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2 Introduction

Machine learning methods are statistical models that are optimized based on
example data to ϐind patterns in data. Thanks to their ability to handle high
dimensional data with complex non-linear relationships between input and
output variables, machine learning methods are especially suited to deal with
the explosive growth of digital data in society. Recent advances have permitted
a category of machine learning methods to emerge as state-of-the-art methods
for image processing: convolutional neural networks (LeCun et al., 2015).
Whereas in traditional machine learning sets of features describing the input
data had to be computed prior to the training of models, convolutional neural
networks compute features internally as part of the training procedure. Expert
knowledge is therefore not needed anymore to design relevant features, and
neural networks can be trained using raw input data.

Neural networks are a very promising technique for medical image analysis
(Shen et al., 2017), where the purpose is often to quantify an imaging
biomarker. An imaging biomarker is an imaging characteristic that relates to
the physiological state or disease status. To assess imaging biomarkers either in
medical studies or in clinical practise, radiologists mostly assess scans visually.
These assessments can be time-intensive and are prone to high intraobserver
and interobserver variability. Automatedmethods have the potential to quantify
target biomarkers in fractions of seconds and with a high reproducibility.
Those methods can quantify biomarkers in large datasets where performing
visual assessments would be impossible due to time and resource constraints.
Association between the target biomarker and other clinical variables can
subsequently be determined with standard statistical models, and thus also
support discoveries in medicine. In clinical scenarios, the computed biomarker
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values can be used to assist doctors in diagnostic and prognostic assessment and
for treatment choices.

Digital medical images can be seen as a grid of pixels or voxels each having
an intensity value. Most often, medical image analysis algorithms are designed
and optimized to make classiϐications on the pixel level. For example, the most
recurrent task in medical image analysis research is segmentation (Hesamian
et al., 2019), which consists in classifying pixels of images into categories, such
as different types of tissues. Segmentations are used to assess volumetry and to
support radiotherapy planning and image guided interventions. Segmentation
also enables medical researchers or clinicians to compute shape features or
perform texture analysis in a region, e.g. radiomics for tumor characterization
(Zhou et al., 2018). In other words, quantitative biomarker values can be
derived from the pixel-wise predictions. More rarely, prediction models are
optimized on the image-level, and when they are, it is most often to solve image
classiϐication tasks such as healthy versus disease state. Only a few researchers
have proposed to optimize neural networks to directly regress the value of target
biomarkers. While training those networks raises technical challenges in terms
of optimisation and interpretability, it removes the necessity to collect pixel-wise
ground truths for the training. Acquiring annotations for large datasets is indeed
a costly and long process, which can considerably slow down the research.

In this thesis, I study convolutional neural networks for medical image
analysis, and more speciϐically for the analysis of magnetic resonance images
(MRIs) of the human brain. Magnetic resonance imaging is an image acquisition
methodmostly used for inspecting living tissue (Moore et al., 2006). MRI exploits
magnetic properties of the hydrogen atoms present mostly in water and fat, and
is one of themost common non-invasive imaging techniques used by radiologists
to guide their clinical diagnoses. MRI is safe for the scanned individual and
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provides high contrast in soft tissues such as the brain, which is perfect for
neurology research.

The applications presented in this thesis revolve around cerebral small vessel
disease (CSVD). CSVD is an umbrella term to describe multiple pathological
processes affecting small vessels in the brain. These processes are thought to
be involved with the occurrence of stroke (Selvarajah et al., 2009), dementia
(Mills et al., 2007), multiple sclerosis (Achiron and Faibel, 2002), and cognitive
decline (Uiterwijk et al., 2016). There are several established imaging markers
of CSVD, including focal lesions such as white matter hyperintensities, lacunes,
and cerebralmicrobleeds. Microinfarcts and enlarged perivascular spaces are an
emerging biomarker for CSVD. Enlarged perivascular spaces are also thought to
be related to sleep and glymphatic clearance (Brown et al., 2018; Mestre et al.,
2017; Rasmussen et al., 2018).

In the brain, the perivascular space is the space between penetrating
blood vessels and the envelope of the brain. Perivascular spaces are ϐilled
with interstitial ϐluid. Because of multiple hypothesized mechanisms such as
hypertension, atrophy, inϐlammation or glymphatic clearance, these spaces
can locally enlarge and become visible on 1.5T and 3T MRI scans. Enlarged
perivascular spaces (PVS) can convey information on risk of disease. For
example, several studies have investigated the presence of PVS as an emerging
biomarker for various brain diseases such as dementia (Mills et al., 2007),
stroke (Selvarajah et al., 2009), multiple sclerosis (Achiron and Faibel, 2002)
and Parkinson (Zijlmans et al., 2004). However, quantifying PVS is challenging.
The enlargement of perivascular spaces is not a binary process but a continuum,
and the quantiϐication of subtly enlarged perivascular spaces remains an open
research question. The size of the smallest PVS can be close to the MRI voxel
resolution, and because of partial volume effects, differentiating small PVS
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from noise can be intractable. This introduces substantial variability in the
quantitative assessment of the PVS burden. In addition, PVS can be located
in different regions in the brain and can be numerous. These quantiϐication
challenges have impeded the study of etiology and clinical implications of PVS.
Until now, PVS burden has mostly been quantiϐied using visual scales where
the radiologist either counts PVS in a given brain region (Adams et al., 2015) or
categorises this count (Potter et al., 2015b). Because of the inherent nature of
the subtle enlargement of perivascular spaces and because of their high number
and small size, delineating PVS contour in large datasets is too time-consuming
for radiologists. Lacking pixel-wise ground truths, very few automated methods
have been developed for the quantiϐication of PVS burden. Methods that have
been developed were based on traditional image processing techniques and
often suffered from a relatively poor performance. Their evaluation has also
been limited to small datasets or speciϐic brain regions. Neural networks have
the ability to exploit weakly labeled datasets, such as datasets with visual scores,
to optimize the prediction model end-to-end and ultimately retrieve useful
information from the imaging data.

In this thesis I propose to develop neural networkmethods with applications
in 3D brain MRI biomarker quantiϐication. I mostly focus on PVS quantiϐication.
More speciϐically, I developed neural networks to predict image-level labels such
a lesion count or volume, networks for weakly supervised object detection, for
brain registration, and for generation of artiϐicial brain images to model disease
progression. I evaluated my quantiϐication methods in large (more than 2000
scans) research studies and clinical datasets. When information about intrarater
and interrater variability was available, I empirically demonstrated that the
proposed method could reach a performance similar to that of experts. Part B
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(Chapters 1 and 2) and Part C (Chapters 3 and 4) describe the methodological
aspects of the work. Part D (Chapters 5 and 6) focuses more on the application
of PVS quantiϐication for neurology research. Finally Part E (Chapters 7
and 8) combines both methodological and medical research applied to other
neuroimaging tasks.

In Part B, I study neural networks optimized to regress image-level labels.
In Chapter 1, I take the example of the quantiϐication of PVS burden in the
basal ganglia, and empirically demonstrate (a) that neural networks optimized
to regress the count of PVS achieve better results than more traditional
machine learning techniques also optimized with image-level labels, (b) that
these networks achieve a performance in-between the intraobserver and
interobserver agreements of experts raters, and (c) that these networks focus
mostly on PVS, and not on other structures in the image that might be correlated
to PVS count. In Chapter 2, I propose a method to optimize these networks
for PVS count prediction with very small training datasets (25 images, with a
single label per image) and empirically demonstrate that these networks can
reach a performance similar to the interobserver agreement. The analysis was
realised for the quantiϐication of PVS count in the basal ganglia and white matter
hyperintensity volume.

In Part C, I focus on object detection with neural networks. In Chapter 3, I
propose a weakly supervised detection method for neural networks optimized
with image-level labels. While the network is trained only with image-level
labels representing a count (as presented in Part B), we can compute attention
maps that reveal the focus of the network during inference. I demonstrate
the potential of this method on a dataset of handwritten digits and on the
detection of PVS in four different brain regions. I also compare the proposed
method with other weakly supervised detection methods. In Chapter 4, we
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propose a detection method based on networks optimized to predict geodesic
distance maps computed from dot annotations. Obtaining these dot annotations
requiresmorework than obtaining visual scores. We evaluate themethod for the
detection of PVS in the centrum semiovale and obtain a detection that is closer to
that of the annotator thanwhatwas achievedwith theweakly supervisedmethod
presented in Chapter 3.

InPartD, I propose an automatedmethod for the quantiϐication of PVSwhich
could be applied in medical research and clinical practise. The evaluation of this
method is more medically focused than the evaluation of the method presented
in Chapter 1. The method is applied to four brain regions: the midbrain, the
hippocampi, the basal ganglia, and centrum semiovale. In Chapter 5, I validate
this method in MRI scans from a population study: the Rotterdam scan study
(Ikram et al., 2017). I demonstrate empirically that associations between 20
potential determinants of PVS and visual PVS scores and associations between
the same determinants and the automated PVS scores are similar. In Chapter 6,
we deploy themethods on the brainMRI images acquired frommultiple scanners
in the PACS system of the university hospital of Magdeburg in Germany, and
obtained results similar to the interrater agreement in the centrum semiovale.

Neural networks were not only successful for the quantiϐication of PVS. In
Part E, I present neural network-based methods for other neuroimaging
research questions such as disease progression modelling and image
registration. In Chapter 7, we propose an event-based method that exploits
high-dimensional voxel-wise imaging biomarkers. To validate the method,
we develop a framework that simulates the temporal evolution of imaging
biomarkers. The method is based on variational autoencoders (Kingma and
Welling, 2014) and simulates neurodegeneration in individual brain regions.
In Chapter 8, I propose a method for ventricle segmentation in clinical scans
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and evaluate it in an international multi-site dataset. I use this method to
automatically assess registration quality and to build a multi-atlas registration
framework that uses age-speciϐic atlases to improve registration quality.
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Chapter 1

3D Regression Neural Network for

the Quantiϐication of Enlarged

Perivascular Spaces in Brain MRI

Abstract

Enlarged perivascular spaces (PVS) in the brain are an emerging imagingmarker
for cerebral small vessel disease, and have been shown to be related to increased
risk of various neurological diseases, including stroke and dementia. Automated
quantiϐication of PVS would greatly help to advance research into its etiology
and its potential as a risk indicator of disease. We propose a convolutional
network regression method to quantify the extent of PVS in the basal ganglia
from 3D brain MRI. We ϐirst segment the basal ganglia and subsequently apply a
3D convolutional regression network designed for small object detection within
this region of interest. The network takes an image as input, and outputs a
quantiϐication score of PVS. The network has signiϐicantly more convolution
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operations than pooling ones and no ϐinal activation, allowing it to span the space
of real numbers. We validated our approach using a dataset of 2000 brain MRI
scans scored visually. Experiments with varying sizes of training and test sets
showed that a good performance can be achieved with a training set of only 200
scans. With a training set of 1000 scans, the intraclass correlation coefϐicient
(ICC) between our scoring method and the expert’s visual score was 0.74. Our
method outperforms by a largemargin -more than 0.10 - fourmore conventional
automated approaches based on intensities, scale-invariant feature transform,
and random forest. We show that the network learns the structures of interest
and investigate the inϐluence of hyper-parameters on the performance. We also
evaluate the reproducibility of our network using a set of 60 subjects scanned
twice (scan-rescan reproducibility). On this set our network achieves an ICC of
0.93, while the intrarater agreement reaches 0.80. Furthermore, the automated
PVS scoring correlates similarly to age as visual scoring.
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1 Introduction

This chapter addresses the problem of automated quantiϐication of enlarged
perivascular spaces from MR images. The perivascular space - also called
Virchow-Robin space - is the space between a vein or an artery and pia mater,
the envelope covering the brain. These spaces are known to have a tendency
to dilate for reasons not yet clearly understood (Adams et al., 2015). Enlarged
- or dilated - perivascular spaces (PVS) can be identiϐied as hyperintensities
on T2-weighted MRI. In Figure 1.1, we show examples of PVS in T2-weighted
scans. Several studies have investigated the presence of PVS as an emerging
biomarker for various brain diseases such as dementia (Mills et al., 2007),
stroke (Selvarajah et al., 2009), multiple sclerosis (Achiron and Faibel, 2002)
and Parkinson (Zijlmans et al., 2004). In this chapter we focus on PVS located
in the basal ganglia. There, the structure of PVS may for instance relate to
the presence or absence of beta-amyloid, a protein that has been implicated in
Alzheimer’s disease (Pollock et al., 1997). Previous work on automated PVS
quantiϐication focused on the basal ganglia as well (González-Castro et al., 2016;
Gonzalez-Castro et al., 2017), and clinical studies generally rate the PVS presence
especially in the basal ganglia and centrum semiovale (Wardlaw et al., 2013).

Manual annotation of PVS is a challenging and very time consuming task: PVS
are thin and small structures - often at the resolution limit of 1.5T and 3T MRI
scanners - with much variation in their size and shape. Raters need to zoom and
scroll through slices to differentiate PVS from similarly appearing brain lesions
such as lacunar infarcts or small white matter lesions. Additionally, many PVS
can be present within a single scan. In our dataset, for instance, there were up
to 35 PVS within a single slice of the basal ganglia. Current clinical studies rely
on visual scoring systems, in which expert human raters count the number of
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Figure 1.1: Examples of enlarged perivascular spaces in the basal ganglia.
PVS are circled in red. The PVS have been counted in this slice (Section 2.1). Note
that to correctly identify PVS, clinicians need to scroll through slices to check the
3D structure of the candidate lesions.

PVSwithin a given subcortical structure or region of interest (ROI) (Adams et al.,
2013, 2015) or rate the PVS on a 5 point scale.

Recently several groups have addressed PVS quantiϐication using different
scenarios and techniques. Ramirez et al. (2015) developed interactive
segmentation methods based on intensity thresholding. Park et al. (2016)
proposed an automated PVS segmentation method based on Haar-like features.
This approach was exclusively evaluated on 7 Tesla MRI scans and needed a
large amount of pixel-wise annotations for training. Ballerini et al. (2016)
used a Frangi ϐilter to enhance PVS and perform segmentation of individual
PVS. They evaluated their performance using a discrete 5-category PVS scoring
system (Potter et al., 2015a). In González-Castro et al. (2016); Gonzalez-Castro
et al. (2017), in contrast with above approaches, the same authors did not aim
to segment individual PVS. They directly formulated the problem as a binary
classiϐication - fewormanyPVS - and used bag ofwords descriptorswith support
vector machine classiϐication. Our work extends this by proposing, instead of
a binary score, a continuous score, translating the presence PVS. Recently we
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published a weakly supervised method using neural networks to detect PVS in
the basal ganglia (Dubost et al., 2017). Our former work targeted a detection
problem, andwas evaluatedwithmanually annotated PVS, while in this workwe
introduce automated PVS scores without considering the location information,
and focus on the evaluation of these scores.

Our proposedmethod relies on a3D regression convolutional neural network
(CNN). One of the main advantages of CNN in comparison to other machine
learning techniques, is that the features are automatically computed tomaximize
the ϐinal objective function. 3D CNNs have recently received much attention in
the medical imaging literature, for instance for segmentation (Chen et al., 2018;
Bortsova et al., 2017; Çiçek et al., 2016), landmark detection (Ghesu et al., 2016)
or lesion detection (Dou et al., 2016). CNN regression tasks have been less
addressed in medical imaging. For example Miao et al. (2016) employed a set
of local 2D CNN regressors for 2D/3D registration. Xie et al. (2018a) proposed
a fully convolutional network to count cells by regressing their 2D density maps
generated from dot-annotations.

Contributions. In this chapter we propose an automated scoring method
to quantify PVS in the basal ganglia. The method is based on a 3D-CNN for
regression problems and uses only visual scores labels for training. This scoring
method eases the annotation effort and provides a ϐine scale quantiϐication. We
demonstrate the potential of our method on PVS in the basal ganglia. We show
that our method correlates well with the visual scores of expert human raters
and that the correlation of the automated scores with increasing age is similar
to that of visual scores. It is the ϐirst time that an automated PVS quantiϐication
method is evaluated on such a large dataset (2000 MR scans).
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2 Materials and Methods

The objective of our method is to automatically reproduce the PVS visual scores.
Our framework consists of two steps. We ϐirst isolate the region of interest (ROI)
and then apply a regression convolutional neural network (CNN) to compute the
PVS presence score.

2.1 Data

In our experiments we used brain MRI scans from the Rotterdam Scan Study.
The Rotterdam Scan Study is an MRI based prospective population study
investigating - among others - neurological diseases in the middle aged and
elderly (Ikram et al., 2015). The scans used in our experiment were acquired
with a GE 1.5 Tesla scanner, between 2005 and 2011. The age of the participants
ranges from 60 to 96 years old.

The scans were visually scored by a single expert rater (H. Adams), who
counted - without indicating their location - the number of PVS in the basal
ganglia, in the slice showing the anterior commissure (Adams et al., 2015) (see
Fig 1.1 for a few examples). The number of PVS in this slice correlates with the
number of PVS in the whole volume (Adams et al., 2013).

2.1.1 Size of the Datasets

In total, the visually scored dataset contains 2017 3DMRI scans from 3 different
sub-cohorts. From these 2017 scans, 40 scans have also been visually scored
by a second trained rater (F. Dubost), and 25 scans have been marked with
dot annotations (by H. Adams) at the center of PVS to check the focus of the
network. Note that only PVS in the slice showing the anterior commissure have
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beenmarked. In addition,weused46other scans forwhich23 studyparticipants
were scanned twice within a short period (19 11 days). The 46 scans of this
reproducibility set are not part of the 2017 scansmentioned above andwere not
visually scored for PVS.

2.1.2 Scans Characteristics

We used PD-weighted images for our experiments. The scans were acquired
according to the following protocol: 12,300 ms repetition time, 17.3 ms echo
time, 16.86 KHz bandwidth, 90-180◦ ϐlip angle, 1.6 mm slice thickness, 25 cm2

ϐield of view, 416 × 256 matrix size. The images are reconstructed to a 512 ×

512× 192matrix. The voxel resolution is 0.49× 0.49× 0.8mm3. Note that these
PD-weighted images have a contrast similar to T2-weighted images, themodality
more commonly used to detect PVS.

2.1.3 Quality of the Visual Scoring

Visual PVS scores have been created according to a standard procedure proposed
in the international consortium UNIVRSE (Adams et al., 2015). H. Adams
established the UNIVRSE standardized PVS scoring system and had three years’
experience in identifying PVS at the moment he annotated the scans for the
current study. Intrarater reliability for this scoring has been computed on the
Rotterdam Scan Study, and was reported to be excellent in the basal ganglia
(Intraclass Correlation Coefϐicient (ICC) of 0.80 computed on 85 scans) and
inter-rater reliability was reported to be good (ICC of 0.62 on 105 scans) (Adams
et al., 2013). We plotted a histogram of the PVS distribution in Figure 1.7.
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Figure 1.2: Preprocessing: computation of a smooth mask of the basal
ganglia. From left to right: full MRI scan in axial view; basal ganglia after
computation of the smooth mask; 3D rendering of the basal ganglia.

2.2 Preprocessing - Smooth ROI

We ϐirst extract a smooth ROI, which can be seen as a spatial prior and focuses
the neural network to a predeϐined anatomical region. In case of 3D images,
computing a ROI also helps avoiding the overload of GPU memory and allows
to build deeper networks and to train faster.

A binary mask would arbitrarily impose a hard constraint on the input data
and can lead to unwanted border effects. Therefore we propose to compute a
smooth mask.

Each scan is ϐirst registered to MNI space resulting in the hypermatrix
V ∈ RH×W×D . A binary mask of the ROI, Mb ∈ {0, 1}H×W×D , is then
created using a standard algorithm for subcortical segmentation (Desikan et al.,
2006a). The mask is then dilated by ϐirst applying 4 consecutive morphological
binary dilations with a square connectivity equal to one (6 neighbors in 3D)
and subsequently smoothed by convolving the mask with a Gaussian kernel of
standard deviation σ. The dilation ensures that PVS located at the border of the
ROI are not segmented out. The resulting smooth mask Ms ∈ [0, 1]H×W×D

is then multiplied element-wise with the volume V , and cropped in all 3
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Figure 1.3: 3D Regression CNN Architecture. The ϐirst two blocks consist of
4 3D convolutions followed by a max-pooling. The last block, before the fully
connected layers, only has one convolution followed by a larger max-pooling.
After each convolutional layer, we apply a rectiϐied linear unit activation. This
architecture is speciϐically designed to detect small lesions.

dimensions around its center of mass to get the ϐinal preprocessed image S ∈

Rh×w×d, with h ≤ H , w ≤ W and d ≤ D. In the following sections we refer
to S as the smooth ROI. See ϐigure 1.2 for an illustration of the computation of
the smooth ROI. We rescale S by dividing by the maximum intensity such that
S ∈ [0, 1]h×w×d. This type of intensity standardization has been successfully
used in other deep learning frameworks for quantiϐication and detection of brain
lesions (Dou et al., 2016).

2.3 3D Convolutional Regression Network

Once the smooth ROI S is computed we use it as input to a convolutional neural
network (CNN) which proceeds to the regression task.

Our CNN architecture is similar to that of VGG (Simonyan and Zisserman,
2015a) but uses 3D convolutional kernels and a single input channel.
Additionally, we adapt the architecture for better detection of small structures.
We detail our architecture in the following paragraph. Please refer to Figure 1.3
for a visual representation of the network.

The network consists of two blocks of consecutively stacked convolutional
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layers with small ϐilter size: 3 × 3 × 3, followed by a third block containing a
single convolutional layer. We could not expand the network further because of
the size of our GPUmemory. Note that we do not use any padding and the size of
the featuremaps is thus reduced after each convolution. Therefore, the input ROI
should be sufϐiciently large to ensure that PVS located close to its border are not
missed. After each convolutional layer we apply a rectiϐied linear unit activation.
Between each block of convolutions, a maxpooling layer downsamples the
feature maps by 2 in each dimension (Figure 1.3). We increase the number
of features maps by 2 after each pooling, following the recommendations in
Simonyan and Zisserman (2015a). The last pooling layer downsamples its input
by 4. The network ends with two fully connected (FC) layers of c = 2000 units
and a ϐinal FC layer of a single unit.

As we framed the problem as a regression, the output should span R. The
last activation is then only the identity function. The network parameters are
optimized using the mean squared error between y ∈ Nn, the PVS visual scores,
and ŷ ∈ Rn, the output of the network. The PVS score ŷ is therefore optimized
to predict the number of PVS inside the basal ganglia in the slice showing the
anterior commissure. However, contrary to an PVS count, our PVS scoring can
spanR andnot onlyN. Theuse of a continuous scoring can reϐlect the uncertainty
in identifying a lesion as an PVS. Besides, the network is regularized only using
data-augmentation (Section 3.1).

Architecture choices can be explained as follows. In the brain there can be
different type of lesions appearing similar on a given MRI modality. PVS are
for instance difϐicult to discriminate from lacunar infarcts on our PD-weighted
scans. Therefore complex features should be extracted at high image resolution,
before any signiϐicant downsampling. For this reason we place the majority of
the convolutional layers before and right after the ϐirst maxpooling. Once these
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small structures have been detected, there is no need to reach a higher level of
abstraction: they only need to be counted. That is ourmotivation to performonly
few pooling operations and ϐinish with a large 4× 4× 4 pooling. The role of the
fully connected layers is to estimate the PVS score based on the PVS detections
provided by the output of the last pooling layer. Ideally the output of the last
pooling layer could be a set of low dimensional feature maps highlighting the
structures of interest, in our case the PVS.
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3 Experiments and Results

In order to evaluate the performance of the proposed quantiϐication technique,
we conduct seven experiments. In the two ϐirst experiments we investigate the
behavior of the network and check if the network focuses on PVS. The third
series of experiments compares our method with visual scores and with other
automated approaches to PVS quantiϐication. Then we investigate the inϐluence
of the number of training samples. In the ϐifth experiment we analyze the
inϐluence of several hyper-parameters on the performance of the network. In
the sixth experiment, we assess the reproducibility of our method on short term
repeat scans. Finally we show how our PVS scoring correlates with age.

3.1 Experimental Settings

In each experiment the preprocessing is the same (Section 2.2). The basal
ganglia is segmented with the subcortical segmentation of FreeSurfer (Desikan
et al., 2006a). All parameters are left as default, except for the skull stripping
preϐlooding height threshold which is set to 10. Registration to MNI space is
computed with the rigid registration implemented in Elastix (Klein et al., 2010)
and uses default parameterswithmutual information as similaritymeasure. The
voxel size stays the same in dimensions x and y (both 0.5mm) but is different in
dimension z (0.8mmbefore registration and 0.5 after). The Gaussian kernel used
to smooth the ROI has a standard deviation σ = 2 pixel units. The cropped CNN
inputs S have a size of 168 × 128 × 84 voxels. We initialize the weights of the
CNN by sampling from a Gaussian distribution, use Adadelta (Zeiler, 2012) for
optimizationandaugment the trainingdatawith randomly transformedsamples.
The transformation parameters are uniformly drawn from an interval of 0.2
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radians for rotation, 2 pixels for translation and ϐlipping of x and y axes.
The network is trained per sample (mini-batches of a single 3D image).

We implemented our algorithms in Python in Keras and Theano and ran the
experiments on a Nvidia GeForce GTX 1070 GPU. This GPU has 8GB of GPU RAM,
which prevents us from extending the network.

The average training time is one day. We stop the training after the validation
loss converged to a stable value. Once the CNN is trained and given the smooth
ROIS, the automated PVS scoring takes 440mson our GPU and2min on our CPU.
We evaluate the results using four metrics: the Pearson correlation coefϐicient,
the Spearman correlation coefϐicient, the intraclass correlation coefϐicient (ICC)
and themean square error (MSE). We compute thesemetrics between the visual
scores of the expert rater (H.Adams) and theoutput of themethod, the automated
PVS scores. ICC is the metric most commonly used to evaluate the reliability
of visual rating methods, and has also been used in previous epidemiological
studies of PVS (Adams et al., 2013). We consider it as the standard metric in
our experiments.

3.2 Saliency Maps

In ϐigure 1.4, we computed 6 saliency maps using our trained model (Section
2.3). Saliency maps are computed as the derivative of the automated PVS scores
(the output of the network) with respect to the input image (Simonyan et al.,
2014). Saliency maps highlight regions which contributed to the PVS score and
consequently we expect them to highlight PVS.

After rescaling intensities of the saliency map in [0, 1], we circled the regions
with a value higher than 0.5. Most strongly highlighted regions correspond
to PVS, although sometimes large PVS are only slightly highlighted, while
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smaller-sized PVS (that do not exceed the threshold to be counted as enlarged
by the expert human rater) can be highlighted as well. In most of the cases,
regions with values in [0, 0.5] in the saliency maps actually correspond to thin
perivascular spaces.

It should be noted, however, that enlargement of perivascular space is not
a 0/1 phenomenon (as a visual rating assumes) but actually happens on a
continuous scale, and it is very likely that the CNN counts the PVS in a volumetric
manner. Many smaller-sized PVSwould thus not be counted by the expert human
rater as ‘enlarged’ but could still slightly contribute to the total PVS burden
computed by the algorithm, hence the slightly highlighted (values in [0, 0.5]) in
the saliency maps.

Note that, while the annotator considers PVS only in a single slice, the
algorithm is considering the complete 3D volume. The number of PVS in the
annotated slice and in the total volumeof thebasal ganglia are strongly correlated
(Adams et al., 2013). The algorithm most probably uses this correlation and
locates PVS in the total volume and scales down its output to make it match the
number of PVS in the annotated slice. We observe the same behavior in Section
3.3.

3.3 Occlusion of PVS

In this section,weperformanother experiment to verify that the algorithm learns
PVS. We use a set of 25 scans in which PVS have been marked with a dot in the
slice showing the anterior commissure (Section 2.1).

The experiment consists of occluding marked PVS with small 3D blocks
(1.5x1.5x4.8 mm) of the mean intensity of the basal ganglia. We successively
occlude n PVS, with n ∈ [1; 6], in all images and recompute, for each n, the
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predicted PVS score for each image. We expect the scores to decrease as we
occlude more PVS.

Figure 1.5 shows the results. In the left plot, the automated scores linearly
decrease as more PVS are occluded, until four PVS have been removed. Note that
in the right plot, it seems that the automated score of scans with a lower amount
of PVS decreases quicker than for scans with many PVS. In scans with many PVS,
the PVS selected for occlusion may more frequently be a slightly enlarged PVS,
considered as a limit case by the algorithm and hence having a small impact on
the automated score. In the left plot, after four PVS have been removed, the slope
of the curve decreases. At that point, most of PVS have been removed from the
images, only remains images with many PVS.

One could expect the scores to decrease by n as we occlude n PVS. The scores
decrease instead by a smaller amount. The automated PVS scores are indeed
computed across the volume and scaled down to match the visual scores that
were based on a single slice. Removing a single PVS slightly affects the automated
PVS score.

In Figure 1.6, we performed additional experiments to verify this hypothesis.
As expected, we notice that occluding a lesion in the input image reduces the
intensity at that location in the saliency map. However we also notice, that the
more lesions are occluded in a single slice, the lower the inϐluence on the saliency
map is, and the less the automated PVS score decreases. After removing the
most obvious lesions, we actually start to occlude only slightly enlarged ones,
that have a lower impact on the quantiϐication. If we now occludemore enlarged
lesions in other slices, the saliencymapandautomatedPVS scores are againmore
impacted. This conϐirms the hypothesis that the algorithm considers PVS across
the volume of the basal ganglia.

For comparison, we also occluded the image of Figure 1.6 at random
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locations. We occluded 1-5 random locations in the basal ganglia, and repeated
the experiment 100 times. With no occlusion, the PVS score was 7.14. One
random occlusion led to an PVS score of 7.12 +/- 0.1 (standard deviation). This
decrease is negligible in comparison to the change in PVS score after occluding
one PVS: 6.86. Occluding ϐive random locations led to an PVS score of 7.10 +/-
0.28. Thus, occluding PVS has a signiϐicant impact on the PVS score in contrast
to occluding random locations. We can therefore conclude that the algorithm
focuses on PVS.

3.4 Comparison to visual scores and to other automated

approaches

Table 1.1: Correlation with expert’s visual scores for the proposed method
and four other more conventional approaches. We also report the mean
square error (MSE). Best performance in each column is indicated in bold.

Method Pearson Spearman ICC MSE
Intensity (a) 0.38 0.19 0.37 18.36
Volume (b) 0.47 0.34 -0.27 116.2

Components (c) 0.63 0.48 0.63 9.88
SIFT-BOW (d) 0.57 0.59 0.55 10.05

3D Regression CNN 0.75 0.61 0.74 6.14

In this section we compare the automated scores to visual scores and
demonstrate the effectiveness of our method in comparison to four other
automated approaches.

For the ϐirst series of experiments, the dataset is randomly split into the
following subsets: 1289 scans for training, 323 for validation and 405 for
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Table 1.2: Intraclass Correlation Coefϐicent for Interrater Reliability. A
stands for the rater H. Adams, B1 is the ϐirst rating of the rater F. Dubost, and
B2 the second rating of rater F. Dubost. See end Section 3.4 for more details.

A B1 B2
B1 0.70
B2 0.68 0.80

Proposed Method 0.80 0.62 0.70

testing. The ϐirst three methods (a,b and c) quantify hyperintense regions in
the MRI scans. The last method (d) is a machine learning approach similar
to a state-of-the-art technique for PVS quantiϐication in the basal ganglia
(González-Castro et al., 2016; Gonzalez-Castro et al., 2017). These four baseline
methods are particularly interesting as they cover a wide range of complexity.

The output of method (a) is simply the average of all voxels intensity values
inside the ROI S. Both the second (b) and third (c) method ϐirst thresholds S
to keep only high intensities. This threshold is optimized on the training set,
without applying the intensity standardization described in Section 3.1. We
denote St the thresholded image S. The output of (b) is the volume - the count
of non-zero values - of the threshold image St. The output of (c) is the number
of connected components in St. The method (d) computes bag of visual words
(BoW) features using SIFT (Lowe, 2004) as descriptors and uses a regression
forest. SIFT parameters are tuned - by visual assessment - to highlight PVS on
the training set. 2D SIFT are computed in each of the 15 slices surrounding the
slice annotated by clinicians. In our experiments, using more surrounding slices
proved to be too complex for themodel, which would then fail to learn the aimed
correlation. The number of words in the BoW dictionary was set to 100 for each
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slice. Concatenating the feature vectors of each slice yielded better results than
averaging these vectors. The BoW features for the entire volume are therefore
vectors of 15 ∗ 100 = 1500 elements. The regression forest has 3000 trees and a
maximum depth of 50 nodes.

For all these other automated approaches, the regression results need to
be rescaled to be able to compute the ICC. We apply a linear transformation
to the outputs. The predicted values can consequently become negative. The
parameters of this transformation are optimized to maximize the ICC on the
validation set.

We report the results of this experiment in Table 1.1. The regression network
performs best for all measures and outperforms the other methods by a large
margin - more than 0.10 - for both Pearson correlation and ICC. Our method
performs signiϐicantly better than all four baselines (William’s test, p-value <

0.00001 for baselines (a), (b), (d) and < 0.01 for baseline (c)). Methods (c) and
(d) are the strongest baselines

Figure 1.7 presents scatter plots of the estimated outputs for each method.
We notice that method (c) sometimes strongly overestimates the number of PVS
in scans with no PVS. Such errors do not happen with our regression network.
On the other hand, method (d), and to a lesser extent the proposedmethod, have
a tendency to underestimate PVS in scans with the largest amounts of PVS. A
possible explanation for this underestimation is that in case of a larger number
of PVS, the chance of having lesions close to each other is higher. This makes the
detectionmore challenging. Several very close PVSmay appear similar to a single
larger PVS in other scans.

Note that despite its simplicity, method (c) performs reasonably well,
especially in comparison with the random forest (d), which is much more
complex (more parameters). However, note that the performance metrics of
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method (c) as displayed in Table 1.1 are strongly inϐluenced by few scans having
many PVS (see Figure 1.7). If we ignore these scans and recompute the ICC for
scanswith only 20 PVS or less, method (c) drops to 0.48 ICC and 11.02MSEwhile
method (d) gets to 0.59 ICC and 9.22MSE and the proposedmethod is at 0.68 ICC
and 6.74 MSE.

In the experiments described above, we have demonstrated that the scores
predicted by our algorithm have a good to excellent (according to Cicchetti
(1994) guidelines) correlationwith the scores of a single expert rater (H. Adams).
However, as the algorithm is trained with the scores of this same rater, its
predictions may be biased.

To verify this, we evaluated the performance of our algorithm on a smaller
set annotated by two raters (H. Adams and F. Dubost) (see Section 2.1). For this
experiment we trained the algorithm on a training set (training + validation) of
1600 scans and a test set of 400 scans. Table 1.2 shows the results.

3.5 Learning Curve

In this section we study how the number of annotated scans used for
optimization inϐluences the performance of our automated quantiϐication
method.

