofdstuk uit 

met de verspreiding van productvoorraad. In een dergelijk geval wordt de 

voorraad van elk product opgesplitst en verspreid over meerdere opslaglocaties. 

Dispersie maakt een product sneller toegankelijk vanaf verschillende startposities. 

Een product kan nu ook worden opgeslagen in meerdere productclusters, 

afhankelijk van de correlatie met andere producten. Dit kan de ophaaltijd voor het 

orderverzamelen verminderen, vooral voor mobiele fulfilment-systemen waarbij 

autonome robots de opslagrekken met inventaris van meerdere producten naar een 

pickstation verplaatsen en retourneren nadat de klantbestelling is verzameld. Dit 

hoofdstuk formuleert een lineair geheeltallig programma voor gecorreleerde 

verspreide opslag waarin producten worden toegewezen aan opslagrekken, 
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opslagrekken worden toegewezen aan opslaglocaties en de productvoorraad wordt 

toegewezen aan klantorders om de totale ophaaltijd te minimaliseren. Voor 

verschillende indelingen van het magazijn worden uitdrukkingen ontwikkeld voor 

de uitslagtijd. Aangezien het model NP-hard is, wordt een eenvoudige en 

efficiënte heuristiek ontwikkeld die in staat is om problemen van praktische 

grootte op te lossen. Om de prestaties van het model te evalueren, wordt het 

toegepast op een dataset bestaande uit een bestelgeschiedenis van drie maanden 

van een magazijn met producten voor persoonlijke verzorging. Het resultaat wordt 

vergeleken met een random opslagstrategie, een strategie gebaseerd op 

opslagklassen, een gecorreleerde, maar niet verspreide strategie, en een verspreide, 

maar niet gecorreleerd opslagstrategie. De resultaten laten zien dat voor de geteste 

instanties de gecorreleerde en verspreide opslag beter presteert dan de andere 

strategieën. We gebruiken regressiemodellen om de prestaties van het beleid te 

voorspellen op basis van correlatie- en omzetfrequentie Pareto-curven. De 

resultaten tonen voor de geteste casus een significant verband aan tussen de totale 

uitslagtijd en de scheefheid van de correlatie Pareto-curve in de gecorreleerde 

verspreide strategie. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 (Summary in Farsi) چکیده

    آنها جریان کــالا از تولیــد تــا توزیــع را تســهیل  .  شوندمحسوب میزنجیره تامین  هاي کلیدي دراز بخش انبارها

  تحویل سفارش،  زمانکوتاه کردن    کنند. عملکرد زنجیره تامین وابسته به عملکرد انبارها و مراکز توزیع است.می

و   مــدعملیــات انبــارش و بازیــابی کارا اهمیت است.ز حائبراي انبارها  و فروش اینترنتی،فروشی ویژه در خردهبه

کند. افزون بر این، کمبود فضا برخی  ، مسیر دستیابی به زمان کوتاه تحویل سفارش مشتري را هموار میپاسخگو

  بهتــري يوجــود اســتفادهتا از فضــاي م هاي انبارش متراکم سوق داده استها را به استفاده از سامانهاز شرکت

گــردد، زیــرا  ي فضاي موجود براي انبارش کالا استفاده میهاي انبارش، بخش عمدهنمایند. در این نوع از سامانه

  هاي انبــارش متــراکم پــایین اســت.سامانه وريبهرهبه فضاي اندکی براي جابجایی کالا نیاز است. با این وجود، 

گویی خــود را افــزایش  پاســخســطح  و    وريبهرهد تا  نکنبه انبارها کمک میهاي نوین خودکار و رباتیک آوريفن

  هستند.جدیدي کنند نیازمند راهبردهاي انبارش و بازیابی ها استفاده میگونه فناوريانبارهایی که از ایندهند. 

