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Abstract

Background: Patients born with esophageal atresia (EA) have a higher incidence

of infantile hypertrophic pyloric stenosis (IHPS), suggestive of a relationship. A

shared etiology makes sense from a developmental perspective as both affected

structures are foregut derived. A genetic component has been described for both

conditions as single entities and EA and IHPS are variable components in several

monogenetic syndromes. We hypothesized that defects disturbing foregut mor-

phogenesis are responsible for this combination of malformations.

Methods: We investigated the genetic variation of 15 patients with both EA

and IHPS with unaffected parents using exome sequencing and SNP array-

based genotyping, and compared the results to mouse transcriptome data of

the developing foregut.

Results: We did not identify putatively deleterious de novo mutations or reces-

sive variants. However, we detected rare inherited variants in EA or IHPS dis-

ease genes or in genes important in foregut morphogenesis, expressed at the

proper developmental time-points. Two pathways were significantly enriched

(p < 1 × 10−5): proliferation and differentiation of smooth muscle cells and

self-renewal of satellite cells.

Conclusions: None of our findings could fully explain the combination of abnor-

malities on its own, which makes complex inheritance the most plausible genetic

explanation, most likely in combination with mechanical and/or environmental

factors. As we did not find one defining monogenetic cause for the EA/IHPS phe-

notype, the impact of the corrective surgery could should be further investigated.
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1 | INTRODUCTION

Esophageal atresia (EA), a congenital discontinuity of the
esophagus caused by a faulty development of the foregut,
can present either as an isolated defect but is often seen
in combination with other malformations (Brosens
et al., 2014). EA occurs in about 2.5 cases per 10,000 live
births within Europe (Oddsberg, Lu, & Lagergren, 2012;
Pedersen, Calzolari, Husby, Garne,, & group, 2012) and
over three-quarters of patients present with a tracheo-
esophageal fistula (TEF) (Macchini et al., 2017; Pedersen
et al., 2012). Frequently, the malformations seen in combi-
nation with EA are part of the VACTERL (Vertebral,
Anorectal, Cardiac, Tracheoesophageal, Renal or urinary
tract of Limb malformations) association. VACTERL associ-
ation is a diagnosis of exclusion in which three or more fea-
tures of the VACTERL spectrum are present and no known
genetic syndrome is identified (Solomon et al., 2012). Clus-
tering of one or more associated malformations could also
be the result of a shared genetic etiology. Recognizing these
clusters might be hampered by variable expressivity and/or
reduced penetrance.

Another prevalent, but less well-known, associated
malformation is Infantile Hypertrophic Pyloric Stenosis
(IHPS) (Rollins, Shields, Quinn, & Wooldridge, 1989). In
these patients, the pyloric muscle hypertrophies in the
first weeks of life, causing a narrowing of the pyloric
channel (Panteli, 2009). Seemingly, healthy-born infants
present at week 3–6 of life with projectile postprandial
vomiting. This condition requires surgery where the
upper layer of the circular smooth muscle of the pylorus
will be incised, to release the passage from the stomach
to the intestine again. Previously, we have described a
30 times higher prevalence (7.5%) of IHPS in patients
with EA compared to the normal population (0.25%) (van
Beelen et al., 2014). This increased prevalence has been
reported in other retrospective studies (3.3–13%) as well
(Deurloo, Ekkelkamp, Schoorl, Heij, & Aronson, 2002;
Palacios, Sanz, Tàrranga, San Roman, & Carbó, 2014).
The diagnosis of IHPS is more difficult and often delayed
in patients with EA. Relatively common complications
after EA repair, such as stenosis of the anastomosis, can
protect against reflux and lead to just regurgitation. By
the time these patients start vomiting, there is a massive
gastroesophageal reflux.

The increased prevalence of IHPS in patients EA sug-
gests a relationship. However, no research has been

carried out toward the cause of this increased prevalence.
It is unclear if IHPS is the consequence of the surgical
repair or the result of a shared genetic etiology. As the
esophagus and the pyloric sphincter are both foregut
derived structures, we hypothesize that genetic alterations
affecting genes important for foregut morphogenesis are
the main drivers for the combination of defects seen in
these patients. Given the low prevalence of the disorder
and the high impact on development, we will concentrate
on genes intolerant to heterozygous or recessive variation
(Lek et al., 2016; Ruderfer et al., 2016) harboring rare puta-
tive deleterious single nucleotide changes or large CNVs.

2 | METHODS

2.1 | Patient cohort

This study was approved by the Medical Ethical Review
Board of Erasmus Medical Center (MEC 193.948/2000/159).
We searched the Erasmus University MC-Sophia Children's
Hospital EA cohort and the database of the standardized
prospective longitudinal follow up program in our hospital
for children with congenital anatomical anomalies
(Gischler et al., 2009) for patients born between 1970 and
2017 with a combination of both EA and IHPS in history.
Parental informed consent for whole exome sequencing
(WES) was obtained for 15 patients.