We train our networkusing different subsets of the 2017MRI scans described
in Section 2. We perform experiments using 5 different sizes for the training
set. For a ϐixed number of training scans, we repeat the experiment 5 times with
different randomly drawn train/test splits of the data. This results in 5 ∗ 5 = 25

experimentswith different random train/test splits of the data. Figure 1.8 shows
the results of the experiment. In the training set size, we count both training
(80%) and validation (20%) sets.
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Evenwith a relatively small training set size (200 scans) ourmethodperforms
well: the correlation between the automated and visual scores reaches an ICC of
0.66. Our model reaches its best performance (ICC of 0.74 0.044) with 1000
training scans. Using more scans does not bring further improvement. Using
only a few training scans (40) leads to a signiϐicant drop in performance (ICC of
0.30) with higher standard deviation.

3.6 Analysis of Network Parameters

In this section, we investigate the inϐluence of several parameters of the model.
Table 1.3 summarizes a set of experiments performed on the same split of
training, validation and testing set, which sizes are 1289 scans, 323 and
405 respectively. In this series of experiments the varying parameters are:
registration to MNI space (MNI); number of features in the ϐirst layer (Feat1stL);
for the data augmentation, ϐlipping scans in the direction of the sagittal axis
(FlipX), the left-right axis (FlipY), the longitudinal axis (FlipZ); the layout of the
fully connected layer (FC), where e.g. 2*2000 means 2 layers of 2000 neurons
each; the loss (Loss), where MSE stands for mean square error, MCE for mean
cubic error, MQE for mean quartic error, Tukey for Tukey’s biweight and RSME
for root mean square error. Blocks is the number of convolutional blocks as
described in Section 2 and Conv/Block is the number of convolutional layers per
block. ICC and MSE are the metrics we computed on the test set. Note that we
conducted these experiments a posteriori and did not use these results to tune
the parameters of the method for the experiments in sections 3.4, 3.5, 3.7 and
3.8.

Table 1.3 is separated in several categories of experiments. The ϐirst line
shows the algorithm implemented in this chapter. On the second line we notice

39



Part B - Chapter 1

that registering to MNI spaces does not provide a large improvement. In the
third category, we investigate several loss functions. MSE provides a better
performance. In the fourth category we investigate different architectures.
Reducing the number of convolutional layers or fully connected layers does
not bring a large difference, neither does changing the number of features in
the ϐirst layer. To perform the experiment with three blocks, we halved the
number of features maps in each layer. This architecture yields worse results
than shallower architectures. The last category investigates different levels of
data augmentation. The most important augmentation is ϐlipping the images in
the y-axis, which is an anatomically plausible augmentation. Other forms of data
augmentation bring no improvement in this scenario and can make the training
process more difϐicult and slower.

Overall, in this problem setting, registering to MNI is not necessary, MSE
is the loss of choice, architecture changes do not bring signiϐicant differences
but one could prefer using a smaller network for faster training, and the best
augmentation is ϐlipping in anatomically plausible directions.

Wenoticed inTable1.3 that, considering the ICC, shallowernetworksperform
similar to deeper ones in this problem (in regards to theMSE, the proposed deep
network performs slighted better though). We investigate the behavior of these
shallower models for smaller amount of training samples. Figure 1.9 shows a
comparison of the learning curves of a deep network (as implemented in this
chapter) and a shallow network with two blocks and a single convolutional layer
per block (see Table 1.3 and Section 2). The deep network performs slightly
better and the difference in performance is larger for smaller training sets.
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3.7 Reproducibility

In order to evaluate the reproducibility of our automated PVS scoring method,
we run our algorithm on the reproducibility set described in Section 2.1. In
this experiment we consider two versions of our model. For each version,
we trained a set of 5 networks with randomly selected training sets of scans.
For both versions, we actually use the same networks as in the learning curve
experiments (Figure 1.8). In the ϐirst version, the networks have been optimized
using 1000 scans and yields a ICC of 0.740 0.044 with visual scores from the
human rater. In the second version, the networks have been optimized only
with 40 scans and yields an ICC of 0.298 0.062 with the visual scores. On
the reproducibility set, the ϐirst model yields an ICC of 0.93 0.02 between
the ϐirst and second sets of scans. The second model yields an ICC of 0.83
0.011. According to Cicchetti (1994) guidelines , both models have an excellent
correlation. Adams et al. (2013) reported an intrarater agreement of 0.80 ICC
for PVS visual scoring in the basal ganglia. In our study, the second rater also
had an intrarater agreement of 0.80 ICC (Section 3.4). From this comparison we
can conclude that our automated PVS scoring appears to be more reproducible
than visual scoring.

3.8 Correlation with Age

Now thatwe have demonstrated the performance of our approach in comparison
with other automated approaches and human visual scores, we investigate the
correlation of our automated PVS scores with clinical factors. PVS have been
shown to correlate with age (Potter et al., 2015b). We consider correlations
between age and visual PVS scores from human raters (a), and between age
and automated PVS scores (b). We split our dataset into a training set of 1000
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scans and a testing set of the remaining 1000 scans. We use the training set to
optimize the parameters of our automated scoring algorithm. For (a) and (b), we
perform a zero-inϐlated negative binomial regression. Themodel is zero-inϐlated
to take into account the over-representation of participantswith no PVS (see PVS
distribution across participants in Figure 1.7). The per-decade odds ratio and
95% conϐidence interval are for (a) 1.30 0.08 and for (b) 1.34 0.07. Figure
1.10 shows the trends of increasing PVS scores with age, which are very similar
for automated and visual scores.
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Figure 1.8: textbfLearning Curve. The number of scans for training (80%
training set and 20% validation set) is represented on the x-axis. Three different
correlation coefϐicients (Pearson, Spearman, Intraclass) with visual scores are
represented on the y-axis. For a given number of training samples, we average
the results over 5 experiments. For each experiment, the data is randomly split
into non-overlapping train, validation and test sets. Across experiments, the
sets overlap (Monte Carlo cross-validation). For each point, we plot the 95%
conϐidence interval related to the corresponding 5 experiments.
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Figure 1.9: Learning Curve of shallow and deep networks.The number
of training and validation scans is displayed on the x-axis. The correlations
coefϐicients (Pearson, Spearman and ICC) between automated and visual scores
are displayed on the left y-axis (the scale ranges from 0.2 to 0.85). The MSE
between automated and visual scores is displayed on the right y-axis. Solid lines
are used for the deep network, and dotted lines for the shallow network.
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4 Discussion

We showed that our regression network indeed focuses on PVS to compute the
automated scores, although no information about the location of these lesions
had been given during training. This automated scoring has a good agreement
with the visual scoring performed by a single expert rater, is highly reproducible,
and signiϐicantly outperforms the scoring of the fourmore conventionalmethods
we compared to.

Few other papers addressed PVS quantiϐication. In contrast with our
approach, Gonzalez-Castro et al. (2017) formulated the problem as a binary
classiϐication where a threshold is set to t = 10 PVS to differentiate between
the severe or mild presence of PVS. The authors use bag of visual words and
SIFT features (Lowe, 2004), similar to our baseline method (d), and achieve
an accuracy of 82% on a test set of 80 scans. The regression approach as
presented in our paper provides amuch ϐiner - and therefore likelymore relevant
- quantiϐication than this binary classiϐication. In addition, in our experiments,
the regression network yields much better results than the bag of words with
SIFT approach (Table 1.1). In Figure 1.7, the bag of word approach (d) is also
more spread along the second principal component, meaning that this method
is on average less precise in its quantiϐication (high mean square error). This
matches with the mean square errors reported in Table 1.1.

More recently, the same authors (Ballerini et al., 2016) used methods based
on vessel enhancement ϐiltering, and reported a Spearman correlation of 0.75
with a 5-category PVS ranking (the Potter scale, Potter et al. (2015a)) in the
centrum semiovale. Our method achieves a Pearson correlation of 0.763 0.026

and a Spearman correlation of 0.670 0.042 with visual scoring in the basal
ganglia. These results cannot directly be compared as the regions, visual scoring
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systems, and datasets are different. A possible advantage of the visual PVS score
used in our work (Adams et al., 2013) with respect to the Potter scale (Potter
et al., 2015a), is that it provides a ϐiner quantiϐication. In our study population,
the majority of images would fall into the ϐirst 2 categories of the Potter scale
(0 PVS and 1-10 PVS), while the score of Adams et al. (2013) allows further
separation.

Ramirez et al. (2015) developed interactive segmentation methods based on
intensity thresholding. The authors show good results but need the intervention
of a human rater, which in large datasets is an important drawback. Our
method is fully automated. Park et al. (2016) proposed an automated PVS
segmentation method based on Haar-like features. This method reaches up
to 64% Dice coefϐicient with ground truth annotations. This approach was
exclusively evaluated on 7 Tesla MRI scans, needs a large amount of pixel-wise
annotations for training, andwas only evaluated on a dataset of 17 young healthy
subjects. We evaluated our method on the Rotterdam Scan Study (Ikram et al.,
2015), a population-based study inmiddle aged and elderly subjects. The elderly
subjects are more prone to cerebral small vessel diseases, and may have other
types of brain lesions, similar to PVS (e.g. lacunar infarcts). This makes the
exclusive quantiϐication of PVS more challenging on our dataset, but also closer
to the clinical need.

Several other learning-based approaches to counting objects in images have
been proposed in the literature, mostly in case of 2D images. These techniques
also often need labels about the location of the target objects. Lempitsky and
Zisserman (2010) proposed a supervised learning method to count objects in
images. However their method is based on density map regression and relies on
dot annotations for training. More recently, Walach and Wolf (2016) proposed a
convolutional neural network with boosting and selective sampling for cell and
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pedestrian counting. Their method is also base on density map regression and
needs dot annotations. Ren and Zemel (2017a) proposed a method to jointly
count and segment instances in 2D images. They combined a recurrent neural
network with an attention model. However the method needs a pixel-wise
ground truth for its segmentation component. Seguı́ et al. (2015) proposed a
convolution neural network for counting handwritten digits and pedestrians.
Thenetwork are optimized for classiϐicationwithweak global labels: the number
of instances of the target object. This work is closer to our method, as we also
use weak global labels. However, we use regression networks. All these method
were evaluated only on 2D tasks. For instance, overcoming occlusions is one of
the main difϐiculties tackled in pedestrian counting, a problem which does not
occur in case of 3D volumes.

Our method is both reproducible (0.93 ICC) and agrees well with the visual
scores of the expert human rater it has been trained on: the correlation between
the automated and visual scores is 0.74 ICC, which is in between interrater
agreement (0.62 in Adams et al. (2013), and 0.68 and 0.70 in our study (Table
1.2)) and intrarater agreement (0.80 in both in Adams et al. (2013) and our
study (Table 1.2)). Furthermore, the correlation between the automated scores
and the visual scores of a second expert human rater - which have not been
seen during training - is similar to that of the interrater agreeement (Table 1.2).
Therefore, we believe our method is sufϐiciently precise and robust to perform
automated PVS quantiϐication in large scale clinical research. The processing
time stays low enough: 440ms on GPU per scan given to the regression network.
However, as all images in our database were acquired with a single scanner,
for application in different data it would need to be evaluated on a multi-center
dataset to further verify its robustness. Additionally, ourmethodwas exclusively
evaluated in the basal ganglia, as perivascular spaces in this region are suggested
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to bemost clinically relevant (Potter et al., 2015a). In other PVS research studies
(Adams et al., 2015; Ikram et al., 2015; Maillard et al., 2016; Hilal et al., 2013),
PVS can also be visually scored in other brain regions such as centrum semiovale,
hippocampus and midbrain (Adams et al., 2013). This is particularly relevant as
the location of PVS is thought to differ with etiology and even relate to different
clinical outcomes (Banerjee et al., 2017; Charidimou et al., 2017). We expect our
method to perform similarly in other brain regions.

Contrary to PVS visual scoring, we quantify the PVS in the entire ROI volume
and not only in a single slice. However it has been shown (Adams et al., 2015)
that the visual PVS score in a slice of the basal ganglia is highly correlated to
the PVS visual score in the entire volume. The results from experiments with
occlusion suggest that our method uses this correlation by detecting PVS in the
whole volume and scaling the score down to match the visual scores done in
a single slice. The automated scores are more robust than visual ones in this
regard. Training a classiϐier on visual scores of the whole basal ganglia volume
could provide an even more robust approach and could prove itself useful to
investigate more subtle correlations with clinical factors.

In thiswork, wedid not limit our input to the visually scored slice. The human
rater indeed uses information frommore than just one slice to discriminate PVS
from similarly appearing brain lesions, and we expect the network to beneϐit
from this information as well. Besides, we expect that quantifying PVS in the
entire basal ganglia, fusing information frommultiple slices, ismore reliable than
only quantifying them in a single slice.

In Table 1.2, while the correlation between the automated scores and the
visual scores of the second rater (F. Dubost) is slightly lower than the correlation
between both raters (F. Dubost and H.Adams), it is still higher than the interrater
ICC reported in Adams et al. (2013). Overall, we believe that this table shows
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that we automatized the ϐirst rater (H. Adams), with interrater and intrarater
reliabilities similar to that of expert human raters.

Looking at the learning curve (Fig 1.8), it seems that the performance of
the network does not improve when training on more than 1000 images. This
could mean that either this is the maximum achievable performance using this
ground truth or that increasing the complexity of the network (by adding layers
and feature maps) could still lead to an increase in performance. However the
experiments conducted in section 3.1 suggest that a similar performance can be
achieve by shallower networks. Though, shallower networks seem to perform
worse for small training sets. More regularization (Dropout, L1 or L2) may help
to reduce the drop in performance (for both deep and shallow networks) when
training on small amount of samples.

In theory, we think that the performance of the network could be further
boostedwith e.g. attentionmechanisms (Mnih et al., 2014), given highly accurate
ground truth labels. However, we cannot expect any methods trained on ratings
of a single rater to performbetter than intra-rater agreement (here ICC of 0.8). In
several cases (see Table 1.3) our prediction reaches this level of agreement with
the expert’s scores. That is why we did not experiment with more complicated
methods: with the current ground truth based on visual assessment, we can not
expect nor would we be able to meaningfully evaluate any further performance
gain.

The large size of the required training set could be seen as an obstacle to the
clinical application of the automated scoring method. However, although our
best performance is achieved with a training set of 1000 scans, training with
200 scans already provides a good performance. We believe this method can
be extended to andwould be useful for other large clinical and population-based
studies such as ADNI (Jack et al., 2008), UK Biobank (Sudlow et al., 2015) and
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German National Cohort (Ahrens et al., 2014).
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5 Conclusion

We presented a novel regression method to automatically quantify the amount
of enlarged perivascular spaces in the basal ganglia in brain MRI. We validated
our approach on 2000 brain MRI scans (using different sizes for the testing set,
up to a maximum of 1960 scans). Our method signiϐicantly outperforms four
other more conventional automated approaches. The agreement with visual
scoring (ICC of 0.74) is higher than the inter-observer agreements (ICC of 0.68
and 0.70). The scan-rescan reproducibility is very high (ICC of 0.93), compared
to intra-observer agreement (ICC of 0.80). Our result are relatively robust across
network architectures. We also demonstrated that the automated PVS scores
correlatewith age, similarly to the visual PVS scores. We believe that thismethod
can replace visual scoring of PVS in epidemiological and clinical studies.
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Chapter 2

Hydranet: Data Augmentation for

Regression Neural Networks

Abstract

Deep learning techniques are often criticized to heavily depend on a large
quantity of labeled data. This problem is evenmore challenging inmedical image
analysis where the annotator expertise is often scarce. We propose a novel
data-augmentation method to regularize neural network regressors that learn
from a single global label per image. The principle of the method is to create
new samples by recombining existing ones. We demonstrate the performance of
our algorithm on two tasks: estimation of the number of enlarged perivascular
spaces in the basal ganglia, and estimation of white matter hyperintensities
volume. We show that the proposed method improves the performance over
more basic data augmentation. The proposed method reached an intraclass
correlation coefϐicient between ground truth and network predictions of 0.73
on the ϐirst task and 0.84 on the second task, only using between 25 and 30
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scans with a single global label per scan for training. With the same number of
training scans, more conventional data augmentation methods could only reach
intraclass correlation coefϐicients of 0.68 on the ϐirst task, and 0.79 on the second
task.
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1 Introduction

Deep learning techniques are getting increasingly popular for image analysis
but are often dependent on a large quantity of labeled data. In case of medical
images, this problem is even stronger as data acquisition is administratively
and technically more complex, as data sharing is more restricted, and as the
annotator expertise is scarce.

To address biomarker (e.g. number or volume of lesions) quantiϐication,
manymethods propose to optimize ϐirst a segmentation problemand thenderive
the target quantity with simpler methods. These approaches require expensive
voxel-wise annotations. In this work, we circumvent the segmentation problem
by optimizing our method to directly regress the target quantity (Cole et al.,
2017; González et al., 2018; Wang et al., 2019; Lee and Kim, 2018). Therefore
we need only a single label per image instead of voxel-wise annotations. Our
main contribution is that we push this limit even further by proposing a data
augmentation method to reduce the number of training images required to
optimize the regressors. The proposedmethod is designed for global image-level
labels that represent a countable quantity. Its principle is to combine real

training samples to construct many more virtual training samples. During
training, our model takes as input random sets of images and is optimized to
predict a single label for each of these sets that denotes the sum of the labels of
all images of the set. This is motivated by the idea that adding a large quantity
of virtual samples with weaker labels may reduce the over-ϐitting to training
samples and improve the generalization to unseen data.
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1.1 RelatedWork

Data augmentation can act as a regularizer and improve the generalization
performance of neural networks. In addition to simple data-augmentations
such as rotation, translation and ϐlipping, the authors of Unet (Ronneberger
et al., 2015) stress for instance that random elastic deformations signiϐicantly
improved the performance of theirmodel. Generative adversarial networks have
for instance also been used to generate training samples, and hence reduce the
over-ϐitting (Sixt et al., 2018).

Recently, data augmentation methods using combinations of training
samples have been published. Zhang et al. (2018a) proposed to construct
virtual training samples by computing a linear combination of pairs of real
training samples. The corresponding one-hot labels are summed with the same
coefϐicients. The authors evaluated their method on classiϐication datasets from
computer vision and on a speech dataset, and demonstrate that their method
improves the generalization of state-of-the-art neural networks. Simultaneously,
Inoue (2018) and Tokozume et al. (2018) reached similar conclusions. In
case of grayscale volumetric inputs, summing image intensity values could
overlay the target structures, confuse discriminative shapes, and thus harm
the performance of the network. With our method, training samples can be
combined without overlaying the intensity values. The other difference with
the above-mentioned approaches is that our method is also not designed for
classiϐication, but for regression of global labels, such as volume or count in
an image. With the proposed combination of samples, our method computes
plausible augmentation.
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2 Methods

The principle of the proposed data augmentation method is to create many new
(and weaker) training samples by combining existing ones (see Figure 2.1). In
the remainder, the original samples are called real samples, and thenewly created
samples are called virtual samples.

2.1 Proposed Data Augmentation.

During training, the model is not optimized on single real samples I with label
y, but on sets S of n random samples I1, I2, ..., In with label ys =

n∑
i=1

yi, with
yi the label of sample Ii. These sets S with labels ys are the virtual samples.
Consequently, the loss function L is computed directly on these virtual samples
S and not anymore the individual real samples Ii. This approach is designed for
labels describing a quantitative element in the samples, such as volume or count
in an image.

To create the sets S, the samples Ii are drawn without replacement from
the training set at each epoch. To create more combinations of samples, and
to allow the model to use the real samples for its optimization, the size of the
sets S can randomly vary in {1, n} during training. If the training set containsm
samples, with ourmethod, we can create

n∑
i=1

(
m
i

)
possible different combinations

(the order of the samples Ii in S has no effect on the optimization).

2.1.1 Difference with mini-batch stochastic gradient descent (SGD)

In mini-batch SGD, the model is also optimized on sets of random samples, but
the loss function L is computed individually for each sample of the batch, and
then summed (averaged). For the proposed method, the predictions are ϐirst
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3

2

3+2 = 5

6
8

3

2

6

9

Real Virtual

Figure 2.1: Creating virtual training samples by recombining real training
samples for regression tasks. The real training samples are displayed on the
left, and the virtual samples on the right. The label is indicated under each
sample, and corresponds to the number ofwhite blobs. By recombining samples,
we can signiϐicantly increase the size of the training dataset. For example,
by recombining the real samples with labels 3 and 2, we can create a new
sample with label 5 (arrows). All possible combinations are shown in blue. For
the illustration, we show only combinations of two samples, but any number
of samples can be combined. In our experiments, we used combinations of
maximum 4 samples.

summed, and the loss function is then computed a single time. For non-linear
loss functions, this is not equivalent:

n∑
i=1

L(ŷi, yi) ̸= L(
n∑

i=1

ŷi,
n∑

i=1

yi), with ŷi the
model’s prediction for sample Ii.
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2.1.2 Regularization Strength

The regularization strength can usually be modulated by at least one parameter,
for instance the degree of rotation applied to the input image, or the percentage
of neurons dropped inDropout (Srivastava et al., 2014). In the proposedmethod,
the regularization effect can be controlled by varying the average number of
samples used to create combinations.

2.2 Implementation

We optimize a regression neural network with a 3D image for input, and global
label representing a volume or count for output. There are at least two possible
implementations of the proposed method. The ϐirst implementation could
consist of modifying the computation of the loss function across samples in a
mini-batch, and provide mini-batches of random size. Alternatively the model’s
architecture could be adapted to receive the set of images. We opted for the
second approach.

2.2.1 Base Regressor

Figure 2.2 left shows the architecture of the base regression neural network. It is
both simple (196 418 parameters) and ϐlexible to allow fast prototyping. There
is no activation function after the last layer. The output ŷ can therefore span R

and the network is optimized with the mean squared error (MSE). We call this
regression network f , such that f(x) = ŷ, with x the input image.

2.2.2 Combination of Samples

To process several images simultaneously, we replicate n times the regressor f
during training (Figure 2.2 right), resulting in n different branches f1, f2, ..., fn
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that receive the images I1, I2, ..., In. The weights of each head fi are shared such
that fi = f . A new network g is constructed as:

g(S) = g(I1, I2, ..., In) =

n∑
i=1

fi(Ii) =

n∑
i=1

f(Ii) =

n∑
i=1

ŷi. (2.1)

To allow the size of the setsS to randomly vary in {1, n} during training, each
element of S has a chance p to be a black imageB of zero intensities only (Figure
2.1 right column). With f(B) = 0, the following situation becomes possible:

g(S) = f(Ij) +

n∑
i=1,i̸=j

fi(B) = f(Ij) + (n− 1)f(B) = f(Ij). (2.2)

For this implementation, the batch size b has to be a multiple of the number
of branches n. We chose b = n due to constraints in GPU memory. The
regularization strength is controlled by the averaged number of samples used
to create combinations, hence depends on n and p. During inference, to predict
the label for a single input image, the input of all other branches is set to zero.
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3 Experiments

Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH)
are two types of brain lesions associated with small vessel disease. The method
is evaluated for the estimation of number PVS in the basal ganglia, and estimation
of WMH volume. We compare the performance of our method to that of the base
regressor f with and without and Dropout, and for different sizes of training set.

The PVS dataset contains T2-weighted scans, from 2017 subjects, acquired
from a 1.5T GE scanner. The scans were visually scored by an expert rater
who counted the PVS in the basal ganglia in a single slice. The WMH dataset
is the training set of the MICCAI2017’s WMH challenge (Kuijf et al., 2019).
We use the available 2D multi-slice FLAIR-weighted MRI scans as input to the
networks. Scans were acquired from 60 participants from 3 centers: 20 scans
from Amsterdam (GE scanner), 20 from Utrecht (Philips) and 20 from Singapore
(Siemens). Although the ground truths of the challenge are pixel-wise, we only
used the number of WMH voxels as ground truth during training.

For the regression of PVS in the basal ganglia, a mask of the basal ganglia is
created with the subcortical segmentation algorithm from FreeSurfer (Desikan
et al., 2006b), and smoothed with a gaussian ϐilter (standard deviation of 2
voxels) before being applied the image. The result is subsequently cropped
around the basal ganglia. For theWMH dataset, we only crop each image around
its center ofmass, weighted by the voxel intensities. For both tasks the intensities
are then rescaled between 0 and 1.

During training, for all methods, the images are randomly augmented
on-the-ϐly with standard methods. The possible augmentations are ϐlipping in
x, y or z, 3D rotation from -0.2 to 0.2 radians and random translations in x, y or
z from -2 to 2 voxels. Adadelta (Zeiler, 2012) is used as optimizer. The networks
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are trained with batch-size b = 4. For the proposed method, the network’s
architecture has then four branches (n = b = 4). During an epoch, the proposed
method gets as inputm/n different combinations of n training samples, werem
is the total number of training images. During the same epoch, the base regressor
f simply gets them images separately (in batches of size b = 4). For theproposed
method p was set to 0.1. In some experiments with Dropout (Srivastava et al.,
2014) we included a dropout layer after each convolution and after the global
pooling layer. The code is written in Keras with Tensorϐlow as backend, and the
experiments were run on a Nvidia GeForce GTX 1070 GPU.

For the PVS dataset, we experimentwith varying size of training set, between
12 and 25 scans. The validation set always contains the same 5 scans. All
methods are evaluated on the same separated test set of 1977 scans. For the
WMH dataset, the set is split into 30 training scans and 30 testing scans. Six scan
from the training set are used as validation scans. In both cases, the dataset is
randomly (uniform distribution) split into training and testing sets. For the PVS
dataset, once the dataset has been split into 30 training scans and 1977 testing
scan, we manually sample scans to keep a pseudo-uniform distribution of the
lesion count when decreasing the number of training scans.

To compare the automated predictions to visual scoring (for PVS) or volumes
(for WMH), we use two evaluation metrics: the mean squared error (MSE), and
the intraclass correlation coefϐicient (ICC).

3.1 Results

3.1.1 Enlarged Perivascular Spaces (PVS)

Figure 2.3 compares the proposed method to the base regressor f on the PVS
datasets, and for an increasing number of training samples. Their performance
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is also compared to the average interrater agreement computed for the same
problem and reported in Chapter 1. The proposed method always reaches a
betterMSE than the conventionalmethods for all training set sizes. Theproposed
method also signiϐicantly outperforms the base regressor in ICC (Williams’ test
p-value< 0.001) when averaging the predictions of the methods across the four
points of their learning curve.

3.1.2 White Matter Hyperintensities (WMH)

We conducted three series of experiments, and trained in total ϐive neural
networks (Table 2.1). When using small training sets, the proposed method
outperforms the base network f , when optimized either for MSE or for mean
absolute error. With larger training sets, the difference of performance reduces,
and the base regressor performs slightly better on the ICC.
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4 Discussion and Conclusion

With the proposed data augmentation method, we could reach the inter-rater
agreement performance on PVS quantiϐication reported in Chapter 1 with only
25 training scans, and without pretraining.

In Chapter 1, we also regressed the number of PVS in the basal ganglia with
a neural network. We achieve a similar result (0.73 ICC) while training on 25
scans instead of 1000. Zhang et al. (2018a) also proposed to combine training
samples as a data augmentation method. In their experiments, combining more
than n = 2 images does not bring any improvement. With the proposedmethod,
trainingwith combinations of four images brought improvement over only using
pairs of images. We did not experiment with values of n larger than 4 due to
GPU memory constraints. Contrary to the expected gain in generalization, on
both PVS (Figure 2.3) andWMH datasets, using Dropout (Srivastava et al., 2014)
worsened the results when training on very little data, even with low dropout
rates such as 0.3. As dropout already did not improve the performance of the
baseline, we do not expect improvement by including dropout in the proposed
method.

To create combination of images for the proposed method, images
where drawn without replacement for the sake of implementation simplicity.
The regularization strength could be increased by drawing samples with
replacement, which could be beneϐicial for small training sets. We also
mentioned two possible implementations of the proposedmethod: (1) changing
the computation of the loss over mini-batches, (2) replicating the architecture
of network. In this work we used the second approach, as it was simpler to
implement with our library (Keras). However with this approach, all samples
used in a given the combination have to be simultaneously processed by the
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network, which can cause GPU memory overload in case of large 3D images
or large values of n. The ϐirst approach does not suffer from this overload,
as the samples can be successively loaded, while only saving the individual
scalar predictions in the GPU memory. In case of large 3D images, we would
consequently recommend implementing the ϐirst approach.
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Chapter 3

Weakly Supervised Object

Detection with 2D and 3D

Regression Neural Networks

Abstract

Finding automatically multiple lesions in large images is a common problem
in medical image analysis. Solving this problem can be challenging if, during
optimization, the automated method cannot access information about the
location of the lesions nor is given single examples of the lesions. We propose a
newweakly supervised detection method using neural networks, that computes
attention maps revealing the locations of brain lesions. These attention maps
are computed using the last feature maps of a segmentation network optimized
only with global image-level labels. The proposed method can generate
attention maps at full input resolution without need for interpolation during
preprocessing, which allows small lesions to appear in attention maps. For
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comparison, we modify state-of-the-art methods to compute attention maps
for weakly supervised object detection, by using a global regression objective
instead of the more conventional classiϐication objective. This regression
objective optimizes the number of occurrences of the target object in an image,
e.g. the number of brain lesions in a scan, or the number of digits in an
image. We study the behavior of the proposedmethod inMNIST-based detection
datasets, and evaluate it for the challenging detection of enlarged perivascular
spaces – a type of brain lesion – in a dataset of 2202 3D scans with point-wise
annotations in the center of all lesions in four brain regions. In MNIST-based
datasets, the proposed method outperforms the other methods. In the brain
dataset, the weakly supervised detection methods come close to the human
intrarater agreement in each region. The proposedmethod reaches the best area
under the curve in two out of four regions, and has the lowest number of false
positive detections in all regions, while its average sensitivity over all regions is
similar to that of the other best methods. The proposed method can facilitate
epidemiological and clinical studies of enlarged perivascular spaces and help
advance research in the etiology of enlarged perivascular spaces and in their
relationship with cerebrovascular diseases.
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1 Introduction

Weakly supervised machine learning methods are designed to be optimized
with limited amounts of labelled data and are very promising for a large
number of medical image analysis problems. As medical expertise is scarce
and annotation time expensive, unsupervised (Schlegl et al., 2017) and weakly
supervised methods (Qi et al., 2017; Bortsova et al., 2018) are most suited to
extract information from large medical databases, in which labels are often
either sparse or non-existent. In this article, we use attention maps for weakly
supervised detection of brain lesions. Attentionmaps can be computed to reveal
discriminative areas for the predictions of neural networks that process images
suchMRI, CT or X-ray. Most attentionmaps computationmethods have originally
been designed to make deep networks more explainable (Zhang et al., 2018b;
Oktay et al., 2018; Zhang and Zhu, 2018; Hwang and Kim, 2016). As those
methodsdonot require annotations for theoptimizationof thenetworksbut only
global labels such as biomarkers or phenotypes (Wang et al., 2019), they can also
be optimized using only counting objectives such as the number of lesions in a
brain region, and subsequently predict the location of these lesions during test
time.

We propose a novel weakly supervised detection method, using attention
maps computed from the feature maps of a segmentation network architecture
optimized with global labels. By using the last feature maps of such an
architecture, attention maps can be computed at full input resolution, and small
structures can be detected more accurately. In this article, we focus on weak
supervision with regression neural networks for counting. Regression networks
havewidely been optimizedwith local labels such as voxel coordinates (Redmon
et al., 2016), distancemaps (Xie et al., 2018a,b) or depthmaps (Laina et al., 2016).
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Less frequently, regression networks have been used to predict global labels,
such as age (Cole et al., 2017; Wang et al., 2019), brain lesion count (Dubost
et al., 2017), pedestrian count (Seguı́ et al., 2015), or car count (Mundhenk et al.,
2016). Other researchers have also optimized neural networks to infer count.
Ren and Zemel (2017b) combined a recurrent network with an attention model
to jointly count and segment the target objects, but needpixel-wise ground truths
for the optimization. In bioimaging, methods inferring count have often been
applied to cell counting in 2D images (Lempitsky and Zisserman, 2010; Walach
and Wolf, 2016; Xie et al., 2018a; Tan et al., 2018; Alam and Islam, 2019). These
approaches are often optimized to regress distance or density maps computed
from dot annotations at the center of the target objects. Instead of regressing
density maps, Paul Cohen et al. (2017) performed cell counting by regressing
pixel-wise labels that represent the count of cells in the neighborhood. In our
approach, pixel-wise labels are not needed for training: only the image-level
count are used. Earlier, Seguı́ et al. (2015) have also optimized networks using
image-level count labels alone for digit and pedestrian count and visualized the
attention of the networks. However, they did not quantify the performance of the
resultingweakly supervisiondetection. Xue et al. (2016) performed cell counting
also using regression network optimized with patch-wise cell count, computed
density maps, but did not quantify the performance on the pixel level. In this
article, we optimize regression networks using image-level count labels, but use
this as a means for detection.

We compare the proposed method to four state-of-the-art methods
(Simonyan et al., 2014; Springenberg et al., 2015; Schlemper et al., 2018;
Selvaraju et al., 2017). Other weakly supervised detection methods have been
proposed relying, for example, on latent support vector machines (SVMs)
(Felzenszwalb et al., 2010), a reformulation of the multiple instance learning
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mi-SVMs (Andrews et al., 2003), or more recently, on multiple instance learning
with attention-based neural networks (Ilse et al., 2018), and on iterative learning
with neural networks classiϐiers, where the training set is made of subsets of
most reliable bounding boxes from the last iteration Sangineto et al. (2018).

We evaluate the methods using two datasets: a MNIST-based detection
dataset and a dataset for the detection of enlarged perivascular spaces, a type of
brain lesion that is associated with cerebral small vessel disease. On 1.5T scans,
perivascular spaces become visible when enlarged. Following the neuroimaging
standards proposed by Wardlaw et al. (2013), we use the consensus term
perivascular space (PVS) throughout the manuscript without always referring
to their enlargement. PVS is an emerging biomarker, and ongoing research
attempts to better understand their etiology and relation with neurological
disorders (Adams et al., 2014; Duperron et al., 2019; Gutierrez et al., 2019). Most
of the research on perivascular spaces is based on quantiϐication of PVS burden
using visual scores based PVS counts (Adams et al., 2014; Potter et al., 2015c).
Next to overall PVS burden, the location of PVS can have a clinical signiϐicance
that varies depending on the brain region (midbrain, hippocampi, basal ganglia
and centrum semiovale) and also within a brain region. For example PVS are
thought to be benign when observed where perforating vessels enter the brain
region (Jungreis et al., 1988), such as PVS in the lower half of the basal ganglia.
Understanding more precisely how the speciϐic locations of PVS can relate with
determinants of PVS and outcomes can aid neurology research. Automatically
quantifying and detecting PVS is challenging, because PVS are very small (at
the limit of the scan resolution) and can easily be confused with several other
types of lesions (Dubost et al., 2019b; Adams et al., 2013; Sudre et al., 2018;
Brown et al., 2018). Recently, automated methods have been developed to
address PVS quantiϐication (Ballerini et al., 2018; Sudre et al., 2018; Sepehrband

81



Part C - Chapter 3

et al., 2019; Boespϐlug et al., 2018), but these methods were not evaluated in
large datasets or for the detection of individual PVS. The proposed method only
requires PVS visual scores for its optimization and is evaluated for the detection
of individual PVS. In most of the large imaging studies, PVS are quantiϐied using
visual scores based on counts. Considering the generalizability issues of neural
networks, using networks that require only PVS count for their optimization can
consequently be considered to have more practical impact than networks that
require annotations for their optimization.

