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Abstract

In many countries there is a lack of genuine panel data where spe-
ci�c individuals or �rms are followed over time. However, repeated
cross-sectional surveys may be available, where a random sample is
taken from the population at consecutive points in time. In this pa-
per we discuss the identi�cation and estimation of panel data models
from repeated cross sections. In particular, attention will be paid to
linear models with �xed individual e¤ects, to models containing lagged
dependent variables and to discrete choice models.
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1 Introduction

In many countries there is a lack of genuine panel data where speci�c indi-
viduals or �rms are followed over time. However, repeated cross-sectional
surveys may be available, where a random sample is taken from the pop-
ulation at consecutive points in time. Important examples of this are the
Current Population Survey in the U.S.A., and the Family Expenditure Sur-
vey in the United Kingdom. While many types of models can be estimated
on the basis of a series of independent cross-sections in a standard way, sev-
eral models that seemingly require the availability of panel data can also be
identi�ed with repeated cross-sections under appropriate conditions. Most
importantly, this concerns models with individual dynamics and models with
�xed individual-speci�c e¤ects.
Obviously, the major limitation of repeated cross-sectional data is that

the same individuals are not followed over time, so that individual histories
are not available for inclusion in a model, for constructing instruments or
for transforming a model to �rst-di¤erences or in deviations from individual
means. All of these are often applied with genuine panel data. On the
other hand, repeated cross-sections su¤er much less from typical panel data
problems like attrition and nonresponse, and are very often substantially
larger, both in number of individuals or households and in the time period
that they span.
In a seminal paper, Deaton (1985) suggests the use of cohorts to estimate

a �xed e¤ects model from repeated cross-sections. In his approach, indi-
viduals sharing some common characteristics (most notably year of birth)
are grouped into cohorts, after which the averages within these cohorts are
treated as observations in a pseudo panel. Mo¢ tt (1993) and Collado (1997),
in di¤erent ways, extend the approach of Deaton to nonlinear and dynamic
models. Alternative estimators for the model with individual dynamics, in-
cluding the one proposed by Girma (2000), are evaluated in Verbeek and
Vella (2005). Alternative types of asymptotics are discussed in McKenzie
(2004). In this chapter we shall discuss the identi�cation and estimation of
panel data models from repeated cross sections. In particular, attention will
be paid to linear models with �xed individual e¤ects, to models contained
lagged dependent variables and to discrete choice models.
Models containing individual e¤ects that are correlated with the explana-

tory variables (��xed e¤ects models�) often arise naturally from economic
theory, for example in life cycle models where the individual e¤ects represent
marginal utility of wealth (see, for example, Heckman and MaCurdy, 1980
or Browning, Deaton and Irish, 1985). Individual dynamics also often follow
from economic theory, re�ecting adjustment costs, habit persistence, or in-
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tertemporal optimization. Consequently, from an economic point of view it
is important to be able to estimate dynamic models and models with �xed
individual e¤ects, even in the absence of genuine panel data. While it is
possible to estimate such models using repeated cross-sections, we shall see
below that such approaches typically require strong identi�cation conditions,
which are often hard to test.
Estimation techniques based on grouping individual data into cohorts

are identical to instrumental variables approaches where the group indica-
tors are used as instruments. Consequently, the grouping variables should
satisfy the appropriate conditions for an instrumental variables estimator to
be consistent (including a rank condition). This not only requires that the
instruments are valid (in the sense of being uncorrelated to the unobservables
in the equation of interest), but also relevant, i.e. appropriately correlated to
the explanatory variables in the model. Loosely speaking, the latter require-
ment means that cohorts are de�ned as groups whose explanatory variables
change di¤erentially over time. Even if the instruments are theoretically valid
and relevant, their large number and the fact that they may be only weakly
correlated with the explanatory variables they are supposed to instrument
may imply that the resulting estimators perform poorly because of the �weak
instruments�problem (see Bound, Jaeger and Baker, 1995, or Staiger and
Stock, 1997).
The structure of this chapter is as follows. In Section 2 we present the

basic linear model. Section 3 pays attention to linear dynamic models, while
Section 4 brie�y discusses the estimation of binary choice models. Section 5
concludes. A related survey can be found in Ridder and Mo¢ tt (2007).