2.2 | Detection of genetic variation using
exome sequencing

Initially, we included all variants with an minor allele
frequency (MAF) below 1% in 1000 Genomes phase 3 ver-
sion 5, Exome Variant Server 6500 v0.0.30, Genome of
the Netherlands (Genome of the Netherlands, 2014),
ExAC 0.3 and our in-house cohort (n = 906), consisting
of individuals captured with the SureSelect Human All
Exon 50 Mb Targeted exome enrichment kit v4
(n = 279), SureSelect Clinical Research Exome v1
(n = 387) and Haloplex Exome target enrichment system
(n = 240), Agilent Technologies, Inc., Santa Clara, Cali-
fornia). We aimed at finding variants that could be classi-
fied as pathogenic or likely pathogenic by the American
College of Medical Genetics and Genomics (ACMG)
guidelines (Richards et al., 2015). All nonsense variants,
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variants predicted to affect splicing and all heterozygous
variants with a Combined Annotation-Dependent Deple-
tion (CADD) score (Kircher et al., 2014) above 20 were
selected for individual patient analysis in different down-
stream tools (see Supporting information S1). Prioritized
variants were further classified according to the criteria
in Supporting information S2. Next, we focused on vari-
ants with a MAF below 5%, and we selected all protein
coding and splicing variants in genes sensitive for reces-
sive variation (Prec <0.9) for evaluation in recessive
models (see Supporting information S1). Determination
of variant segregation and confirmation of de novo of
inherited status of variants was done with Sanger
sequencing unless otherwise indicated. Variants were
considered ultra-rare (Bennett, Petrovski, Oliver, &
Berkovic, 2017) when they were absent from the
gnomAD (http://gnomad.broadinstitute.org/) (Yandell
et al., 2011) dataset. Ultra-rare, X-linked or recessive vari-
ants predicted to be deleterious are submitted to the Clin-
Var database https://www.ncbi.nlm.nih.gov/clinvar/.

2.3 | Pathway enrichment analysis of
genes affected by rare variants

To investigate if specific pathways are enriched with
ultra-rare variants, Gene IDs with variants in canonical
splice sites, nonsense variants, protein altering inframe
InDels and missense variants were uploaded to Ingenuity
pathway Analysis (Qiagen, Venlo, The Netherlands).
Additionally, a more stringent set was uploaded with loss
of function variants, predicted to be loss of function intol-
erant (PLI ≥0.9 or Prec ≥0.9) and protein altering vari-
ants with a Z score ≥ 3.

2.4 | Expression of candidate genes

Candidate gene expression was determined at relevant
developmental time points in mouse. Gene expression of
top-ranking genes derived from the individual patient
sample prioritizations were determined using datasets
(GSE13040, GSE19873, GSE34278, GSE15872, GSE43381)
downloaded from the Gene Expression Omnibus (GEO)
(Edgar, Domrachev, & Lash, 2002). From these datasets,
we used public data on mice on the endoderm, meso-
derm and ectoderm at E8.25, foregut at E8.5 and esopha-
gus, stomach, pyloric sphincter, and intestine at E11.5–
E18.5 (https://www.ncbi.nlm.nih.gov/geo/) (Chen
et al., 2012; Li et al., 2009; Millien et al., 2008; Sherwood,
Chen, & Melton, 2009; Stephens et al., 2013). These
datasets were imported into BRB-ArrayTools Version
4.5.0 - Beta_2 (http://linus.nci.nih.gov/BRB-ArrayTools.

html), annotated by Bioconductor (www.bioconductor.
org), R version 3.2.2 Patched (September 12, 2015 r69372)
and normalized. We determined differential expression
between tissue types and classified upregulated genes
being expressed in the tissue under investigation.

2.5 | Detection of common SNP
associated with IHPS

Genome-wide association studies (GWAS) revealed five
loci highly associated with IHPS (rs11712066, rs573872,
rs29784, rs1933683, and rs6736913), pointing toward
MBNL1, NKX2-5, BARX1, and EML4 as candidate genes
(Everett & Chung, 2013;Fadista et al., 2019; Feenstra
et al., 2012). Unfortunately, rs673913 proved to be resulting
in false positive results (e.g., due to sequencing errors or
alignment difficulties) in all patients and controls (see
Supporting information S3). As a results, we did not include
rs673913 in our calculation of the polygenic risk score
(PGRS). With SNP-array we genotyped the data of EA
patients without IHPS, patients with EA and IHPS and
unaffected controls to determine ancestry as well as proxy
SNP prevalence of the four above-mentioned IHPS associ-
ated SNPs. The same was done with data of related and
unrelated parents of EA patients and parents of EA/IHPS
patients. Sanger sequencing was used to confirm the risk
allele frequency of these SNPs in our 15 EA/IHPS patients
and to validate the chosen proxy SNPs.

Using the odds ratio (OR) of the associated SNPs, we cal-
culatedpolygenic risk scores (PGRS): PGRS=

P
Ln (ORrisk

allele) * allele count (Wray, Goddard, & Visscher, 2007). For
this, we used the OR found in GWAS studies (Fadista
et al., 2019; Feenstra et al., 2012) and the OR we calculated
from our SNP array data for EA patients versus EA/IHPS
patients (see Supporting information S4b). A paired t test,
Kruskal–Wallis test and Mann–Whitney test was used to
compare the PGRSwithin each patient en between the differ-
ent groups. All statistical analyses were performed in SPSS
V.24.0 (IBM, Chicago, Illinois), with a significance level
of p< .05.