1.1 State-of-the-art for attention map computation

All state-of-the-art methods investigated in this article are based on
convolutional neural networks (CNNs) that compute a pseudo-probability
map which indicates the locations of the target objects in the input image. In
the rest of the article, we call this map the attention map. The methods can
be divided into three categories: methods using class activation maps (CAMs),
methods based on the gradient of the output of the network, and methods using
perturbations of the input of the network.

1.1.0.1 CAM methods This category consists of variants of the class
activation maps (CAMs) method proposed by Zhou et al. (2016). CAMs are
computed from the deepest featuremaps of the network. These featuremaps are
followed by a global pooling layer, and usually one ormore fully connected layers
to connect to the output of the network. CAMs are computed during inference
as a linear combination of these last feature maps, weighted by the parameters
of the fully connected layers learnt during training. If the last feature maps
have a much lower resolution than the input – as is the case in deep networks
with multiple pooling layers – the resulting attention maps can be very coarse.
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This is suboptimal when small objects need to be localized, or when contours
need to be segmented precisely. To alleviate this issue, Dubost et al. (2017);
Schlemper et al. (2018) proposed to include ϐiner-scale and lower-level feature
maps in the computation of the attention maps. Dubost et al. (2017) combined
higher and lower level feature maps via skip connections and concatenation
similarly to U-Net (Ronneberger et al., 2015), while Schlemper et al. (2018)
used gated attention mechanisms, which rely on the implicit computation of
internal attention maps. Selvaraju et al. (2017) proposed to generalize CAM to
any network architecture, using weights computed with the derivative of the
output. Unlike other CAM methods, the method by Selvaraju et al. (2017) does
not require the presence of a global pooling layer in the network, and can be
computed for any layer of the network.

1.1.0.2 Gradient methods Simonyan et al. (2014) proposed to compute
attention maps using the derivative of a classiϐication network’s output with
respect to the input image. These attention maps are ϐine-grained, but often
noisy. Springenberg et al. (2015) reduced this noise by masking the values
corresponding to negative entries of the top gradient (coming from the output
of the network) in the ReLU activations. Gradients methods can be applied to
any CNN.

1.1.0.3 Perturbation methods Perturbation methods compute attention
maps by applying random perturbations to the input and observe the changes
in the network output. These methods are model-agnostic, they can be used
with any prediction model, not even necessarily restricted to neural networks.
One of the simplest and most effective implementations of such methods was
recently proposed by Petsiuk et al. (2018) with masking perturbations. The
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input is masked with a series of random smooth masks, before being passed
to the network. Using a linear combination of these masks weighted by the
updated network classiϐication scores, the authors could compute attention
maps revealing the location of the target object. This method relies on a
mask sampling technique, where the masks are ϐirst sampled in a lower
dimensional space, and then rescaled to the size of the full image. Earlier, Fong
and Vedaldi (2017) proposed several other perturbation techniques including
replacing a region with a constant value, injecting noise, and blurring the image.
Perturbation methods are the most general as they can also be applied to other
classiϐiers than CNN.We do not study perturbationmodels in this paper, because
their optimization was more challenging than that of other methods, especially
for the detection of small objects.

1.2 Contributions

The contribution of this work is fourfold. First, we propose a novel
weakly-supervised detection method, named GP-Unet. The principle of the
method is to use a segmentation architecture with skip connections to compute
attention maps at full input resolution to help the detection of small objects. A
preliminary version of this work was presented in (Dubost et al., 2017).

Second, the proposed method is compared to ϐive previously published
methods (Dubost et al., 2017; Schlemper et al., 2018; Selvaraju et al., 2017;
Simonyan et al., 2014; Springenberg et al., 2015).

Third, we assess in MNIST-based (LeCun et al., 1998) datasets whether a
classiϐication or regression objective performs best for the weakly supervised
detection.

Fourth, we evaluate the methods both in MNIST-based detection datasets
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Figure 3.1: Principle of CAM methods for regression. GP stands for Global
Pooling. fk correspond to the feature maps of the last convolutional layer. Disks
correspond to scalar values. wk are the weights of the fully connected layer.
Left: the architecture of the network during training. Right: the architecture
at inference time, where the global pooling is removed. During training, the
network outputs a scalar value which is compared to the image level label
to compute the loss and update the network’s parameters. During testing,
the global pooling layer is removed. Consequently, the network outputs an
image. This image is computed as the linear combination of feature maps of the
layer preceding the global pooling layer using the weights of the following fully
connected layer.

and in the 3D detection of enlarged perivascular spaces. The MNIST
datasets is used as a faster and more controlled experimental setting to
studymethodological differences between attentionmap computationmethods,
optimization objectives, and architectures. We evaluate the best methods in
a real-world practical task with clinical relevance: the detection of PVS. The
current work is the largest study to date to evaluate automated PVS detection
in a large dataset (four regions and 2202 scans) using center locations of PVS.
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2 Methods

We implemented seven methods for weakly supervised detection with CNNs:
(a) GP-Unet (this article) , (b) GP-Unet no residual (Dubost et al., 2017)
the ϐirst proposed version of GP-Unet, (c) Gated Attention (Schlemper et al.,
2018), (d) Grad-CAM (Selvaraju et al., 2017), (e) Grad (Simonyan et al., 2014),
(f) Guided-backpropgation (Springenberg et al., 2015), and (g) an intensity
thresholding method for brain datasets only. For all methods, the CNNs are
designed to output a single scalar ŷ ∈ R and are trainedwithmean squared error
using only global labels: the number of occurrences of target objects y ∈ N. Then
for a given input image I the attention map M is computed at inference time.
Below, we detail the computation of these attention maps for each method.

2.1 Computation of the attention maps

2.1.1 CAMmethods

The principle of all CAM methods is to use the feature maps – or activation
maps – of the network to compute attention maps. CAMmethods usually exploit
the feature maps of the last convolutional layer of the network, as they are
expected to be more closely related to the target prediction than feature maps
of intermediate layers. Zhou et al. (2016) ϐirst proposed to introduce a global
pooling layer after the last convolution. The global pooling layer projects each
feature map fk to a single neuron, resulting in a vector ofN scalar values, where
N is the number of feature maps fk in the last layer. The global pooling layer
is followed by a fully connected layer to a number of neurons corresponding to
the number of classes (for classiϐication), or to a single neuron representing the
output ŷ ∈ R (for regression). The network can then be trainedwith image-level
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labels using, for example, a cross-entropy or mean squared error loss function.
During inference the global pooling layer can be removed, and the attentionmap
is then computed as a linear combination of the feature maps fk (before global
pooling) using the weights of the fully connected layer wk:

MCAM =

N∑
k

wkfk. (3.1)

The computation of CAM attention maps is illustrated in Figure 3.1.

2.1.1.1 GP-Unet In the approach by Zhou et al. (2016) the attention map
is computed from the last feature maps of the network, which are often
downsampled with respect to the input image due to pooling layers in the
network. To alleviate this problem, we use the same principle with the
architecture of a segmentation network (U-net from Ronneberger et al. (2015)),
i.e. with an upsampling path, where the feature maps fk of the last convolution
layer - before global pooling (GP) - have the same size as the input image I

(see architectures in Figure 3.2 and section 2.2). The attention maps are still
computed with Equation 3.1.

2.1.1.2 GP-Unet no residual In our earlier work, we proposed another
version of GP-Unet (Dubost et al., 2017) based on a deeper architecture
without residual connections (see architectures in Figure 3.2 and section 2.2).
Experiments showed that such deep architecture was not needed (Dubost et al.,
2019a), and could slow the optimization. We refer to this approach asGP-Unet no
residual in the rest of the paper. To detect hyperintense brain lesions in MRI data
Dubost et al. (2017) also rescaled the attention map values to [0, 1] and summed
them pixel-wise with rescaled image intensities. This is not needed in the new
version of GP-Unet above because residual connections between the input and
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output of two successive convolutional layers allow the network to learn this
operation.

2.1.1.3 Gated Attention While we proposed to upsample and concatenate
features maps of different scales (Dubost et al., 2017) as advised for
segmentation networks by Ronneberger et al. (2015), Schlemper et al. (2018)
proposed instead a more complex gated attention mechanism to combine
information from different scales. This gated attention mechanism relies on
attention units – also called attention gates – that compute soft attention maps
and use these maps to mask irrelevant information in the feature maps. Here,
global pooling is applied at every scale s and the results are directly linked
to the output by a fully connected layer aggregating information across scales.
Schlemper et al. (2018) proposed three aggregation strategies: concatenation,
deep supervision (Lee et al., 2015), and ϐine-tuning by training the network
for each scale separately. With the ϐine tuning strategy, the authors reached a
slightly higher performance than concatenation and deep supervision. For the
sake of simplicity, we employed the concatenation strategy in our experiments.
See Figure 3.2 for an illustration of the architectures of Gated Attention and of
GP-Unet. The attention mapsMGated of the gated attention mechanism method
are computed as:

MGated =
∑
s

Ns∑
k

ws
kf

s
k , (3.2)

where ws
k are the weights of the last fully connected layer for the neurons

computed from the feature maps fs
k at scale s.

2.1.1.4 Grad-CAM Finally, Grad-CAM (Selvaraju et al., 2017) is a
generalization of CAM Zhou et al. (2016) to any network architecture. The
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computation of the attention map is similar to Equation 3.1, but instead of the
weights wk , uses new weights αk in the linear combination. The weights αk are
computed with the backpropagation algorithm. With this technique the global
pooling layer is not needed anymore, and attention maps can be computed
from any layer in any network architecture. More precisely, each weight αk is
computed as the average over all voxels of the derivative of the output ŷ with
respect to the feature maps fk of the target convolution layer. In our case, we
use the feature maps of the last convolution layer preceding global pooling, and
the weights are computed as:

αk =
1

Z

∑ ∂ŷ

∂fk
, (3.3)

where Z is the number of voxels in the feature map fk . The attention map
MGrad−CAM is then computed as a linear combination of the feature maps
weighted by the αk , and upsampled with linear interpolation to compensate the
maxpooling layers:

MGrad−CAM =

N∑
k

αkfk. (3.4)

In their original work, Selvaraju et al. (2017) proposed to compute attention
maps from any layer in the network. While this approach has the advantage of
generating several explanations for the network’s behavior, choosingwhich layer
should be used to compute the global attention of network becomes less obvious
and objective. In our experiments, we observed that attention maps computed
from the ϐirst layers of the network highlight large brain structures, and are not
helpful for the detection tasks. To be more comparable to the other approaches,
we used the feature maps fk of the last convolution layer.
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2.1.2 Gradient methods

2.1.2.1 Grad Simonyan et al. (2014) proposed to compute attentionmaps by
estimating the gradient of the output with respect to the input image. Gradients
are computed with the backpropagation algorithm. This method highlights
pixels for which a small change would affect the prediction ŷ by a large amount.
The attention mapMGrad is computed as

MGrad =
∂ŷ

∂I
. (3.5)

2.1.2.2 Guided-backpropagation The attentionmaps obtained by Grad can
highlight ϐine detail in the input image, but often display noise patterns. This
noise mostly results from negative gradients ϐlowing back in the rectiϐied linear
unit (ReLU) activations. In theory these negative gradients should relate to
negative contributions to the network prediction, in practice they deteriorate
attention maps and are believed to interact with positive gradients according
to an interference phenomenon (Korbar et al., 2017). With the standard
backpropagation algorithm, during the backward pass, ReLU nulliϐies gradients
corresponding to negative entries of the bottom data (input of the ReLU coming
from the input to the CNN), but not those that have a negative value in the top
layer (which precedes the ReLU during the backward pass). Springenberg et al.
(2015) proposed to additionally mask out the values corresponding negative
entries of the top gradient in the ReLU activations. This is motivated by the
deconvolution approach, which can been seen as a backward pass through
the CNN where the information passes in reverse direction through the ReLU
activations (Simonyan et al., 2014; Springenberg et al., 2015). Masking out these
negative entries from the top layer effectively clears the noise in the attention
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maps.

2.1.3 Intensity method – for brain datasets only

PVS appear as hyperintense areas in the T2-weighted images. In some regions
– especially midbrain, and to some extent basal ganglia – the image intensity
can often be discriminative enough and can be used as a crude attention map.
We therefore include the raw image intensity as one of the attention maps in
our comparison, and, after non-maximum suppression, use the lesion count n
predicted using the base architecture (see Section 2.2) to select the threshold.

2.2 Architectures

In total, four architectures were implemented to evaluate all six methods. These
architectures are illustrated in Figure 3.2. Grad, Guided-backpropagation, and
Grad-CAM use the same neural networks (same architecture and weights), but
differ in the computation of the attention maps during inference. The other
methods require different architectures, and are trained separately. In the
following section, we detail the components of each architecture in 3D.

We perform experiments on 2D CNNs for the MNIST dataset and on 3D CNNs
for the brain dataset. The 3DCNNs use 3D convolutional layerswith 3x3x3 ϐilters
with zero-padding, and 3D maxpooling layers of size 2x2x2. Similarly, the 2D
CNNs use 2D convolutional layers with 3x3 ϐilters with zero-padding, and 2D
maxpooling layers of size 2x2. The 2D CNNs always use four times fewer features
maps than their 3D counterpart to allow faster experimentation. After the last
convolution layer, each feature map is projected to a single neuron using global
average pooling. These neurons are connected with a fully connected layer to
a single neuron indicating the output of network ŷ ∈ R. Rectiϐied linear unit
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(ReLU) activations are used after each convolution. We use skip connections by
concatenating the feature maps of different layers (and not by summing them).

2.2.0.1 GP-Unet architecture (A in Figure 3.2) GP-Unet architecture is that
of small segmentation network, with an encoder and a decoder part. The
architecture startswith two convolutional layerswith 32 ϐilters each. The output
of these two layers is concatenated with the input. Then follows a maxpooling
layer and two convolutional layers with 64 ϐilters each. The feature maps
preceding and following these two layers are concatenated. In order to combine
of features at different scales, these low dimension feature maps are upsampled,
concatenated with features maps preceding the maxpooling layer, and given to
a convolutional layers of 32 ϐilters. Then follows a global average pooling layer,
fromwhich a fully connected layermaps to theoutput. This architecture is simple
(308 705 parameters for the 3D version), fast to train (less than one day on 1070
Nvidia GPU), and allows computing attention maps at the full resolution of the
input image.

2.2.0.2 GP-Unet no residual architecture (D in Figure 3.2) The
architecture of GP-Unet no residual was proposed by (Dubost et al., 2017).
In this work, we only changed the global pooling layer from maximum to
average to make comparisons between methods more meaningful. This
network is a segmentation network with a downsampling and upsampling
path. The downsampling path has two convolutional layers of 32 ϐilters, a
maxpooling layer, two convolutional layers of 64 ϐilters, a maxpooling layer,
and one convolutional layer of 128 ϐilters. The upsampling path starts with an
upsampling layer, concatenates the upsampled feature maps with the features
maps preceding the maxpooling layer in the downsampling path, computes a
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convolutional layer with 64 ϐilters, and repeat this complete process for the last
scale of feature maps, with a convolutional layer of 32 ϐilters. After that, comes
the global pooling layer, and fully connected layer to a single neuron.

The difference with architecture (A) (Dubost et al., 2017) is that the feature
maps are downsampled twice instead of once, and that there are no skip
connections between sets of two consecutive convolutions (blockwise skip
connection in red in Figure 3.2). Consequently, the last convolution layer
does not have access to the input image intensities. We believe these residual
connections make the design of GP-Unet more ϐlexible than this architecture,
by facilitating for instance the network to directly use the input intensities and
locally adjust its predictions. This can be crucial for the correct detection of brain
lesions. This architecture has twice more parameters (637 185 parameters for
the 3D version) than that of GP-Unet.

2.2.0.3 Gated Attention architecture (B in Figure 3.2) We adapted the
architecture of the Gated Attention network proposed by Schlemper et al. (2018)
to make it more comparable to the other approaches presented in the current
work. Here, the Gated Attention architecture is the same as GP-Unet architecture
(A) except for two differences: to merge the feature maps between the two
different scales, instead of upsampling, concatenation and convolution, we use
the attention gate as described by Schlemper et al. (2018). The other difference
is that, in this architecture (B), the downsampled featuremaps are also projected
to single neurons with global pooling. The neurons corresponding to the two
different scales are then aggregated (using concatenation) and connected to the
single output neuron with a single fully connected layer. This architecture has
198 580 parameters for the 3D version.

The attention gate computes a normalized internal attention map. In their
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implementation, Schlemper et al. (2018) proposed a custom normalization to
prevent the attention map from becoming too sparse. We did not experience
such problems and opted for the standard sigmoid normalization.

Similarly to GP-Unet, Gated Attention computes attention maps at the
resolution of the input image. However it combinesmulti-level informationwith
a more complex process than GP-Unet.

2.2.0.4 Base architecture (C in Figure 3.2) The network architecture used
for Grad, Guided-backpropagation, and Grad-CAM is kept as similar as possible
to that of GP-Unet for better comparison of methods. It starts with two
convolutional layers with 32 ϐilters each. The output of these two layers
is concatenated with the input. Then follows a maxpooling layer and two
convolutional layers with 64 ϐilters each. The output of these two layers is
concatenated with the feature maps following the maxpooling layer, and is
given directly to the global average pooling layer. In other words, we apply
global pooling to the original image (after maxpooling) and the feature maps
after the second convolution at each scale - so on 1+32+64 feature maps. This
architecture has shown competitive performance on different types of problems
in our experiments (eg. in brain lesions in (Dubost et al., 2019b)). With this
architecture, unlike GP-Unet, Grad-CAM produces attention maps at a resolution
twice smaller than that of the input image, and could miss small target objects.
This architecture has 196 418 parameters for the 3D version.
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3 Experiments

In this work, we compare our proposed method to ϐive weakly supervised
detection methods. We use the MNIST datasets (LeCun et al., 1998) to
compare regression against classiϐication for weak supervision. We compared
performance of the different methods – using regression objectives – on weakly
supervised lesion detection in a large brain MRI dataset.

3.1 MNIST Datasets

We construct images as a grid of 7 by 5 randomly sampled MNIST digit images.
Examples are shown in Figures 3.4 and 3.5. Each digit is uniformly drawn from
the set of all training/validation/testing digits, hence with a probability 0.1 to be
a target digit d. To avoid class imbalance, we adapt the dataset to each target digit
d by sampling 50% of images with no occurrence of d, and 50% of images with
at least one occurence of d, resulting in ten different datasets.

3.2 Brain Datasets

Brain MRI was performed on a 1.5-Tesla MRI scanner (GE-Healthcare,
Milwaukee, WI, USA) with an eight-channel head coil to obtain 3D T2-contrast
magnetic resonance scans. The full imaging protocol has been described by
Ikram et al. (2015). In total, our dataset contains 2202 brain scans, each scan
being acquired from a different subject.

Anexpert rater annotatedPVS in fourbrain regions: in the completemidbrain
and hippocampi, and in a single slice in axial view in the basal ganglia (the
slice showing the anterior commissure) and the centrum semiovale (the slice 10
cm above the top of the lateral ventricle). The annotation protocol follows the
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Figure 3.3: Examples of PVS in the centrum semiovale. This is a crop of a
T2-weighted image in axial view. PVS are indicated with blue arrows.

guidelines by Adams et al. (2014) and Adams et al. (2013) for visual scoring of
PVS,with the difference that Adams et al. (2014) only counted the number of PVS,
while in the current work, all PVS have been marked with a dot in their center.
Figure 3.3 shows examples of PVS in the centrum semiovale.

3.3 Aim of the experiments

In the MNIST datasets, the objective is to detect all occurrences of a target
digit d. During optimization, the regression objective is to count the number of
occurrences of d, while the classiϐication objective is to detect the presence of at
least one occurence of d.

In the experiments on 3D brain MRI scans, the objective is to detect enlarged
perivascular spaces (PVS) in the four brain regions described in section 3.2. For
these datasets we investigate only regression neural networks. These networks
are optimized using the number of annotated PVS in the region of interest as

97



Part C - Chapter 3

the weak global label, as proposed in our earlier work Dubost et al. (2019b). The
location of PVS are only used for the evaluation of the detection during inference.

3.4 Preprocessing

3.4.0.1 MNIST data We scale the image intensity values in the MNIST grid
images between zero and one to ease the learning process.

3.4.0.2 Brain scans We ϐirst apply the FreeSurfer multi-atlas segmentation
algorithm (Desikan et al., 2006a) to locate and mask the midbrain, hippocampi,
basal ganglia and centrum semiovale in each scan. For each region, we then
extract a ϐixed volume centered on the center of mass of the region. For
midbrain (88x88x11voxels), hippocampi (168x128x84voxels) andbasal ganglia
(168x128x84 voxels) these cropped volumes contain the full region. The
centrum semiovale is too large to ϐit in the memory of our GPU (graphics
processing unit), so for this region we only extract the slices surrounding the
slice that was scored by the expert rater (250x290x14 voxels). Consequently,
we apply a smooth region mask to nullify values corresponding to other brain
regions. Finally, we scale the intensity values between zero and one to ease the
learning process. The preprocessing and extraction of brain regions is presented
in more details in previous work (Dubost et al., 2019b).

3.5 Training of the networks

All regression networks are optimized with Adadelta (Zeiler, 2012) to minimize
the mean squared error between their prediction ŷ ∈ R and the ground truth
count y ∈ N. The classiϐication networks in our MNIST experiments were
optimized with Adadelta and the binary cross-entropy loss function.
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Weights of the convolution ϐilters and fully connected layers are initialized
from a Gaussian distribution with zero mean and unit variance, and biases are
initialized to zero.

A validation set is used to prevent over-ϐitting. The optimization is stopped
at least 100 epochs after the validation loss stopped decreasing. We select the
model with the lowest validation loss. For the MNIST datasets, the models
are trained on a set of 500 images (400 for training and 100 for validation).
For the brain datasets, the models are trained on a set of 1202 scans (1000
for training and 202 for validation). During training, we use on-the-ϐly data
augmentation with a random combination of random translations of up to 2
pixels in all directions, random rotations up to 0.2 radians in all directions, and
random ϐlipping in all directions. For the MNIST datasets, the batch size was set
to 64. For the brain datasets, because of GPU memory constraints, the networks
are trained per sample: each mini-batch contains a single 3D image. As the
convergence can be slow in some datasets, we ϐirst trained the networks on
the smallest and easiest region (midbrain), and ϐine-tune the parameters for the
other regions, similarly to Dubost et al. (2019b).

We implemented our algorithms in Python in Keras (Chollet et al., 2015)with
TensorFlow as backend, and ran the experiments on a Nvidia GeForce GTX 1070
GPU and Nvidia Tesla K40 ¹. The average training time was one day.

3.6 Negative values in attention maps

Attention maps can have negative values, which meaning can differ for CAM
methods and gradient methods. For CAM methods, negative values could
highlight objects in the image which presence is negatively associated with the

¹We used computing resources provided by SurfSara at the Dutch Cartesius cluster.
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target objects. For gradient methods, they correspond to areas where increasing
the intensity would decrease the predicted count (or where decreasing the
intensity would increase the predicted count, these are the same areas).

For image understanding, keeping negative values in attention maps seems
most appropriate as the purpose is to discover which parts of the image
contributed either negatively or positively to the prediction, and how a change
in their intensity could affect the prediction. For detection, the purpose is to ϐind
to ϐind all occurrences of the target object in the image and ignore other objects.
In the literature, two approaches have been proposed to handle negative values
for object detection: either setting them to zero, or taking the absolute value.
CAMmethods (Zhou et al., 2016; Selvaraju et al., 2017) nullify negative values of
the attentionmaps tomimic the behavior of ReLU activations. Gradient methods
(Simonyan et al., 2014; Springenberg et al., 2015) focus on the magnitude of the
derivative and thus compute the absolute value.

In our case, we aim to solve a detection problem in datasets where the
target objects are among the highest intensity values in the image. For gradient
methods, this implies that negatives values in the attention maps do not
indicate the location of the target object in our case. We can therefore ignore
negative values, and decided to nullify them. For CAM methods, we follow the
recommendation of the literature, and also nullify negative values in attention
maps. Consequently, we nulliϐied negative values for all methods. Nullifying
negative values actually only impacts the visualization of the attentionmaps, and
not the detectionmetrics, as we select only candidates with highest values in the
attention maps (Section 3.7). On the contrary taking the absolute value could
increase the number of detections and would impact our detection metrics.
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3.7 Performance evaluation

The output of all weakly-supervised detection methods presented in Section 2
are attentionmaps. We still need to obtain the coordinates of the detections, and
evaluate the matching with the ground truth.

After setting negative values to zero (Section 3.6), we apply non-maximum
suppression on the attention maps using a 2D (MNIST, centrum semiovale and
basal ganglia) or 3D (hippocampi and midbrain) maximum ϐilter of size 6 voxels
(which corresponds to 3mm in axial plane, themaximum size for PVS as deϐined
by Adams et al. (2013) – we used the same value for the MNIST datasets) with 8
neighborhood in 2D or 26 neighborhood in 3D. This results in a set of candidates
that we order according to their value in the attention map. The candidates with
highest values are considered the most likely to be the target object.

For the basal ganglia and the centrumsemiovale, our dataset does not contain
full 3D annotations, but only provides annotations for a single 2D slice per
scan (see Section 3.2). As annotations were only available in a single slice,
we evaluated the attention maps only in the annotated slice, although we can
compute attention maps for the complete volume of these regions. For our
evaluation we extract the corresponding 2D slice from the attention map prior
to post-processing and compute the metrics only for this slice. In case no lesion
was annotated, we selected themiddle slice of the attentionmap as a reasonable
approximation of the rated slice.

As we aim to solve a detection problem, we need to quantify the matching
between two sets of dots: the annotators dots, and the algorithms’ predictions.
We used the Hungarian algorithm (Kuhn, 1955) to create an optimal one-to-one
match between each detected lesion or digit to the closest annotation in the
ground truth. For the brain dataset, we counted a positive detection if a detection
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was within at most 6 voxels from the corresponding point in the ground truth.
This corresponds to the maximum diameter of PVS in the axial view, as deϐined
in Adams et al. (2013). For the MNIST datasets, we counted a positive detection
if a detection fell inside the 28*28 pixels wide original MNIST image of the target
digit.

As the algorithms output candidates with conϐidence scores, we can compute
free-response receiver operating characteristic (FROC) curves (Bandos et al.,
2009) that show the trade-off between high sensitivity and the number of false
positives, in our case more precisely the average number of false positives per
scan (FPavg). Todraw these curves, we varied the number of selected candidates.
For each network in our experiments, we report the area under the FROC curve
(FAUC) computed from 0 to 5 FPavg for MNIST and from 0 to 15 FPavg for brain
lesion detection. We also show the standard deviation of the FAUC, computed by
bootstrapping the test set.

In addition to the attention maps, the regression networks also predict the
number of target objects in the image. For the detection of brain lesions, we use
this predicted count rounded to an integer n to select the top-n candidates with
highest scores, and compute the corresponding sensitivity and FPavg, and the
average number of false negative per scan (FNavg). For statistical signiϐicance of
difference of FAUCs, we performed a bootstrap hypothesis testing and consider
statistical signiϐicance for p-value lower than 0.05. For FPavg, FNavg and
Sensitivity we performedWilcoxon tests using p-value lower than 0.05.

3.8 Intra-rater variability of the lesion annotations

Intra-rater variability hasbeenmeasured in each regionusing a separate set of 40
MRI scans acquired and annotated with the same protocol. The rater annotated
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PVS twice in each scan with two weeks of interval, and in a different random
order.

To compute the sensitivity and FPavg for the Intra-rater variability, one of
the two series of annotations has to be set as reference to deϐine true positives,
positives and false positives. We successively set the ϐirst and second series
of annotations as reference, leading to two different results. All results for all
regions are displayed next to the FROC curves in Figure 3.7.
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4 Results

4.1 Regression vs classiϐication objectives - MNIST datasets

The methods were evaluated on left-out test sets of 500 images, balanced as
described in section 3.1. Figure 3.6 compares the FAUC of regression and
classiϐication networks, for all MNIST digits, and for all methods. Additional
results such as FROC curves, sensitivity, FPavg and FNavg are given in Appendix
A and Appendix B. Overall, regression methods reach a higher detection
performance than classiϐication methods. For all digits, regression GP-Unet no
residual reaches the best performance. The second best method for all digits is
regression GP-Unet. Both GP-Unet regression methods are consistently better
than any other method for all digits. Regression Grad-CAM comes third, and
regression Guided-backpropagation fourth. Grad and Gated Attention come last.
The ordering of best classiϐication methods is different than that of the best
(regression) methods: Guided-backpropagation comes ϐirst, Grad-CAM second
and GP-Unet no residual third.

Figure 3.4 shows an example of the attention maps obtained for all weakly
supervised methods optimized with regression objectives. As expected, Grad
produces noisy attention maps with many high values, for both classiϐication
and regression objectives, and Guided-backpropagation corrects thesemistakes.
Gradientmethods seems to highlightmultiple discriminating features of the digit
4 (e.g. its top branches), while CAM methods highlight a single larger, less
detailed region. This may suggest that gradients methods may be more suited
to weakly supervised segmentation, although judging from the ϐigure, none of
the methods seems capable of correctly segmenting digits.

Figure 3.5 compares attention maps of GP-Unet optimized with regression
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and classiϐication. We noticed two interesting differences. First, when the
target digit is present on the image, the regression attentionmap highlights each
occurrence of the target digits with a similar intensity, while the classiϐication
attention map highlights more strongly the most obvious occurrences of the
target digit. Second, when the target digit is not present in the image, contrary
to the regression attention map, the classiϐication attention map may highlight
many false positives, possibly resulting in a signiϐicant drop in the detection
performance.

4.1.0.1 Regression Guided-backpropagation vs Grad. Regression
Guided-backpropagation detects of all digits more accurately than regression
Grad. The same comparison holds for classiϐication Guided-backpropagation
versus classiϐication Grad. However Regression Grad sometimes
performs as well (digits 4, 6, 7) or better (digits 0, 9) than Classiϐication
Guided-backpropagation, which underlines the added-value of optimizing
weakly supervised detection methods with regression objectives instead of
classiϐication objectives.

4.2 Variations of the architecture of GP-Unet - MNIST datasets

In this section we studied the inϐluence of the skip connections between sets
of two consecutive convolutions (blockwise skip connections, in red in Figure
3.2) in GP-Unet’s architecture and the inϐluence of the type of global pooling in
GP-Unet’s architecture on the detection performance. Removing the blockwise
skip connections did not make the detection worse for most digits (except digit
1 and 7 where having the blockwise skip connections helped). Using global max
pooling instead of global average pooling led to worse detection performance
for all digits. For all digits the optimization was better with the proposed
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architecture. Removing skip connections or using global max pooling made the
optimization take longer to converge, made loss curves not as smooth and made
the loss converged to a higher value. The corresponding FROC curves, FAUC
barplot, and FAUC, FPavg, FNavg and Sensitivity Tables are given in Appendix
C.

4.3 Detection of brain lesions

In the brain dataset, we compare the performance of the weakly supervised
methods for the detection enlarged perivascular spaces (PVS) by evaluating
them on the left-out test set of 1000 scans, and in four brain regions: midbrain,
hippocampi, basal ganglia, and centrum semiovale.

Figures 3.8 - 3.11 show attention maps for all methods in the four regions.
Figure 3.7 shows FROC curves for all methods in the brain datasets. Table 3.1
shows the correspondingFAUCs. Table3.2 and3.3 showthe sensitivity andFPavg
measured at the operating point chosen for each method as described in Section
3.7.

Judging from Tables 3.1, 3.2 and 3.3, the methods achieving the best results
are GP-Unet, Grad-CAM and Guid-backpropagation. Unlike the results on MNIST
datasets, there is nomethod consistently better than others for all regions. In the
midbrain and basal ganglia, Guided-backpropagation reaches the best results of
all methods, and in all three metrics, with the exception of FPavg in the basal
ganglia. In the hippocampi, GP-Unet reaches the best results of all methods, and
in all four metrics. In the centrum semiovale, GP-Unet and Grad-CAM achieve
the best results, and have a similar performance. Intensity thresholding reaches
a competitive performance in the midbrain and basal ganglia, but completely
fails in the hippocampi and centrum semiovale because it highlights many
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false positives, corresponding to other hyperintense structures. Surrounding
cerebrospinal ϐluid, white matter hyperintensities, and sulci are examples of
these structures.

In Figure 3.7, the sensitivity and FPavg between two series of annotations
of the same scans from the same rater (green triangle) gives an idea of the
difϐiculty of detecting PVS in each region. In the midbrain and hippocampi, PVS
are relatively easy to identify, as they are the only hyperintense lesions visible
on T2 images. On the contrary, the detection of PVS in the basal ganglia and
centrum semiovale is much more challenging, because in those regions other
hyperintense structures that look similar to enlarged perivascular spaces. In all
regions, the performance of the automatedmethods come close to the intra-rater
agreement. This intrarater agreementwas however computed on a substantially
smaller set – 40 vs 1000 scans – and shorter annotation period – 1 week vs
severalmonths. Interestingly, severalmethods highlight the same false positives.
After visual checking by experts, many of these false positives appear to be PVS
annotated by the rater. In the set of 40 scans used the the intrarater measures,
68 percent of false positive detections of GP-Unet in the centrum semiovale were
PVS. More precisely, 39 percent of false positives were enlarged PVS and 29
percent were slightly enlarged PVS.
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5 Discussion

Overall, results showed thatweakly supervisedmethods candetect PVSalmost as
well as expert raters. The performance of the best detection methods was close
to the intrarater agreement. The interrater agreement is also probably lower
than this intrarater agreement. Finally, further visual inspection also revealed
that many of the false positives correspond to PVS that were not annotated by
the human rater. We especially noticed that annotating all PVS was difϐicult for
the expert rater in scans with many PVS.

We compared six weakly supervised detection methods in two datasets. We
showed that the proposedmethod could be used with either 2D or 3D networks.
For all methods, 2D networks in the MNIST datasets converged substantially
faster (hours) than the 3D networks in the brain dataset (days). In MNIST
datasets for regression, GP-Unet no residual (Dubost et al., 2017) and GP-Unet
(this article) perform signiϐicantly better than all other methods, probably
because they can combine the information of different scales more effectively
than othermethods. For GP-Unet no residual, part of this performance difference
can also be explained by the larger number of parameters and larger receptive
ϐield (Section 2.2). On the contrary, for GP-Unet, the number of parameters is
comparable to that of the other methods. In the brain dataset, the best methods
are Guided-backpropagation (Springenberg et al., 2015) with 74.1 average FAUC
over regions, GP-Unet with 72.0 average FAUC, and Grad-CAM Selvaraju et al.
(2017) with 70.5 average FAUC. As GP-Unet performs either similarly to or
better than Grad-CAM depending on the region, given a new weakly supervised
detection task, we would consequently recommend Guided-backpropagation
and GP-Unet.