2 Estimation of a linear �xed e¤ects model

We start with analyzing a simple linear model with individual e¤ects given
by

yit = x
0
it� + �i + uit; t = 1; :::; T; (1)

where xit denotes a K-dimensional vector of explanatory variables, and �
is the parameter vector of interest. The index i refers to individuals and
throughout this chapter we shall assume that the available data set is a series
of independent cross-sections, such that observations on N individuals are
available in each period.1 For simplicity, we shall assume that Efxituitg = 0
for each t:

1Because di¤erent individuals are observed in each period, this implies that i does not
run from 1 to N for each t:
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If the individual e¤ects �i are uncorrelated with the explanatory vari-
ables in xit; the model in (1) can easily be estimated consistently from re-
peated cross-sections by pooling all observations and performing ordinary
least squares treating �i + uit as composite error term. This exploits the K
moment conditions in

Ef(yit � x0it�)xitg = 0: (2)

However, in many applications the individual e¤ects are likely to be corre-
lated with some or all of the explanatory variables, so that at least some
of the moment conditions in (2) are not valid. When genuine panel data
are available, this can be solved using a �xed e¤ects approach which treats
�i as �xed unknown parameters. In other words, each individual has its
own intercept term. For estimating �; this is equivalent to using the within-
transformed explanatory variables xit� �xi as instruments for xit in (1), where
�xi = T

�1PT
t=1 xit: Obviously, when repeated observations on the same indi-

viduals are not available, such an approach cannot be used.
Deaton (1985) suggests the use of cohorts to obtain consistent estimators

for � in (1) when repeated cross-sections are available, even if �i is correlated
with one or more of the explanatory variables. Let us de�ne C cohorts, which
are groups of individuals sharing some common characteristics. These groups
are de�ned such that each individual is a member of exactly one cohort, which
is the same for all periods. For example, a particular cohort may consist of
all males born in the period 1950-1954. It is important to realize that the
variables on which cohorts are de�ned should be observed for all individuals
in the sample. This rules out time-varying variables (e.g. earnings), because
these variables are observed at di¤erent points in time for the individuals in
the sample. The seminal study of Browning, Deaton and Irish (1985) employs
cohorts of households de�ned on the basis of �ve-year age bands subdivided
as to whether the head-of-the-household is a manual or non-manual worker.
Blundell, Duncan and Meghir (1998) employ year-of-birth intervals of 10
years, interacted with two education groups, Banks, Blundell and Preston
(1994) use �ve-year age bands, while Propper, Rees and Green (2001) use 7
date of birth groups and 10 regions to construct cohorts.2

If we aggregate all observations to cohort level, the resulting model can
be written as

�yct = �x
0
ct� + ��ct + �uct; c = 1; :::; C; t = 1; :::; T; (3)

2Some authors employ the term �cohorts� to speci�cally re�ect year-of-birth groups.
We use �cohorts�in a broader sense, as groups of individuals (households, �rms) sharing
some common characteristics (most often including year-of-birth).
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where �yct is the average value of all observed yit�s in cohort c in period t,
and similarly for the other variables in the model. The resulting data set is
a pseudo panel or synthetic panel with repeated observations over T periods
and C cohorts. The main problem with estimating � from (3) is that ��ct
depends on t; is unobserved, and is likely to be correlated with �xct (if �i is
correlated with xit): Therefore, treating ��ct as part of the random error term
is likely to lead to inconsistent estimators. Alternatively, one can treat ��ct as
�xed unknown parameters assuming that variation over time can be ignored
(��ct = �c): If cohort averages are based on a large number of individual
observations, this assumption seems reasonable and a natural estimator for
� is the within estimator on the pseudo panel, given by

�̂W =

 
CX
c=1

TX
t=1

(�xct � �xc)(�xct � �xc)0
!�1 CX

c=1

TX
t=1

(�xct � �xc)(�yct � �yc); (4)

where �xc = T�1
PT

t=1 �xct is the time average of the observed cohort means for
cohort c: The properties of this estimator depend, among other things, upon
the type of asymptotics that one is willing to employ. Deaton (1995) considers
the asymptotic properties of this estimator when the number of cohorts C
tends to in�nity. This requires that the number of individuals N tends to
in�nity with (more or less) constant cohort sizes. Mo¢ tt (1993), on the other
hand, assumes that C is constant while the number of individuals tends to
in�nity. In this approach, cohort sizes tend to in�nity, asymptotically.
The estimators proposed by Mo¢ tt (1993) are based on the idea that

grouping can be viewed as an instrumental variables procedure. To illustrate
this, we shall reformulate the above estimator as an instrumental variables
estimator based on a simple extension of equation (1). First, decompose each
individual e¤ect �i into a cohort e¤ect �c and individual i�s deviation from
this e¤ect. Letting zci = 1 (c = 1; :::; C) if individual i is a member of cohort
c and 0 otherwise, we can write