3 | RESULTS

3.1 | Patient cohort

In total, 27 out of 664 patients (4.1%) born with EA
between 1970 and 2017 developed IHPS. Twenty-one
(77.8%) of them were male. A sacral dimple was present in
seven patients (25.9%), anomalies of the vertebrae or ribs
in eight patients (29.7%) and genitourinary anomalies in
six patients (22.2%) of which two patients (7.4%) had
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hypospadias. Four patients (14.8%) had three or more
anomalies within the VACTERL spectrum
(Solomon, 2011). A full phenotypical description of the
27 EA/IHPS patients is given in Table 1. Twenty patients
have been described previously (van Beelen et al., 2014).

3.2 | Detection of genetic variation

Previously, we have described rare Copy Number Varia-
tions (CNVs) and their inheritance pattern in patients
with EA (Brosens et al., 2016). Seventeen EA/IHPS
patients described in that manuscript are included in this
study. None of the six large CNVs identified were de novo,
all were inherited from one of the unaffected parents. All
CN profiles of main EA and IHPS disease genes (Brosens
et al., 2014; Peeters, Benninga, & Hennekam, 2012) were
normal. All rare CNVs classified as a variant of unknown
significance (VUS), likely deleterious or deleterious are
described in Supporting information S5.

Exome sequencing resulted in at least 5 Giga-bases of
raw sequence data with an average coverage of 70X and
90% of target bases covered over 20X. Quality of the
sequence data is listed in Supporting information S6.

3.3 | Mendelian models of inheritance

As none of the parents of the 15 investigated patients were
affected, we first considered dominant de novo and reces-
sive modes of inheritance. We could not identify de novo
pathogenic variation in known EA and IHPS disease genes
(Brosens et al., 2014; Peeters et al., 2012). Subsequently,
we searched for rare putative damaging variation exome
wide and could detect putative deleterious ultra-rare pro-
tein coding or splice site variation (n = 100). We did not
detect any (likely) pathogenic variants in known disease

genes. Twenty-five variants turned out to be sequencing
artifacts. Furthermore, we could not confirm the segrega-
tion of 15 mutations due to lack of parental DNA. We
determined the segregation of all remaining ultra-rare var-
iants predicted to be VUS (n = 37), or likely deleterious
(n = 23). However, all putative deleterious variants tested
were inherited from one of the unaffected parents.

We inspected the CN profiles from WES-CN and SNP-
array for partial overlap with genes affected by heterozygous
variant predicted to be deleterious in recessive loss of function
intolerant ormissense intolerant genes (n= 48).We could not
detect unmasking of a recessivemutation by a CNV.

We did not detect putative homozygous recessive,
compound heterozygous nor X-linked-variants in known
disease genes. Given the small sample size of our cohort,
we concentrated our analysis on putative recessive
inherited variants with a population frequency below 0.05
in genes intolerant to recessive variation (PLIrec >0.9). Fur-
thermore, for putative compound heterozygous inherited
variants, we additionally focused on genes that do not often
have rare missense variants (missense Z score > 2). For
putative homozygous and X-linked variants, we excluded
variants with a similar homozygous variant in GnoMAD
and those with a CADD score below 15 (except for variants
predicting splicing). Only variants in COL4A2 (NM_001846:
exon22:c.G1438A:p.A480T, NM_001846:exon44:c.G4195A:p.
V1399I), SLC6A2 (NM_001172502:exon1:c.G80A:p.C27Y,
NM_001172502:exon2:c.G418A:p.V140I) and VPS13D
(NM_015378:exon19:c.C4022T:p.S1341L, NM_015378:
exon31:c.C7243T:p.H2415Y) were in genes that do not
often have rare missense variants. Only the variants in
VPS13D could both be classified as VUS.

We believe it is difficult to confidently classify the
other putative compound heterozygous variants as VUS
or higher as neither the gene has a low rate of missense
variants, nor it is a missense variation a known disease
mechanism (as it is not in a known disease gene).
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FIGURE 1 Number of patients with variants per gene. Thirty-six genes were found in ≥3 patients of which six genes were present in

more than five patients CNTN2, DSPP, NOTCH4, PRRC2A, SEC16B, ZNF717). Four (AMBRA1, ATP2A3, DSCAM, NOTCH1) out of

116 genes were predicted to be intolerant for missense variants (Z-score ≥ 3)
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TABLE 2 Genetic syndromes and mutated genes with tracheoesophageal and pyloric anomalies as variable features

Syndrome
Esophageal or
pyloric anomaly Inheritance Loci Gene(s) OMIM References

Esophageal atresia or stenosis

Epidermolysis
bullosa,
junctional,
with pyloric
stenosis or
atresiac

Esophageal and
pyloric atresia or
stenosis

AR 2q31.1
17q25.1

ITGA4
ITGA6

226730
226730

Varki, Sadowski, Pfendner,
and Uitto (2006); Vivona,
Frontali, Di Nunzio, and
Vendemiati (1987))
Ruzzi et al. (1997)

Ehlers-Danlos
syndromec

EA and IHPS AD 2q32.2 COL3A1 130050 Kroes, Pals, and van
Essen (2003); Kuivaniemi
et al. (1990)