Grad-CAM and GP-Unet reach similar FAUCs (Table 3.1) in the basal ganglia
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and centrum semiovale. However, GP-Unet outperforms Grad-CAM in the
midbrain and by a large margin in the hippocampi. In these two regions, at the
operating point Grad-CAM suffers frommore false positives than GP-Unet, while
having a similar or worse sensitivity (Table 3.3 and 3.2). The attention maps of
the hippocampi (Figure 3.16) – and to some extent those of themidbrain (Figure
3.8) – show that GP-Unet is less distracted by the surrounding cerebrospinal ϐluid
than Grad-CAM – or the methods emphasizing intensities (GP-Unet no residual,
Intensities). The attentionmapsofGrad-CAMandGP-Unet sharemost of the false
positive detections. Most of these false positives are PVS thatwere not annotated
by the rater. Overall, the attention maps of GP-Unet are also sharper than the
ones of Grad-CAM, probably because GP-Unet can compute attention maps at a
higher resolution: the resolution of the input image.

The motivation of Gated Attention (Schlemper et al., 2018) is similar to that
of GP-Unet: combining multiscale information in the computation of attention
maps. In the MNIST datasets, while Gated Attention and GP-Unet reach a similar
detection performance when optimized with classiϐication objectives, contrary
to GP-Unet, Gated Attention rarely beneϐits from the regression objective. More
generally, Gated Attention seems to beneϐit less often from the regression
objective than the other methods. These results suggest that gate mechanisms
may harm the detection performance for networks optimized with regression
objectives, and that a simple concatenation of feature maps should be preferred.
In the brain datasets, Gated Attention works better than the intensity baseline,
Grad (Simonyan et al., 2014), and GP-Unet no residual, but performs signiϐicantly
worse than Grad-CAM, Guided-backpropagation, and GP-Unet. One should also
keep in mind that Gated Attention was originally proposed for deeper networks.
In case of shallow networks, this method may not reach its full potential, as it
beneϐits only from few (two on our case) different feature scales.
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We mentioned above that the attention maps of GP-Unet are sharper
than those of Grad-CAM. In Appendix C, we investigate the inϐluence of the
architecture and compare attentionmaps of GP-Unet, GP-Unetwithout blockwise
skip connections (GP-UnetNo Skip) andGP-Unetwith globalmax pooling instead
of global average pooling (GP-Unet Max Pool). Removing the skip connections
does not seem to make the attention less compact. Using global max pooling
does make the attention maps more compact but increases the number of false
negatives. GP-Unet may have more compact attention maps than Grad-CAM on
the basic architecture thanks to the upsampling path in GP-Unet. To compute the
attention at full input resolution with Grad-CAM, the attention maps need to be
interpolated, resulting in les compact attention maps. GP-Unet may have more
compact attention maps than Gated Attention because concatenating feature
mapsmight bemore efϐicient (maybe easier to optimize) in combiningmultiscale
features than using the gated attention.

Due to the special properties of the PVS detection problem in the brain
datasets, intensity thresholding provides a simple approach to solving the same
problem. Although intensity thresholding yields theworst results in hippocampi,
basal ganglia, and centrum semiovale, it achieves the second best FAUC in the
midbrain. This high performance results from the effective region masking
speciϐic to the midbrain: because PVS are almost always in the center of
this region, we can erode the border of the region mask, and eliminate the
hyperintense cerebrospinal ϐluid surrounding the midbrain. As there are no
other visible lesions in the midbrain, all remaining hyperintensities correspond
to PVS.

In the datasets where the intensity method achieved good or reasonable
results (midbrain and basal ganglia), Guided-backpropagation performed best.
In the datasets where the intensity method failed (hippocampi and centrum
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semiovale), GP-Unet reached the best performance (similar to that of Grad-CAM
in the centrum semiovale). More generally, gradientsmethods seem towork best
when the target objects are also the most salient objects, while CAM methods
work best when saliency alone is not discriminative enough. This observation
can alsobe extended to theMNISTdatasets, where saliency alone is not sufϐicient,
and regression CAMmethods (Gated Attention excluded) outperform regression
gradient methods.

Recently Adebayo et al. (2018) showed that, for Guided-backpropagation,
classiϐication networks trained with random labels obtained similar attention
maps as networks trained with the correct labels, hinting that attention maps
methodmay focus more on salient objects in the image than the target object. In
these experiments, attentionmaps computed with Grad and Grad-CAM obtained
better results. Adebayo et al. warn of the evaluation of attention maps by
only visual appeal, and advocate more rigorous forms of evaluation. This ϐits
exactly with the purpose of the current article, in whichwe aimed to quantify the
detection performance of attention maps in large real world datasets.

For the evaluation of the detection of PVS, images were annotated by a
single rater. With the same resources, we could also have had multiple raters
annotating fewer scans and use their consensus for the evaluation, which may
reduce the risk of mislabeling. We preferred to evaluate the detection using
more scans to better encompass the anatomical variability, and we quantiϐied
the performance of the single rater by computing her intra-rater agreement on a
smaller set.

In our preliminary work on PVS detection in the basal ganglia using GP-Unet
no residual (Dubost et al., 2017) we obtained slightly different results than what
is presented in the current work. This reϐlects differences in the test data set,
the annotations, method and postprocessing. Our previous annotations (Dubost
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et al., 2017) were done directly on the segmented and cropped basal ganglia,
while the annotations of the current work were done on the full scan. The rater
sometimes annotated lesions at the borders of the basal ganglia which are barely
visible after preprocessing. In addition, the current work also includes scans
without annotations (because the rater found no lesion), where there could have
been errors in ϐinding the slice evaluated by the rater. In the current work, Grad
reaches better results than in Dubost et al. (2017), because it beneϐits from the
more sophisticated postprocessing: the non-maximum suppression clears the
noise in the attention maps.

Next to the methods presented in this paper, we experimented with the
perturbation method with masks proposed by Petsiuk et al. (2018). For this
method, masks are ϐirst sampled in a low dimensional space and resized to the
size of the input image. It appeared that the size of this lower dimensional needs
to be adapted to the size of the target object in the image. If the target objects are
small, one may need to sample relatively large masks. In our experiments, we
experimented with a range of values for the size of this low dimensional space,
and did not manage to compute discriminative attention maps for PVS, that are
small objects relatively to the image resolution.

The work presented in this article implies that pixel-level annotations may
not be needed to train accuratemodels for detection problems. This is especially
relevant in medical imaging, where annotation requires expert knowledge and
high quality annotations are therefore difϐicult to obtain. Weakly supervised
methods enable learning from largedatabases, such asUKbiobank (Sudlowet al.,
2015) or Framingham study (Maillard et al., 2016), with less annotation effort,
and could also help to reduce the dependence on annotator biases. The global
labelmay even bemore reliable, because for some abnormalities raters can agree
well on the presence or global burden of the abnormalities but poorly on their
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boundaries or spatial distribution.
The variety of challenges present in the brain datasets are well suited to

the evaluation of weakly-supervised detection methods. Observations and
results might generalize to the detection of other types of small objects, such as
microinfarcts, microbleeds, or small white matter hyperintensities.
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6 Conclusion

We proposed a new weakly supervised detection method, GP-Unet, that uses
an encoder-decoder architecture optimized only with global labels such as the
count of lesions in a brain region. The decoder part upsamples feature maps
and enables the computation of attention maps at the resolution of the input
image, which thus helps the detection of small objects. We also showed the
advantage of using regression objectives over classiϐication objectives for the
optimization of weakly supervised detection methods, when the target object
appears multiple times in the image. We compared the proposed method to
four state-of-the-art methods on the detection of digits in MNIST-based datasets,
and on the detection of enlarged perivascular spaces – a type of brain lesion
– from 3D brain MRI. The best weakly supervised detection methods were
Guided-backpropagation (Springenberg et al., 2015), and the proposed method
GP-Unet. We noticed that methods based on the gradient of the output of the
network, such as Guided-backpropagation, worked best in datasets where the
target objects are also the most salient objects. In other datasets, methods using
class activation maps, such as GP-Unet, worked best. The performance of the
detection enlarged perivascular spaces using the weakly supervised methods
was close to the intrarater agreement of an expert rater. The proposed method
could consequently facilitate studies of enlarged perivascular and help advance
research in their etiology and relationship with cerebrovascular diseases.
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Appendix A. Results MNIST – Regression Objectives.
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Appendix B. Results MNIST – Classiϐication Objectives.
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Appendix C. Results MNIST – GP-Unet architectures.

Table 3.13: FAUCs MNIST architecture. Each row corresponds to the detection
of a different digit. 95 percent conϐidence interval is indicated in brackets. The
average and standard deviation of the performance of each method across all
digits is given in the last row. Best performance are indicated in bold.

GP-Unet GP-Unet no skip GP-Unet pax pooling
0 97.4 (96.3 - 98.3) 98.0 (97.5 - 98.5) 89.2 (87.2 - 91.3)
1 94.4 (93.6 - 95.2) 86.9 (85.6 - 88.2) 80.0 (77.2 - 82.6)
2 91.7 (90.4 - 92.9) 92.9 (91.4 - 94.3) 80.3 (77.5 - 83.0)
3 97.3 (96.6 - 97.9) 97.9 (97.4 - 98.5) 88.6 (86.4 - 90.8)
4 97.8 (97.2 - 98.3) 96.2 (95.2 - 97.0) 82.9 (80.2 - 85.5)
5 97.1 (96.4 - 97.8) 97.6 (97.1 - 98.1) 86.1 (83.6 - 88.6)
6 98.6 (98.1 - 99.1) 98.1 (97.5 - 98.7) 87.6 (85.2 - 89.9)
7 89.3 (87.6 - 90.9) 0.8 (0.5 - 1.2) 56.3 (52.8 - 59.8)
8 98.8 (98.2 - 99.2) 98.8 (98.4 - 99.1) 87.7 (85.3 - 89.9)
9 97.6 (96.8 - 98.2) 96.9 (96.1 - 97.6) 78.4 (75.5 - 81.1)

Average 96.0 +/- 3.0 86.4 +/- 28.7 81.7 +/- 9.3

Table 3.14: Sensitivity MNIST architecture. Each row corresponds to the
detection of a different digit. 95 percent conϐidence interval is indicated in
brackets. The average and standarddeviation of the performance of eachmethod
across all digits is given in the last row. Best performance are indicated in bold.

GP-Unet GP-Unet no skip GP-Unet pax pooling
0 92.7 (91.4 - 93.9) 90.9 (89.6 - 92.3) 81.8 (80.1 - 83.5)
1 78.9 (77.3 - 80.4) 63.3 (61.5 - 65.0) 71.9 (70.1 - 73.8)
2 80.0 (78.2 - 81.8) 83.4 (81.7 - 85.1) 75.8 (74.0 - 77.7)
3 90.1 (88.8 - 91.5) 91.8 (90.7 - 93.0) 82.8 (81.1 - 84.5)
4 90.7 (89.3 - 92.1) 87.8 (86.3 - 89.2) 76.1 (74.1 - 78.1)
5 88.7 (87.2 - 90.2) 89.4 (87.9 - 90.8) 74.7 (72.7 - 76.8)
6 92.2 (91.0 - 93.5) 91.9 (90.5 - 93.3) 81.4 (79.5 - 83.4)
7 76.3 (74.6 - 78.1) 0.6 (0.3 - 0.9) 55.2 (52.9 - 57.5)
8 95.8 (95.0 - 96.5) 94.5 (93.7 - 95.4) 83.7 (82.1 - 85.3)
9 92.3 (91.1 - 93.5) 90.1 (88.8 - 91.5) 70.8 (68.8 - 72.9)

Average 87.8 +/- 6.4 78.4 +/- 27.3 75.4 +/- 8.0
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Table 3.15: FPavg MNIST architecture. Each row corresponds to the detection
of a different digit. 95 percent conϐidence interval is indicated in brackets. The
average and standard deviation of the performance of each method across all
digits is given in the last row. Best performance are indicated in bold.

GP-Unet GP-Unet no skip GP-Unet pax pooling
0 0.07 (0.05 - 0.08) 0.07 (0.05 - 0.09) 0.08 (0.06 - 0.10)
1 0.14 (0.11 - 0.16) 0.30 (0.26 - 0.35) 0.16 (0.13 - 0.19)
2 0.29 (0.25 - 0.32) 0.22 (0.18 - 0.25) 0.15 (0.12 - 0.17)
3 0.11 (0.09 - 0.14) 0.06 (0.05 - 0.08) 0.09 (0.07 - 0.12)
4 0.13 (0.10 - 0.15) 0.10 (0.08 - 0.13) 0.06 (0.04 - 0.07)
5 0.13 (0.11 - 0.16) 0.10 (0.08 - 0.12) 0.09 (0.06 - 0.11)
6 0.04 (0.03 - 0.06) 0.08 (0.06 - 0.10) 0.11 (0.09 - 0.14)
7 0.26 (0.23 - 0.29) 1.99 (1.98 - 2.00) 0.21 (0.17 - 0.24)
8 0.08 (0.06 - 0.10) 0.06 (0.05 - 0.08) 0.03 (0.02 - 0.04)
9 0.16 (0.13 - 0.18) 0.19 (0.16 - 0.22) 0.10 (0.08 - 0.13)

Average 0.14 +/- 0.08 0.32 +/- 0.56 0.11 +/- 0.05

Table 3.16: FNavg MNIST architecture. Each row corresponds to the detection
of a different digit. 95 percent conϐidence interval is indicated in brackets. The
average and standard deviation of the performance of each method across all
digits is given in the last row. Best performance are indicated in bold.

GP-Unet GP-Unet no skip GP-Unet pax pooling
0 0.11 (0.08 - 0.14) 0.13 (0.10 - 0.16) 0.30 (0.25 - 0.35)
1 0.35 (0.30 - 0.40) 0.60 (0.53 - 0.67) 0.49 (0.42 - 0.56)
2 0.30 (0.25 - 0.34) 0.25 (0.21 - 0.29) 0.39 (0.34 - 0.45)
3 0.15 (0.12 - 0.18) 0.13 (0.10 - 0.16) 0.26 (0.22 - 0.31)
4 0.12 (0.10 - 0.15) 0.18 (0.14 - 0.21) 0.37 (0.31 - 0.42)
5 0.14 (0.11 - 0.16) 0.13 (0.11 - 0.16) 0.36 (0.30 - 0.41)
6 0.11 (0.08 - 0.13) 0.10 (0.08 - 0.12) 0.26 (0.22 - 0.30)
7 0.36 (0.31 - 0.41) 1.58 (1.42 - 1.74) 0.71 (0.62 - 0.80)
8 0.07 (0.05 - 0.09) 0.09 (0.07 - 0.11) 0.26 (0.21 - 0.31)
9 0.11 (0.09 - 0.14) 0.15 (0.12 - 0.18) 0.47 (0.41 - 0.54)

Average 0.18 +/- 0.10 0.33 +/- 0.44 0.39 +/- 0.13
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Chapter 4

Automated Lesion Detection by

Regressing Intensity-Based

Distance with a Neural Network

Abstract

Localization of focal vascular lesions on brain MRI is an important component of
research on the etiology of neurological disorders. However, manual annotation
of lesions can be challenging, time-consuming and subject to observer bias.
Automated detection methods often need voxel-wise annotations for training.
We propose a novel approach for automated lesion detection that can be trained
on scans only annotated with a dot per lesion instead of a full segmentation.
From the dot annotations and their corresponding intensity images we compute
various distancemaps (DMs), indicating the distance to a lesion based on spatial
distance, intensity distance, or both. We train a fully convolutional neural
network (FCN) to predict these DMs for unseen intensity images. The local
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optima in the predicted DMs are expected to correspond to lesion locations. We
show the potential of this approach to detect enlarged perivascular spaces in
white matter on a large brain MRI dataset with an independent test set of 1000
scans. Our method matches the intra-rater performance of the expert rater that
was computedon an independent set. We compare the different types of distance
maps, showing that incorporating intensity information in the distance maps
used to train an FCN greatly improves performance.
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1 Introduction

Obtaining the location of focal vascular lesions on brain scans, such as
white matter hyperintensities, lacunes, enlarged perivascular spaces or
microbleeds is extremely useful for studying the association of these lesions
with neurological disorders. However the manual annotation of these lesions
can be challenging, time-consuming and subject to observer bias due to
the difϐiculty of distinguishing a speciϐic type of lesion from other similarly
appearing structures. An automatedmethod for detecting lesions could improve
reliability, generalization and speed of lesion detection, which could greatly
advance neuropathology research.

Various promising automatedmethods have been proposed to detect lesions.
Deep learningmethods often provide the best accuracy, but depend on expensive
manual annotations for training like voxel-wise segmentations (Brosch et al.,
2016; Ghafoorian et al., 2017) or bounding boxes (Dou et al., 2016) marking the
lesions. This hinders applicability of these techniques in practice.

Annotating by placing a single dot per lesion instead is considerably
more time-efϐicient, allowing to collect larger annotated datasets for training
and evaluation. In this chapter we therefore propose a novel method for
lesion detection that requires only dot annotations. Dot annotations have
been effectively used to train convolutional neural networks (CNNs) for other
applications, such as cell detection in histology images (Xie et al., 2018c), lacune
detection in placental ultrasound (Qi et al., 2018) and landmark detection in
retinal images (Meyer et al., 2018a). Anapproach that has showngreat promise is
regression of a distance map (DM) that is computed from these dot annotations
(Meyer et al., 2018a; Qi et al., 2018; Xie et al., 2018c). Contrary to many other
deep learning detection methods that use a two-stage approach (Dou et al.,
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2016), this approach directly outputs predicted detections and is optimized in
an end-to-end fashion.

We use a similar approach for detecting lesions based on dot annotations.
Previous distance regression approaches for detection (Meyer et al., 2018a; Xie
et al., 2018c) have used Euclidean distance. This is especially suited for the
detection of circular objects such as cells. Brain lesions on the other hand often
have a morphology that is complex and discriminative (Boespϐlug et al., 2017).

In this chapter we investigate the effect of including intensity information
in DMs for lesion detection. Intensity distance incorporates local image context
enabling the DM to capture complicated morphologies. Voxels surrounding dot
annotations which have similar intensity values (inside the lesions) will have a
lower value in the DM than dissimilar voxels (outside the lesions). This could
encourage the CNN to learn the characteristic morphology of the lesions and
propose more accurate detections than when trained on a Euclidean distance
map (EDM) that does not make this distinction. We compare Euclidean distance,
intensity distance, and geodesic distance that combines both Euclidean and
intensity distances. For geodesic distance the image is seen as a curved surface
deϐined by the spatial coordinates and one intensity coordinate, where the
shortest path on the surface is the geodesic distance (Toivanen, 1996).

In this chapter we show that including image intensity information in
the DM improves optimization of a CNN for detecting lesions in brain MRI.
We compute DMs from the dot annotations and their corresponding intensity
images. Subsequently we train a fully convolutional neural network (FCN) to
predict these DMs for unseen intensity images. The local minimal distances in
the predicted DMs correspond to the proposed detection candidates.

We show the potential of regressing intensity-based DMs for the detection
of enlarged perivascular spaces (PVS). PVS burden has been associated with
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cerebral small vessel disease (Charidimou et al., 2013). As PVS follow the course
of the vessel they surround, they appear as elongated structures on 3D brainMRI
scans. Several methods have been proposed to detect PVS. The majority of the
proposed algorithms is however evaluated on a relatively small sets (less than
30 images) due to the need for voxel-wise annotations for testing (and training)
(Boespϐlug et al., 2017; Lian et al., 2018b). We train and validate on a set of
1202 MRI scans and test on a separate set of 1000 images. As the centrum
semiovale (CSO) is seen as the most difϐicult brain region for PVS detection and
most clinically relevant, we focused on this brain region (Ballerini et al., 2018).
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2 Method

We train an FCN to regress a DM for a given intensity image. Our approach
requires MRI scans with dot annotations for training. The local optima in the
predicted DMs are expected to correspond to lesion locations. We compare
geodesic distance maps (GDMs), EDMs and intensity distance maps (IDMs).

2.1 Distance Transform

To compute DMs we use a distance transform, that requires a deϐinition of the
foreground – in our case the set of dot annotations Φ – and a gray-scale image
G(x) in the case of intensity and geodesic distances, with x the position in the
image. The distance mapDM(x) is deϐined by

DM(x) = min(Λ(γ), γ ∈ Ψ(x,Φ)) (4.1)

withΨ(x,Φ) the set of possible paths γ between a position x in the image and
the set of dot annotations Φ. The length Λ(γ) of the path γ is

Λ(γ) =

n−1∑
i=1

d(xi, xi+1) (4.2)

with n the number of voxels in the path γ between a position x and a dot
annotation xdot ∈ Φ and d the distance measure. The geodesic distance dG in a
2D gray-scale image between voxel xi and the next voxel in the path xi+1, with
intensitiesG(xi) andG(xi+1) respectively, is deϐined by Toivanen (1996) as

dG(xi, xi+1) =

√
dI
(
xi, xi+1

)2
+ dE

(
xi, xi+1

)2 (4.3)

with the intensity distance dI(xi, xi+1) = G(xi) − G(xi+1) and the
Euclidean distance dE(xi, xi+1) which is 1 for xi+1 ∈ N4(xi) (voxels connected
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horizontally and vertically) and
√
2 for xi+1 ∈ N8(xi)\N4(xi) (voxels connected

diagonally). EDMs are consequently computed by setting dI = 0 in equation 4.3,
while IDMs are computed by setting dE = 0. We approximate these DMs using
the optimization algorithm iterative raster scan described by Toivanen (1996).
This approach is for computing DMs in 2D, though it can easily be extended to
3D.¹

The resultingDM(x) is normalized by dividing by the maximum distance in
theDM(x) and inverted as this is convenient for implementation. Furthermore,
we add a parameter p to inϐluence how steeply the distance decays. The ϐinalmap
Mp(x) is calculated using

Mp(x) =
(
1− DM(x)

max
(
DM(x)

))p

(4.4)

2.2 Fully Convolutional Neural Network

We use an architecture similar to a shallow U-Net for our FCN shown in Figure
4.1, which was shown to work well for regressing the number of perivascular
spaces in the basal ganglia (Dubost et al., 2017; Ronneberger et al., 2015). For
optimization we use mean square error lossMSE = 1

N

∑
x

(
M̂p(x)−Mp(x)

)2

,

with M̂(x) the predicted map andN the number of voxels inMp(x).
Non-maximumsuppression is applied to the predicteddistancemap to detect

local optima. We use a 5 × 5 maximum ϐilter with a connectivity of 8. By
thresholding the local optima the proposed detections are acquired.

¹Our code for computing 2D as well as 3D distance maps is available at
https://github.com/kimvwijnen/geodesic_distance_transform
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3 Experiments

3.1 Data

Our data set consists of 2202 T2-weighted MRI scans from the Rotterdam Scan
Study. All scans were from different individuals and were acquired on a 1.5 T
MRI scanner. The images have a size of 512 × 512 × 192 with a voxel resolution
of 0.49×0.49×0.8mm3. Further details on the image acquisition of this data are
discussed by Ikram et al. (2015).

The number of PVS in the axial slice 1 cm above the lateral ventricles is highly
correlatedwith the total number of PVS in the CSO (Adams et al., 2015). The rater
selected this speciϐic slice and annotated it with dots indicating PVS between 1 -
3 mm in diameter in line with the guidelines described by Adams et al. (2013).
The intra-rater performancewas evaluated on a separate set of 40MRI scans (see
Table 4.1 and Figure 4.3).

3.2 Preprocessing

Images are preprocessed as proposed in chapter 1. We segment the CSOwith the
FreeSurfermulti-atlas segmentation algorithm (Desikan et al., 2006a) producing
a binary mask that we smooth with a Gaussian kernel. The image are multiplied
with the smoothed mask and cropped to a ϐixed size containing only the slices
close to the annotated slice. The resulting images are normalized to the range
[0,1] by dividing by the maximum intensity in the image.

Annotateddotswerenot always inside thePVS. To solve this problem,we shift
the dots to the highest intensity value within the same connected component
and within 3 voxels distance. The shifted dots were only used to compute the
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distance maps for the training and validation set. For evaluation of the detection
performance, the original annotated dots were used.

3.3 Experimental Setup

Random sampling was used to split the 2202 scans into a set of 1202 for
development of the method (1000 for training and 202 for validation) and a
separate set of 1000 for testing. As only one slice per scan was annotated,
DMs were computed in 2D and the loss was only evaluated for this slice.
Non-maximum suppression and evaluation of detection performance was also
only done on the slice that was annotated.

Weights for the convolutional layers were initialized by random sampling
from a truncated normal distribution with zero mean and unit variance. For
optimization we use Adadelta and a batch of one due to memory limitations.
We use on-the-ϐly augmentation for the training set. For every image a random
rotation around the depth direction with a maximum of 20◦ in both directions is
applied combined with random ϐlipping in horizontal and in vertical direction.
Methods were implemented in Python and Keras with Tensorϐlow as backend.

3.4 Detection Performance

The candidate detections of eachmethod are compared to the expert annotations
using the hungarian algorithm to ϐind a one-to-one mapping between these sets.
Only detections within a 6 voxel radius of the annotations were counted as true
positive. We use 6 voxels as this is the maximum PVS diameter (corresponds to
3 mm (Adams et al., 2013)).

The detection performance is mainly evaluated with the Free-Response
Operating Characteristic (FROC) curve and its area under the curve (FAUC) until
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10 FPavg , which is approximately twice the FPavg of the rater. The FAUC is
calculated as the percentage of the highest possible area. We used bootstrapping
to quantify the uncertainty, resulting in a mean FAUC and conϐidence interval
based on 1000 sampled sets. Bootstrappingwas performed by random sampling
with replacement from the test set.

3.5 Evaluation Approach

We ran experiments varying the decay parameter p (see Figure 4.2). For higher
values of p the FCN did not train, we expect because of label imbalance. Based on
theFAUCon the validation setwe set p to5 for geodesic distance, to 6 for intensity
distance and 9 for Euclidean distance. During training, the model parameters
were chosen as the ones minimizing the FAUC computed on the validation set.
Only the best model per distance type (GDM5(x), EDM9(x), IDM6(x)) was
tested on the test set of 1000 scans.

The operating point on the FROCwas chosen permodel as the thresholdwith
a sensitivity on the validation set closest to the average intra-rater sensitivity.
ForGDM5(x) the threshold was chosen at 0.525, forEDM9(x) at 0.500 and for
IDM6(x)) at 0.495. This threshold was used as the detection threshold during
evaluation on the test set.

3.6 Results

Figure 4.3 shows the FROC curves computed on the test set and examples of the
output of the FCNs. Table 4.1 shows the corresponding FAUCs, the sensitivity
and FPavg of the methods on the test set at the chosen thresholds (based on the
validation set) and the average intra-rater performance.
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4 Discussion and Conclusion

Our experiments indicate that incorporating image intensity information in a
distance map used to train an FCN substantially improves performance of PVS
detection. Results show that using GDMs and IDMs both result in a similar
detection performance, with IDMs sometimes reaching higher performance
than GDMs. This indicates that intensity difference is the most discriminative
information, and that Euclidean distance could even be ignored. Using higher
values of the decay parameter also increases the PVS detection performance, and
stabilizes the optimization.

The FCN trained using IDMs reaches a sensitivity and FPavg similar to the
intra-rater performance computed on a smaller independent set (Figure 4.3).

We expect our method could perform well for detecting other types of focal
vascular lesions in the brain. Using intensity information in the computation of
DMs could help the detection lesions that either have a complex morphology,
or can have substantial variation in their size, such as microbleeds, white
matter hyperintensities or lacunes. Additionally, in this work we evaluate the
intensity-based distance maps only for their performance in detecting PVS.
However, we observe that the PVS detections in the output maps of the FCNs
trained on intensity-based distance maps (Figure 4.3) seem to approximate the
PVS shape quitewell. We therefore expect our approachmight alsoworkwell for
segmentation.

158



Part C - Chapter 4

Table 4.1: PVS detection performance on the test set for the detection methods
and the average intra-rater performance on a smaller independent set

FAUC FPavg Sensitivity
EDM9(x) 45.761 (± 0.052) 7.49 53.63
GDM5(x) 50.575 (± 0.050) 5.10 55.26
IDM6(x) 53.078 (± 0.051) 4.35 55.35
Avg intra-rater - 4.43 55.66
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Chapter 5

Enlarged Perivascular Spaces in

Brain MRI: Automated

Quantiϐication in four Regions

Abstract

Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI,
are common in aging, and are considered a reϐlection of cerebral small vessel
disease. As such, assessing the burden of PVS has promise as a brain imaging
marker. Visual and manual scoring of PVS is a tedious and observer-dependent
task. Automated methods would advance research into the etiology of PVS,
could aid to assess what a ”normal” burden is in aging, and could evaluate the
potential of PVS as a biomarker of cerebral small vessel disease. In this work,
we propose and evaluate an automated method to quantify PVS in the midbrain,
hippocampi, basal ganglia and centrumsemiovale. We also compare associations
between (earlier established) determinants of PVS and visual PVS scores versus
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the automated PVS scores, to verifywhether automated PVS scores could replace
visual scoring of PVS in epidemiological and clinical studies. Our approach is a
deep learning algorithm based on convolutional neural network regression. We
trained and validated ourmethod onT2-contrastMR images acquired from2115
subjects participating in a population-based study. These scans were visually
scored by an expert rater, who counted the number of PVS in each brain region.
Agreement between visual and automated scores was found to be excellent for
all four regions, with intraclass correlation coefϐicients (ICCs) between 0.75 and
0.88. These values were higher than the inter-observer agreement of visual
scoring (ICCs between 0.62 and 0.80). Scan-rescan reproducibility was high
(ICC 0.82 – 0.93). The association between 20 determinants of PVS, including
aging, and the automated scores were similar to those between the same 20
determinants of PVS and visual scores. We conclude that this method may
replace visual scoring and facilitate large epidemiological and clinical studies of
PVS.
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1 Introduction

This chapter proposes and evaluates an algorithm for the automated
quantiϐication of enlarged perivascular spaces (PVS) in four brain regions.
Perivascular spaces are ϐluid-ϐilled areas surrounding cerebral arteries or veins.
These spaces tend to enlarge locally in aging subjects (Wardlaw et al., 2013).
Enlarged perivascular spaces can be identiϐied as hyperintensities in T2-contrast
MRI, as illustrated in Figure 5.1. Though initially considered a strictly normal
phenomenon, the presence of PVS is increasingly thought to reϐlect the presence
of cerebral small vessel disease and to function as a potential biomarker for
various brain diseases such as dementia (Mills et al., 2007), stroke (Selvarajah
et al., 2009), multiple sclerosis (Achiron and Faibel, 2002), and Parkinson
(Zijlmans et al., 2004).

The progressive enlargement of PVS, their widespread occurrence in the
brain, and presence of mimics with similar appearance onMRI make the manual
annotation of individual PVS challenging and time consuming (see Figure 5.2).
Instead, current studies largely rely on visual scoring systems. Two types of
scoring systems have been proposed in the literature: expert raters either
count the number of PVS within a region of interest (Adams et al., 2013, 2015)
or categorize the PVS burden using a scale (e.g. Potter scores (Potter et al.,
2015a) and Patankar scores (Patankar et al., 2005)). Automated quantiϐication
of PVS would be preferred as it is more objective and faster than visual
scoring. Furthermore, it would hold great potential to study burden of PVS as
a continuous rather than a categorical measure, enabling to better disentangle
”normal” structural brain changes in aging from a pathological load of PVS.

In Chapter 1, we proposed a regression convolutional network to quantify
PVS in the basal ganglia. In the present work, we extend this method to
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other brain regions most clinically relevant for PVS quantiϐication, namely the
midbrain, hippocampi and centrum semiovale (Adams et al., 2013, 2015), and
we provide a more elaborate evaluation.

Similar to the method described in Chapter 1, the input in our method is
a T2-contrast brain scan, and the output is an automated PVS score. The aim
of the method is to reproduce the visual scores of an expert rater, considered
here as the reference standard. Our method uses a 3D convolutional neural
network inspired by ResNet (He et al., 2016) and optimizedwith amean squared
error (MSE) loss function to minimize the difference between visual scores and
predicted scores in a set of training images.

In all four brain regions, we compare the agreement between our automated
PVS scores and the visual PVS score of the expert rater, with the level of
inter-observer agreement. We assess scan-rescan reproducibility. Finally we
check in a subset of 1485 scans whether the associations between determinants
of PVS and the automated scores are similar to those between the same
determinants and visual scores. The determinants of PVS investigated here
include demographics, cardiovascular risk factors, ApoE genotypes, and MRI
markers.

1.1 RelatedWork

Other researchers have published automated PVS quantiϐication methods
involving the use of the visual scores as ground truths.

Ballerini et al. (2018) proposed to enhance PVS in the centrum semiovale
using multiscale vessel enhancement ϐiltering (Frangi et al., 1998). The
parameters of these ϐilters are optimized with ordered logit models, using
PVS category scores (Potter et al., 2015a; Patankar et al., 2005) as ground
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truth. To evaluate their methods, the authors compute correlations between
the visual ratings and their segmentation-derived PVS count and PVS volume
in two different datasets. This method has only been evaluated in the centrum
semiovale. Results were mixed with correlations ranging from 0.47 to 0.74 in
different datasets.

Gonzalez-Castro et al. (2017) addressed PVS quantiϐication in the basal
ganglia as a binary classiϐication problem, where the objective is to discriminate
between scans with few (⩽10) or many (>10) PVS. Their method uses support
vector machines and bag-of-words descriptors. The agreement between their
classiϐier and a human observer is similar to the inter-observer agreement. The
authors also showassociations between determinants of PVS (age, Fazekas scale,
and presence of lacunar infarcts) and the binary score of the classiϐier. Our
work extends this by proposing a continuous score indicating the number of
PVS instead of a binary score, leading to a ϐiner quantiϐication. We evaluate our
method in four brain regions, and investigate associations with a wider range of
determinants.
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FLAIR

Motion
Artifacts

WMH Infarcts Subtle 
Enlargment

T2 T2

T2T2

Figure 5.2: Examples of enlarged perivascular spaces and their mimics in
different brain regions. All images are in the axial view. PVS are circled
in green, white matter hyperintensities (WMH) in yellow, lacunar infarcts in
red and motion artifacts in blue. In the ϐirst column, motion artifact could be
mistaken for an elongated PVS in the centrum semiovale. In the second column,
theWMH could bemistaken for PVS. However on the FLAIR-weighted scanWMH
are hyperintense, while PVS are hypointense and less visible (bottom image).
In the third column, the lacunar infarct in the basal ganglia could be mistaken
for a group of several PVS, which individual borders could not be seen because
of partial volume effect (this lesion would unlikely be mistaken for a single PVS
because of its irregular shape). The FLAIR-weighted scan shows a hyperintense
rim (red arrow) around the lesion, indicating the presence of a lacunar infarct.
In the last column, the scans present several PVS, some of which are at the
limit of being considered as enlarged. According to the visual scoring guidelines
presentedbyAdamset al. (2013), tobe considering enlarged, perivascular spaces
should have a diameter larger than 1mm. For many small perivascular spaces in
these images, this is difϐicult to evaluate.
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2 Methods and Materials

The objective of our method is to automatically predict the PVS visual scores.
Our framework consists of two steps. We ϐirst extract the region of interest (ROI)
(Section 2.2) and then apply a regression convolutional neural network (CNN)
(Section 2.3) to compute the PVS score. The CNN is trained on an independent
set of visually scored scans (N=400 or N=1600).