کــار نوظهــور یــا رایــج  هاي خودآورينامه به مطالعه راهبردهاي انبارش و بازیابی در انبارهایی که از فناین پایان

 پردازد.برند میبهره می
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هــا کــالا بــر روي  پــردازد کــه در آنمی  ل»مبتنــی بــر پــازمتراکم نبارش «ا هايسامانه بررسیبه  2فصل 

ســامانه  این در سامانه انبارش متراکم را دارند.  هاشده که قابلیت جابجایی خودکار کالاقرارداده هاي نقلیه شاتل

  باشد.ها در دسترس میاتلمحدودي فضاي خالی براي جابجایی ش  تعدادتنها    جایی کالا است.فاقد راهروهاي جاب

کنــد.  سامانه با حرکت دادن مداوم کالاها به اطراف فضاي مورد نیاز براي بازیابی کالاي درخواستی را فــراهم می

ي متحرك شامل اعداد یک تا  هاتایی است که در آن با جابجایی کاشی15 پازلمشابه بازي قدیمی  ،این کارکرد

هــاي  بــه ویــژه روشایــن ســامانه هاي پیشین به مطالعه پژوهش گردد.ترتیب صعودي از اعداد ایجاد می ،پانزده

اند. این فصل یک روش براي بازیابی دو یا تعداد بیشتري کالا بــه صــورت همزمــان  بازیابی انفرادي کالا پرداخته

کنــار  یــک «مکــان همگرایــی بهینــه»    شوند تا درلاهاي درخواستی جابجا میدهد. در این روش ابتدا کامیارائه 

فرم بسته  ریاضی    تمعادلا.  دشوناستخراج کالا انتقال داده مینهایی  ، سپس همزمان به محل  یکدیگر قرار بگیرند

ع بــراي  ســری ابداعیشده است. یک روش ارائه هاي مورد نیاز براي بازیابی چند کالا ي محاسبه تعداد حرکتبرا

دهند بازیابی چند  نشان می عدديهاي است. تحلیل شده توسعه دادهنیز یافتن مکان همگرایی نزدیک به بهینه 

 گردد.تري در مقایسه با بازیابی انفرادي میکالا منجر به زمان بازیابی کوتاه

کار انبــارش و  هاي خودبه بررسی تاثیر «تخصیص موجودي همبسته» بر بازیابی سفارش در سامانه 3فصل 

هاي  قفســههاي خودکار در میان راهروهاي باریــک حرکــت کــرده و  جرثقیل ،هادر این سامانه پردازد.بازیابی می

هاي  قفســهابجا می کنند. نحــوه تخصــیص کالاهــا بــه سازي سفارش جایستگاه آمادهها و انبارش را مابین قفسه

هاي مشتمل بــر چنــد کــالا. تخصــیص  به ویژه در سفارش انبارش تاثیر بسزایی روي زمان بازیابی سفارش دارد،

هــاي مجــزا  هگرودر    ،شــوندهاي مشــتري بــا هــم دیــده میکالاهایی را که مکررا در سفارش ،موجودي همبسته

متشکل از  قفسه  شوند. هر  انبارش تخصیص داده میهاي قفسههاي کالا به کند. سپس، این دستهبندي میدسته

تواند تعداد  تواند کالاهاي یک دسته را در خود جاي دهد. این تخصیص همبسته میچندین محفظه بوده که می

در این فصل   سازي اقلام موجود در سفارش مشتري مورد نیاز است را کاهش دهد.بازیابی که براي آمادهدفعات 
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ه  ائهاي انبارش ارها به جعبهدستهتخصیص سته و کالاهاي همببندي دسته برايه چریزي خطی یکپاریک برنامه

دهد مدل یکپارچه عملکردي بهتــري از  هاي عددي نشان میکند. تحلیلزمان بازیابی را کمینه می کلشده که 

در مواردي که چولگی  هاي انبارش به صورت متوالی دارد. به علاوه،  ها به جعبهبندي کالا و تخصیص دستهدسته

مبتنــی بــر فراوانــی  این مدل عملکرد بهتري نسبت به تخصیص  کم تا میانه باشد،  وانی سفارشفرامنحنی پارتو 

 ، حتی در شرایط همبستگی پایین بین کالاها.سفارش کالا دارد

نظــر  در    نیزپراکندگی موجودي کالا را   تاراهبرد تخصیص همبسته در فصل گذشته را توسعه داده  4فصل 