Trisomy 13 EA/TEF and IHPS AD 13 Multiple NA Brosens et al. (2014);
Taylor (1968)

Trisomy 18 EA/TEF and IHPS AD 18 Multiple NA Brosens et al. (2014);
Taylor (1968)

Trisomy 21 EA/TEF and IHPS AD 21 Multiple 190685 Brosens et al. (2014); Freeman
et al. (2009)

Fryns syndrome EA/TEF and IHPS U Unknown Unknown 229850 Ayme et al. (1989)

Fetal alcohol
syndrome

EA/TEF and IHPS NA NA NA NA Brosens et al. (2014); Lodha,
Satodia, and Whyte (2005);
Mangyanda et al. (1998)

Motility anomalies
of the esophagus

Epidermolysis
bullosa
dystrophiac

Esophageal
strictures and
stenosis

AR, AD
AR

3p21.31
11q22.2

COL7A1
MMP1

131750
226600

Christiano, McGrath, Tan, and
Uitto (1996); Christiano,
Suga, Greenspan, Ogawa,
and Uitto (1995);
Hovnanian et al. (1994)

Cornelia de
Lange
syndromeb,c

Esophageal stenosis
and dysmotility
and IHPS

AD 5p13.2 NIPBL 122470 Cates, Billmire, Bull, and
Grosfeld (1989); Gillis
et al. (2004)

Apert syndrome Esophageal stenosis
and IHPS

AD 10q26.13 FGFR2 101200 Blank (1960); Pelz, Unger, and
Radke (1994))

Congenital
generalized
lipodystrophy

Esophageal
dysmotility and
IHPS

AR 17q21.2 PTRF 613327 Rajab, Heathcote, Joshi,
Jeffery, and Patton (2002);
Rajab et al. (2010)

Opitz-Kaveggia
syndrome

Nutcracker
esophagus and
IHPS

XL Xq13 MED12 305450 Battaglia, Chines, and
Carey (2006); Smith,
Edwards, Notaras, and
O'Loughlin (2000)

Noonan
syndromec

Esophageal
dysmotility and
IHPS

AD 12q24.13 PTPN11 163950 Barberia Leache, Saavedra
Ontiveros, and Maroto
Edo (2003); Shah,
Rodriguez, Louis, Lindley,
and Milla (1999)

Visceral
neuropathy

Dilated
Non-peristaltic
esophagus and
IHPS

U Unknown Unknown 243180 Schuffler, Bird, Sumi, and
Cook (1978); Tanner, Smith,
and Lloyd (1976)

(Continues)
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Additionally, we found a homozygous putative splice
donor change (MICAL2: NM_001346292:exon21:r.spl and
a hemizygous change (RPGR: NM_000328:exon14:
c.1579_1581del:p.Q527del) we could classify as VUS (see
Supporting information A1).

3.4 | Non-Mendelian models

We found variants in the same gene in multiple patients
(see Figure 1). Of these 116 genes (VUS = 87, likely dele-
terious = 30), 36 genes were found in ≥3 patients of
which six genes were present in more than five patients.
We prioritized all rare variants with three in silico
tools (see Supporting information S1). Fifty-four
variants in 34 genes were prioritized by VAAST

(Hu et al., 2013; Kennedy et al., 2014; Yandell
et al., 2011), which prioritizes based on variant delete-
riousness as well as by Phevor and PhenIX which pri-
oritize more on phenotype (Singleton et al., 2014;
Zemojtel et al., 2014).

We evaluated the number of damaging variants in devel-
opmental important pathways and known disease genes
using 44 ancestry matched controls sequenced on the same
platform as our 15 patients. There were no differences
between controls and. However, some genes known to be
important for foregut morphogenesis or syndromatically
associated with EA or IHPS were affected in patients and
unaffected in the healthy controls: TNXB (NM_019105.6:
c.4444G>A, p.Val1482Met), WDR11 (NM_018117.11:
c.1138G>T, p.Val380Phe), PEX3 (NM_003630.2:c.1012A>G,
p.Ser338Gly), TBX3 (NM_016569.3:c.506G>A,

TABLE 2 (Continued)

Syndrome
Esophageal or
pyloric anomaly Inheritance Loci Gene(s) OMIM References

Costello
syndrome

Loss of elastic fibers
in esophagus,
IHPS

AD 11p15.5 HRAS 218040 Gripp and Lin (1993); Mori
et al. (1996)

Other associations

Chronic
idiopathic
intestinal
pseudo
obstructionb,c

Gastro-intestinal
dysmotility and
IHPS

XL Xq28 FLNA 300048 Gargiulo et al. (2007); Tanner
et al. (1976)

Fronto-
metaphyseal
dysplasiab

EA/TEF XL Xq28 FLNA 305620 Franceschini et al. (1997)

X-linked
periventricular
heterotopiab

IHPS XL Xq28 FLNA 300049 Nezelof, Jaubert, and
Lyon (1976)

FG syndromeb,c Esophageal
dysmotility and
IHPS

XL Xq28 FLNA 300321 Peeters et al. (2012); Unger
et al. (2007)

CHARGE
syndromeb,c

EA/TEF AD 8q12.1-q12.2 CHD7 214800 Brosens et al. (2014)