2.1 Data

In our experiments we used brain MRI scans from the Rotterdam Study. The
Rotterdam Study is a prospective population study investigating - among others
- neurological diseases in the middle aged and elderly, applying brain MRI in all
participants (Ikram et al., 2017). In our experiments, we use 2115 scans of 2115
subjects, acquired between 2005 and 2011.

In addition, we used 60 other scans for which 30 study participants were
scanned twice within a short period (19 11 days). The 60 scans of this
reproducibility set are not part of the 2115 scansmentioned above andwere not
visually scored for PVS.

The Medical Ethics Committee of Erasmus MC according to the Population
Study Act: Rotterdam Study, executed by the Ministry of Health, Welfare
and Sports of the Netherlands has approved the Rotterdam study. All
participants provided written informed consent to participate in the study and
for information to be obtained from their physicians.
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2.1.1 MRI scan protocol

BrainMRIwasperformedon a1.5-teslaMRI scanner (GE-Healthcare,Milwaukee,
WI, USA) with an eight-channel head coil to obtain: T1-weighted (T1),
T2-contrast (T2), ϐluid-attenuated inversion recovery (FLAIR) and T2*-weighted
gradient-recalled-echo sequences.

To compute the automated PVS scores, we only used the T2 scans. These
scans were acquired according to the following protocol: 12,300 ms repetition
time, 17.3 ms echo time, 16.86 KHz bandwidth, 90-180◦ ϐlip angle, 1.6 mm
slice thickness, 25 cm2 ϐield of view, 416 × 256 matrix size. The images are
reconstructed to a 512× 512× 192matrix. The voxel resolution is 0.49× 0.49×

0.8mm3.
More details of the imaging protocol have been described elsewhere (Ikram

et al., 2015).

2.1.2 Visual PVS scores

Visual PVS scores have been created, for each region, according to a standard
procedure proposed in the international consortium UNIVRSE (Adams et al.,
2015). PVS ratings are deϐined as linear, ovoid or round shaped hyperintensities
on T2 scans and considered to be enlarged when ≥ 1mm and < 3mm. For this
visual scoring, a trained observer counts the number of PVS in the midbrain,
hippocampi, basal ganglia and centrum semiovale. For the midbrain and
hippocampi, the PVS are counted in the whole volume. In the basal ganglia
and centrum semiovale, PVS are counted in a single anatomically deϐined slice.
For the basal ganglia, this is the slice showing the anterior commissure. For
the centrum semiovale it is the slice 1cm above the upmost part of the lateral
ventricles. The number of PVS in these slices correlates well with the number of
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PVS in the whole volume of the regions (Adams et al., 2013).
The inter-observer and intra-observer agreements of this scoring have

previously been computed in the Rotterdam Study in every region (Adams
et al., 2013). Inter-observer intraclass correlation coefϐicients (ICCs) have been
computedwith 105MRI scans, and intra-observer ICCswith 85 scans (Table 5.2).
The images in our dataset (2115 scans) were visual scored by a single expert
rater (Dr. H. Adams).

2.1.3 Potential determinants of PVS

From the 2115 participants, we randomly selected 400 participants to optimize
the parameters of our algorithm, and used the remaining 1715 participants to
investigate associations between 20 determinants of PVS and automated and
visual PVS scores. From these 1715 participants, we excluded participants
without informed consent to access medical records and hospital discharge
letters (n=8), participantswho already suffered stroke (n=98) orwere diagnosed
with dementia (n=32) or had incomplete information for stroke or dementia
(n=1) at time ofMRI scan (deBruijn et al., 2015;Wieberdink et al., 2012). We also
excluded scans for which the brain region segmentation algorithm (FreeSurfer,
Desikan et al. (2006a)) failed for one or more regions (n=91). Excluding these
resulted in a set of 1485 participants, fromwhich the highest number of missing
values was 25 for cholesterol, HDL cholesterol and glucose. Table 5.1 lists the
characteristics of the study population.

2.1.3.1 Assessments of determinants Education was obtained from
self-reported history and scaled in number of years according to the UNESCO
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classiϐication ¹. Smoking behaviour was assessed during home interviews and
categorized as ever- and non-smokers. Blood pressure measurements were
averaged over two readings with a random-zero sphygmomanometer at the
right upper arm, in sitting position and a resting period of 5 minutes. Data
on serum glucose, total serum cholesterol, serum high-density lipoprotein
(HDL) cholesterol were obtained using an automated enzymatic procedure
(Boehringer Mannheim System). Diabetes mellitus was deϐined as a fasting
glucose level of≥ 7.0 mmol/L, or the use of antidiabetic medication. Body mass
index was calculated by dividing weight (in kilograms) by the height squared (in
meters). ApoE genotyping on coded genomic DNA samples was performed for
the ϵ2 and ϵ4 alleles of Apolipoprotein E (ApoE-ϵ2 and ApoE-ϵ4) carrier status,
with a one-stage polymerase chain reaction and TaqMan assay (Wenham et al.,
1991). Participants who were classiϐied ApoE - ϵ2ϵ4 counted both as ϵ2 and ϵ4
carriers. The majority of samples (81.1%) were genotyped with the Illumina
610K and 660K chips, the remaining (18.9%) were imputed to the Haplotype
Reference Consortium reference panel (version 1.0) with Minimac 3.

2.1.3.2 Assessment ofMRImarkers Several focal and volumetricmeasures
of subclinical brain damage were assessed. Cortical infarcts were deϐined as
lesions involving cortical gray matter with tissue loss and lacunar infarcts as
subcortical lesions ≥ 3mm and < 15mm on FLAIR, T1, and T2 sequences. The
presence of cortical and lacunar infarcts was visually rated by trained research
physicians (Ikram et al., 2017). White matter hyperintensities (WMH) were
measured quantitatively using a validated automated segmentation method
(de Boer et al., 2010). This method was also used to segment the brain into gray

¹United Nations Educational SaCOU. International Standard Classiϐication of Education (ISCED)
1976. Available from: http://unesdoc.unesco.org/images/0002/000209/020992eb.pdf.
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Figure 5.3: Architecture of the neural network. The input is a 3D scan cropped
around the region of interest, and the output is the automated PVS score. ’Conv’
stands for convolutional layer, and is followed by the number of ϐilters and
the ϐilter size; ’MaxPool’ stands for max pooling layer; ’GAP’ for global average
pooling, ’FC’ for fully connected layer; and the curved arrows represent skip
connections with concatenation of feature maps.

matter,WMHand cerebrospinal ϐluid. Total brain volumewas deϐined as the sum
of gray andwhitematter. And intracranial volumewas deϐined as sumof gray and
white matter, and cerebrospinal ϐluid.

2.2 Preprocessing

The ϐirst step of ourmethod is to extract the target brain region from the scan and
mask the surrounding structures. This preprocessing step is almost identical for
all four regions.

We ϐirst apply the FreeSurfer multi-atlas segmentation algorithm (Desikan
et al., 2006a) to obtain a binary mask for each region: midbrain, hippocampi,
basal ganglia and centrum semiovale. All parameters are left as default, except
for the skull stripping preϐlooding height threshold which is set to 10. These
masks are thendilated (4 consecutivemorphological binary dilationswith a cube
connectivity equal to one, i.e., 6-connected in 3D), with the exception of themask
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of themidbrain, which is eroded (two consecutivemorphological binary erosions
with a square connectivity equal to one). These morphological operations can
correct segmentation errors and are especially important for the basal ganglia
and hippocampi, as PVS can often be located on the border of these regions. On
the contrary, for the midbrain, PVS are almost always located in the center and
dilating the mask can make the optimization of the model more difϐicult.

For each region, the borders of the masks are smoothed with a Gaussian
kernel of standard deviation σ = 2 voxel units, and multiplied pixel-wise with
the image intensities. These masked images are then cropped around the center
ofmass of themask to reduce the image size andmemory requirements. The size
in voxels of these cropped images for midbrain, hippocampi, basal ganglia and
centrum semiovale are 88x88x11, 168x128x84, 168x128x84 and 250x290x14
respectively. The image values are then rescaled between zero and one to
ease the learning process. The cropped volume of the centrum semiovale is
relatively small in the craniocaudal direction (z-axis). Contrary to the other three
brain regions, the complete volume of the centrum semiovale could not be ϐit in
the memory of our graphics processing unit (GPU). Therefore, as input to our
algorithm we kept only the slices surrounding the slice visually scored by the
expert rater. We automatically identiϐied this slice by segmenting the lateral
ventricles with FreeSurfer, and selecting the slice 1 cm above, as deϐined by
(Adams et al., 2013).

In the left column, Figure 5.4 shows one example of the preprocessed images
for each region.
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2.3 3D Convolutional Regression Network

Once the images are preprocessed, they are given as input to a convolutional
neural network (CNN) similar to the one proposed in Chapter 1 but with skip
connections between layers. This network computes the automated PVS scores
using a combination of learned ϐilters.

We train a different network for each region. There are two reasons for this.
PVS can have a different shape depending on their location in the brain. For
instance, in the hippocampi, the shape of PVS ismore round,while in the centrum
semiovale, PVS are more elongated. Differentiating from mimics is also region
speciϐic. For instance, motion artifacts affect mostly the centrum semiovale and
have a much lower inϐluence in the midbrain, and lacunar infarcts are often
located in the basal ganglia.

Our CNN architecture (Figure 5.3) is similar to that of a small ResNet (He
et al., 2016) adapted for regression in 3D images. Our CNN has two 3D 3x3x3
convolutional layers, followed by a 2x2x2max-pooling layer, again two 3D 3x3x3
convolutional layers, a global average pooling layer, and a fully connected layer,
combining the contribution of the different features into a single score. The
output of the network is hence a scalar and spansR. The ϐirst two convolutional
layers have 32 ϐilters each, and the last two convolutional layers have 64 ϐilters
each. The convolutions are zero-padded, and are followed by a ReLU activation.
We use skip connections between the input and output of two successive
convolutional layers, to allow the network to skip unnecessary operations and
adapt its complexity to the tasks, which can ease the learning process (He et al.,
2016). For instance, we expect the quantiϐication of PVS to be simpler in the
midbrain than in the centrum semiovale. When using skip connections, we
concatenate the features maps, instead of summing them as proposed by He
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et al. (2016). There is little evidence that using either one or the other strongly
impacts the performance. However, the concatenation is easier to implement as
it does not require to have the same number of feature maps. In total, our model
has less than 200 000 parameters.

For the regularization, we use on-the-ϐly data augmentation (translation,
rotation and ϐlipping), and when training with smaller sets, we used dropout
(30%) after each convolutional layer and after the global pooling layer. See
section 3.1 for details.

To train the network, weminimize theMSE loss function between the outputs
of the network and the ground truth labels indicating the number of PVS in the
given brain region.

In Chapter 1, we quantiϐied PVS in the basal ganglia alsowith regression CNN,
but with a different architecture. There are three differences with the CNN we
proposed in this chapter. Firstly, the proposed network is simpler and lighter.
Experiments on the parameters of the network in Chapter 1, indeed suggested
that simpler models performed equally good with enough training data. In our
experiments, the training of deeper models was also much longer with small
training set (400 scans), especially for the centrum semiovale and hippocampi.
The second change is the introduction of skip connections between blocks. The
third and last change is the use of global pooling instead of two fully connected
layers of 2000 neurons. Using global pooling does not harm the performance and
saves large amounts of GPUmemory. This change was also proposed by He et al.
(2016) over the architecture proposed by Simonyan and Zisserman (2015a), the
preceding state-of-the-art neural network on the imagenet challenge (Deng et al.,
2009).
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2.4 Model Training

During training, a validation set is used to stop the optimization of network
before over-ϐitting happens.

As mentioned in section 2.3, a separate model is trained for each region.
The training of such models can be unpredictably long for the hippocampi and
centrum semiovale. To speed up the training, we ϐirst train the models in the
basal ganglia, as the convergence is faster there. Thenwe ϐine-tune the networks
with the target region only (hippocampi or centrum semiovale). The training
in the midbrain converges quickly and no pre-training is needed. We chose to
pre-train with the basal ganglia and not in the midbrain, as PVS in the basal
ganglia are more similar to PVS in the hippocampi and centrum semiovale.

2.5 Statistical Analyses

To evaluate associations between determinants of PVS and PVS scores, we
used zero-inϐlated negative binomial regression models with the PVS score as
outcome, as in the study of Adams et al. (2014). We used the ’glmmADMB’
package for generalized linearmixedmodels in R. Themodelswere corrected for
age and sex (except for the associations of age, sex respectively) and additionally
for intracranial volume when computing associations with volumetric measures
(white matter, gray matter, and cerebrospinal ϐluid). To account for the skewed
distribution of WMH, we log transformed the WMH volumes. Continuous
determinants were normalized by computing z-scores. Bonferroni correction
was used, therefore associationswith a p-value below 0.05/(20 determinants×4
brain regions) = 6.25× 10−4 were considered signiϐicant.
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Figure 5.4: Attention maps of the neural network. From left to right:
preprocessed input image, attention map, overlay of the input image and the
attention map. From top to bottom: midbrain, hippocampi, basal ganglia, and
centrumsemiovale. In the overlay, the heatmaps reϐlect the contribution of pixels
to the prediction of the networks: red pixels contributed the most, while blue
pixel did not contribute. One can notice that many slightly enlarged perivascular
spaces appear in orange. The network detected these, but they inϐluenced its
prediction less than the larger PVS.
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3 Results

We evaluate the performance of the proposed model with three series of
experiments. First, we inspect attention maps of the model, revealing that
the model indeed focuses on PVS. Second, we measure the agreement between
automated and visual scores, and show that this agreement is at least at the
level of the human inter-observer agreement for each region. Then we verify
the scan-rescan reproducibility of the automated PVS scores. Finally, we show
that the associations between 20 determinants of PVS and the automated scores
are similar to associations between the same determinants and visual scores.

3.1 Experimental Settings

We initialize the weights of the CNN by sampling from a Gaussian distribution,
use Adadelta (Zeiler, 2012) for optimization, and augment the training data
with randomly transformed samples. The transformation parameters for
augmentation are uniformly drawn from an interval of 0.2 radians for rotation,
2 pixels for translation and ϐlipping in the x and y direction. The network is
trained per sample (mini-batches of a single 3D image). We implemented our
algorithms in Python in Keras (Chollet et al., 2015) with Tensorϐlow as backend,
and ran the experiments on aNvidiaGeForceGTX1070GPUandNvidia TeslaK40
². The average training time is one day. We stop the training after the validation
loss converged to a stable value, or before over-ϐitting happens. Once the CNN is
trained, the automatic PVS scoring, given the segmented region of interest, takes
on average 287ms per region.

²from Cartesius GPU cluster, a national cluster
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3.2 Attention Maps

As ϐirst qualitative evaluation we check whether the neural networks learned
to identify the structures of interest (PVS), or detected some other features
that are correlated to the PVS. We use attention maps computed via ”guided
backpropagation” (Springenberg et al., 2015).

Figure 5.4 shows examples of these attention maps for each of the four
regions. We notice that the neural networks focus on the PVS, even though they
are trained using global, image-wise labels only.

3.3 Agreement between Automated and Visual Scores

In this section, we evaluate the proposed automated scores by comparing with
expert visual scores. We optimized the parameters of the CNN on a set of 1600
scans (1200 for training and 400 for validation). We also optimized the same
model using only a subset of 400 scans (320 training and 80 validation), where
we used dropout after each convolution to avoid over-ϐitting. We evaluated both
models on an independent set: the remaining515 scans. The results are reported
in Table 5.2. Figure 5.5 shows Bland Altman plots for each region. Note that
on the Bland Altman plots, the discrete nature of the distribution of the points,
especially visible for themidbrain and hippocampi, is a consequence of the visual
PVS scores being integer numbers.

When trained on 1600 scans, the ICC between the automated and visual
scores were higher than the inter-observer agreement previously reported for
each region. On the Bland Altman plots, one can notice that the largest errors
usually occur for scans with many PVS, and for which there are only few
training examples. Also, even for expert raters the rating becomes more difϐicult
and variable for scans with many PVS. This is due to the continuous nature
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of the enlargement of perivascular spaces: keeping a consistent threshold of
enlargement becomes more challenging.

3.4 Reproducibility

The reproducibility of the automated PVS scores is evaluated on a reproducibility
set of 30 participants scanned twice (see Section 2.1). The ICC of the automated
PVS scores between the ϐirst and second sets of scans is 0.82 for the midbrain,
0.93 for the hippocampi, 0.92 for the basal ganglia, and 0.87 for the centrum
semiovale. Except for the centrum semiovale, all values are higher than the
intra-rater agreement computed on another subset of the same dataset and
reported by Adams et al. (2013) (Table 5.2).

3.5 Associations with determinants of PVS

We investigate associations between 20 potential determinants of PVS
(characteristics in Table 5.1) and the automated PVS scores, and compare
them with the associations between the same determinants and the visual PVS
scores. The neural networks are ϐirst optimized using 400 scans for each region
(we reuse the second model from the previous section), and then applied to
the remaining 1715 independent scans to produce the automated scores. We
investigate associations on this set of 1715 scans. After excluding participants
as described in section 2.1, this resulted in 1485 stroke-free and non-demented
participants with available brain imaging.

Figure 5.6 shows forest plots for each determinant, and a sorted list of all
p-values can be found in supplementary materials. Overall, association patterns
are very similar for visual and automated scores.
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We found that white matter hyperintensity volume is associated with both
visual and automated PVS scores in the basal ganglia and in the hippocampi. Age
is associatedwith both visual and automated PVS scores in the basal ganglia. The
presence of lacunar infarcts is also associated with both visual and automated
PVS scores in the basal ganglia. And ϐinally, intracranial volume is associatedwith
both visual and automated PVS scores in the centrum semiovale. In all cases,
determinants that are signiϐicantly associated with visual PVS scores, also show
signiϐicant association with the automated PVS scores, and in almost the same
order of p-values.

As the automatedmethod takes as input theMRI scans, and is only optimized
using global labels (the number of PVS), in the scans other information than
PVS might be used to compute the automated PVS scores. This is an unwanted
behavior. We did not notice any bias of the automated method towards more
signiϐicant associations with imaging markers. For instance, for both visual and
automated PVS scores, 9 of the 20 most signiϐicant associations were between
imaging markers and PVS scores. However, computing the p-value of the
difference of z-scores of the associations showed a signiϐicant difference for gray
matter and PVS scores in the basal ganglia. In Figure 5.6, we notice the same
trend for the association between intracranial volumeandPVS scores in the basal
ganglia. Therewas also a signiϐicant difference (thoughwith a higher p-value) for
associations between intracranial volume and PVS scores in the hippocampi.

Computing the p-value of the difference of z-scores of the associations
revealed a last signiϐicant difference: the association between age and the
automated PVS scores in the midbrain (odds-ratio 1.008 [1.002-1.0013]) was
signiϐicantly stronger than the association between age and the visual scores in
the midbrain (odds-ratio 0.999 [0.992-1.006]).
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Figure 5.6: Associations between determinants of PVS and PVS scores. Odds
ratio with 95% conϐidence intervals (non Bonferroni corrected). Characteristics
of the study population are given in Table 5.1. The size of the colored boxes is
inversely proportional to the size of the conϐidence intervals of the odds ratio.
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4 Discussion

The algorithm developed in this work computes automated scores to quantify
enlarged perivascular spaces (PVS) in the midbrain, hippocampi, basal ganglia
and centrum semiovale - the four brain regions currently deemedmost clinically
relevant for PVS quantiϐication. We demonstrated the performance of our
algorithm using a set of 2115 MRI scans that were visually scored by an
expert rater. For all four regions, the intraclass correlation coefϐicient between
the automated scores and the visual scores was found to be higher than the
inter-observer agreement, which was previously computed on a smaller subset
of the same study population (Adams et al., 2013). Scan-rescan reproducibility
was high (ICC 0.82 - 0.93). We also demonstrated the application of our
automated scores by verifying the associations between determinants of PVS
and our automated scores in a test set of 1485 scans, and comparing these
associations to the visual scores. Based on these results, we believe that
our automated scores could ultimately replace visual scores in future research
projects studying the etiology and clinical relevance of PVS.

Automated PVS scores have two major advantages over visual scores:
they are more objective (because the algorithm is deterministic), and can be
computed more quickly. While a trained expert rater needs several minutes to
score a scan, the computation of the automated PVS score on modern hardware
(GPU) lasts less than a second. This makes our automated approach suited to be
used in large scale studies, investigating for instance the etiology of PVS, their
distribution in brain aging, their implications, and their potential as a biomarker
for early diagnosis of cerebral small vessel disease. In addition, ourmethod could
be extended to fully quantify PVS by assessing their volume with the attention
maps produced by the neural networks (Figure 5.4). These attention maps
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indeed provide a voxel-wise probability of PVS presence, which can for instance
be summed over a region of interest, to yield a total volume or burden of PVS.

Gonzalez-Castro et al. (2017) computed automatic binary scores of PVS
burden in the basal ganglia and investigated associations with determinants of
PVS. They found signiϐicant associations with higher age, Fazekas WMH scale,
and the presence of lacunar infarcts, while there was no signiϐicant associations
with brain atrophy, hypertension, or stroke subtype. In the current study, we
found the same signiϐicant associations (age, WMH, and presence of lacunar
infarcts) for the basal ganglia.

As mentioned in section 3.5, other imaging information than PVS should not
be used by the algorithm to compute the automated PVS scores. Apart from the
associations between gray matter volume and PVS scores in the basal ganglia,
we did not notice any strong trend of ourmethod towards a stronger association
with imaging markers. This difference of association in the basal ganglia most
probably results from the automated PVS scores being computed across the
complete volume of the basal ganglia, while visual PVS scores are rated in a single
slice (Section 2.1). The consequences of this difference have been thoroughly
investigated in Chapter 1, and seems to favor the automated PVS scores, as they
are less sensitive to perturbations, such as missed PVS.

There is increasing evidence that ageing affects PVS, and putative
mechanisms are dysfunction of the blood-brain barrier, or impaired perivascular
drainage (Brown et al., 2018). Higher agewas previously shown to be associated
with higher visual PVS scores in the four regions investigated in this chapter:
midbrain, hippocampi, basal ganglia, and centrum semiovale (Adams et al.,
2014). The study by Adams et al. (2014) has been carried out in a signiϐicantly
larger population study (3146 participants against 1485 for our study). In
the current study, age was only associated with visual PVS scores in the basal
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ganglia. Higher age was also associated with higher automated PVS scores
in the basal ganglia. Previous studies with visual PVS scoring have shown
similar associations with age and basal ganglia PVS (Gutierrez et al., 2013;
Martinez-Ramirez et al., 2013; Potter et al., 2015b). In the current study,
in comparison with visual PVS scores, the automated PVS scores showed a
signiϐicantly higher association power in the midbrain, which may suggest
that they better capture the burden of PVS than visual scores. We did not
ϐind signiϐicant associations between age and PVS in the hippocampi or in the
centrum semiovale (neither with visual PVS scores, nor with automated PVS
scores). Similarly, in a recent study on a 7T scanner by Bouvy et al. (2016),
no association was found between age and PVS in centrum semiovale. While
Adams et al. (2014) found the weakest association between age per decade and
PVS to be in the hippocampi (odds ratio of 1.07 [1.02-1.12]), they also found
the strongest association between age per decade and PVS to be in the centrum
semiovale with an odds ratio of 1.24 [1.19-1.30]. While there seems still to
be controversy in the detailed relationship between age and PVS, automated
PVS scores could possibly be more powerful to better disentangle possible
mechanisms of PVS which effect brain health in ageing.

The main limitation of this work is that, contrary to the UNIVRSE rating
system (Adams et al., 2015), themethodwas evaluated usingMRI scans acquired
on a single scanner, precluding the assessment of performance on different
datasets. However, we believe this method can easily be applied to other
datasets by only ϐine-tuning the CNN parameters on a few scans (Yosinski et al.,
2014). Besides the performance of the algorithm should also be evaluated in
multi-center or multi-scanner data.
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5 Conclusion

We present a regression method to automatically quantify the number of
enlarged perivascular spaces in the midbrain, hippocampi, basal ganglia, and
centrum semiovale. The automated scores are more objective than visual scores
and less time consuming. We validated our approach on 1485 brain MRI scans,
demonstrated that the automated PVS show good agreement with visual PVS
scores, and showed that the automated PVS scores are associated with several
determinants of PVS, in a similar fashion to the PVS visual scores. We believe that
this method could replace visual scoring of PVS in epidemiological and clinical
studies, and therefore advance research into the etiology of PVS and its potential
as a risk indicator of small vessel disease.
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Chapter 6

Automated Quantiϐication of

Enlarged Perivascular Spaces in

Clinical Brain MRI across Sites

Abstract

Enlarged perivascular spaces (PVS) are structural brain changes visible in
MRI, and are a marker of cerebral small vessel disease. Most studies
use time-consuming and subjective visual scoring to assess these structures.
Recently, automated methods to quantify enlarged perivascular spaces have
been proposed. Most of these methods have been evaluated only in high
resolution scans acquired in controlled research settings. We evaluate and
compare two recently published automated methods for the quantiϐication of
enlarged perivascular spaces in 76 clinical scans acquired from 9 different
scanners. Bothmethods are neural networks trained on high resolution research
scans andare appliedwithout ϐine-tuning thenetworks’ parameters. By adapting
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the preprocessing of clinical scans, regions of interest similar to those computed
from research scans can be processed. The ϐirst method estimates only the
number of PVS, while the second method estimates simultaneously also a
high resolution attention map that can be used to detect and segment PVS.
The Pearson correlations between visual and automated scores of enlarged
perivascular spaces were higher with the second method. With this method, in
the centrum semiovale, the correlation was similar to the inter-rater agreement,
and also similar to the performance in high resolution research scans. Results
were slightly lower than the inter-rater agreement for the hippocampi, and
noticeably lower in thebasal ganglia. By computing attentionmaps,we showthat
the neural networks focus on the enlarged perivascular spaces. Assessing the
burden of said structures in the centrum semiovale with the automated scores
reached a satisfying performance, could be implemented in the clinic and, e.g.,
help predict the bleeding risk related to cerebral amyloid angiopathy.
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1 Introduction

Enlarged perivascular spaces (PVS) are structural brain changes visible on MRI.
They can be identiϐied as thin hyperintense tubular structures on T2-weighted
MRI scans. PVS are increasingly thought to reϐlect the presence of cerebral
small vessel disease, which represents a leading cause of cognitive decline and
functional loss in elderly patients. In most studies, enlarged perivascular spaces
are quantiϐied using visual scores that either classify the burden of PVS in several
categories (Potter et al., 2015a), or count PVS (Adams et al., 2013). These
quantiϐication methods are tedious and observer-dependent. Several methods
have been proposed to automatically quantify PVS burden in Chapter 5 and by
other researchers (Boespϐlug et al., 2017; Sudre et al., 2018; Zhang et al., 2016).
None of these methods have been evaluated in clinical scans, which present
multiple challenges for the quantiϐication of PVS. While in research studies, the
scanning is highly standardized (same machine, same protocol, same scanning
parameters, same investigators, etc.) to yield comparable results, this is not
the case in clinical routine. The lower resolution of clinical scans also results in
the computation of less accurate shape features, the most discriminative feature
for the detection of PVS. Moreover, other MRI markers related to cerebral small
vessel disease – such as white matter hyperintensities – are more prevalent in
clinical scans than in population studies (as in Chapter 5 and Boespϐlug et al.
(2017)) and could be confused with PVS because of their similar appearance.

In most studies, PVS are quantiϐied separately in one or several clinically and
epidemiologically relevant brain regions: midbrain, hippocampi, thalamus, basal
ganglia, and centrum semiovale. In PVS research, the centrum semiovale is the
most studied region, as PVS burden there has been most strongly associated to
potential determinants of PVS and outcomes thereof. The centrum semiovale is
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also often the regionwith highest inter-observer agreement in the visual scoring
of PVS (Adams et al., 2013). In this study, we quantiϐied PVS in the hippocampi,
basal ganglia, and centrum semiovale.

Zhang et al. (2016) automatically quantiϐied PVS on 7TMRI scans. Boespϐlug
et al. (2017) proposed an automated quantiϐication method combining image
intensities and morphologic features from several MRI sequences. They
evaluated their method in the centrum semiovale in research scans. Sudre et al.
(2018) proposed to use recurrent neural networks to detect PVS and lacunar
infarcts in 16 subjects of a longitudinal study investigating the relationship
between cardiovascular risk factors and brain health. van Wijnen et al. (2019)
regressed intensity distance maps of PVS in the centrum semiovale using neural
networks. In Chapter 5, we proposed to quantify PVS burden in four brain
regions – midbrain, hippocampi, basal ganglia, and centrum semiovale – with
neural network regressors trained with image level labels: the count of PVS in
the target brain region. In research scans, the authors showed that they could
reach a correlation between visual scores and automated scores similar to that
of the inter-observer agreement in each region. They also found that associations
between 20 determinants of PVS and visual PVS scores, and between the same
determinants and automated PVS scores, were similar. We also proposed to use
a more advanced model (GP-Unet) for weakly supervised detection of enlarged
perivascular spaces in Chapter 3. This method estimates simultaneously the
number of PVS and a high resolution attention map that can be used to detect
and segment PVS. We decided to study the methods presented in Chapters 3 and
5 as the validation experiments with associations with clinical variables already
brought them one step ahead of other methods for the application to clinical
practice.

In this chapter, we applied and compared the two methods corresponding
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to Chapters 3 and 5 on 76 clincial MRI scans with a varying, low resolution
acquired in the clinical routine of a hospital using nine different scanners and
different protocols, while using models’ weights learned from high-resolution
population study MRI scans acquired at another hospital in a highly controlled
and standardized setting using a single scanner andprotocol. The networkswere
not ϐine-tuned to the clinical data. For preprocessing, we used FSL packages
instead of FreeSurfer parcellations as in Chapters 3 and 5 to segment the regions
of interest. Finally, we show examples of attention maps of GP-Unet.
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2 Datasets

2.0.0.1 Training data. The training data consists of 1600 T2-weighted MRI
scans from 1600 elderly participants in a population study: the Rotterdam Study
(Ikram et al., 2017). Scans were acquired on a single 1.5T GE scanner, in a highly
controlled and standardized setting. The scan resolution was 0.5x0.5x0.8 mm3.
PVS were visually scored by a single rater in all scans in the hippocampi, basal
ganglia and centrum semiovale, following the guidelines of Adams et al. (2013).

2.0.0.2 Evaluation data. The MRI data used for evaluation were gathered
retrospectively from the Picture Archiving and Communication System (PACS)
of University Hospital Magdeburg. MRI scans with visible signs of cerebral small
vessel diseasewere selected. All selected patients had cerebralmicroangiopathy,
and were diagnosed with at least one of the following: ischemic (i.e. lacunar)
stroke or transient ischemic attack, spontaneous intracerebral hemorrhage,
dementia (i.e. Alzheimer’s disease or vascular dementia), and epileptic seizures.
Initially, 100 acquisitions from 100 different patients were collected. 24 Scans
were excluded from the experiments either because FSL segmentation of the
brain structures failed or because scans could not be rated visually, e.g. due
to insufϐicient image quality caused by motion artifacts or presence of other

Table 6.1: Characteristics of the clinical dataset (minimum, maximum, mean and
standard deviation)

min max mean std
Patient age (years) 35 89 71.39 9.32
In-plane (axial) resolution (mm2) 0.39 0.68 0.45 0.04
Resolution in z (mm) 3.30 7 4.94 0.89
Spacing between slices (mm) 0.60 6.60 4.73 1.04
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pathologies such as extremely large lesions. This leaves a total of 76 scans for the
study. Since the acquisitions have been obtained during the clinical routine, they
present a considerable variancewith respect to various image properties such as
artifacts or image resolution. T1-weighted andT2-weightedMRI scanshavebeen
acquired with 9 different scanners. Two of these scanners, a 3T and a 1.5T from
Philips, make up 66 of the 76 images. In total, there are three 3T-, four 1.5T- and
two 1T-scanners. Three of them were Siemens (two 3T, one 1.5T), the rest were
Philips machines. The time frame in which the data was acquired is almost 15
years and ranges from August 2004 until March 2019. The majority of the scans
(43) has been acquiredwithin the last 5 years of this period. The number ofmale
and female patients was 46 and 30, respectively. Table 6.1 provides additional
information about thedata set. PVSwere scoredvisually in thehippocampi, basal
ganglia and centrum semiovale following the guidelines of Adams et al. (2013).
Two raters scored PVS, the inter-rater agreement is reported in Table 6.2.
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3 Methods

The target brain regions (hippocampi, basal ganglia, and centrum semiovale) are
ϐirst segmented, masked and cropped. The result is then processed by trained
convolutional neural networks that predict the count of PVS in each region. The
neural networks were trained with high resolution MRI scans of a population
study, but were used to predict PVS count in routine clinical scans of a hospital.
The study was approved by the local ethics committee (No 28/16).

3.1 Preprocessing

Tomatch the resolution of scans in the training set, all clinical scanswere linearly
interpolated to a resolution of 0.5x0.5x0.8 mm3.

In Chapters 3 and 5, we used FreeSurfer parcellations to segment brain
regions. FreeSurfer brain parcellation lasts usually several hours, which may
prevent its use in clinical routine. In this study, we used instead FIRST and FAST
algorithms from the FSL package (Smith et al., 2004) to segment brain regions
from the T1 sequence in amatter ofminutes. FIRST could compute segmentation
of the basal ganglia and hippocampi. FASTwas used to segment thewhitematter
for the centrum semiovale region. In Chapters 3 and 5, we also evaluated our
methods in the midbrain. As midbrain segmentation is not implemented in FSL,
this region was excluded from the study. The T1 sequence was then rigidly
registered to the T2 sequence using FSL FLIRT, and the segmentation labels were
propagated from the T1 space to the T2 space.

Following the guidelines of Adams et al. (2013) for visual scoring of PVS,
in Chapters 3 and 5, we quantiϐied PVS in the centrum semiovale in the
neighborhood of the slice located 1 cm above the top of the lateral ventricles. As
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FSL does not compute ventricle segmentation, we used instead the segmentation
of the basal ganglia as approximation, and selected the slice 1 cm above the top
of the caudate nucleus.

The following preprocessing steps were computed exactly as described in
Chapter 5. Namely, the segmentation masks were dilated, convolved with a
gaussian kernel to smooth the border of the mask, andmultiplied pixelwise with
the T2 intensities. The masked regions were then cropped, normalized between
0 and 1 using theminimum andmaximum intensity values in themasked region,
and given as input to the neural networks.

3.2 Neural Networks

The preprocessed images were given as input to two different types of neural
networks proposed for automated PVS quantiϐication: (1) a neural networkwith
four convolutional layers and a max-pooling layer which outputs the number of
PVS in a region (Chapter 5) and thatwe callCNN, and (2)GP-Unet, a similar neural
network proposed (Chapter 3, inwhich the downsampling path is followed by an
upsampling path to enableweakly supervised detection of PVS. Networks of both
methods were trained with only image-level labels.