�i =

CX
c=1

�czci + vi; (5)

which can be interpreted as an orthogonal projection. De�ning � = (�1; :::; �C)0

and zi = (z1i; :::; zCi)0 and substituting (5) into (1), we obtain

yit = x
0
it� + z

0
i�+ vi + uit: (6)

If �i and xit are correlated, we may also expect that vi and xit are correlated.
Consequently, estimating (6) by ordinary least squares would not result in
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consistent estimators. Now, suppose that instruments for xit can be found
that are uncorrelated with vi + uit: In this case, an instrumental variables
estimator would typically produce a consistent estimator for � and �c: A
natural choice is to choose the cohort dummies in zi; interacted with time,
as instruments, in which case we derive linear predictors from the reduced
forms

xk;it = z
0
i�kt + wk;it; k = 1; :::; K; t = 1; :::; T; (7)

where �kt is a vector of unknown parameters. The linear predictor for xit
from this is given by x̂it = �xct; the vector of averages within cohort c in
period t: The resulting instrumental variables estimator for � is then given
by

�̂IV 1 =

 
CX
c=1

TX
t=1

(�xct � �xc)x0it

!�1 CX
c=1

TX
t=1

(�xct � �xc)yit; (8)

which is identical to the standard within estimator based on the pseudo panel
of cohort averages, given in (4).
The instrumental variables interpretation is useful because it illustrates

that alternative estimators may be constructed using other sets of instru-
ments. For example, if cohorts are constructed on the basis of age (year of
birth), a more parsimonious function of age can be employed in (5) rather
than a full set of age dummies. For example, zi may include functions of
year of birth, rather than a set of dummy variables. As argued by Mo¢ tt
(1993), it is likely that yit will vary smoothly with cohort e¤ects and, hence,
those e¤ects will be representable by fewer parameters than a full set of co-
hort dummies. Further, the instrument set in (7) can be extended to include
additional variables. Most importantly however, the instrumental variables
approach stresses that grouping data into cohorts requires grouping variables
that should satisfy the typical requirements for instrument validity and rel-
evance. Basically, the approach of Deaton (1985) assumes that the cohort
dummies, interacted with time dummies, provide valid instruments for all ex-
planatory variables in the model (including the full set of cohort dummies).
This requires that the instruments are uncorrelated with the equation�s error
term, and imposes a rank condition stating that the instruments are �su¢ -
ciently�correlated with each of the explanatory variables.
As mentioned above, the asymptotic behavior of pseudo panel data esti-

mators can be derived using alternative asymptotic sequences. In addition
to the two dimensions in genuine panel data (N and T ); there are two addi-
tional dimensions: the number of cohorts C, and the number of observations
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per cohort nc: We consider the following possibilities, which are typical for
most studies:

1. N !1; with C �xed, so that nc !1;

2. N !1 and C !1, with nc �xed.

3. T !1; with N; C �xed (so that nc is also �xed);

McKenzie (2004) also considers asymptotic sequences where T ! 1 and
nc ! 1. Note that asymptotic theory is not meant as a guideline for how
our estimators will behave when we get more data. Rather, we appeal to
asymptotic theory when some dimension of the sample we already have is
large enough for this to be appropriate. Whether or not asymptotic theory
provides a reasonable approximation of the �nite sample properties of pseudo
panel data estimators is an empirical question, and many papers present
Monte Carlo studies to obtain some insight into this issue.
The following list provides an overview of the sample sizes used in several

important empirical papers.
T C �nc

Browning, Deaton and Irish (1985) 7 16 190
Banks, Blundell and Preston (1994) 20 11 354
Blundell, Browning and Meghir (1994) 17 9 520
Alessie, Devereux and Weber (1997) 14 5 >1000
Blundell, Duncan and Meghir (1998) 25 8 142
Propper, Rees and Green (2001) 19 70 80