Hypogonadotropic
hypogonadism with or
without anosmiab,c

IHPSa AD 8q12.1-q12.2 CHD7 612370 Jongmans et al. (2009); Kim
et al. (2008)

Note: This table is modified from two reviews on esophageal atresia (Brosens et al., 2014) and infantile hypertrophic pyloric stenosis (Peeters
et al., 2012).
Abbreviations: AD, autosomal dominant; AR, autosomal recessive; EA, esophageal atresia; IHPS, infantile hypertrophic pyloric stenosis.;
NA, not applicable; TEF, tracheoesophageal fistula; U, unknown; XL, X-linked.
aIn literature IHPS is associated with other genes responsible for this syndrome.
bNo overlap in EA and IHPS phenotype for this syndrome, the gene mutated in this syndrome can be responsible for different syndromes in
which either EA or IHPS are variable features.
cMore genes associated to possible several subtypes of this syndrome.
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p.Arg169Gln), and GDF6 (NM_001001557.2:c.281C>G,
p.Pro94Arg) (see Supporting information S7). Further-
more, the number of putative deleterious variants
between these two groups did not differ (see Supporting
information S8) Unfortunately, a burden test compar-
ing the variant profiles of these genes between the
patients and their parents was not possible since no
WES data of the parents was available.

3.5 | Pathway enrichment analysis
of genes affected by rare variants

First, we evaluated genes with variants in canonical
splice sites (n = 16), nonsense variants (n = 21), pro-
tein altering inframe InDels (n = 28) and missense
variants (n = 557). Additionally, a more stringent set
was used with loss of function variants, predicted to

E8.0 E9.5 E15.0

Dorsal-ventral patterning & compartmentalization
of the foregut (E9.5-E11.5)

Fgf4, Nkx2.1, Sox2, WNT signaling pathway, NOGGIN,
BMP signaling pathway, Foxf1/2

Endodermal folding 
(E8-E8.75)

Foxa2, Shh/Ihh, BMP and 
WNT signaling pathways

Resolution of the 
notochord (E8.25-E9.5)

Possible influence of 
notochord on 

compartmentalization 
(E10-E11)

E13.5

Increasing Barx1 
expression (E10.5-E13.5)
Influencing Nkx2.1, Sox2 

and WNT signaling

Pyloric sfincter muscle 
morphogenesis (E14.5-E18.5)
Sox9, Nkx2-5, Bapx1, Barx1, 

Bmp4, Bmpr1b

Esophageal muscle 
development (E14.5-E18.5)

Foxp1 en Foxp2

Development and rostrocaudal colonization of 
enteric nervous system of the gut (E9.5-E13.5)

Phox2b, Ret, p75, GDNF signaling, Sox10, 
endothelin 3

E11.5

Neural
tube

Esophagus

Notochordal
plate

Endoderm

Lung buds

Endoderm

Mesoderm

Ectoderm Caudal

Rostral

Foregut Hindgut

Midgut
Stomach

Foregut

Somites

Hindgut

NOGGIN

BMP4

Wnt2/2b

WNT

BMP4 Sox2

Nkx2.1 Sox2

Nkx2.1

Mesenchyme

Dorsal FG endoderm

Ventral FG endoderm

Dorsal foregut

Ventral foregut

** * *

FIGURE 2 Timeline of models and genes known to be important for foregut development in mice (Anderson, Newgreen, &

Young, 2006; Fausett & Klingensmith, 2012; Heath, 2010; Perin, McCann, Borrelli, De Coppi, & Thapar, 2017). Visualization of lung

bud formation and the genes known to be of importance during tracheoesophageal separation. Timeline of esophageal and pyloric

sphincter development. In mice, early foregut formation starts with Foxa2 stimulation of the anterior endoderm at E8.0 (Heath, 2010).

The endodermal sheet folds and forms a tube at E8.75 (Sherwood et al., 2009). Next, signals from the notochord start dorsal-ventral

patterning around E9.0, with high Nkx2.1/absent Sox2 in the ventral future trachea and absent Nkx2.1/high Sox2 in the dorsal future

esophagus and stomach (Que et al., 2007). These dorsal-ventral patterns lead to compartmentalization of the foregut. Between E9.5

and E11.5, the foregut separates in the primordial esophagus and stomach, and in the primordial trachea. Primordial lung buds

become apparent at E9.5 (Sherwood et al., 2009). The separation site is marked by mesenchymal expression of Barx1 (Woo

et al., 2011). The esophagus is completely separated from the trachea at E11.5. Pyloric sphincter formation is mostly studied in chick

and mouse models. This formation starts with the thickening of the circular smooth muscle layer between the antrum and the

duodenum around E14.5 and the primordial pyloric sphincter is complete around E18.5 (Self et al., 2009; Smith, Grasty, et al., 2000).

In addition to its functioning in foregut separation, the Barx1 homeobox gene is also vital for stomach differentiation and stomach

smooth muscle development. It inhibits Wnt signaling (Woo et al., 2011) and modulates the expression of Bapx1, another important

factor required for pyloric sphincter morphogenesis (Jayewickreme & Shivdasani, 2015; Stringer et al., 2008; Verzi et al., 2009).