دســتیابی بــه    ،شود. پراکندگیر کالا تقسیم شده و در چندین مکان انبارش می. در این حالت، موجودي هبگیرد

یک کالا بــا توجــه بــه  همچنین  کند.  تر میسازي سفارش مشتري آسانهاي مختلف آمادهکالاها را براي ایستگاه

مان بازیــابی  تواند زاین روش میبندي شود. در چندین گروه کالایی دستهتواند میهمبستگی آن با دیگر کالاها 

هاي خودکار  که در آن ربات  ارش»تکمیل سف  سیار  رباتیک«ي  سفارش مشتري را کاهش دهد، به ویژه در سامانه

ها را بــه ایســتگاه  هــا قفســهباشــد. رباتکنند که حاوي موجودي چندین کالا میهاي انبارش را جابجا میقفسه

گرداننــد. ایــن فصــل یــک  مورد نیاز به فضاي انبار بازمیسازي سفارش مشتري برده و پس از بازیابی اقلام  آماده

هاي انبــارش،  دهد که کالاها را به قفســهریزي خطی عدد صحیح براي تخصیص همبسته پراکنده ارایه میبرنامه

زمان بازیابی    کلدهد تا  هاي انبارش و موجودي را به سفارش مشتري تخصیص میهاي انبارش را به مکانقفسه

. بــه دلیــل  هاي مختلف انبار توسعه داده شــده اســتزمان بازیابی کالا براي جانماییمعادلات  ردد.کالا کمینه گ

یک روش ابداعی ساده و کارامد توسعه داده شده که قادر بــه حــل مســاله در   ،بودن مساله )NP-hard( هپیچید

شخصی اجرا کردیم تا  بهداشت هاي ماهه انباري از کالاهاي سهباشد. ما این روش را بر روي دادهابعاد واقعی می

بندي، همبســته بــدون  هاي تخصیص تصادفی، مبتنی بر دستهکارایی آن را ارزیابی کنیم. نتایج حاصله با راهبرد

راهبــرد تخصــیص  ها حــاکی از عملکــرد بهتــر  پراکندگی و پراکنده بدون همبستگی مقایسه شــده اســت. یافتــه

بینــی عملکــرد راهبردهــاي  هاي رگرســیون بــراي پیشست. ما از مــدلاهاي موجود  براي دادههمبسته پراکنده  
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داري  گر وابســتگی معنــیمختلف از روي منحنی پارتو همبستگی و فراوانی سفارش استفاده کردیم. نتایج نشــان

هــاي   بــراي دادهو چولگی منحنی پارتو همبستگی در راهبرد تخصیص همبســته پراکنــده  زمان بازیابی کلبین 
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Warehouses are key components in supply chain. They facilitate the product flow from production to 
distribution. Automation technology and robotics help warehouses to be efficient and responsive. Storage 
and retrieval policies determine the performance of a warehouse. Conventional storage and retrieval 
policies are not applicable to automated storage and retrieval system due to operational and technological 
disparities. This thesis studies several new storage and retrieval polices in automated warehouses. Puzzle- 
based storage systems are high-density storage systems that store loads on autonomous shuttles. Such 
systems have low throughput capacity due to lack of transport aisles. Chapter 2 studies an efficient 
multiple-load retrieval method that brings the loads together at an optimal joining location and then 
retrieves them simultaneously. This leads to shorter retrieval time compared to sequential sing-load 
retrievals. In another group of compact storage and retrieval systems, automated cranes transport storage 
bins using narrow aisles. The assignment of products to the bins and bins to the shelves are important 
choices that affect system’s performance. Chapter 3 proposes a correlated assignment that groups 
products, that are frequently order together in historical customer demand, to the same product cluster. 
Each cluster is then assigned to a storage bin. The correlated assignment reduces the total retrieval time 
compared to turnover frequency-based assignment. Chapter 4 further investigates the impact of splitting 
the inventory of a product and dispersing it over multiple storage pod. Each pod is transported using 
autonomous robots and carries several dozens of correlated products. 
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