For most applications either type 1 or type 2 asymptotics provides the most
reasonable choice, and in many cases type 1 asymptotics is (implicitly or
explicitly) employed. In the theoretical literature, Mo¢ tt (1993) and Verbeek
and Vella (2005) employ type 1 asymptotics, while Deaton (1985), Verbeek
and Nijman (1993) and Collado (1997) employ type 2 (with or without T !
1):Under type 1 asymptotics, the �xed e¤ects estimator based on the pseudo
panel, �̂W ; is consistent for �; provided that

plim
nc!1

1

CT

CX
c=1

TX
t=1

(�xct � �xc)(�xct � �xc)0 (9)

is �nite and invertible, and that

plim
nc!1

1

CT

CX
c=1

TX
t=1

(�xct � �xc)��ct = 0: (10)
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While the �rst of these two conditions is similar to a standard regularity
condition, in this context it is somewhat less innocent. It states that the
cohort averages exhibit genuine time variation, even with very large cohorts.
Whether or not this condition is satis�ed depends upon the way the cohorts
are constructed, a point to which we shall return below.
Because ��ct ! �c; for some �c if the number of observations per cohort

tends to in�nity, (10) will be satis�ed automatically. Consequently, letting
nc ! 1 and using type 1 asymptotics is a convenient choice to arrive at a
consistent estimator for �; see Mo¢ tt (1993) and Ridder and Mo¢ tt (2007).
However, as argued by Verbeek and Nijman (1992) and Devereux (2007),
even if cohort sizes are large, the small-sample bias in the within estimator
on the pseudo panel may still be substantial.
Deaton (1985) proposes an alternative estimator for � that does not re-

ply upon having a large number of observations per cohort, using type 2
asymptotics.3 A convenient starting point for this estimator is the cohort
population version of (3), given by

yct = x
0
ct� + �c + uct; c = 1; :::; C; t = 1; :::; T; (11)

where the variables denote unobservable population cohort means, and where
�c is the cohort �xed e¤ect, which is constant because population cohorts
contain the same individuals in each period. Now, �xct and �yct can be consid-
ered as error-ridden measurements of xct and yct: In particular, it is assumed
that the measurement errors are distributed with zero mean, independent of
the true values, i.e.�

�yct � yct
�xct � xct

�
� IID

��
0
0

�
;

�
�00 �0

� �

��
; (12)

where the population cohort means are treated as �xed unknown constants.
Although �; � and �00 are unknown, they can easily be estimated consistently
(forN or T tending to in�nity), using the individual data. Once estimates for
� and � are available, it is easy to adjust the moment matrices in the within
estimator to eliminate the variance due to measurement error (cf. Fuller,

3As argued by McKenzie (2004), in many applications cohorts are de�ned by age groups
and hence a �xed number of cohorts is most likely to be of interest, which is inconsistent
with type 2 asymptotics. If C !1 with N !1; one needs to think of what this means
for the distribution of population cohort means as well as the distribution of individual
observations around these means. For example, it would be hard to argue that the co-
variance matrix on the right-hand side of (12) below is independent of how many cohorts
are distinguished. See Verbeek and Nijman (1992) for more discussion and a Monte Carlo
experiment that takes this issue into account.
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1987). This leads to the following errors-in-variables estimator

�̂D =

 
CX
c=1

TX
t=1

(�xct � �xc)(�xct � �xc)0 � � �̂
!�1

� (13) 
CX
c=1

TX
t=1

(�xct � �xc)(�yct � �yc)0 � � �̂
!
;

where �̂ and �̂ are estimates of � and �; respectively, and where � = (T �
1)=T: As discussed in Verbeek and Nijman (1993), the original estimator
presented by Deaton (1995) is characterized by � = 1: However, eliminating
the incidental parameters (in �c) �rst by within transforming the data, and
working out the appropriate moments, suggests � = (T � 1)=T; which leads
to better small sample properties.
Under type 1 asymptotics, the number of observations per cohort tends