Asterisk represents the time points used in expression analysis
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be loss of function intolerant (PLI ≥0.9, n = 4) and
protein altering variants with a Z score ≥ 3 (n = 44).
Only when looking at the selected protein altering
variants (Z score ≥ 3, n = 44) or loss of function
intolerant (PLI ≥0.9, n = 4), two pathways were sig-
nificantly enriched (p value <1 × 10−5): proliferation
and differentiation of smooth muscle cells (INSR,
ITGB1, NOTCH1, TCF4, PDE4D, TERT, ANKRD17,
DICER1) and self-renewal of satellite cells (ITGB1,
NOTCH1).

3.6 | Expression of main candidate genes
during development

With public micro-array transcriptome data we evaluated
which genes were upregulated at a specific time-point in the
foregut, esophagus or pyloric sphincter and used the output
as an indicator of gene expression (see Supporting informa-
tion S9). Of the genes classified as VUS or likely deleterious
in our exome sequencing results, 28 genes were upregulated
in both the foregut or esophagus as well as the pyloric
sphincter (see Supporting information S9). Seven out of
116 genes with putative deleterious variants in more than
one patient were differentially expressed in mice foregut:
Adamtsl4 at E8.5, E14.5 and E16.5; Ankrd26 at E14.5; Cntn2
at E8.5, E15.5 and E18.5; Hspg2 at E8.25, E8.5, E14.5 and
E18.5; Kcnn3 at E8.5 and E15.5; Ldb3 at E8.5, E14.5 and
E15.5; Sec16b at E8.5, E14.5 and E16.5.

3.7 | Detection of common SNPs
associated with IHPS

We confirmed the selected proxy SNPs found in the SNP
array data (see Supporting information S4a) using Sanger
sequencing of the four loci highly associated with IHPS
(rs11712066, rs573872, rs29784, and rs1933683 near genes
MBNL1, NKX2-5, and BARX1, respectively) in the EA/IHPS
patient set. ORs for the four risk loci are shown in Supporting
information S4b. In total, 28 EA patients (53.6% male),
16 EA/IHPS patients (93.8% male), 80 EA parents (46.3%
male, n = 66 related), 24 EA/IHPS parents (50.0% male) and
1,297 controls (47.8% male) were compared. We did not find
a significantly higher incidence of any risk allele for
EA/IHPS patients compared to EA patients. Based on the
ORs from the literature, we calculated a median polygenic
risk score (PGRS) of 0.56 for EA patients and 0.70 for
EA/IHPS patients. When using the OR from the SNP array
data, we found a median PGRS of 0.39 for EA patients and
0.58 for EA/IHPS patients. When comparing all groups
together, there was no significant difference in PGRS (see
Supporting information S4c). When comparing the groups

separately, there was a nearly significant difference for the
PGRS for EA patients compared to EA/IHPS patients
(p = .08, see Supporting information S4d). We did not detect
rare putatively deleterious variants in MBNL1, NKX2-5, and
BARX1 in the patient exome sequencing data.

4 | DISCUSSION

We hypothesized that the increased prevalence of IHPS in
patients with EA compared to the prevalence of IHPS in
the normal population was driven by genetic alterations
affecting genes important for foregut morphogenesis. The
combination of EA and IHPS makes sense from a develop-
mental perspective as the esophagus and the pyloric sphincter
are both foregut derived structures. Organ specification during
embryonic development is under tight spatiotemporal control
of specific growth factors, transcription factors and signaling
cascades (Jacobs & Que, 2013; Li et al., 2009). Disturbances in
these pathways could impact proper development. The esoph-
agus, as well as the stomach, starts developing from the fourth
week after conception onwards. The stomach turns around its
anterior–posterior axis during embryonic development (Cetin,
Malas, Albay, & Cankara, 2006). The developing pylorus can
be visualized with immunostaining at week six after gestation
and differentiates during fetal life (Koyuncu, Malas, Albay,
Cankara, &Karahan, 2009).

Environmental (Felix et al., 2008; Feng, Chen, Li, & Mo,
2016; Krogh et al., 2012; Markel, Proctor, Ying, &
Winchester, 2015; Sorensen, Norgard, Pedersen, Larsen, &
Johnsen, 2002; Zwink et al., 2016) and genetic contributions
(Brosens et al., 2014; Peeters et al., 2012; Solomon et al., 2012)
have been described for both EA and IHPS as single entities,
or in combination with other anatomical malformations. For
example, it has been suggested that in utero exposure to dieth-
ylstilbestrol (DES) is associated with the development of EA
(Felix, Steegers-Theunissen, et al., 2007). Moreover, both mal-
formations are variable features in often phenotypically over-
lapping genetic syndromes (see Table 2), which indicates a
genetic background for EA and IHPS. More evidence for a
genetic contribution can be deduced from twin studies and
animalmodels (de Jong, Felix, de Klein, & Tibboel, 2010). The
concordance rates in monozygotic twins compared to dizy-
gotic twins is higher for EA (Veenma et al., 2012) and IHPS
(Krogh et al., 2010) as single entities. Also, the recurrence risk
is elevated for siblings and offspring of affected individuals
with EA in combination with other associated anomalies
(McMullen, Karnes, Moir, & Michels, 1996; Robert
et al., 1993; Van Staey, De Bie, Matton, & De Roose, 1984;
Warren, Evans, & Carter, 1979). In contrast, the recurrence
risk for isolated EA is low (Schulz et al., 2012) and moderate
for IHPS (Elinoff, Liu, Guandalini, & Waggoner, 2005; Krogh
et al., 2010). Different than for EA, there has been reported a
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male predominance for IHPS (4:1) (MacMahon, 2006). There
have been risk loci associated to IHPS (Everett &
Chung, 2013; Fadista et al., 2019; Feenstra et al., 2012;
Feenstra et al., 2013; Svenningsson et al., 2012). To date, no
risk loci have been described for EA.