Attention maps of GP-Unet were computed to visualize the focus of the
networks using a linear combination of the featuremaps of the last convolutional
layer, as described in Chapter 3.
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4 Results and Discussion

Table 6.2 shows the Pearson correlation, and Table 6.3 the mean absolute error,
between visual and automated PVS scores for each region and for each method,
and the corresponding inter-rater agreement. Scatter-plots are shown in Figure
6.1. Attention maps of GP-Unet are displayed for each region in Figure 6.2.

There was no noticeable difference in the computation of the regions of
interestwhenusing FSLmasks insteadFreeSurfermasks, but the interpolation to
0.5x0.5x0.8mm3 wasneeded to reuse the networks optimized onhigh resolution
scans. The visual PVS scores were highly correlated to the automated PVS
scores of GP-Unet in the centrum semiovale (0.78 Pearson correlation), were
moderately correlated in the hippocampi (0.52), and a lower correlation in the
basal ganglia (0.28). Attention maps of GP-Unet (Figure 6.2) show that, as
expected, the method focuses on perivascular spaces.

While on research scans, CNN and GP-Unet reached a similar performance in
all regions, our experiments on clinical scans show that the correlation between
visual PVS scores and automated PVS scores of GP-Unet was signiϐicantly higher
than that of visual PVS scores and automated scores of CNN in the centrum
semiovale (Williams’ test, p-value < 0.0001) and in the hippocampi (p-value <

0.05). Contrary to CNN, GP-Unet combines features of different scales via skip
connections, which may have assisted the computation of discriminative shape
features, and improved the detection of single PVS, as opposed to detecting – or
missing because of their too large size – a cluster of PVS without being able to
individually count them.

The correlation in the basal ganglia (0.31 for GP-Unet) is lower than in
the other regions and is notably lower than the inter-rater agreement (0.56).
Attention maps (Figure 6.2) show that the network only detects the largest PVS
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in the basal ganglia, and misses less enlarged PVS. The scatter-plots (Figure
6.1) seem to conϐirm this observation: in the basal ganglia, the networks
underestimate the number of PVS, and predict similarly low numbers of PVS for
all scans.

Table 6.2 shows lower inter-rater agreement for the basal ganglia than for the
other regions. This might be a consequence of PVS being visually rated only in
a single slice in this region (Adams et al., 2013). The low resolution of clinical
scans in z direction might cause a large variability in the selection of this slice,
which might negatively inϐluence the reproducibility of the visual rating. The
automated methods quantify PVS in the complete volume of the basal ganglia,
which was previously shown to be more reproducible than the visual PVS scores
(Chapter 1). Interestingly, the automated PVS scores of both methods – CNN and
GP-Unet – are highly correlated in the basal ganglia (0.73 Pearson correlation).
The correlationbetween their scoreswashigher in thebasal ganglia than in other
regions.

Results in the centrumsemiovale (0.78Pearson correlation) are similar to the
inter-rater agreement (0.75). This is also close to the inter-rater agreement (0.80
intraclass correlation coefϐicient) as reported in earlier studies in high resolution
research scans (Adams et al., 2013). Demonstrated quantiϐication of PVS burden
in the centrum semiovale could aid in the better stratiϐication of cerebral
small vessel disease subtypes, i.e. hypertensive arteriopathy and cerebral
amyloid angiopathy, especially in large and hospital-based cohorts. This would
presumably have important therapeutic and prognostic implications in terms of
prescribing oral anticoagulants and preventing intracerebral hemorrhage. This
is of particular importance in cerebral amyloid angiopathy, that has not only been
related to severe PVS burden in the centrum semiovale (Charidimou et al., 2017),
but also to a signiϐicantly higher risk for intracerebral bleeding in face of oral
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Table 6.2: Correlation between visual and automated PVS scores. Pearson
correlations between the ϐirst rater and GP-Unet, CNN, and the second rater
for each region. Correlations were all signiϐicant (p-value < 0.01). Signiϐicant
correlations after Bonferroni correction are in bold.

GP-Unet CNN R2
Centrum Semiovale 0.78 0.52 0.75

Basal Ganglia 0.31 0.25 0.56
Hippocampi 0.51 0.33 0.64

Table 6.3: Mean absolute errors between visual and automated PVS scores.
Mean absolute error between the ϐirst rater and GP-Unet, CNN, and the second
rater for each region.

GP-Unet CNN R2
Centrum Semiovale 5.58 6.39 4.67

Basal Ganglia 5.67 5.49 3.78
Hippocampi 2.58 3.0 2.08

anticoagulant treatment (Wilson et al., 2018).
In future work, the results in the basal ganglia and the hippocampi may

be improved by ϐine-tuning the neural networks using the clinical dataset, and
by adding data augmentation during training with research scans to imitate
the resolution of clinical scans and contrast variations between different scan
protocols or scanners. The results presented are already promising considering
the large differences between training and test sets.

The complete computation of the automated PVS scores lasts only a few
minutes on CPU. Most of the computation time is spent on FSL brain structures
segmentation and registration from the T1-weighted scans to the T2-weighted
scans. After this preprocessing, the computation of the automated PVS scores
took only about 6 seconds per brain region on CPU. This low computation time
can facilitate the implementation of such a method in clinical practice.
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5 Conclusion

We showed that PVS burden could be automatically quantiϐied in the centrum
semiovale in clinical scans, with an agreementwith visual scores thatwas similar
to the inter-observer agreement. Automated PVS scores were computed with a
neural network thatwas trained high-quality research scans andwith only global
labels of PVS burden. These results could contribute to bringing automated PVS
quantiϐication to the clinic and guide the administration of anti-coagulant drugs.
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Chapter 7

Event-Based Modeling with

High-Dimensional Imaging

Biomarkers for Estimating Spatial

Progression of Dementia

Abstract

Event-based models (EBM) are a class of disease progression models that
can be used to estimate temporal ordering of neuropathological changes from
cross-sectional data. Current EBMs only handle scalar biomarkers, such as
regional volumes, as inputs. However, regional aggregates are a crude summary
of the underlying high-resolution images, potentially limiting the accuracy of
EBM. Therefore, we propose a novel method that exploits high-dimensional
voxel-wise imaging biomarkers: n-dimensional discriminative EBM (nDEBM).
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nDEBM is based on an insight that mixture modeling, which is a key element
of conventional EBMs, can be replaced by a more scalable semi-supervised
support vector machine (SVM) approach. This SVM is used to estimate the
degree of abnormality of each regionwhich is thenused to obtain subject-speciϐic
disease progression patterns. These patterns are in turn used for estimating
the mean ordering by ϐitting a generalized Mallows model. In order to validate
the biomarker ordering obtained using nDEBM, we also present a framework
for Simulation of Imaging Biomarkers’ Temporal Evolution (SImBioTE) that
mimics neurodegeneration in brain regions. SImBioTE trains variational
auto-encoders (VAE) in different brain regions independently to simulate images
at varying stages of disease progression. We also validate nDEBM clinically
using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In both
experiments, nDEBM using high-dimensional features gave better performance
than state-of-the-art EBM methods using regional volume biomarkers. This
suggests that nDEBM is a promising approach for disease progressionmodeling.
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1 Introduction

In 2015, approximately 46.8 million people were estimated to be living with
dementia, and by 2050 this number is expected to have increased to 131.5
million (Prince et al., 2015). Dementia is characterized by a cascade of
neuropathological changes which are quantiϐied using several imaging and
non-imaging biomarkers. Understanding how the different biomarkers progress
from normal to abnormal state after disease onset enables precise estimation of
disease severity in an objective and quantitativeway. This can help in identifying
individuals at risk of developing dementia as well as monitor the effectiveness of
preventive and supportive therapies.

Event-based models (EBM) are a class of disease progression models that
estimate the order in which biomarkers become abnormal during disease
progression using cross-sectional data (Fonteijn et al., 2012; Venkatraghavan
et al., 2019; Young et al., 2014; Huang and Alexander, 2012). It was reported
in a recent paper on discriminative EBM (DEBM) (Venkatraghavan et al., 2019)
that theEBMsare very sensitive to the quality of biomarkers used for building the
model. Hence, to infer theneuropathological changes that occur duringdementia
accurately, good quality biomarkers are important.

An essential step in an EBM involves mixture modeling to obtain
biomarker distributions in normal and abnormal classes (Fonteijn et al.,
2012; Venkatraghavan et al., 2019). This restricts the current EBMs to only
handle scalar biomarkers. In case of imaging biomarkers, regional volumes
from structural MRIs are often used (Venkatraghavan et al., 2019; Oxtoby and
Alexander, 2017; Young et al., 2018, 2014; Fonteijn et al., 2012). However,
regional volumes are a crude summary of the high-dimensional information
available from structuralMRI, resulting in suboptimal EBMperformance, as shall
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be demonstrated later in this chapter. Therefore, we propose a novel method
that exploits voxel-wise imaging biomarkers: n-dimensional discriminative
EBM (nDEBM).

Estimating the accuracy of ordering obtained by EBMs is not feasible as
ground-truth ordering is not known for a disease. In order to validate the
proposedmethod and compare its accuracy with that of existing state-of-the-art
EBM methods, we also present a framework for Simulation of Imaging
Biomarkers’ Temporal Evolution (SImBioTE). SImBioTE uses variational
auto-encoders (VAE) to simulate neurodegeneration in brain regions. These
regions are represented by a vector in the latent space of the VAE. Synthetic
brain regions were created by sampling latent representations corresponding
to target degrees of abnormality which were determined by a ground-truth
ordering of disease progression. The generated synthetic brain regions were
used as inputs for nDEBM, and the regional aggregates were used as inputs for
state-of-the-art EBMs to evaluate the accuracies.
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2 nDEBM

In Section 2.1, a brief introduction to the current DEBM (Venkatraghavan
et al., 2019) model is given. Section 2.2, presents a novel framework to
use semi-supervised SVMs in DEBM for estimating posterior probabilities
of abnormality for high-dimensional biomarkers. In Section 2.3, we use
these posterior probabilities to estimate severity of disease progression in an
individual.

2.1 DEBM

In a cross-sectional dementia dataset (X)ofM subjects (consisting of cognitively
normal (CN) and patients with dementia (DE)), let Xj denote a measurement
of biomarkers for subject j ∈ [1,M ], consisting of N scalar biomarker values
xj,i. As dementia is characterized by a cascade of neuropathological changes that
occurs over several years, even CN subjects can show some abnormal biomarker
values. On the other hand, in DE subjects, a proportion of biomarkers may still
have normal values, especialy in patients at an early disease stage. This leads to
label noise in the data and hence clinical labels cannot directly be propagated
to individual biomarkers. The DEBM model introduced by Venkatraghavan
et al. (2019), similar to previously proposed EBMs (Fonteijn et al., 2012;
Huang and Alexander, 2012; Young et al., 2014), ϐits a Gaussian mixture model
(GMM) to construct the normal and abnormal distributions. These are used
to compute pre-event and post-event likelihoods p(xj,i|¬Ei) and p(xj,i|Ei)

respectively, where an event Ei is deϐined as the corresponding biomarker
becoming abnormal. The mixing parameters are used as prior probabilities to
convert these likelihoods to posterior probabilities p(¬Ei|xj,i) and p(Ei|xj,i).
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p(Ei|xj,i)∀i are used to estimate the subject-speciϐic orderings sj . sj is
established such that:

sj ∋ p(Esj(1)|xj,sj(1)) > p(Esj(2)|xj,sj(2)) > ... > p(Esj(N)|xj,sj(N)) (7.1)

Finally, DEBM computes the central event ordering S from the
subject-speciϐic estimates sj . To describe the distribution of sj , a generalized
Mallows model is used. The central ordering is deϐined as the ordering that
minimizes the sum of distances to all subject-speciϐic orderings sj , with
probabilistic Kendall’s Tau being the distance measure.

2.2 n-Dimensional Biomarker Progression

It was reported by Venkatraghavan et al. (2019) that the accuracy of EBMs
depends on the quality of biomarkers used to build the model. Greater
separability of individual biomarkers results in estimation of more accurate
event ordering. We hypothesize that high-dimensional imaging biomarkers
can increase the separability between the normal and abnormal groups, thus
improving the accuracy when used as inputs to EBMs. The use of GMM in
EBMs however restricts it to using only scalar or low-dimensional biomarkers
as GMMs do not scale well to high-dimensional features. SVMs do scale well
to high-dimensional features, but a supervised soft-margin SVM cannot be used
because of the large amounts of label noise (up to one third of the elderly CN
population could be in pre-symptomatic stages of DE (Schott et al., 2010)). In
this section, we present a way in which scalable semi-supervised SVM classiϐiers
can be used within the DEBM framework with high-dimensional inputs.

Let Xj,i denote the high-dimensional imaging biomarker for brain region
i. Since the clinical diagnosis of the subject cannot be propagated to each
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region, the labels cannot be trusted while training a classiϐier. If we were
to train a classiϐier trusting these labels, independently on each biomarker
(X∀j,i), we hypothesize that labels of the data close to the decision boundary
or on either side of it cannot be completely trusted for that biomarker. For
identifying the labels that cannot be trusted for a biomarker, we propose to
train a linear classiϐier assuming equal class-priors. Fitting a non-linear classiϐier
risks over-ϐitting to the wrongly-labeled data whereas class-priors derived from
labeled data could be misleading as some of the labels might be wrong, for that
biomarker.

For biomarker X∀j,i, subjects whose labels are preserved are considered
as labeled data (XL,i). Subjects whose labels have been rejected, along with
any prodromal subjects in the dataset are considered as unlabeled data (XU,i).
Semi-supervised classiϐiers can be used in this context for obtaining the decision
boundary for each biomarker.

To identify the subjects for whom labels can be trusted when considering
X∀j,i, we ϐirst train a linear SVM (f0;i) based on CN and DE subjects. After
rejecting labels that cannot be trusted (with distance d0;i < |dt| from thedecision
boundary), we use semi-supervised learning with EM (Nigam et al., 2000) using
linear SVM with subject-speciϐic costs (Brefeld et al., 2003) (f1;i, ..., fk+1;i) to
iteratively reϐine the decision boundary. The algorithm for this semi-supervised
classiϐication is given below:

[H] Semi-Supervised SVM Learning with Subject-speciϐic weights [1] i ∈
{1...N} Train f0;i with X∀j∈{CN,DE},i as inputs d0;∀j,i ← prediction of X∀j,i

using f0;i j ∈ {1...M} d0;j,i > |dt|: XL,i ← Xj,i : XU,i ← Xj,i Estimate
p̂0(Ei|XU,i) from d0;U,i (using Platt scaling (Platt et al., 1999)). Train f1;i using
X∀j,i using |p̂0(Ei|XU,i) - p̂0(¬Ei|XU,i)| asweights ofXU,i. Estimate p̂1(Ei|XU,i)

from d1;U,i k ← 1 ||p̂k(Ei|XU,i) − p̂k−1(Ei|XU,i)||2 < ϵ Train fk+1;i using
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X∀j,i ∋ |p̂k(Ei|XU,i) - p̂k(¬Ei|XU,i)| areweights ofXU,i. Estimate p̂k+1(Ei|XU,i)

from dk+1;U,i. k ← k + 1 Estimate p̂k+1(Ei|X∀j,i) from dk+1;∀j,i p(Ei|Xj,i) ←

p̂k+1(Ei|Xj,i)

dt was chosen such that such that 5% of correctly classiϐied data closest to
decision boundary are treated as unlabeled. The weights for XU,i in the above
algorithm is motivated based on the work of Brefeld and Scheffer (2004). It
is done because unlabeled data close to the decision boundary are not the
ideal support vectors. The samples which are farther away from the decision
boundary of the previous iteration can be trusted more as support vectors for
the next iteration of training.

2.3 Patient Staging

Patient staging refers to the process of positioning individuals on a disease
progression timeline characterized by the obtained event ordering. Patient
stage (Υj) is computed as an expectation of event-centers (λn) with respect
to p(n, S,Xj), where n denotes the possible discrete stages in the timeline
characterized by N biomarker events. Event-centers are the positions of the
biomarker events on a normalized disease progression timeline [0, 1], that
capture relative distances between events.

Υj =

∑N
n=1 λnp(n, S,Xj)∑N
n=1 p(n, S,Xj)

(7.2)

p(k, S,Xj) can be expressed in-terms of posterior probabilities of events
obtained from semi-supervised SVM as:

p (n, S,Xj) ∝
n∏

i=1

p
(
ES(i)|Xj,S(i)

)
×

N∏
i=n+1

p
(
¬ES(i)|Xj,S(i)

)
(7.3)
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3 SImBioTE: A Validation Framework

For validating classical EBMs and nDEBM in a uniϐied framework, we extend the
framework developed by Young et al. (2015) for simulating datasets consisting of
scalar biomarkers, to be capable of generating datasets with realistic voxel-wise
imaging biomarkers. It was built on the assumption that the trajectory of
biomarker progression follows a sigmoid. Using a similar assumption, we
consider the degree of abnormality in different regions (aj,i) follows a sigmoidal
trajectory.

aj,i(Ψ) =
1

1 + exp(−ρi(Ψ− ξj,i))
+ ϵ (7.4)

Ψ denotes disease stage of a subject which we take to be a random variable
distributed uniformly throughout the disease timeline. ϵ is the equivalent
of measurement noise, which represents randomness in the measurement of
abnormality. ρi signiϐies the rate of progression of a biomarker, which we take
to be equal for all subjects for all biomarkers. It was shown by Venkatraghavan
et al. (2019) that the performance of EBMs is similar for equal ρi∀i and unequal
ρi. ξj,i denotes the disease stage at which the biomarker becomes abnormal.

After randomly choosing degrees of abnormalities for different regions, we
use a variational autoencoder (VAE) (Kingma andWelling, 2014) for each region
i, to generate 3D images of these brain regions at a target degree of abnormality
aj,i(Ψ). VAEs are neural networks consisting of two main components: an
encoderEwhich projects input images into a lower dimensional spaceRK called
the latent space, and a decoder D which generates images from their hidden
representation in the latent spaceZ ∈ RK . Once theVAEhasbeen trainedusing a
large dementia dataset, a latent representationZj,i;t corresponding to the target
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degree of abnormality aj,i(Ψ) can be sampled in the latent space. The decoderD
then generates a 3D imageD(Zj,i;t) corresponding to aj,i(Ψ). Belowwedescribe
the VAE used in this work, and the sampling strategy in the latent space.

3.1 Implementation of the Convolutional Variational Autoencoder

Figure 7.1 summarizes the architecture of our VAE. We use a ReLU activation
after each convolutional layer, except after the last 1*1*1 convolutional layer.
We implemented the loss function as proposed by Kingma and Welling (2014),
with mean-square-error (MSE) and Kullback-Leibler divergence. We optimized
the network with Adadelta (Zeiler, 2012).

3.2 Sampling Strategy in the Latent Space

To navigate in the latent space RK
i of region i, we use Euclidean geometry. We

ϐirst build a scale vectorUi in the latent space to describe the range of the disease
from CN to DE. In order to generate a point Zj,i;t ∈ RK

i at the target degree of
abnormality aj,i(Ψ), we ϐirst randomly sample a pointZj,i;s ∈ RK

i , and translate
it along the direction of the scale vectorUi until we reach the target abnormality
aj,i(Ψ).

3.2.1 Scale Vector from Cognitively Normal to Dementia.

To build the scale vector Ui, we ϐirst compute the latent representations of all
the images of region i in the training dataset by projecting these images in the
latent space RK

i using the encoder E. Then we use the binary labels – CN and
DE – of each subject j to compute the means µi;CN ∈ RK

i and µi;DE ∈ RK
i , and

standard deviations σi;CN ∈ RK
i and σi;DE ∈ RK

i for each of the two categories
respectively.
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This is followed by computing the vector joining the two mean points as
ui = µi;DE − µi;CN . The idea is to create a vector Ui spanning the range of
the disease progression, from CN to DE. However, ui joins only the means, if
we want to capture the whole distribution, we need to lengthen this vector by a
multiple of the standard deviations, on both sides: for instance by 3σi;CN in the
CN side, and 3σi;DE on the DE side. To do so, we compute the scalar projections
of the standard deviations as σi;CNp = |σi;CN .ûi| and σi;DEp = |σi;DE .ûi|,
where ûi = ui/||ui||2. Now we can compute the new origin point (CN) as
O = µi;CN − 3σi;CNpûi, and the new end point (DE) asM = µi;DE +3σi;DEpûi.
Finally, we can compute Ui = M −O. Note that Ûi = Ui/||Ui||2 = ûi.

3.2.2 Navigation for generation

We ϐirst randomly sample a point Zj,i;s using the mean and standard deviation
of the latent representations of all subjects j for region i. The degree of
abnormality aj,i;s of this randomly sampled point Zj,i;s can be computed as
aj,i;s = OZj,i;s.Ûi/||Ui||2. To reach the target point Zj,i;t, we need to translate
the randomly sampled point Zj,i;s. This now can be done by computing Zj,i;t =

Zj,i;s+(aj,i;t−aj,i;s)Ui. To generate the corresponding brain regionwe can now
use the decoder and computeD(Zj,i;t).
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4 Experiments and Results

This section describes the experiments performed to validate the proposed
nDEBM algorithm and also compare it with classical EBM (Fonteijn et al., 2012)
and DEBM (Venkatraghavan et al., 2019) algorithms.

4.1 ADNI Data

We considered 1737 ADNI subjects (417 CN, 106 with signiϐicant memory
concern (SMC), 872 with mild cognitive impairment (MCI) and 342 AD subjects)
who had a 1.5T structural MRI (T1w) scan at baseline. This was followed
by multi-atlas brain extraction using the method described by Bron et al.
(2014). Gray matter (GM) volumes of segmented regions were regressed on
age, sex and intra-cranial volume (ICV) and the effects of these factors were
subsequently corrected for. Student’s t-test between CN and AD was performed
on these confounding factor corrected GM volumes and 15 regions with smallest
p-values were retained. They were subsequently used as inputs for DEBM
and EBM (Fonteijn et al., 2012) models. The optimization routine proposed
by Venkatraghavan et al. (2019) was used to train the GMM in these twomodels.

The T1w images were registered to a common template space based on the
method used by Bron et al. (2014). Probabilistic tissue segmentations were
obtained for white matter (WM), GM, and cerebrospinal ϐluid on the T1w image
using the uniϐied tissue segmentation method (Ashburner and Friston, 2005).
The voxel-wise GM density maps were computed based on the Jacobian of the
local deformation map and the probabilistic GM volume. The GM density maps
from the corresponding 15 regions were used as inputs for nDEBM.

221



Part E - Chapter 7

4.1.1 Model Validation

Since the groundtruth ordering is not known in a clinical setting, validation of
these models was done based on the resulting patient stages for classifying AD
subjects from CN as well as for classifying MCI non-converters (MCI-nc) from
converters (MCI-c)¹. We performed 10-fold cross-validation with 10 repetitions.
The training set was used to train the threemodels. The disease timeline created
during training was used to stage the patients in the test-set.

Figure 7.2: AUC measures when patient stages of nDEBM, DEBM and EBM were
used for classifying AD vs CN (left) and MCI-c vs MCI-nc (right). The error bar
represents the standard deviation in 10 random repetitions.

Figure 7.2 shows the results of 10 random repetitions of 10-fold
cross-validation on ADNI dataset. The error-bar shows the standard deviation

¹MCI converters are subjects who convert to AD within 3 years of baseline measurement
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of the AUCs when the patient stages obtained from nDEBM, DEBM and EBM
were used to classify AD vs CN and MCI-c vs MCI-nc.

4.1.2 Uncertainty in Estimation

Variation of the positions of the biomarker events on a normalized disease
progression timeline (event-centers) estimated by nDEBM and DEBM was
studied by creating 100 bootstrapped samples of the data and applying nDEBM
on those samples ².

Figure 7.3 shows event-centers estimated by nDEBM and DEBM along with
the uncertainty in their estimations. The biomarkers are ordered along the y-axis
based on the event-ordering obtained by nDEBM.

4.2 Simulation Data

In our experiments, ξj,i ∀j are random variables with N(µξi ,Σξi). µξi were
equally spaced for different i. The value of Σξi was set to be ∆ξ where ∆ξ is
the difference in µξi of adjacent events. ρi was considered to be equal for all
biomarkers. Ψ of the simulated subjects were distributed uniformly throughout
the disease timeline.

We ϐirst trained 15 VAEs (one per selected region) on the GM density maps
of the ADNI dataset. Then we generated - as detailed in Section 3 - images
for these 15 regions and for 1737 artiϐicial subjects according to pre-computed
degrees of abnormality as deϐined in Equation 7.4. These degrees of abnormality
are different for each region and each subject. We repeated this process 10

times, with different random simulations. The voxel-wise GM density maps of
regions were used for obtaining the ordering using nDEBM. The GM volume of

²EBMwas left out of this experiment as the concept of event-centerswas not introduced for EBM.
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the simulated regions (computed by integrating the GM density map over the
region of interest) were used as biomarkers for DEBM and EBM.

SimBioTE results depicting Lateral occipitotemporal gyrus atrophy in
simulated images is shown in Figure 7.4. The images thus generated were used
for validating different EBMmethods.

The errors made by different EBM methods on SImBioTE data are shown
in Figure 7.5. The estimated ordering and the ground-truth orderings were
compared using Kendall’s Tau distance.
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Figure 7.4: An example of lateral occipitotemporal gyrus (right) atrophy as
simulated by SImBioTE. The interpolation spans the full range Ui, as described
in section 3. Left is normal (CN) and right is abnormal (DE). The two rows shows
disease progression in two different simulated subjects.

Figure 7.5: Inaccuracies, as measured by Kendall’s Tau distance from
groundtruth, of nDEBM, DEBM and EBM. The error bar represents the standard
deviation of the errors made in 10 repetitions of simulations.
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5 Discussions

We proposed a novel method (nDEBM) that exploits high-dimensional
voxel-wise imaging biomarkers for event-basedmodeling using semi-supervised
SVM. This was validated based on ADNI dataset, where the spatial spread of
structural abnormality was estimated based on a cross-sectional dataset.
However this is an indirect validation of the orderings based on accuracy of the
estimated patient stages, since the ground-truth ordering for clinical data is
unknown.

To unambiguously validate the orderings obtained, we also proposed a new
simulation framework (SImBioTE) to simulate voxel-wise imaging biomarkers
based on training VAEs on different regions. It is known that GM tissue is lost in
AD progression. Therefore the voxel-wise GM density maps will become darker
as the disease progresses, as can be observed in Figure 7.4. It was also observed
in Figure 7.4 that simulated regions for different subjects shows considerable
variations. This shows that the simulation framework is capable of generating
datasets with realistic atrophy and with good inter-subject variability. This,
in combination with the scalar biomarkers’ simulation framework, results in
images where the disease progression in different regions can be controlled.
However, amore thorough validation of the simulation framework by comparing
the atrophy patterns of the simulated data with that of real-life longitudinal
data is needed to understand the effect of different model parameters. Possible
extensions of SImBioTE includes simulating whole brain images from these
independent regions, which can be used to validate wider range of disease
progression models.

The datasets simulated by SImBioTEwere used for inputs for different EBMs.
It was observed in Figure 7.5 that the orderings obtained by nDEBM are much
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closer to the ground-truth as compared to DEBM and EBM. It was also observed
in Figure 7.2 that the patient stages obtained by nDEBM delineates AD and CN
subjects much better than the ones obtained by DEBM and EBM. The AUCs of
classifying MCI-c vs MCI-nc are also marginally better for nDEBM as compared
to the other two methods. These experiments serve as a validation for our
initial hypothesis that increasing the dimensionality of the inputs helps in better
delineation of normal and abnormal regions, which increases the accuracy of the
resulting ordering. It can hence be concluded that the voxel-wise data helps
nDEBM in estimating the disease progression more accurately than regional
volumes. However, the choice of hyper-parameters in nDEBM (for e.g. dt, SVM
slack parameters) was done ad-hoc. The effect they have on the accuracy of
the resulting ordering needs to be studied through more rigorous validation
experiments.

The difference in event orderings obtained by nDEBMandDEBMas observed
in Figure 7.3 suggests that the two types of inputs can lead to very different
results. Hence, computing regional aggregates, such as volumes, and using
that as inputs for EBMs as done by Venkatraghavan et al. (2019); Oxtoby and
Alexander (2017); Young et al. (2018, 2014); Fonteijn et al. (2012) is not an
optimal choice for estimating the spatial progression of disease.
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6 Conclusion

We hypothesized that high-dimensional imaging biomarkers would result in
better delineation of normal and abnormal regions thus leading tomore accurate
event-based models. We hence proposed a novel method (nDEBM) that exploits
high-dimensional voxel-wise imaging biomarkers based on semi-supervised
SVM to estimate temporal ordering of neuropathological changes in the brain
structure using cross-sectional data. We also proposed a simulation framework
(SImBioTE) using variational auto-encoders that mimics neurodegeneration in
brain regions to validate nDEBM. Furthermore, we applied nDEBM framework
to a set of 1737 subjects from ADNI dataset for clinically validating the
method. In both experiments, nDEBM using high-dimensional features gave
better performance than state-of-the-art EBM methods using regional volume
biomarkers. This served as a validation for our initial hypothesis. nDEBM thus
presents a new paradigm for estimating spatial progression of dementia.
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Chapter 8

Multi-atlas image registration of

clinical data with automated

quality assessment using ventricle

segmentation

Abstract

Registration is a core component of many imaging pipelines. In case of
clinical scans, with lower resolution and sometimes substantial motion artifacts,
registration can produce poor results. Visual assessment of registration quality
in large clinical datasets is inefϐicient. In this work, we propose to automatically
assess the quality of registration to an atlas in clinical FLAIR MRI scans of the
brain. The method consists of automatically segmenting the ventricles of a
given scan using a neural network, and comparing the segmentation to the atlas’
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ventricles propagated to image space. We used the proposedmethod to improve
clinical image registration to a general atlas by computing multiple registrations
- one directly to the general atlas and others via different age-speciϐic atlases
- and then selecting the registration that yielded the highest ventricle overlap.
Finally, as an example application of the complete pipeline, a voxelwise map of
white matter hyperintensity burden was computed using only the scans with
registration quality above a predeϐined threshold. Methods were evaluated
in a single-site dataset of more than 1000 scans, as well as a multi-center
dataset comprising 142 clinical scans from 12 sites. The automated ventricle
segmentation reached a Dice coefϐicient with manual annotations of 0.89 in
the single-site dataset, and 0.83 in the multi-center dataset. Registration
via age-speciϐic atlases could improve ventricle overlap compared to a direct
registration to the general atlas (Dice similarity coefϐicient increase up to 0.15).
Experiments also showed that selecting scans with the registration quality
assessment method could improve the quality of average maps of white matter
hyperintensity burden, instead of using all scans for the computation of the
white matter hyperintensity map. In this work, we demonstrated the utility
of an automated tool for assessing image registration quality in clinical scans.
This image quality assessment step could ultimately assist in the translation of
automated neuroimaging pipelines to the clinic.
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1 Introduction

Image registration has proven a fundamental part of many processing pipelines
in the biomedical imaging ϐield, establishing spatial correspondence between
images and enabling subsequent group or cohort analyses. However, when using
clinical, low resolution brain data, image registration can be challenging. E.g. in
acute ischemic stroke populations, high-resolution image acquisition in the acute
disease state is not possible due to clinical time constraints. Nonetheless, such
clinical cohorts offer great amounts of untapped information due to the large
number of samples available, often in the range of thousands of patients (Giese
et al., 2017; Courand et al., 2019), which can be utilized to unveil spatial patterns
of disease burden (Bilello et al., 2016; Schirmer et al., 2019b). Importantly, as
clinical images have more variability than scans acquired primarily for research,
they necessitate quality control steps after registration to ensure that no gross
errors occurred in the process. Quantifying the registration quality, utilizing
only intensity-based metrics such as mutual information or cross-correlation, is
often not enough, and in practice registration quality is assessed using manual
ventricle segmentations to evaluate the overlap between the patient data and the
registration target, i.e. brain template or atlas (Ou et al., 2014; Dalca et al., 2016;
Ganzetti et al., 2018).

Considerable work has been conducted to generate appropriate brain
templates for image registration, using data from healthy young adults (Dickie
et al., 2017) or age appropriate cohorts from the general population (Schirmer
et al., 2019b). These templates can consequently be used for segmentation
of brain structures, but often yields unsatisfactory results in clinical scans.
For instance, outlining of the ventricles in such clinical scans is often done
manually, or semi-automatically (Hussain et al., 2013; Xia et al., 2004). Manually
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outlining the ventricles is a time intensive step, and hinders quality assessment
in large scale cohorts. Deep learning techniques have been developed to
automatically segment structures in clinical quality scans, using for instance
U-Net architectures (Schirmer et al., 2019a; Nikolov et al., 2018; Guerrero et al.,
2018). Given enough training data, these techniques can reliably generate
accurate, fully automated masks of the structures of interest. The use of a U-Net
architecture has been proposed to generate automated segmentations of the
lateral ventricles alone (Ghafoorian et al., 2018), and recently of the complete
ventricular system (Atlason et al., 2019; Shao et al., 2019), showing promising
results, which can be utilized in automated assessment of image registration
quality.

Automated registration quality assessment methods can also be used
to improve the registration results in atlas selection methods. Multi-atlas
segmentation has for instance become an increasingly popular segmentation
method in neuroimaging pipelines (Iglesias and Sabuncu, 2015). One of its
simplest implementations is to register several atlases pairwise to an image,
propagate the labels of the atlases in image space, and choose the ϐinal label
for each voxel using majority voting. Probabilistic label fusion strategies have
also been proposed, such as Wang et al. (2013) who proposed to exploit the
intensity similarity between atlases and the target image in the neighborhood
of each voxel. Robinson et al. (2019) recently proposed a method to perform
automated quality control of segmentations of cardiovascular data from the UK
biobank. The authors registered a set of annotated images to a test image with
unknown ground truth. The labelswere thenwarped using the deformation ϐield
from image registration, and the overlap between the warped labels and the
predicted segmentation was used to estimated the segmentation performance.
In other words, the segmentation of the image with unknown ground truth
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is compared to that of a multi-atlas segmentation, where smaller difference
between segmentations are assumed to reϐlect higher segmentation quality.
Instead of using the same set of atlases for multi-atlas segmentation, a most
appropriate subset of atlases can also be selected. Recently, Antonelli et al.
(2019) proposed for instance to select subsets of atlases for each target image
using a genetic selection algorithm, and evaluated their method in cardiac and
prostate data. To decrease the computation time of multi-atlas segmentation,
Dewey et al. (2017) proposed to add an intermediary registration step to a
template constructed from the set of the considered atlases, using for instance
multivariate template construction algorithm. Creating robust registration
methods to map clinical scans to atlases is key to the ϐield of lesion-symptom
mapping. For example, Biesbroek et al. (2013) studied lesion-symptommapping
with brain lesions, such as whitematter hyperintensities and lacunes, in relation
to cognition.