to in�nity and both � and � tend to zero, as well as their estimators. In
this case �̂D is asymptotically equivalent to �̂W : Accordingly, most empirical
studies ignore the errors-in-variables problem and use standard estimators,
like �̂W ; see, for example, Browning, Deaton and Irish (1985), with an average
cohort size of 190, or Blundell, Browning andMeghir (1994), with cohort sizes
around 500. Unfortunately, there is no general rule to judge whether nc is
large enough to use asymptotics based on nc ! 1. Verbeek and Nijman
(1992) analyze the bias in �̂W for �nite values of nc: Depending upon the
way in which the cohorts are constructed, the bias in the standard within
estimator may still be substantial, even if cohort sizes are fairly large. In
general, it holds that, for given nc; the bias is smaller if the cohorts are
chosen such that the relative magnitude of the measurement errors is smaller
compared to the within cohort variance of xct. In practice, however, it may
not be easy to construct cohorts in such a way. More recently, Devereux
(2007) argues that cell sizes should be much larger, possibly 2000 or more.
In addition to the sizes of the cohorts, the way in which the cohorts are

constructed is important. In general, one should be equally careful in choos-
ing cohorts as in selecting instruments. In practice, cohorts should be de�ned
on the basis of variables that do not vary over time and that are observed for
all individuals in the sample. This is a serious restriction. Possible choices
include variables like age (date of birth), gender, race, or region.4 Identi�ca-
tion of the parameters in the model requires that the reduced forms in (7)
generate su¢ cient variation over time. This requirement puts a heavy bur-
den on the cohort identifying variables. In particular, it requires that groups

4Note that residential location may be endogenous in certain applications.
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are de�ned whose explanatory variables all have changed di¤erentially over
time.
Suppose, as an extreme example, that cohorts are de�ned on the basis of

a variable that is independent of the variables in the model. In that case,
the true population cohort means xct would be identical for each cohort c
(and equal the overall population mean) and the only source of variation
left in the data that is not attributable to measurement error would be the
variation of xct over time. If these population means do not change over time,
all variation in the observed cohort averages �xct is measurement error and
the errors-in-variables estimator �̂D does not have a well-de�ned probability
limit.

3 Estimation of a linear dynamic model

An important situation where the availability of panel data seems essential
to identify and estimate the model of interest is the case where a lagged
dependent variable enters the model. Let us consider a simple extension of
(1) given by

yit = 
yi;t�1 + x
0
it� + �i + uit; t = 1; :::; T; (14)

where the K-dimensional vector xit may include time-invariant and time-
varying variables. When genuine panel data are available, the parameters

 and � can be estimated consistently (for �xed T and N ! 1) using the
instrumental variables estimators of Anderson and Hsiao (1981) or, more
e¢ ciently, using the GMM estimator of Arellano and Bond (1991). These
estimators are based on �rst-di¤erencing (14) and then using lagged values
of yi;t�1 as instruments.
In the present context, yi;t�1 refers to the value of y at t � 1 for an

individual who is only observed in cross-section t: Thus, an observation for
yi;t�1 is unavailable. Therefore, the �rst step is to construct an estimate by
using information on the y-values of other individuals observed at t� 1: To
do so, let zi denote a set of time-invariant variables, including an intercept
term. Now, consider the orthogonal projection in cross-section t of yit upon
zi;

E�fyitjzig = z0i�0t; t = 1; :::; T; (15)

where E� denotes the orthogonal projection (for a given t): This is similar
to the reduced forms for xk;it in (7). Following Mo¢ tt (1993), one obtains
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an estimate of yi;t�1 as the predicted value from this regression, substituting
the appropriate z values for the individuals in cross-section t: That is,

ŷi;t�1 = z
0
i�̂0;t�1; (16)

noting that �̂0;t�1 is estimated from data on di¤erent individuals than those
indexed by i: In many circumstances it is convenient to think of zi as a vector
of dummy variables, corresponding to mutually exclusive cohorts, as in the
previous section. In this case, the orthogonal projection in (15) corresponds
to the conditional expectation and (16) corresponds to taking period-by-
period sample averages within person i�s cohort.
Now, insert these predicted values into the original model to get:

yit = 
ŷi;t�1 + x
0
it� + "i;t; t = 1; :::; T ; (17)

where

"it = �i + uit + 
(yi;t�1 � ŷi;t�1): (18)

No matter how ŷi;t�1 is generated, its inclusion implies that one of the ex-
planatory variables is measured with error, although the measurement er-
ror will be (asymptotically) uncorrelated with the predicted value.5 To see
whether it would be useful to estimate (17) by ordinary least squares, let us
�rst of all make the assumption that the instruments in zi are valid, so that

Ef(�i + uit)zig = 0; t = 1; :::; T: (19)