4.1 | Absence of rare highly penetrant
pathogenic changes

As mentioned, EA and IHPS can be part of specific
genetic syndromes (see Table 2). None of the 15 patients
had a pathogenic alteration in one of those known dis-
ease genes. This is in line with previous studies in which
limited causal changes could be detected in patients with
EA and associated anomalies (Brosens et al., 2016; Hilger
et al., 2015; Zhang et al., 2017).

Subsequently, we determining the segregation of het-
erozygous ultra-rare alterations in genes intolerant to varia-
tion and recessive variation in genes intolerant to recessive
variation (Lek et al., 2016; Ruderfer et al., 2016). We did
not identify ultra-rare de novo dominant, recessive or X-
linked deleterious protein coding alterations in these genes.
Although we could confirm a compound heterozygous var-
iant in FAM46A in one patient and an X-linked variant in
SH3KBP1 in another patient, FAM46A and SH3KBP1 were
not differentially expressed at the time points important for
foregut morphogenesis. Given the male predominance, it is
surprising that no X-linked alterations were identified.
Additionally, it is unlikely that a dominant—inherited high
penetrant—change is a likely cause of EA and IHPS as the
parents of these patients are unaffected. It could be that a
rare variant burden exists. However, we have not detected
it, likely due to limited sample size. Focusing on known

no affected organ systems

survival with one 
or more affected

organ systems

intrauterine death

patient

father

mother

stochastic factors

high impact genetic factors

mechanical factors

high impact environmental factors

protective factors & mechanisms

(b)

(a)

big effect, difficult
to disturbe

the balance

back up systems
& compensatory

mechanisms during
developments

no. of affected
organ systems

non or reduced penetrance

variable expressivity

FIGURE 3 Two models for

EA/IHPS etiology. (a) Burden model

and (b) slippery slope model. The

combination of multiple high impact

factors (genetic, environmental,

mechanical, and/or stochastic)

together can modulate the

phenotypical spectrum. These risk

factors are in balance with protective

factors like backup systems and

compensatory mechanisms
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candidate genes did also not reveal enrichment
(Supporting information S7b).

4.2 | Coding sequences of genes crucial
in esophageal and pyloric sphincter
formation are affected

Subsequently, we focused on genes involved in foregut
development by combining the results of literature
research (Heath, 2010; Jayewickreme & Shivdasani, 2015;
Que et al., 2007; Self, Geng, & Oliver, 2009; Sherwood
et al., 2009; Smith, Grasty, Theodosiou, Tabin, &
Nascone-Yoder, 2000; Stringer, Pritchard, & Beck, 2008;
Verzi et al., 2009; Woo, Miletich, Kim, Sharpe, &
Shivdasani, 2011) with data of previous expression stud-
ies (Chen et al., 2012; Li et al., 2009; Millien et al., 2008;
Sherwood et al., 2009; Stephens et al., 2013) (see
Figure 2). Given their described importance in normal
development, variations in multiple of these genes might
explain the higher incidence of IHPS in patients with
EA. Five of these genes (TNXB, WDR11, PEX3, TBX3,
and GDF6) were affected in patients and unaffected in
healthy controls. These variants might not be sufficient
to result in disease but are predicted to impact the protein
and might contribute together with other unknown fac-
tors to disease development.

Seven genes (ADAMTSL4, ANKRD26, CNTN2,
HSPG2, KCNN3, LDB3, SEC16B) with variants in more
than one patient were differentially expressed in the
developing foregut, esophagus or pyloric sphincter in
mice between E8.25 and E16.5. Most of these variants
had a population frequency above the prevalence of
EA. If these variants are highly penetrant, they would
not be the likely cause. To study reduced penetrance,
drastically increased sample sizes are needed for an anal-
ysis going beyond known intolerant genes.

4.3 | Haplotypes associated with IHPS
development could have an impact in some
patients

Additionally, we investigated the IHPS associated risk
haplotypes rs11712066, rs573872, rs29784, and rs1933683
(Everett & Chung, 2013; Fadista et al., 2019; Feenstra
et al., 2012) in EA/IHPS patients, as well as EA patients,
EA parents, EA/IHPS parents and healthy controls.
Although we could not identify a significantly higher sin-
gle risk allele frequency for EA/IHPS patients, we found
a slightly higher PGRS for EA/IHPS patients compared to
EA patients (p = .08). Further research is needed on a
larger scale to confirm the impact of this haplotype.