In this work, we developed a ventricle segmentation deep learning algorithm
based on a 3D U-Net-like architecture to segment the complete ventricular
system in each subject’s ϐluid-attenuated inversion recovery (FLAIR) sequence
and validated it in a multi-center, clinical dataset comprising 12 sites.
The ventricle segmentation was then used to assess registration quality by
comparing it – using the Dice similarity coefϐicient – to the ventricles of the atlas
propagated to the target image space. Over all brain regions, due to its very
discriminative image intensity values and its relatively large size, the ventricular
system presents a feature of the brain that is robust to variations in scanners and
FLAIR protocols, making it a prime candidate for using its segmentation to assess
registration quality. This automated registration quality assessmentmethod can
be used not only to ϐlag or discard erroneous registrations, but also to select the
best registration. As an example, we proposed to use this automated registration
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quality assessment method to improve registration quality by designing a
multi-atlas registration (MAR) framework. Instead of directly registering images
to a single template (general atlas), each image was additionally registered to
ϐive different atlases corresponding to different age categories, which in turn
have been registered to the general atlas. The best atlas was then selected
using the automated registration quality assessment method, and used as a
transitional registration step before warping the subject image to the common
space. Contrary to the above-mentioned multi-atlas segmentation methods, the
purpose of the proposed MARmethod was to improve the results of registration
to the common space, and not to improve the results of segmentation of brain
regions in the target image. Finally, we used the proposed MAR framework
to create voxelwise maps of white matter hyperintensity (WMH) burden in a
set of acute ischemic stroke patients, where Dice coefϐicient thresholds were
used to control the quality of registration. In summary, our main contributions
are an algorithm for the segmentation of the complete ventricular system in
clinical scans, the evaluation of ventricle overlap as registration quality metric,
and a multi-atlas registration framework to improve registration of images to a
common space.
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2 Material and Methods

2.1 Data

2.1.1 Onsite clinical data

We utilized data of the Genes Affecting Stroke Risk and Outcomes Study
(GASROS) study (Zhang et al., 2015). Patients (> 18 years old) presenting
to the Massachusetts General Hospital Emergency Department (ED) between
2003 and 2011 with symptoms of acute ischemic stroke, were eligible for
enrollment. Magnetic resonance images were acquired within 48 hours of
admission and only patients with conϐirmed acute diffusion-weighted imaging
lesions onbrainMRI scanswere included. 1132patients underwent the standard
acute ischemic stroke protocol on a 1.5T Signa scanner (GE Medical Systems),
including T2-weighted FLAIR imaging (TR5000ms,minimumTEof 62 to 116ms,
TI 2200ms, FOV 220-240mm). For each patient, WMH were segmented using
MRIcro software (University of Nottingham School of Psychology, Nottingham,
UK;www.mricro.com), based on a previously published semi-automatedmethod
with high inter-rater reliability (Chen et al., 2006). Ventricles were manually
segmented by a single rater in a subset of 300 patients’ FLAIR images using 3D
Slicer (Fedorov et al., 2012). Of the 300 scans, 100 were chosen to uniformly
sample the age range in the GASROS cohort, 100 were chosen to span the range
of WMH disease burden, and the remaining 100 were randomly selected. This
set was used for network training and validation of the automated ventricle
segmentation method. In addition, a test set of 100 patients were selected
to approximately represent the range of ventricular volume in the patient
population. Scans were selected with a semi-automated method that estimates
ventricular volume using nonlinear registration to an atlas. The semi-automated
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method involved a quality control step to ensure that the range was uniformly
sampled. These 100 scans were then segmented by a second rater.

2.1.2 Multi-center clinical data

The MRI-GENetics Interface Exploration (MRI-GENIE) study is a large-scale,
international, hospital-based collaborative study of acute ischemic stroke
patients (Giese et al., 2017), including FLAIR data from12 sites (7 European, 5US
based), acquired as part of each hospital’s clinical acute ischemic stroke protocol.
For each acquisition site, 12 patients were selected (Schirmer et al., 2019a)
and underwent manual ventricle segmentations. Two of the patients displayed
substantialmotion artifacts, andwere excluded fromour analysis, forming a total
set of N=142 scans with manual brain and ventricle segmentation. This set was
used as an additional test set for the evaluation of the ventricle segmentation
algorithm and the proposed MAR framework.

2.1.3 ADNI data

Part of the data used in the preparation of this chapter were also obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
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2.1.4 Brain atlases

Using 130 healthy controls fromADNI3 dataset (Jack et al., 2008) (Field strength
3T; 3D FLAIR; TE 119; TR 4800; TI 1650; 1.2x1x1mm3; see Appendix B for
list of subject IDs), we created ϐive FLAIR atlases, each corresponding to a
different age category: under 70 years old (N=6 subjects), between 70 and 75
(N=22), between 75 and 80 (N=31), between 80 and 85 (N=39), and above 85
(N=32). The atlaseswere created using ANTsmultivariate template construction
algorithm with default parameters (Avants et al., 2011). Similarly, a general
atlas was created by averaging the ϐive age-speciϐic atlases, also using using
ANTs multivariate template construction algorithm with default parameters
(Avants et al., 2011). All atlases were manually skull stripped and registered
to MNI space. The resulting image resolution was 1mm3 and the image size
182x218x182 voxels. Ventricles were manually segmented in the general
atlas. Each of the ϐive age-speciϐic atlases was diffeomorphically registered to
the general atlas, to allow the propagation of the ventricle segmentation to
age-speciϐic atlases, and to warp the images to the general atlas space in the
MAR framework. To assess which atlases were most similar to the general atlas,
we computed the mean squared intensity difference between the age-speciϐic
atlases and the general atlas.

2.2 Automated ventricle segmentation

Image intensities were rescaled so that the 1st percentile of intensity values
(without masking) is equal to 0 and the 99th percentile is equal to 1. The full
3D images were passed as input to a deep learning model. Prior to ventricle
segmentation, each FLAIR image underwent brain extraction using a dedicated
U-Net based deep learning method (Schirmer et al., 2019a) developed and
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Figure 8.2: Principle of the proposed MAR framework. For each subject,
the input image was ϐirst registered to each of the atlases a ∈ A, which had
been previously registered to the general atlas. The ventricles segmented on the
general atlas Vg are then propagated ϐirst to each atlas a, and then to the subject’s
image space. The propagated ventricles Vx,a,g were subsequently compared
to VCNN , the subject’s ventricles segmented using the proposed automatic
algorithm. Finally, the atlas maximizing the registration quality was selected for
the intermediary registration step.

validated in clinical scans. The resulting brain mask was also given as input to
themodel. While test data had varying voxel dimensions, training data consisted
only of images with image size of 256x256 voxels in axial (inplane) direction,
and less than 32 voxels in through plane direction. All images were then padded
in z to have 32 slices. During inference, we resized images to 256x256x32
voxels using linear interpolation, predicted the corresponding ventricle maps,
and resized these maps to the original image resolution.

We used a 3D U-Net-like architecture (Figure 8.1), based on two
up-/down-sampling layers. Each convolution layer had a kernel size of 3x3x3
with ReLu activations, and we utilized 2x2x2 Max-Pooling for downsampling.
To accelerate convergence without overloading the GPU memory, we added a
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Batch Normalization layer (Ioffe and Szegedy, 2015) after the features maps
with the lowest resolution (5th convolution layer). Additionally, to improve
generalization, we added a Dropout layer (Srivastava et al., 2014) before
the last convolution. The parameters of the network were optimized with
the Adadelta optimizer (Zeiler, 2012). To improve generalisation, we also
trained the algorithm with online data augmentation using random translations
< 50 voxels, 3D rotations of maximum 0.2 radian and ϐlipping according to
the coronal plane. The intensity of the ventricles and of the sulci were also
separately randomized for data augmentation. To artiϐicially increase the
intensity of the ventricles, we used the annotations and randomly added to the
ventricles intensities a maximum of 2µ, with µ the mean intensity of the FLAIR
scans after percentile normalization. To artiϐicially modify the intensity of the
sulci, we randomly added between−2µ and 2µ to regions of the images with an
intensity value lower than 0.25 after percentile normalization. The algorithm
was implemented using the publicly available Keras 2.2.0 library (Chollet et al.,
2015) with TensorFlow 1.10 as backend (Abadi et al., 2016).

The network’s outputs were binarized at a threshold of 0.5. To improve
the segmentation, in the ventricle binary maps, we removed small connected
components with a volume smaller than a manually determined threshold of 5
voxels.

2.3 Registration quality assessment

All pairwise registrations from image to atlas were performed using ANTs SyN
nonlinear diffeomorphic registration algorithmwith default parameters (Avants
et al., 2011). Inverse registrations were computed to allow the propagation of
atlases’ ventricle segmentations to image space. The quality of the registration
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Tx,a of an imagex to an atlas a canbe assessedbymeasuring the overlap between
the ventricles segmented by the CNN in image space (VCNN ) and the ventricles
of the atlas a (Va) propagated to image space Vx,a = T−1

x,a(Va). We denote
this registration quality metric as Qx,a = D(VCNN , Vx,a), where D is the Dice
similarity coefϐicient.

Other more conventional metrics – that measure e.g. image similarity –
could be used instead to assess registration quality. We assessed this based on
the cross-correlation (CC), i.e. the registration metric itself (ANTS SyN (Avants
et al., 2008; Sarvaiya et al., 2009; de Groot et al., 2013)) between the registered
image x and each atlas a such that Qx,a = Tx,a(x) ⋆ a, where ⋆ denotes the
cross-correlation operation. Prior to the computation of the cross-correlation,
images were rescaled in [0, 1] using their minimum and maximum intensity
values.

2.4 Multi-Atlas Registration

Each scan was registered pairwise to each atlas inA = a1, ..., a5, g, where ai are
the age-speciϐic atlases and the g is the general atlas. For a given scan, the best
atlas bwas then selected based on the registration quality metricQ, so that

b =a∈A Qx,a, (8.1)

with, for the ventricle overlap qualitymetric,Qx,a = D(VCNN , Vx,a,g), where
Vx,a,g = T−1

x,aT
−1
a,g (Vg). If the best atlaswas not the general atlas, the scan uses the

intermediate registration target b and is then warped to the general atlas using
the deformation ϐield of the registration of the intermediary atlas to the general
atlas (Figure 8.2).
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3 Experiments

3.1 Ventricle Segmentation

The ventricle segmentation algorithm was optimized using the
training/validation set, which was randomly split into 240 training scans and
60 validation scans to monitor over-ϐitting. The algorithm was then evaluated
on the test set of 100 scans. The experiments with the MAR framework were
conducted using the complete GASROS dataset excluding the 300 scans used
to optimized the ventricle segmentation algorithm and 41 scans with strong
motion artifacts, but excluding the 100 scans of the test set for ventricle
segmentation, hence resulting in 791 scans.

We assessed the automatic segmentation of the ventricular system in the
FLAIR sequences based on 11 different metrics. These metrics included the Dice
similarity coefϐicient (Dice), Jaccard index (Jaccard), true positive rate (TPR),
mutual information (MI), Cohen’s kappa (KAP), intraclass correlation coefϐicient
(ICC), volumetric similarity (VS), adjusted Rand index (ARI), probabilistic
distance (PBD), detection error rate (DER) and outline error rate (OER). VS
was computed as the absolute volume difference divided by the sum of both
volumes. ARI is Rand index corrected for chance. Rand indexmeasures similarity
between clusters. PDB measures the distance between fuzzy segmentations.
DER measures the disagreement in detecting the same regions, namely the sum
of the volumes of regions detected in only one of both segmentations. OER
measures the disagreement in outlining of the regions, namely the difference
between union and intersection of regions detected in both segmentations. A
detailed description of the metrics is given elsewhere (Taha and Hanbury, 2015;
Wack et al., 2012).
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PBD, DER, and OER are a measure of dissimilarity, where smaller values
represent better agreement. As DER and OER are bounded metrics, we rescaled
them between 0 and 1, and reported 1-DER and 1-OER. In case of PBD (not
bounded), we reported 1/(1+PBD). Subsequently, all similarity metrics are
bound between 0 and 1, where 1 indicates a perfect segmentation. Results are
visualized as radar plots.¹

3.2 Evaluation of the multi-atlas registration framework

We compared the proposed multi-atlas registration method to a direct
registration to the general atlas and quantiϐied the gain in registration
performance by the difference ∆b,g = Qx,b − Qx,g , where Q represents the
Dice coefϐicient of ventricle overlap. We computedWilcoxon tests on all subjects,
in order to evaluate the efϐicacy of the proposed MAR framework. Additionally,
we investigated the effect of utilizing different registration quality assessment
metrics and the dependency of age and ventricle volume on the selection of the
best atlas.

3.3 Spatial maps of WMH burden

Utilizing the manual WMH segmentations from GASROS, we generated an
average voxelwise map of WMH burden in template space. After using the
MAR framework, we selected subjects for which registration quality was above
a threshold T . Using three different thresholds T = 0, 0.6, and 0.9, we visually
assessed the quality of WMHmaps constructed.

¹Github link - https://github.com/marconardin/spider-plotting
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4 Results

4.1 Ventricle segmentation

The results of evaluating the automated ventricle segmentation (see Figure
8.3) show good agreement between the manual and automated ventricle
segmentations, with Dice coefϐicients of 0.89 for the single-site GASROS dataset
and 0.83 for the multi-site MRI-GENIE dataset. Results of the ventricle
segmentation for the MRI-GENIE data set, stratiϐied by site, are shown in
Appendix A.

4.2 Multi-atlas registration

4.2.1 Atlas creation

Figure 8.4 shows the age-speciϐic atlases created from the healthy controls from
the ADNI dataset. Computing themean squared intensity difference between the
age-speciϐic atlases and the general atlas revealed that atlas 75-80was the closest
to the general atlas, and atlas 80-85 was the most dissimilar.

4.2.2 Gain in registration performance

The gain in registration performance ∆b,g is shown for each dataset in Figure
8.5 and Appendix E. We observed age-dependent improvements with increases
of ventricle overlap by up to 0.15 Dice points. Wilcoxon tests showed that
the proposed MAR method reached a signiϐicantly higher registration quality
– measured as ventricle overlap – than that of the direct registration to the
general atlas (Figure 8.6) in N=430 GASROS subjects (54%) and 93 MRI-GENIE
subjects (65%). However, when using cross-correlation instead of ventricles
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overlap for intermediary atlas selection, the proposedMARmethoddid not reach
a signiϐicantly higher registrationquality than that of thedirect registration to the
general atlas (Figure 8.6; Appendix C and D). As expected, younger patients with
lower ventricle volume were assigned to atlases of younger categories (Figure
8.7).

4.2.3 Manual versus automated ventricle segmentation

To assess the validity of using the CNN results as reference for the registration,
we evaluated the difference of results for the MAR framework in each dataset
when using manually versus automatically segmented ventricles and found no
large difference (Figure 8.8 and Table 8.1).

4.2.4 Spatial WMHmaps of WMH burden

Figure 8.9 shows that increasing the threshold of registration quality (rejecting
more subjects) reduces, e.g., the erroneous extension of the WMH into the CSF
compartments of the brain.
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5 Discussion

In this chapter, we demonstrated the use of a ventricle segmentation algorithm
using clinical FLAIR sequences, for automated registration quality assessment,
and validated the proposed quality assessment metric in a multi-atlas
registration (MAR) framework.

The registration quality assessment method compared the ventricles of a
subject, segmented with a machine learning algorithm, to the ventricles of the
atlas, propagated to subject space. A ventricle segmentation algorithm that is
robust to variations in scanners, sites and image resolutions is consequently a
keypoint of its applicability. Here, we demonstrated that the proposed algorithm
performed well in a multi-site scenario, while being trained with data from a
single site. While, as expected, the algorithm reached a higher performance
for the dataset it was optimized on (GASROS), the performance dropped by
less than 6 percentage points of Dice coefϐicient when used on multi-site
data. Importantly, the segmentation method generalized well to the other,
multi-site data by designing appropriate data augmentation procedures, and
without employing advanced transfer learning algorithms. Using manually or
automatically segmented ventricles using the proposed deep learning algorithm,
led to similar results with the MAR framework in each dataset (Figure 8.8 and
Table 8.1), with a difference in mean gain in Dice coefϐicient of 0.001 in GASROS
dataset, and 0.004 in the MRI-GENIE dataset. The largest differences were that:
(1) when using the automated segmentation, more scans were assigned to atlas
of age range 70-75 instead of atlas under 70 or the general atlas, and (2) when
using the manual segmentation, more scans were assigned to atlas of age range
above 85 instead of the general atlas.

Klein et al. (2009) showed that formultiple registration algorithms (including
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ANTS) the registration error of the ventricles correlates with registration errors
in other regions. Manually annotated landmarks describing brain structures in
the atlas could help to monitor more globally the registration quality than using
the ventricles alone. However, automatically detecting such landmarks in clinical
data remains a difϐicult task, andmight lead tomore erroneous cases, in contrast
to segmenting a large, reliable structure, such as the ventricles. However, our
framework can be extended to use multiple segmentations such as grey and
white matter segmentations in the future.

We used the automated registration quality assessment method to design
a multi-atlas registration (MAR) framework for improving registration quality.
Instead of being directly and only registered to a general atlas, scans were
ϐirst registered to atlases corresponding to several age categories. The best
of these atlases was then chosen using the registration quality assessment
method, and registration to the selected atlas was used as an intermediary
registration step. In our dataset, using the MAR framework with ventricle
overlap signiϐicantly improved the registration quality. Patients were often
assigned to an intermediate atlas that was closer to their chronological age.
However, we observed a shift, where, on average, subjects were matched to
age-speciϐic atlases of an older age category than their chronological age. This
most probably resulted from the speciϐic cohort in our analyses: all subjects had
a prior acute ischemic event, which may reϐlect brains with increased biological
age. This is further supported by studies which suggested that biological age,
in contrast to chronological age, can play a key role in susceptibility to disease
(Wang et al., 2019).This suggests also that selecting the age-speciϐic atlas using
the patient’s chronological age would be a suboptimal strategy.

We further observed a positive correlation between ventricle volumes and
the age category of the atlas the scans were assigned to. This relationship was
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expected, considering that age is positively correlated with ventricles volume
in the general population (Walhovd et al., 2011), which can also be seen on
the age-speciϐic atlases themselves (Figure 8.4). The age-speciϐic atlases also
showed expected behavior of increased WMH volume and cortical atrophy with
increasing age (Earnest et al., 1979). In all experiments, only a few scans were
assigned to the atlases of age category 75-80 and 80-85. Computing the mean
squared intensity difference between the age-speciϐic atlases and the general
atlas revealed that atlas 75-80was the closest to the general atlas, and atlas 80-85
was the most dissimilar. Consequently, scans most similar to atlas 75-80 were
more likely to be assigned to the general atlas instead.

Other researchers have successfully used age-speciϐic atlases (Sanchez et al.,
2012; Fillmore et al., 2015; Liang et al., 2015; Schirmer et al., 2019b,a). Liang
et al. (2015) proposed to construct age-speciϐic templates, and observed an
improvement for hippocampi segmentation. And Fillmore et al. (2015) observed
an improvement in segmentation of whitematter, graymatter and cerebrospinal
ϐluid using an age-appropriate brain template. It is often impossible to ϐind a
single atlas, which works best for studies across the entire lifespan. Instead,
using multiple age-speciϐic atlases allows a more accurate description of the
lifespan and can improve registration quality. In this chapter, we utilized ϐive
age groups, which already demonstrated improvement in overall registration
quality. By using even more atlases, i.e. additional or smaller spaced age groups,
could lead to further improvements. Intermediary registration to a template
has also been used to accelerate multi-atlas segmentation (Dewey et al., 2017),
or to improve registration from one image modality to another. For example,
Parthasarathy et al. (2011) used a full-volume ultrasound image as intermediary
image for the registration of live-3D ultrasound to MRI. Later, Roy et al. (2014)
used an synthesized CT image as intermediary image for the registration from
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MRI to CT. Groupwise registration (Joshi et al., 2004; Fletcher et al., 2009)
could be another strategy to register all scans of a dataset to the same space.
No template image needs to be selected in advance, and transformation ϐields
are estimated simultaneously for all scans. One of the main disadvantages of
groupwise registration is that the initial common space is estimated as themean
of all scans in the dataset. This mean image can be fuzzy and not provide
enoughguidance for the iterative optimizationprocess (Wuet al., 2010). Aligning
the images to the MNI template instead of only aligning them to the general
atlas created from ADNI healthy controls might be of interest, for example, to
compare with other datasets already registered to the MNI template. For this
purpose, a registration step to MNI template could be added as a last step of the
MAR framework, after the registration to the general atlas. The general atlas
would then need to be registered to the MNI template. This approach would
guarantee a smoother and more controlled transformation than registering the
age-speciϐic atlases directly to the MNI template, and would provide a more
precise monitoring of potential registration errors: ventricle overlap could be
computed both when registering to the general atlas and when subsequently
registering the MNI template, and errors in the pipeline could be more easily
identiϐied.

The proposed MAR framework using ventricle overlap could be categorized
as a feature-based registration method. Segmentations in feature-based
registration methods have already been used as initialization (Vemuri et al.,
2003), or have been optimized jointly with an intensity similarity metric for
registration (Yezzi et al., 2003; Pohl et al., 2006; Chen et al., 2010). More recently,
Balakrishnan et al. (2019) proposed to use a deep learning registration approach
where segmentations of anatomical structures can be used as auxiliary data
during the optimization. This would allow to include the ventricle segmentation
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in the optimization of the registration, instead of the proposed MAR framework.
However, to date, utilizing auxiliary data for registration has not been tested in
clinical scans, which are known to be substantially more challenging to segment
and register. With the presented ventricle segmentation, and the segmentation
of other structures and the entire brain, the extension of such approaches to
clinical scans becomes more feasible and is of key interest for future studies. In
Appendix G,we compared a registrationmethod inwhich ventricle segmentation
was added as auxiliary objective with equal weight during registration to the
proposedMAR and, as expected, obtained higher ventricles overlap. However, by
utilizing the ventricle segmentation for registration, we cannot utilize it anymore
for objectively assessing registration quality. Additionally, Balakrishnan et al.
(2019) have done similar experiments with brain registration and observed that
when using the overlap of a single structure as auxiliary objective, the overlap of
the other brain structures stayed either the same or even decreased when using
larger weight for the auxiliary objective. In addition to, or instead of, using the
ventricles to assess registration quality, it might also be interesting to inspect
subcortical structures on T1-weighted MRI sequence, and attempt to exploit
features based on the intensity difference between white and gray matter in, for
example, the basal ganglia.

In our application, we demonstrated that it becomes feasible to automatically
select only scans with high registration quality, leading tomore globally accurate
– but also possibly more noisy as computed from a smaller set – maps of
WMH burden. Using automated assessment of registration quality to compute
more accurate spatial patterns of disease could further help to relate spatial
information to global phenotypes such as stroke severity or hypertension. For
instance research has been done on how WMH distribution differs between
patients with lobar intracerebral hemorrhage and healthy elderly (Zhu et al.,
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2012), or on differences between deep and periventricular WMH in relation to
stroke (Buyck et al., 2009). However, discarding scans with a lower registration
quality might also introduce a bias if the quality of the registration is related
to one of the studied determinants or outcomes. Alternatively, a more rigorous
quality control procedure might also be triggered for those scans.

There are limitations to this study. Our proposed method requires reliable
automated segmentation of a key structure in the image, which can subsequently
serves as a reference. This can be challenging with smaller structures in the
image. Here, we focused on the ventricular system, which represents a structure
that is relatively easy to segment consistently across subjects. While such a
discriminative structure might not appear in every body part or with every
imaging modality, further methodological advances in image segmentation will
improve the generalizability of the proposed framework. Examples of structures
that are suited to the proposed method could be large blood vessels in magnetic
resonance angiography, or fetus in fetal MRI. The premise of our registration
quality assessment lies in ventricles being visible on the clinical images. In
particular in stroke cases, mass effects can alter the appearance of the ventricles,
sometimes rendering the lateral ventricles invisible in the image. Additionally,
the posterior horns of the ventricles may be masked due to the low resolution of
the acquired clinical scans. If ventricles cannot be identiϐied on the image, our
proposed metrics may indicate insufϐicient registration quality. However, this
assessment can be used to ϐlag this subset of the registered scans as potentially
erroneous, which can then be manually assessed by an expert rater rather than
being completely rejected from the analysis. If the registration is erroneous, the
third and fourth ventricles in particular are less likely to overlap with the atlas,
reducing the probability of high dice for incorrect registration. We observed
some outliers with low ventricle overlap between the automated and manual
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ventricle segmentation. The majority of these outliers – for instance 2 out of
100 scans in GASROS dataset – were scans with substantial motion artifacts,
where the segmentation of ventricles was challenging even for human raters.
Such scans are usually excluded from most neuroimaging pipelines. In addition,
in some sites of the MRI-GENIE dataset, sulci were sometimes misclassiϐied
as ventricles. Another limitation is that the proposed MAR framework also
multiplies the computation time by the number of atlases used: in our case,
the registration is six times longer. However, each registration can be run in
parallel, and in cases where immediate results are not necessary, this approach
can help improve registration quality. Additionally, with the recent development
of deep-learning based registration frameworks (Balakrishnan et al., 2019), time
concerns may become negligible.

Instead of using segmentation to perform automated quality control of
registration, Robinson et al. (2019) proposed to use registration to perform
quality control of segmentation. This assumes that the registration is more
robust to the variations present in the dataset than the segmentation. Using
segmentation to perform automated quality control of registration assumes the
opposite. Whether segmentation or registration can be considered more robust
depends on the region of interest, imaging modality, and image resolution.
The full ventricular system in the brain has a complex shape with substantial
inter-subject variability due to, for example, brain atrophy and/or pathological
processes. This makes the registration difϐicult when the shape of subject’s
ventricles deviate from the expected ventricle shape. Conversely, image intensity
on FLAIR-weighted MRI is a substantially more discriminative feature than
shape. The high contrast between intensities inside and outside the ventricles
is present in all subjects, scanner and FLAIR protocols. Segmentation of the
ventricular systemcan therefore be expected to bemore robust than registration.
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In contrast the structures composing the heart, as seen on MRI, have a simple
ovoid shapewith similar image intensities,making registration approachesmore
reliable as a reference. Theother key aspect is that registration of clinical scans to
templates is difϐicult and remains an open research question. Registration could
potentially be more reliable if we had a more homogeneous, high-resolution
dataset such a the UK-biobank, as Robinson et al. (2019) used in their analyses.

Strengths of our work include segmentation of the four ventricles in clinical
scans evaluated in multi-center data and more than 1000 scans. We introduced
a multi-atlas registration framework based on this segmentation algorithm, and
employed it to compute more accurate maps of WMH burden.

No single registration tool, or set of registrationparameters,will performbest
on all types of image qualities or sequences. By implementing an automated
registration assessment step in large scale image analyses, it becomes feasible
to test multiple registration pipelines and select the registration with the
best performance. This can increase the number successful registrations, and
potentially increase the sample size of a studywithout the need for time intensive
manual quality assessment.

In this work, we demonstrated the utility of an automated tool for assessing
image registration quality in clinical scans. Importantly, in addition to extracting
an additional phenotype from clinical scans – namely the ventricle volume – this
image quality assessment step can be implemented in large-scale, automated
processing pipelines of clinical MRI data, increasing the utility of such pipelines
and offering improved quality of subsequent analysis, ultimately assisting in the
translation of such pipelines to the clinic.
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Chapter 8: Appendix A

Ventricle segmentation results for the 12 sites of MRI-GENIE. The reported
metrics are Dice coefϐicient (Dice), Jaccard index (Jaccard), true positive rate
(TPR), volumetric similarity (VS), Mutual information (MI), Adjusted Rand
Index (ARI), intraclass correlation coefϐicient (ICC), probabilistic distance (PBD),
Cohen’s kappa (KAP), Detection Error Rate (DER) and Outline Error Rate (OER).
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Chapter 8: Appendix B

List of ADNI 3 IDs used for the computation of the age-speciϐic atlases.
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Chapter 8: Appendix C

Gain in registration performance by using the proposed multi-atlas registration
method with ventricles overlap instead of the more standard cross-correlation
for atlas selection. Left: GASROS. Right: MRI-GENIE. The registration quality
with the proposed multi-atlas registration method Qx,b is in green; the
registration quality with the proposed multi-atlas registration method using
cross-correlation instead ventricle Dice to select the best atlas Qx,bcc is in pink;
the overlay of both is purple. ∆b,bcc = Qx,b − Qx,bcc , the gain in registration
quality by using the proposed multi-atlas registration method with ventricles
overlap instead of cross-correlation for the selection of the intermediary atlas
is in blue.
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Chapter 8: Appendix D

Gain in registration performance∆b,bcc = Qx,b−Qx,bcc. Sample size is indicated
in brackets.

GASROS MRI-GENIE
Mean gain dice 0.011 (791) 0.014 (142)
Mean gain dice when improvement 0.018 (468) 0.021 (98)
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Gain in registration performance∆b,g . Sample size is indicated in brackets.

GASROS MRI-GENIE
Mean gain dice 0.012 (791) 0.014 (142)
Mean gain dice when improvement 0.022 (430) 0.022 (93)
Under70 0.038 (128) 0.033 (26)
70-75 0.014 (275) 0.019 (59)
75-80 0.006 (9) 0.0005 (1)
80-85 0.14 (1) ’(0)’
Above 85 0.019 (17) 0.008 (7)
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Chapter 8: Appendix F

Dice scoreof ventricle overlapwithdirect registration to the general atlas (x-axis)
vers registration with the proposed multi-atlas framework (y-axis) in GASROS
and MRI-GENIE datasets.

GASROS MRI-GENIE
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Chapter 8: Appendix G

Comparison of registration to the general atlas in which ventricle segmentation
was added as auxiliary objective with equal weight during registration (GR –
guided registration – left) to the proposedMAR (right). The value on the y-axis is
the overlap between ventricles of the general atlas propagated to subject space
and the ventricles segmented in subject space. **** indicates a p-value lower
than 0.0001 for the Wilcoxon test.
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Part F

In this part, I summarize and discuss the main ϐindings of this thesis,
discuss methodological considerations and limitations, and multiple directions
for future research, illustrated with preliminary results.
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1 Main ϐindings and position in the ϐield

Throughout this thesis, I studied the methodology of neural networks and
developed automatedmethods forMRbrain image analysis, some ofwhich could
also be deployed in clinical practise. While both methodological and medical
applications are combined in each chapter, Parts B and C focus more on he
methodology, and Parts D and E focus more on the medical application. This
section is organised in a similar manner, ϐirst discussing weakly supervised
neural networks optimized with image-level labels, and second, based on those
ϐindings, the development of an automated method for the quantiϐication of a
speciϐic type of structural brain changes visible in MRI: enlarged perivascular
spaces (PVS).

1.1 Methodological ϐindings

In Chapter 1, I showed that neural networks with an architecture similar to
that of the VGG classiϐication network (Simonyan and Zisserman, 2015b) can be
modiϐied to perform counting in 3D volumetric data. I removed the non-linear
activation function after the last fully connected layer, and optimized the mean
squared error loss function instead of a classiϐication loss function such as the
binary cross entropy. I validated this method for counting the number of PVS
in the basal ganglia from 3D MRI data. In computer vision, researchers usually
use bounding boxes, dot annotations or scribbles to optimize neural networks
for counting tasks (Lempitsky and Zisserman, 2010;Walach andWolf, 2016; Ren
and Zemel, 2017a). Seguı́ et al. (2015) proposed an approach similar to ours,
but, contrary to our work (Chapter 1 and 3), only evaluated their method on 2D
datasets anddidnot verify quantitatively that the network learnt to recognize the
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target objects. They evaluated their approach for counting handwritten digits
and pedestrians in 2D datasets, but did not experiment with 3D medical data.
In their article, no information was given about the loss function used, and it
seems that the authors did not use a global pooling layer after the convolutional
layers, contrary to our methods in Chapter 2, 5, 6 and 7. Not using global
pooling to transition from image features to vector features with fully connected
layers requiresmuchGPUmemory, which is a bottleneck for 3Dneural networks.
Using global pooling also forces position invariance and can help to improve the
generalisability of the network. Secondly, I showed that not only the network
predicted the count accurately, but also that it focused on the target objects in
the image, in our case PVS. For this empirical demonstration, I highlighted the
focus of the network in the input images by computing attention maps using
a visualization technique proposed by Simonyan et al. (2014). The principle
of this method is to compute the derivative of the output, the predicted count,
with respect to the network’s input, the MRI image. Regions in the image are
highlighted proportionally to their contribution to the network’s prediction. In
another experiment, I masked some of the PVS before inputting the image to the
network and observed a decrease in the predicted PVS count, which conϐirmed
that the network was indeed focusing on PVS to predict the count.

One of the main limitations of Chapter 1 is that the network had to be
optimized using training datasets of several hundred of images to reach a
performance similar to the interrater agreement. In Chapter 2, I proposed a
method to use available training data more efϐiciently. In this chapter I trained
neural networks with only 25 images with each a single image-level label (which
had to represent a countable quantity). The principle of the method was to
combine real training samples to createmanymore newvirtual training samples.
To combine those training samples, the network processed simultaneously
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multiple samples, considering them as a new larger sample, and was optimized
to predict the sum of their labels. Consequently, at the expense of having weaker
labels, the network could use more samples for its optimization, and, most
importantly, potential errors or noise in the labels were averaged. I validated
thismethod for thequantiϐicationof PVSburdenandwhitematter hyperintensity
(WMH) volume, and showed that using only 25 training samples was sufϐicient
to reach a performance similar to interrater agreement for the quantiϐication of
PVS in the basal ganglia. For PVS quantiϐication, this method still needs to be
evaluated in the other brain regions. For WMH quantiϐication, we noticed that
using this method could stabilize the optimization. While the proposed method
consistently reached high performance, the performance of the baseline method
showed more ϐluctuations and was worse on average. The baseline method
could sometimes reach a performance similar to that of the proposed method
depending on the random initialization of the network’s parameters and on the
randomness of the on-the-ϐly data augmentation.

The visualization technique by Simonyan et al. (2014) used in Chapter 1
to highlight the focus of the network in its input image has been criticized
by multiple researchers. Springenberg et al. (2015) have noticed that
backpropagating the gradient through the ReLU activation could create an
interference pattern in the attention maps, which resulted in false positive
detections. Springenberg et al. (2015) proposed an improvement of the method
by changing the backpropagation through the rectiϐied linear unit activations.
Adebayo et al. (2018) showed that both of these gradient methods (Simonyan
et al., 2014; Springenberg et al., 2015) could be biased to focus on the more
salient objects in the image, independently of the importance of those objects
in the computation of the prediction. I decided to investigate multiple types
of visualization methods, including class activation map methods (Zhou et al.,
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2016), which compute attention maps using the features maps of the network
instead of backpropagating the gradient. Adebayo et al. (2018) showed that
class activation map methods were less sensitive to that bias. Class activation
map methods were originally proposed to be used in combination with a global
pooling layer placed after the last feature maps of the network. Attention maps
could thenbe computedas a linear combinationof those featuremaps. Themajor
problem with this method is that, as the attention maps are usually computed
using the last downsampled feature maps of the network, they have a resolution
that can be several times lower than that of the original input image. Detecting
small objects becomes therefore difϐicult. In Chapter 3, I proposed to use such
class activation map methods in combination with segmentation networks. I
used variants of U-Net (Ronneberger et al., 2015), a now widely used network
architecture for medical image segmentation, that I adapted for 3D processing.
I called this method GP-Unet, where GP refers to global pooling. In Chapter 3, I
compared GP-Unet with the visualizationmethods mentioned above and several
of their variants. I performed experiments in two datasets: a dataset of images
of handwritten digits (MNIST) (LeCun et al., 1998) and a brain dataset for the
detection of PVS. In the MNIST experiments, GP-Unet outperformed the other
weakly supervised detection methods. The experiments in the brain did not
exhibit such a strong trend. GP-Unet together with the methods of Springenberg
et al. (2015) and Selvaraju et al. (2017) were signiϐicantly better than other
methods but the ordering of their performance depended on the brain region.
We conϐirmed the results of Adebayo et al. (2018) that gradientmethods, such as
the method of Springenberg et al. (2015), got worse results than class activation
mapsmethods in datasetswhere saliency alone is not enough to discriminate the
target object from other salient objects.