This excludes the possibility that there are cohort e¤ects in the unobserv-
ables. While this may appear unreasonable, this assumption is made in
Mo¢ tt (1993), Girma (2000) and in a number of cases in McKenzie (2004).
Under (19) it can be argued that ŷi;t�1 and "i;t are uncorrelated, which is a
necessary condition for OLS applied to (17) to be consistent. In addition,
consistency of OLS requires that xit and "it are uncorrelated. This assump-
tion may also be problematic, even in cases where the explanatory variables
are exogenous to begin with, i.e. even if

Ef(�i + uit)xitg = 0; t = 1; :::; T: (20)

This is because xit is likely to be correlated with yi;t�1 � ŷi;t�1:
Consider, for example, a case where high x-values in one period on av-

erage correspond with high x-values in the next period. If the � coe¢ cients

5Unlike the standard textbook measurement error examples.
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are positive this will generally imply that a high value for xi;t�1, which is
unobservable, will result in an underprediction of yi;t�1. On the other hand,
xi;t�1 is positively correlated with xit. Consequently, this will produce a pos-
itive correlation between "it and xit, resulting in an inconsistent estimator
for �. This inconsistency carries over to 
 unless ŷi;t�1 is uncorrelated with
xit. As a result, the estimator suggested by Mo¢ tt (1993), based on applying
OLS to (17), is typically inconsistent unless there are either no time-varying
exogenous regressors or the time-varying exogenous variables do not exhibit
any serial correlation (see Verbeek and Vella, 2005).
To overcome the problem of correlation between the regressors and the

error term in (17) one may employ an instrumental variables approach. Note
that now we need instruments for xit even though these variables are exoge-
nous in the original model. Because these instruments will have to satisfy
a condition like (19), a natural choice is to use the same instruments for
xit as we did for yi;t�1: This will also guarantee that the instruments are
uncorrelated with the prediction error yi;t�1 � ŷi;t�1 in "it:
As before, when the instruments zi are a set of cohort dummies, estima-

tion of (17) by instrumental variables is identical to applying OLS to the
original model where all variables are replaced by their (time-speci�c) cohort
sample averages. We can write this as

�yct = 
�yc;t�1 + �x
0
ct� + �"ct; c = 1; :::; C; t = 1; :::; T; (21)

where all variables denote period-by-period averages within each cohort. For
this approach to be appropriate, we need that �yc;t�1 and �xct are not collinear,
which requires that the instruments capture variation in yi;t�1 independent of
the variation in xit: That is, the time-invariant instruments in zi should ex-
hibit su¢ cient correlation with the exogenous variables in xit and the (unob-
served) lagged dependent variable yi;t�1; while at the same time they should
not be correlated with "it: Given these stringent requirements, it is likely
that in many applications the number of available valid instruments is small.
Verbeek and Vella (2005) provide more details on this rank condition.
The pairwise quasi-di¤erencing approach of Girma (2000) deviates from

the above estimation strategy in two respects, although it essentially makes
the same assumptions. First, the lagged value of y is not approximated by
the lagged cohort average but by an arbitrarily selected observation from the
cohort. Second, the instruments are not the cohort dummies, but individual,
or averaged, observations from the cohort. As a result, Girma�s approach
employs a noisy approximation to the unobserved lagged values as well as
noisy instruments. Although, under appropriate assumptions, this noise will
cancel out asymptotically, there does not seem to be any gain in using such
an approach (see Verbeek and Vella, 2005, for more discussion).
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The availability of appropriate instruments satisfying condition (19) may
be rather limited, because cohort e¤ects in the unobservables are not allowed.
It is possible to include cohort �xed e¤ects in essentially the same way as in
the static linear model by including the cohort dummies zi in the equation
of interest, with time-invariant coe¢ cients. This imposes (5) and results in

yit = 
ŷi;t�1 + x
0
it� + z

0
i�+ �it; t = 1; :::; T; (22)

where

�it = vi + uit + 
(yi;t�1 � ŷi;t�1); (23)

and Efzivig = 0 by construction. This also allows us to relax (20) to

Ef(vi + uit)xitg = 0; t = 1; :::; T: (24)

Under these conditions, one would estimate (22) by instrumental variables
using zi, interacted with time dummies, as instruments. Verbeek and Vella
(2005) refer to this as the augmented IV estimator noting that a time-varying
� would make the model unidenti�ed. To achieve identi�cation, we need
to assume that �yc;t�1 and �xct exhibit time variation and are not collinear.
This condition puts additional restrictions upon the relationships between
the instruments zi and xit and yi;t�1. Among other things, at least three
cross-sections are needed to identify the model under these assumptions.
Computation of this augmented IV estimator is remarkably simple if zi

is a set of cohort dummies. One simply aggregates the data into cohort
averages, which gives