4.4 | Possible contribution of non-
genetic factors

Furthermore, previous studies have suggested the contri-
bution of non-genetic factors as an explanation for the
combined occurrence of EA and IHPS. The most com-
mon thought is that mechanical and/or environmental
factors disturb the developmental field. Environmental
risk factors like pesticides, smoking, herbicides and per-
iconceptional alcohol or multivitamin use (Felix
et al., 2008; Feng et al., 2016; Krogh et al., 2012; Markel
et al., 2015; Sorensen et al., 2002; Zwink et al., 2016) have
been suggested for both EA and IHPS. Impaired gastric
contractility and esophageal relaxation were observed in
Adriamycin and doxorubicin induced EA in mice (Tugay
et al., 2001; Tugay, Yildiz, Utkan, Sarioglu, &
Gacar, 2003). To which extent these factors influence the
fetal development, depends on the specific risk factors
and their timing.

4.5 | IHPS might be an acquired
condition related to surgery or treatment
of EA

Last, IHPS could also be the result of the atresia itself,
potentially as a result of the surgical procedure or the
postoperative treatment. Previous studies have suggested
vagal nerve lesions, a gastrostomy and transpyloric feed-
ing tubes as possible causes for an increased incidence of
IHPS after correction of EA (Ilhan, Bor, Gunendi, &
Dorterler, 2018). IHPS has been suggested to be a neuro-
muscular disorder with the involvement of smooth mus-
cle cells, interstitial cells of Cajal and the enteric nervous
system. The hypertrophy could be the result of dis-
coordinated movements of the pyloric sphincter and the
contractions of the stomach (Hayes & Goldenberg, 1957),
perhaps as the result of absent nitric oxide synthase activity
(Vanderwinden, Mailleux, Schiffmann, Vanderhaeghen, &
De Laet, 1992). Mechanistically, this association between
EA and IHPS seems plausible. However, it does not
explain why IHPS is not fully penetrant in patients with
EA. Further research on the cause and other specific
clinical risk factors for patients with EA should be con-
sidered, for example, the late start of enteral feeding or
the long-term tube feeding.

4.6 | Models for EA/IHPS disease
etiology

Starting off, we hypothesized that genetic defects, dis-
turbing foregut morphogenesis, would be responsible for
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the combination of EA and IHPS. A monogenetic syn-
dromic model is unlikely to explain the increased inci-
dence of IHPS in these patients, since we have not
detected a central causative gene. The phenotypical spec-
trum of our EA/IHPS cohort is very heterogeneous and
could be the result of impacts on multiple genes, each
gene unique to each individual patient. Therefore, it
remains possible that IHPS is a rare and less well-known
feature of the syndromic phenotype of EA.

We propose two different multifactorial models in which
the combination of CNVs, deleterious protein alterations
(Felix, Tibboel, & de Klein, 2007; Brosens et al., 2014), severe
changes in the developmental field during the organogenesis
(Martinez-Frias, 1994; Martinez-Frias & Frias, 1997) and/or
environmental inducing epigenetic changes (Sorensen
et al., 2002) together modulates the phenotypical spectrum
seen in these patients.

The first is a burden model (see Figure 3a). Genetic,
epigenetic, environmental and mechanical factors form a
burden of risk factors, which balances with protective
mechanisms. In this model, the point of balance is not
shifted by a mutation in a central gene. Although each
person has certain risk factors, in most individuals this will
not lead to affected organ systems. There is an intermedi-
ate range between normal and affected in which individ-
uals can have the genetic burden but lack an abnormal
phenotype (reduced penetrance) or their symptoms differ
in severity (variable expressivity). The latter would fit the
results in this study. Mechanical or environmental factors
could make the difference in shifting the balance.

The second is a slippery slope model (see Figure 3b) in
which the burden of low impact genetic variants and envi-
ronmental disturbances alone does not impact the balance,
until it crosses a certain threshold. The protective mecha-
nisms (e.g., compensatory mechanisms) during develop-
ment are very strong, making it really difficult to shift the
balance. Most fetuses will not develop any malformations
despite the combined genetic and environmental burden.
Once the threshold is reached, the balance is immediately
greatly disrupted and often multiple organ systems are
affected. This model also fits with the phenotypical results
in this study since four patients had three or more anoma-
lies within the VACTERL spectrum. In this model there is
a high tolerance for low impact genetic variation and only
high impact variation (aneuploidies, exposure to toxic sub-
stances, pathogenic changes in developmental crucial
genes) will shift the balance.

5 | CONCLUSIONS

To conclude, the presence of genetic variation in genes
involved in foregut development and/or EA or IHPS

disease genes might contribute to disease development.
We found putative deleterious variation in genes
expressed in both the developing esophagus as in the
developing pyloric sphincter.

We propose two multifactorial models in which the
combination of multiple high impact genetic, mechanical
and environmental factors together can shift the balance
from normal to abnormal development. A burden model
with reduced penetrance or variable expressivity is most
likely as genetic factors seem to contribute. Future
research should investigate the incidence of IHPS in
larger cohorts of patients with EA to further explore this
hypothesis. To investigate the role of treatment or sur-
gery, clinical factors related to the surgical correction of
EA—for example vagal nerve lesions after surgery, the
late start of oral feeding or transpyloric feeding tubes—
should be systematically registered.
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