In Chapter 3, I also empirically showed that networks optimized with
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a global regression objective, such as the count of the target object, reach
higher detection performance than networks optimized with global (binary)
classiϐication objectives such as the presence or absence of the target object
in the image. For that purpose, I used a dataset of handwritten MNIST digits,
where the labels indicated either the number of occurrences of a target digit in
the image, or the presence of at least one occurrence of the target digit. This
ϐinding is intuitive asnetworksoptimizedwith count labels usemore information
for their optimization. In computer vision, many researchers use classiϐication
networks to perform detection tasks (Girshick, 2015). The need for either
classiϐication or regression networks may also depend on the average number
of target objects in an image. If the target object appears many times within a
single image, a regression approach will probably work best. If there are only
few or single occurrences of the target object, a classiϐication network might be
more appropriate.

To quantitatively evaluate the weakly supervised method proposed in
Chapter 3 in the brain MRI dataset, we had to acquire annotations of the
target object. For comparison, in Chapter 4, we developed a neural network
method that used these annotations for its optimization. The principle of
this method was to ϐirst create a distance map using the dots annotations,
and optimize the network voxel-wise to regress the values of the distance
map. We compared networks optimized with different types of distance maps
including Euclidean distance, voxel intensity distance, and geodesic distance
which combines Euclidean and voxel intensity distance (Toivanen, 1996). We
evaluated the method for the detection of enlarged perivascular space in the
centrum semiovale and found that optimizing networks with the intensity
distancemaps provided the best detection performance. Other researchers have
also used such approaches, but most of them focus on Euclidean distance (Sudre
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et al., 2018; Meyer et al., 2018b).
Optimizing neural networks with global image-level objectives can also be

used for biomarker discovery. To detect spatial patterns that are discriminative,
registering all images to a common templatemaybenecessary or at least ease the
optimization. Optimizing networkwith image-level labels to ϐind spatial patterns
could have applications in lesion-symptom mapping research, such as the work
of Biesbroek et al. (2013)who studiedwhitematter hyperintensities and lacunes
distribution in relation to cognition. In order to increase the amount of data to
study the relation between MR brain patterns and disease, it is useful to learn
from clinical datasets. In Chapter 8, I therefore developed a registration method
for clinical MRI scans. The method was based on a network that I optimized to
robustly segments ventricles in clinical scans. I used thepredictions of thismodel
to assess registration quality in clinical scans, and with this registration quality
metric, I developed a multi-atlas registration algorithm that uses age-speciϐic
atlases to improve the registration quality to a shared target space. This method
assumes that the ventricles can be more reliably segmented in clinical scans
and that ventricles segmentation is representative of the overall registration
quality. Klein et al. (2009) showed that for multiple registration algorithms the
registration error of the ventricles was correlated with registration errors in
other regions. To provide a more accurate assessment of registration quality,
other brain structures that can be robustly segmented in clinical scans could be
included in the assessment.

Apart from the weak label training that I performed in this thesis, neural
networks can also be optimized without labels. This can be used, for example,
for dimensionality reduction. The lower dimensional embeddings of the original
images can then be easily manipulated using linear algebra. For example, in
Chapter 7, I developed a variational auto-encoder (Kingma and Welling, 2014)
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that mimics neurodegeneration in the brain and can generate brain regions
corresponding to a target pseudo-probability of having Alzheimer’s disease.
Labels were not used for the optimization of the network, but were used later
to navigate in the lower-dimensional space. The main caveat of this approach
is that the generated images are on average more blurry than the real images,
which is common with variational auto-encoders. Adversarial models such as
BiGANs (Donahue et al., 2016) could provide more reϐined images. We used this
generativemodel to assess the performance of an event basedmodel that exploit
voxel-wise image information to estimate spatial progression of dementia. This
model was found to have better performance than state-of-the-art event-based
model methods using regional volume biomarkers. The same type of variational
auto-encoders can be used to model the spatial progression of other types of
diseases, or even phenotypes such as age, provided the target brain region is
expected to be affected by the disease to an extent that is visible on the scan,
and despite the above-mentioned blur in the reconstruction induced by the
variational auto-encoder.

1.2 Automated methods for the quantiϐication of enlarged

perivascular spaces

As a technical proof of concept, I demonstrated in Chapter 1 that neural networks
can be optimized to automatically replicate PVS visual scores in the basal
ganglia. In Chapter 5, I extended this work to other relevant regions, namely
the midbrain, the hippocampi, and the centrum semiovale, and showed that
the associations between twenty potential determinants of PVS and automated
PVS scores was similar to associations between the same potential determinants
of PVS and visual PVS scores. These ϐindings suggested that automated PVS
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scores can replace visual PVS scores in neuroepidemiological studies. While
this method was developed with scans acquired in a research setting in a
population study (Ikram et al., 2017), in Chapter 6 I showed promising results
whendirectly applying thismethodonheterogeneous clinical data acquired from
different scanners. In Chapter 2, experiments in the basal ganglia suggested
that this method can be optimised using only 25 scans, which could enable its
optimization on small local datasets. In Chapter 3, I proposed an evolution of the
automated PVS scoring method to detect PVS in the four above-mentioned brain
regions, and showed that the detection performance was close to the intra-rater
agreement. In Chapter 4wedeveloped another automatedPVSdetectionmethod
that was optimized using dot annotations in the center of PVS instead of only
using the visual PVS scores. This method has access to more information for
its supervision and achieves a higher agreement with dot annotations than the
weakly supervisedmethod presented in Chapter 3. The drawback of thismethod
is that it cannot be optimized only using visual PVS score. We only evaluated the
performance of this more strongly supervised method in the centrum semiovale
in a single dataset, and the generalization to other regions and other datasets has
yet to be determined.

Other researchers have also simultaneously developed automated PVS
quantiϐication methods (Boespϐlug et al., 2017; Ballerini et al., 2018; Lian et al.,
2018a; Sudre et al., 2018, 2019; Schwartz et al., 2019; Sepehrband et al., 2019).
Themethods presented in this thesis have been evaluatedmore thoroughly than
those methods. First, I used larger datatsets (more than 2000 participants)
than other methods, which used datasets with between 14 and 100 participants.
Second, I have also evaluated the proposedmethods on clinical scans (Chapter 6),
while most of the other methods used scans acquired in a research setting only.
Third, I used a wider range of metrics to evaluate the performance of the PVS

285



Part F

quantiϐication: correlationwith visual scores, voxel-level detection performance,
similarity of the association between determinants of PVS and automated and
visual scores. Other methods usually considered at most one of these aspects.
Finally, I quantiϐied PVS in four separate brain region while other approaches
often focus on a single region (mostly the centrum semiovale). The limit of
the proposed methods is that PVS segmentation has not been addressed or
quantiϐied. Some methods were designed for PVS segmentation but were not
evaluated on the voxel-level (Boespϐlug et al., 2017; Ballerini et al., 2018). Lian
et al. (2018a) quantiϐied PVS segmentation using Dice Similarity Coefϐicient.
However their work was evaluated on only 11 7T scans, and it is unsure how the
method generalises to clinical scans or scans acquired at lower magnetic ϐields.
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2 Methodological considerations and limitations

In this section I discuss how observer variability can limit the performance
of automated methods, and indentify cases of disagreement between the
automated PVS quantiϐicationmethods and expert annotators. I then discuss the
deployment of neural networks to external datasets, and address the limitation
of neural networks optimized on a single imaging modality. Lastly, I discuss the
interpretability of neural networks.

2.1 Observer variability

Observer variability in the creation of labels and annotations for the optimization
of automated methods could limit the highest reachable performance of those
automated methods. When optimized with the labels of a single rater, the
performance of the automated method could be expected to be limited by the
intra-rater agreement. In most applications having a performance at least
close to the inter-rater agreement is desired. There can be a large observer
variability in the assessment of MRI markers, and especially in the assessment
of PVS. For example, in our experiments, the intra-rater overlap of identiϐied
PVS in the centrum-semiovale almost never reached more than 60 percent Dice
similarity coefϐicient. In case the labels of several raters are available for the same
samples, optimizing the automatedmethod to predict the consensus label might
be the most appropriate approach, as it is likely to discard PVS that are only
subtly enlarged. Sudre et al. (2019) studied different approaches for handling
inter-observer variations in the case of PVS and lacune classiϐication. The
observer variability in labeling also depends on the type of labels. Although, as
mentioned above, there can be poor agreement on the location of individual PVS
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in the centrum semiovale, observers display less variability in the assessment of
the overall PVS burden: for visual PVS scores, the intra-rater agreement in terms
of intraclass correlation coefϐicient (ICC) is 0.88, and the inter-rater agreement is
0.80 ICC (Adams et al., 2013). There are also multiple visual rating methods for
the quantiϐication of PVS. For example, in the Rotterdam Scan Study PVS burden
is quantiϐied in an anatomically predeϐined axial slice of the centrum semiovale
(Adams et al., 2013), while the Potter scores rate the axial slice having most PVS
Potter et al. (2015c). In a study with our collaborators from the Framingham
heart study (Ho et al., 1993) at Boston University, we compared visual rating
methods to each other and also to the proposed automated PVS scores in the
centrum semiovale presented in Chapter 5. Preliminary results show that the
automated PVS quantiϐication method correlates well with Potter scores in this
dataset. This suggests that either the automatedmethod appropriately estimates
the PVS burden overall in the centrum semiovale, and not only in the visually
scored slice of the Rotterdam scores, or more directly that the visual scores of
Adams et al. (2013) correlate well with the Potter scores.

2.2 Identiϐication of cases of disagreement between automated

PVS detection and expert annotations

Expert raters can disagree on the identiϐication of PVS. It is of interest to verify
the cases of disagreement between the automated PVS methods and expert PVS
annotations, and compare those to annotations of other brain lesions made by
other independent raters. In Part C, I proposed amethod to automatically detect
PVS and showed that it could reach a performance similar to the intrarater
agreement. By visually inspecting the predictions of the networks, I noticed that
some of the false positive detections of the network were PVS missed by the
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expert annotator. It can sometimes be challenging even for experts not to miss
any PVS, to decide whether a subtle PVS should be accounted for, and also to
differentiate between smallWMH, lacunes, motion artifacts and PVS. Quantifying
and understanding the potential limits of the proposed automated PVS detection
method (GP-Unet method in Chapter 3) in that regard is a substantial step in its
deployment for medical research and clinical practice. For this purpose, in 1000
images, I compared all automated and manual PVS detections to WMH using
automated segmentation ofWMH that had previously been visually checked and
corrected by experts. In preliminary experiments using those segmentations
in the centrum semiovale, I found that both the expert rater and the algorithm
mistook small WMH for PVS in less than 1 percent of all detections of PVS
(the overall number of automated and manual detection of PVS was similar).
According to these automated and corrected WMH segmentations, the number
of mistakes made by the algorithm was similar to the number of mistakes made
by the PVS rater. In the basal ganglia, due to the masking of the region during
preprocessing, the networkmistook periventricularWMH for PVS in 1.6 percent
of all automated detections of PVS, while this happened in only two out of 3630
cases for the expert rater. Improving the masking could alleviate this problem.
Neither the expert nor the network mistook WMH for PVS in the midbrain and
hippocampi. In the same set of scans, we compared PVS detection to lacunes
segmented by a second independant rater. Out of 15 segmented lacunes, none of
them had beenmistaken for PVS by either the rater or network. In clinical scans,
the prevalence of lacunes is higher, but the proportion of lacunes to PVS is still so
low that mistaking a lacune for a PVS could be expected to only have a negligible
impact on the quantiϐication of PVS burden. Lastly, as explained in Chapter 5,
the ϐirst step of the automated PVS quantiϐication method is to mask the region
of interest. When quantifying PVS in the centrum semiovale, the white mater is
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masked ϐirst. When deploying the automated PVSmethod in datasets with scans
at a lower voxel resolution, the masking of the sulci sometimes becomes more
erroneous. Some of the cut-off sulci resemble PVS, and the network sometimes
mistakes those sulci for PVS. To help solve this problem, the network could be
optimized in the centrum semiovale without masking the white matter.

2.3 Deployment to other datasets

Machine learning methods generally work well on data that are similar to the
training data, but may perform poorly on external datasets with substantially
different characteristics such as, for example, data acquired from another
scanner, data with different voxel resolution, or data from another population.
Researchers have strived to address this issue, creating a research ϐield called
transfer learning (Van Opbroek et al., 2014; van Tulder and de Bruijne, 2016).
After publishing the automated PVS quantiϐicationmethod, whichwas evaluated
in the Rotterdam Scan Study, I started to deploy it in several other research
centers. I found that I could get satisfying results by resampling the scans of
the external datasets to match the voxel resolution of the scans in the training
dataset. I also evaluated the ventricle segmentation algorithm of Chapter 8 on
an international multi-center dataset, while it was trained with clinical data of a
single hospital. I had to include additional data augmentation during training to
mimic possible protocol differences in the external data. These results suggest
that the features learnt by the neural network generalize sufϐiciently in my
applications. In future work, the results may improve further by ϐine-tuning
the neural networks using the local datasets. For PVS quantiϐication, it may
also help to add data augmentation during training to imitate the resolution
and intensity contrast in external datasets. Generative adversarial networks
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(Bowles et al., 2018) could also be used for data augmentation, or domain
adversarial objectives could be included in the optimization process to improve
generalization to different data (Kamnitsas et al., 2017).

2.4 Single MRI sequence

The networks presented in this thesis used a single MRI sequence for their
optimization. Choosing a single sequence for the optimization originates from
practical considerations: designing and monitoring such networks is simpler.
Another sequence could always be added as input at later development stages.
Below, I discuss using a single sequence for the automated quantiϐication of PVS.

In the vast majority of cases, expert raters can differentiate PVS from other
similarly appearing lesions only using this sequence. However, in some rare
cases, experts need to check T1-weighted or FLAIR sequence to differentiate
PVS from WMH, lacunes or motion artifacts. Considering the low prevalence of
such cases, they can be expected not to have signiϐicant impact on the automated
quantiϐication of PVS burden. Another potential issue related the quantiϐication
of PVS from the T2-w sequence alone, is that in some studies, only the T1-w
sequencemaybe acquired (for example theUK-biobank (Sudlowet al., 2015) and
Generation R data (Jaddoe et al., 2012)). As the networks were not optimized
on T1-w scans, they cannot be expected to compute meaningful predictions. I
have now also optimized networks on T1-w scans of the Rotterdam scan study,
reaching a performance slightly lower than that obtained with the T2-w scans.
This was expected as PVS have been rated by inspecting the T2-w scan primarily.

One could also design a neural network that takes the most relevant
modalities (T2-w, T1-w and FLAIR) as input. These approaches have the
disadvantage of requiringmore information and in case ofmissing sequences for
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a subject, the network cannot output its prediction. In addition, dependingon the
protocol, MRI sequences may have a different appearance and contrast, which
sometimes makes labelling scans to MRI sequences challenging. Varsavsky et al.
(2018) recently proposed a method in which any number of modalities can be
given as input to the network in any random order. Using this method, a single
model could be used in datasets having T1-w scans alone, T2-w scans alone, both
T1-w and T2-w scans, or even more sequences.

2.5 Interpretability of neural networks

Before applying automated quantiϐication methods in new imaging studies,
researchers need to verify that they behave as expected on subsets of data
by at least checking visually. While enabling faster development of more
powerful prediction models, deep neural networks have been criticized by the
scientiϐic community as lacking transparency in the rationale of the computation
of predictions. It is common for neural networks to have several millions of
parameters, which complexify their interpretation. In contrastwith, for example,
Chapter 2, where I only quantiϐied the performance of networks by computing
metrics on the predicted biomarker values, I have attempted to answer some
of these concerns by addressing themes such as weakly supervised detection in
Chapter 1 and 3. I provided visual explanations for the networks’ predictions
of PVS burden, performed additional post-processing to obtain automated
detections of PVS, and quantiϐied the results by considering the overlap with
manual dot annotations of PVS. In Chapter 4, we provided further transparency
by directly optimizing the network using the dot annotations. However, for
all methods, the use and meaning of the intermediary feature maps inside the
network architecture still remains difϐicult to interpret.
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Another line of research to address the interpretability of networks is tomore
explicitly model how information is processed in the layers. That is for example
the objective of capsule networks which are designed to model hierarchical
spatial relationships (Sabour et al., 2017). These methods have only recently
showed comparable performance to standard convolutional neural networks,
and their optimization can be challenging.
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3 Clinical implications

Automatically quantifying PVS burden in different brain regions may aid to
stratify cerebral small vessel disease (CSVD) subtypes, with for example, the
presence of basal ganglia PVS in arteriolosclerotic small vessel disease and
centrum semiovale PVS in cerebral amyloid angiopathy. Cerebral amyloid
angiopathy has not only been related to severe PVS burden in the centrum
semiovale (Charidimou et al., 2017), but also to a signiϐicantly higher risk for
intracerebral bleeding in face of oral anticoagulant treatment (Wilson et al.,
2018). Accounting for PVS burden in the centrum semiovale could presumably
have important therapeutic and prognostic implications in terms of prescribing
oral anticoagulants and preventing intracerebral hemorrhage. In the basal
ganglia, PVS burden might also be an indicator of motor syndrome and relate
to elevated urinary glycosaminoglycan levels (Kwee and Kwee, 2007). In the
hippocampi, PVS burden might relate to memory and vascularization patterns.

Recent studies have also highlighted the role of perivascular spaces
enlargement for glymphatic clearance during sleep (Brown et al., 2018; Mestre
et al., 2017; Rasmussen et al., 2018). Quantifying the evolution of volume
and shape of PVS from MRI during sleep could help to better understand the
relationship between PVS and glymphatic clearance. However segmenting PVS
consistently in such large datasets is difϐicult for experts. Automated methods
for PVS segmentation could help segmenting PVS with higher reproducibility.

During inference, the computation of the automated PVS scores lasted only
a few minutes on CPU. Most of this time is spent on the segmentation of brain
regions and, in the case of prediction using T2 scans, registration from the
T1-weighted scans to the T2-weighted scans, as standards brain parcellation
algorithms require T1 scans as input. After this preprocessing, the computation
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of the automated PVS scores from the segmented brain region lasted a few
seconds per brain region on CPU depending on the size of the region. This low
computation time can facilitate the implementation of the proposed automated
PVS quantiϐication methods in clinical practice.
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4 Future directions

In this section I discuss and propose future research directions for weak
supervision in the optimization of neural networks. I also discuss the potential
of using 7T scans for PVS quantiϐication, and ϐinally CSVD researchwith a speciϐic
focus on PVS.

4.1 Towards less supervision for neural networks

In this thesis, I have presented methods for weakly supervised detection. The
objective could also be weakly supervised segmentation, where the size and
shape of the target objects could be measured and quantiϐied. With Bortsova
et al. (2018), we added a sigmoid activation after the last feature map of weakly
supervised regression neural networks similar to those presented in Chapter
3. We evaluated this approach on emphysema quantiϐication from CT scans
and showed empirically that we could segment diseased lung tissue. This
segmentation could subsequently be to discriminate between paraseptal and
centrilobular emphysema. For this discrimination task, the method reached a
performance similar to the inter-rater agreement. Unfortunately, this intuitive
approach did not provide satisfying results for PVS orWMH segmentation. Most
often, during training, the loss function could not converge when adding the
sigmoid activation. The topic of weakly supervised segmentation with attention
maps of neural networks requires further investigation.

When optimizing a neural network with only image-level labels available,
instead on focusing on the target object, the neural network may focus on other
objects in the input image that are correlatedwith the target image-level label. In
most cases, this situation is not desired. Preliminary experiments with weakly
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supervised segmentation of WMH have provided us with more insights in this
potential problem. In these experiments, the networkswere optimized to predict
the WMH volume in voxels, and the predicted segmentations were computed
during inference by thresholding the attention maps computed as described in
Chapter 3 (GP-Unet). When networks were trained using large datasets, we
noticed that the performance and features learnt did not seem to be substantially
affected by the randomness of the optimization process. However, in small
datasets, we noticed that (a) depending on the random initialization of the
weights of thenetworks, andon randomness in the on-the-ϐly data augmentation,
the networks could learn to segment different objects in the image, and that
(b) there was no strong correlation between the performance in WMH volume
prediction and the performance in WMH segmentation. The networks for
example sometimes also segmented the ventricles in addition to the WMH. Both
ventricular volume andWMH volume are associated with age (Kaye et al., 1992;
De Leeuw et al., 2001). Ventricular volume and WMH volume can consequently
be expected to be correlated, and the network probably picks up this correlation
to perform its quantiϐication. The generated attention maps are only a limited
representation of what the network learns and disentangling errors due to the
network itself from the interpretation of the network’s attention is a challenge
on its own.

Weakly supervised methods could also be used for biomarker discovery
by supervising networks on the image level, using for example disease status
labels. If a network can be optimized to accurately predict the image label,
attention maps can be computed to reveal the imaging features used by the
network. These features relate to the image label. It becomes then more
difϐicult to verify whether the network focuses on meaningful information or on
potential confounders, and preventing this can be challenging. Recently Zhao
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et al. (2019) proposed to exclude confounders from attention maps using a
partial back-propagation algorithm that incorporates univariate statistical tests.
Another interesting strategy could be to force the network to learn multiple
explanations simultaneously and enforce these explanations to be different using
for instance normalized cross-correlation on feature maps.

4.2 Optimization of neural network

The optimization strategies and behavior of neural networks is an
underrepresented research topic. In the medical image analysis literature,
and to some extent in the computer vision literature, performance metrics after
optimization receive most attention and the optimization itself is less studied.
For example, most researchers use Adam optimizer (Kingma and Ba, 2015) and
implement some earlier stopping strategies. For many studies, it is very likely
that the relative performance after optimization varies depending on the chosen
optimizer and the stopping point during training. Inmany ofmy experiments the
loss function plateaued for many epochs and suddenly decreased exponentially.
In these scenarios, early stopping would lead to substantially worse results.
Sometimes using Adam instead of Adadelta (Zeiler, 2012) would lead to
the networks not converging at all. Depending on the randomness in the
initialization and optimization, different features and performance could be
obtained for the same architecture and the same training data. Studying and
understanding those mechanisms could be of major importance in the coming
developments of neural networks research, and more generally of artiϐicial
intelligence.
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4.3 Emerging availability of 7T

Exploiting the higher image quality in 7T scans could be necessary to understand
PVS in more detail. The higher resolution of 7T scans would enable the
computation of substantiallymore precise shape features, more accurate volume
estimates, and ease the observation of short term volumetric changes. A few
researchers have already started to focus on PVS in 7T scanners (Feldman et al.,
2018; Lian et al., 2018a; Zhang et al., 2016). Because of the practical difϐiculty
to obtain 7T scans, those studies often include only a few participants. Another
concern is that because of the higher resolution, many more PVS are visible on
7T in comparison to 1.5T or 3T. The decision of theminimum size of PVS for their
quantiϐication and inclusion in neuroepidemiological studies will consequently
become even more prominent.

4.4 Research on cerebral small vessel disease (CSVD)

In this thesis, I developed methods for the quantiϐication and localization of PVS
burden in the brain. It might be of interest to investigate associations between
potential determinants of PVS and PVS volume and shape, and especially
associations between PVS volume and shape and CSVD subtypes such as
arteriosclerosis and cerebral amyloid angiopathy. For the quantiϐication of these
PVS features further methodological development is required, with for example
automated segmentation of PVS.

In addition to PVS, other structural brain changes visible on MRI are thought
to reϐlect the presence of CSVD. These brain changes include for example cerebral
microbleeds,WMHand lacunes (Das et al., 2019; Shi andWardlaw, 2016). Recent
research in CSVD attempts to establish a global marker for the assessment
of CSVD burden by creating sum scores encompassing these different CSVD
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markers. For example, researchers (Huijts et al., 2013; Staals et al., 2015; Yilmaz
et al., 2018) proposed to compute a score that aggregates information about
these four CSVD MRI markers by assigning one point for each marker above a
predeϐined threshold, resulting in a CSVD sum score ranging scaling from 0 to
4. Machine learning could also be used to learn more advanced combinations
of the different CSVD markers to best describe CSVD burden in relation to
outcomes, or even predict outcomes using those CSVD markers. Machine
learning sum scores could potentially be a real alternative to manually deϐined
sum scores. Theymay have stronger associationwith disease and disease status.
End-to-end optimization from image data to CSVD-related outcomes could also
reveal currently unknown CSVD imaging markers. The challenges with such
machine learning approaches are interpretability and generalizability. The best
combinations of CSVD markers in the training dataset may be different from the
best combination in an independent external dataset.
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Recent developments in artiϐicial intelligence research have resulted in
tremendous success in computer vision, natural language processing and
medical imaging tasks, often reaching human or superhuman performance.
In this thesis, I further developed artiϐicial intelligence methods based on
convolutional neural networks with a special focus on the automated analysis of
brain magnetic resonance imaging scans (MRI). I showed that efϐicient artiϐicial
intelligence systems can be created using only minimal supervision, by reducing
the quantity and quality of annotations used for training. I applied those
methods to the automated assessment of the burden of enlarged perivascular
spaces, brain structural changes thatmaybe related todementia, stroke,multiple
sclerosis, and sleep. The proposed methods provide PVS counts and localization
in four brain regions: the midbrain, hippocampi, basal ganglia and centrum
semiovale.

In Part B, I developed machine learning methods based on convolutional
neural networks to count objects or estimate object volume in 3D volumetric
data. In Chapter 1, I developed and applied these methods on the quantiϐication
of PVS burden in a subcortical brain region: the basal ganglia. I showed that
those methods have a performance similar to that of expert raters, and I showed
that those methods need at least about 200 rated MRI scans to reach this
performance. In Chapter 2, I proposed a methodological improvement that
enables theoptimizationof thosenetworksusing substantially fewer rated scans.
The principle of the method is to combine training images to create more virtual
training images, hence increase the size of the training dataset and average
potential errors in the ratings of experts at the price of, on average, weaker
labelling of those images. I showed the added-value of those methods on PVS
quantiϐication and quantiϐication of white matter hyperintensities, and showed
that, for PVS quantiϐication, inter-rater agreement can be reached using only 25
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rated images for the optimization.
In Part C, I focused on convolutional neural networks for the detection of

objects that appear multiple times in a single 3D volume. In Chapter 3, I
proposed a method for weakly supervised object detection. During training,
neural networks were supervised only with image-level labels representing the
count of target objects in the 3D volume. During inference, the networks could
not only predict the count of target objects but also localize them. I designed this
method to ϐind small objects in large 3D volumes. The method was evaluated
with detection of handwritten digits in 2D images, and of PVS in brainMRI scans.
In chapter 4, we proposed another neural network approach for detection that
was supervised using generated voxel-wise labels. Those labels corresponded to
a distancemap computed frommanual dot annotations at the center of the target
objects. We proposed to use distance maps based on the intensity difference
between neighboring voxels instead of the more standard Euclidean distance.
We evaluated the method on the detection of PVS in the upper-area of the white
matter: the centrum semiovale. These methods reached a performance similar
to that of the intra-rater agreement.

In Part D, I focused on the application of methods of Chapter 1 to support
automated PVS count in epidemiological studies. In Chapter 5, I developed
and evaluated the method for other clinically important brain regions: the
midbrain, hippocampi, and the centrum semiovale. I did extensive experiments
where I showed that using either manual PVS scores or the proposed automated
PVS scores gave similar results for the analysis of the associations between
twenty potential determinants of PVS and PVS burden. These results suggested
that the automated PVS scores could be used instead of visual PVS scores
for neuroepidemiological studies. In Chapter 6, I showed that the methods
presented in Chapter 5 could also be applied on 76 clinical scans acquired using
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9 different scanners from the University Hospital Magdeburg in Germany for
the quantiϐication of PVS burden in the centrum semiovale. Good results were
also achieved for the other brain regions, but the performance of the automated
method was lower than the intra-rater performance.

Neural networks were not only successful for the quantiϐication of PVS.
In Part E, I proposed automated methods for other applications in neurology
research. In Chapter 7, we proposed an event-based model to model the
progression of dementia. The events considered in the model are biomarkers
quantifying neuropathological changes. The objective of this type of model is
to estimate the order in which these biomarkers become abnormal. Contrary to
currentmodels, which only use scalar biomarkers, with the proposedmethodwe
can also use voxel-wise biomarkers. We evaluated the proposed model on the
progression of Alzheimer’s disease. To validate the performance of the model,
we designed a generative machine learning method based on auto-encoders.
With this method, we could artiϐicially generate 3D images of brain regions
at a given probability of being affected by Alzheimer’s disease. Chapter 8 has
multiple contributions. First, I designed a method to segment the ventricular
system from clinical brain MRI scans. I validated this method in an international
dataset of twelve sites with different scanners and protocols. Designing a
method that can robustly segment the ventricular system across low resolution,
multi-center clinical datasets is a technical challenge. Secondly, the method was
thenused to assess thequality of pair-wise registrationofMRI scans to a common
shared brain template, with potential applications in lesion-symptom mapping.
Lastly, I used the automated assessment method to build multi-atlas registration
framework that uses different age speciϐic atlases as an intermediary registration
step to improve registration quality.
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Recente ontwikkelingen in de kunstmatige intelligentie hebben ervoor
gezorgd dat er grote successen zijn geboekt op het gebied van computer
vision, het verwerken van natuurlijke taal en de medische beeldvorming. In
veel gebieden presteert kunstmatige intelligentie al op hetzelfde niveau als
de mens. Er zijn zelfs gevallen waarin de kunstmatige intelligentie taken
beter kan uitvoeren dan de mens. In dit proefschrift heb ik methoden
verder ontwikkeld uit een subdomein van kunstmatige intelligentie, namelijk
convolutionele neurale netwerken. De nadruk ligt op de automatische analyse
van magnetic resonance imaging (MRI) beelden van de hersenen. Ik richt me
in het bijzonder op het reduceren van de kwantiteit en de kwaliteit van de
annotaties die nodig zijn om robuuste modellen te trainen. Daarnaast heb ik
nieuwe methoden ontwikkeld om het aantal verwijde perivasculaire ruimtes
automatisch te meten, evenals de locatie. Verwijde perivasculaire ruimtes,
ook wel Virchow-Robin ruimtes genoemd, zijn structurele veranderingen in
de hersenen. De voorgestelde methoden geven een telling en een lokalisatie
van de verwijde perivasculaire ruimtes in vier hersengebieden, namelijk in het
mesencephalon, de hippocampus, de basale ganglia en het centrum semiovale.

In deel B heb ik methoden ontwikkeld op het gebied van machine learning
die gebaseerd zijn op convolutionele neurale netwerken die gebruikt kunnen
worden om objecten te tellen of om het volume van objecten te bepalen op
basis van 3D volumetrische data. In hoofdstuk 1 heb ik deze methoden
ontwikkeld en toegepast voor het bepalen van het aantal verwijde perivasculaire
ruimtes in de basale ganglia, een subcorticaal hersengebied. In hoofdstuk 2
stel ik een methodologische verbetering voor die het mogelijk maakt om de
netwerken te optimaliseren met substantieel minder geannoteerde scans. In
dit hoofdstuk heb ik laten zien dat deze methoden een toegevoegde waarde
hebbenvoor de kwantiϐicatie vandewitte stof hyperintensiteitendie bij verwijde
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perivasculaire ruimtes worden waargenomen. Daarnaast heb ik laten zien dat
voor de kwantiϐicatie van verwijde perivasculaire ruimtesmaar 25 geannoteerde
aϐbeeldingen nodig zijn voor de optimalisatie van het netwerk om dezelfde
annotatie betrouwbaarheid te bereiken als een menselijke beoordelaar.

In deel C heb ik de focus gelegd op convolutionele neurale netwerken die
gebruikt kunnen worden voor de detectie van objecten die meerdere keren
voorkomen in een enkel 3D volume. In hoofdstuk 3 stel ik een methode voor
die gebruikt kan worden voor object detectie met zwakke labels. Tijdens de
optimalisatie van het netwerk wordt alleen gebruik gemaakt van de informatie
over het aantal objecten in het 3D volume. Later, als het netwerkwordt toegepast
op nieuwe data, wordt ook de locatie van de objecten in de 3D volumes verschaft.
In hoofdstuk 4 stellen we een ander neuraal netwerk voor dat gebruikt kan
worden voor detectie. De netwerken worden geoptimaliseerd om de afstand
tot een object te voorspellen. Deze afstand is gebaseerd op intensiteit tussen
aangrenzende voxels, in plaats van de euclidische afstand die over het algemeen
gebruikt wordt.

In deel D focus ik op het toepassen van de methoden uit hoofdstuk 1 voor
het automatisch tellen van de verwijde perivasculaire ruimtes in hersenscans in
epidemiologische studies. In hoofdstuk 5 heb ik een methode ontwikkeld en
geëvalueerd voor andere klinisch relevante hersengebieden, namelijk behalve
de basale ganglia ook het mesencephalon, de hippocampus, en het centrum
semiovale. Dit suggereerde dat de geautomatiseerde telling van de verwijde
perivasculaire ruimtes gebruikt kan worden voor neuro-epidemiologische
onderzoeken in plaats van de visuele telling van verwijde perivasculaire
ruimtes die momenteel gebruikt wordt. In hoofdstuk 6 heb ik aangetoond
dat de methoden die in hoofdstuk 5 voorgesteld waren ook toegepast kunnen
worden voor het kwantiϐiceren van het aantal verwijde perivasculaire ruimtes
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in het centrum semiovale in 76 klinische scans die verkregen zijn door
negen verschillende scanners van het universitair ziekenhuis Maagdenburg in
Duitsland.

In deel E stel ik andere geautomatiseerde methoden voor die kunnen
worden toegepast in neurologisch onderzoek. In hoofdstuk 7 stellen we
een event-gedreven model voor om het verloop van dementie te modelleren.
Daarnaast ontwikkelden we eenmethode, gebaseerd op het gebied vanmachine
learning, die kunstmatige 3D aϐbeeldingen van hersengebieden genereert op
basis van de waarschijnlijkheid dat de ziekte van Alzheimer wordt vastgesteld.
In hoofdstuk 8 heb ik een methode ontworpen om het ventriculaire systeem
te segmenteren in klinische MRI-scans van de hersenen. Dit is vervolgens
gebruikt om een methode te ontwikkelen die meerdere leeftijdsspeciϐieke
atlassen gebruikt in beeldregistratie als een tussenliggende stap om de kwaliteit
van de registratie te bevorderen.
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