�yct = 
�yc;t�1 + �x
0
ct� + �c + ��c;t; (25)

where �c = z0i� denotes a cohort-speci�c �xed e¤ect. Applying OLS to (25)
corresponds to the standard within estimator for (
; �0)0 based upon treating
the cohort-level data as a panel, which is consistent under the given assump-
tions (and some regularity conditions) under type 1 asymptotics (N ! 1
withC �xed). The usual problemwith estimating dynamic panel data models
(see Nickell, 1981)6, does not arise because under assumption (24) the error
term, which is a within cohort average of individual error terms that are
uncorrelated with zi; is asymptotically zero.7 However, it remains whether
suitable instruments can be found that satisfy the above conditions, because

6With genuine panel data, the within estimator in the dynamic model has a substantial
bias for small and moderate values of T .

7Recall that, asymptotically, the number of cohorts is �xed and the number of individ-
uals goes to in�nity.
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the rank condition for identi�cation requires that the time-invariant instru-
ments have time-varying relationships with the exogenous variables and the
lagged dependent variable, while they should not have any time-varying re-
lationship with the equation�s error term. While this seems unlikely, it is not
impossible. When zi is uncorrelated with �it; it is typically su¢ cient that
the means of the exogenous variables, conditional upon zi; are time-varying;
see Verbeek and Vella (2005) for more details. Under type 2 asymptotics
(N !1 with C !1), we encounter similar problems as in the static case,
and Collado (1997) discusses how this is handled in the dynamic case, by
extending the approach of Deaton (1985). The resulting estimator is simi-
lar to the GMM-type estimators that are applied with genuine panel data
(Arellano and Bond, 1991), but where the moment matrices are adjusted to
re�ect the errors-in-variables problem (for �nite nc):
Both Girma (2000) and McKenzie (2004) consider the linear dynamic

model with cohort-speci�c coe¢ cients in equation (14). While this extension
will typically only make sense if there is a fairly small number of well-de�ned
cohorts, it arises naturally from the existing literature on dynamic heteroge-
neous panels. For example, Robertson and Symons (1992) and Pesaran and
Smith (1995) stress the importance of parameter heterogeneity in dynamic
panel data models and analyze the potentially severe biases that may arise
from handling it in an inappropriate manner. In many practical applications,
investigating whether there are systematic di¤erences between, for example,
age cohorts, is an interesting question. Obviously, relaxing speci�cation (14)
by having cohort-speci�c coe¢ cients puts an additional burden upon the
identifying conditions. Further, note that using type 2 asymptotics, where
the number of cohorts increases with sample size, does not make much sense
in these cases.

4 Estimation of a binary choice model

In this section we brie�y consider the estimation of a binary choice model on
the basis of repeated cross-sections. In a binary choice model the outcome
variable takes on only two di¤erent values, coded as 0 and 1. For example, the
dependent variable could re�ect whether or not a household owns a house, or
whether or not an individual has a paid job. The model of interest is given
by

y�it = x
0
it� + �i + uit; t = 1; :::; T; (26)
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where y�it is a latent variable, and we observe

yit = 1 if y�it > 0; (27)

= 0 otherwise.

With genuine panel data, popular parametric estimators for this model are
the random e¤ects probit estimator and the �xed e¤ects logit estimator. The
�rst approach assumes that the unobservables �i and uit are normally distrib-
uted and independent of the explanatory variables in xit: The corresponding
likelihood function takes into account that di¤erent observations on the same
individual are dependent. With repeated cross-sections, this dependence is
zero by construction and the binary choice probit model can be estimated as
a pooled probit assuming �i + uit is N(0; 1).
Estimation becomes more complicated if one wants to allow �i and xit

to be correlated, as in the �xed e¤ects case. With genuine panel data, one
option is to explicitly model this correlation, as in the Chamberlain (1984)
approach, who proposes to parametrize the conditional expectation of �i
given the exogenous variables as a linear function of the xit�s. That is,

E(�ijxi1; :::; xiT ) = x0i1�1 + :::+ x0iT�T ; (28)

which allows us to write

�i = x
0
i1�1 + :::+ x

0
iT�T + �i; (29)

where E(�ijxi1; :::; xiT ) = 0: Substituting (29) into (26) produces

y�it = x
0
i1�t1 + :::+ x

0
iT�tT + �i + uit; t = 1; :::; T; (30)

where �ts = � + �s if s = t and �ts = �s otherwise. Making distributional
assumptions on �i and uit (e.g. normality) allows the application of stan-
dard maximum likelihood. However, when only repeated cross-sections are
available, we do not observe the full history of the explanatory variables, as
required in (29), and this approach is not feasible. Collado (1998) shows
how this model can be estimated using cohort data, based on substituting
the cohort speci�c means �xc1; :::; �xcT into (30). Using type 2 asymptotics,
with C !1 and more or less �xed cohort sizes, this introduces an errors-in-
variables problem in the equation. However, under normality the covariances
between the explanatory variables and the disturbances are known functions
of the variances of the measurement error (which can be identi�ed from the
individual data). Collado (1998) derives the corresponding probability that
yit = 1; which can be used to estimate �t for each cross section t: Next, the
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structural parameters � (and �) can be estimated using a minimum distance
estimator. Note that y�it as well as yit are not aggregated to cohort averages
in this approach.
An alternative approach is proposed by Mo¢ tt (1993) and is based on

estimating the binary choice model by instrumental variables, where the
cohort dummies (or other functions of the variables that de�ne cohorts) are
used as instruments. As before, this is based on type 1 asymptotics (with C
�xed and N !1): Using (5), write the latent variable equation as

y�it = x
0
it� + z

0
i�+ vi + uit; t = 1; :::; T: (31)

Assuming, as before, that the cohort indicators, interacted with time, provide
valid instruments, we can estimate the binary choice model by instrumental
variables. This requires the assumption that vi+ uit is normally distributed;
see Ridder and Mo¢ tt (2007) for more details. Mo¢ tt (1993) and Ridder
and Mo¢ tt (2007) also discuss extensions to discrete choice models with a
lagged dependent variable.

5 Concluding remarks

In this chapter we have brie�y discussed the problem of estimating panel
data models from a time series of independent cross-sections. In particular,
attention was paid to the estimation of static �xed e¤ects models, to dynamic
models with individual e¤ects and to binary choice models.
The approach proposed by Deaton (1985) is to divide the population

into a number of cohorts, being groups of individuals sharing some common
characteristics, and to treat the observed cohort means as error-ridden mea-
surements of the population cohort means. The resulting estimator for the
static linear model with �xed e¤ects is a corrected within estimator based on
the cohort aggregates. Mo¢ tt (1993) extends the work of Deaton by consid-
ering a general instrumental variables framework, of which explicit grouping
is a special kind. While both approaches assume that N !1 they di¤er in
the assumptions about what happens to the cohorts when N increases. In
Deaton�s approach, the number of cohorts C increases with N (with more
or less constant cohort sizes), while in Mo¢ tt�s approach, the number of co-
horts (which is equivalent to the number of instruments) is �xed and cohort
sizes increase with N: In this latter approach, the errors-in-variables problem
disappears.
BothMo¢ tt (1993) and Collado (1997) consider the linear dynamic model,

based on di¤erent types of asymptotics. As argued by Verbeek and Vella
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(2005), the �xed e¤ects estimator based on the pseudo panel of cohort aver-
ages may provide an attractive choice, even when a lagged dependent variable
is included in the model. This deviates from the genuine panel data case,
where the standard �xed e¤ects estimator su¤ers from a substantial small-T
bias in dynamic models. A Monte Carlo experiment by Verbeek and Vella
(2005) shows that the bias that is present in the within estimator for the
dynamic model using genuine panel data (see Nickell, 1981), is much larger
than what is found for similar estimators employed upon cohort aggregates.
However, an important issue in both the static and dynamic models is

the validity and relevance of the instruments that are used to construct the
cohorts. A necessary condition for consistency of most estimators is that all
exogenous variables exhibit genuine time-varying cohort-speci�c variation.
That is, the cohorts have exogenous variables that change di¤erentially over
time. While it is not obvious that this requirement will be satis�ed in empir-
ical applications, it is also not easy to check, because estimation error in the
reduced form parameters may hide collinearity problems. That is, sample
cohort averages may exhibit time-variation while the unobserved population
cohort averages do not.
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