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ABSTRACT
In this paper we introduce two concepts related to resolvability and the metric dimension of
graphs. The kth dimension of a graph G is the maximum cardinality of a subset of vertices of G
that is resolved by a set S of order k. Some first results are obtained. A pair of vertices u, v is
totally resolved by a third vertex x if dðu, xÞ 6¼ dðv, xÞ: A total resolving set in G is a set S such that
each pair of vertices of G is totally resolved be a vertex in S. The total metric dimension of a graph
is the minimum cardinality of a total resolving set. We determine the total metric dimension of
paths, cycles, and grids, and of the 3-cube, and the Petersen graph.

1. Introduction

In 1975 Slater [8] introduced the notion of the location
number of a graph. In 1976 Harary and Melter [5] inde-
pendently introduced the same notion, which they called the
metric dimension of a graph. The latter terminology has
become the standard in the literature, see e.g., [1–4]. Many
papers have been written on the metric dimension of a con-
nected graph since 1976. Let G be a connected graph. A ver-
tex x is said to resolve a pair u, v of two vertices if the
distances from x to u and v satisfy dðx, uÞ 6¼ dðx, vÞ: A set S
is said to resolve a set T in G if each pair of vertices in T is
resolved by some vertex x in S. If T is the vertex set V of G,
then S resolves G. The metric dimension of G is the min-
imum cardinality of a resolving set of G.

The aim of this paper is to present two new parameters
that are related to the metric dimension of a graph. The first
one is the kth dimension of a connected graph. In this case we
fix the order k ¼ jSj of a set S, and we seek maximal sets that
are resolved by S. The lower kth dimension equals the min-
imum cardinality of a maximal set that is resolved by a set S
of order k, and the upper kth dimension equals the maximum
cardinality of set T that can be resolved by a set S of order k.

So far, in the definition of resolving a pair of vertices, a ver-
tex u always resolves the pair u, v, since dðu, uÞ ¼ 0 < dðu, vÞ:
Hence, a set S always resolves the set S. In our second new
parameter, we require that the resolving vertex x is always dis-
tinct from the vertices in the pair u, v. In this case we say that
x totally resolves the pair u, v. The total metric dimension of a
graph G equals the minimum cardinality of a set S that totally
resolves the vertex set V of G. This new concept of resolvabil-
ity is similar to the notion of total domination versus domin-
ation. A big difference between the metric dimension is that

the total metric dimension is not always defined, in the same
way that the total domination number is not always defined.

We determine the total metric dimension of paths and
cycles. We determine the total metric dimension of the 3-
cube Q3, and pose the determination of the total metric
dimension of Qn, with n � 4 as an open problem. We also
determine the total metric dimension of the Petersen graph,
and of the grid graphs. In all these instances the differences
between the usual metric dimension and this new total met-
ric dimension become clear.

2. Preliminaries

Let G ¼ ðV, EÞ be a graph of order n ¼ jVj: The open neigh-
borhood of a vertex v 2 V is the set NðvÞ ¼ fujuv 2 Eg of
vertices adjacent to v. Each vertex u 2 NðvÞ is called a neigh-
bor of v. The closed neighborhood of a vertex v 2 V is the
set N½v� ¼ NðvÞ [ fvg: The open neighborhood of a set S �
V of vertices is NðSÞ ¼ [v2S NðvÞ, while the closed neighbor-
hood of a set S is the set N½S� ¼ [v2S N½v�:

Let d(u, v) denote the minimum length of a path (the dis-
tance), between vertices u and v. The eccentricity of a vertex
x 2 V is defined as eccðxÞ ¼ maxfdðx, vÞjv 2 Vg: The diam-
eter of G equals diamðGÞ ¼ maxfeccðvÞjv 2 Vg, and the
radius of G equals radðGÞ ¼ minfeccðvÞjv 2 Vg:

A set S � V is a dominating set in G if N½S� ¼ V , that is,
every vertex w 2 V � S is adjacent to at least one vertex in
S. The minimum cardinality of a dominating set in G is
called the domination number of G, denoted cðGÞ: A set S �
V is a total dominating set if N(S) ¼ V, that is, every vertex
w 2 V is adjacent to a vertex v 2 S with v 6¼ w: The min-
imum cardinality of a total dominating set in G is the total
domination number, denoted ctðGÞ:
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A set S � V is called independent if no two vertices in S
are adjacent. The vertex independence number aðGÞ equals
the maximum cardinality of an independent set in G.

Let S ¼ fv1, v2, :::, vkg be an ordered set of k vertices in a
connected graph G ¼ ðV, EÞ, and let w 2 V be an arbitrary
vertex. The metric representation of w with respect to the set
S is the (ordered) k-vector

rðwjSÞ ¼ ðdðw, v1Þ, dðw, v2Þ, :::, dðw, vkÞÞ:
A set S is said to be a resolving set for G if no two vertices
in V have the same metric representation, with respect to S.
The minimum cardinality of a resolving set for G is called
its metric dimension and is denoted dim(G).

It is worth pointing out that for any set S � V, any two
vertices vi, vj 2 S have distinct metric representations with
respect to S, that is, rðvijSÞ 6¼ rðvjjSÞ because dðvi, viÞ ¼ 0 6¼
dðvj, viÞ > 0: And for the same reason, the metric represen-
tation of any vertex in S is different than the metric repre-
sentation of any vertex in V – S. Thus, in order to
determine if a set S is a resolving set, one only has to check
that every pair of distinct vertices in V – S have distinct
metric representations with respect to S.

An equivalent definition of the metric dimension of a graph
G can be given as follows. A vertex x 2 V in a connected graph
G is said to resolve two vertices u, v 2 V if dðu, xÞ 6¼ dðv, xÞ; we
denote this x� u, v: It follows from this definition that for any
vertex x 2 S, and any vertex v 2 V � fxg, x� x, v:

A set S � V resolves a set T � V, denoted S�T, if for
every two vertices u, v 2 T there exists a vertex x 2 S such
that x� u, v: Note that according to this definition, every set
S resolves itself and all subsets S0 � S:

Proposition 1. For any connected graph G ¼ ðV, EÞ and any
set S � V, S� S:

A set S � V is a resolving set for G, if S�V, that is, if for
every two distinct vertices u, v 2 V , there exists a vertex x 2 S,
such that x� u, v: The metric dimension dim(G) equals the min-
imum cardinality of a resolving set S for G. Such a minimum
cardinality resolving set is called a metric basis for G. This con-
cept was first introduced by Slater [8] in 1975, who called a
resolving set a locating set, and the metric dimension of G the
location number loc(G). This concept was independently intro-
duced by Harary and Melter [5] in 1976, who used the term
“metric dimension”. By now there exists a considerable literature
on resolvability and the metric dimension of a graph, see
e.g., [2–4].

A resolving set S for a connected graph G is said to be
minimal if no proper subset of S is a resolving set for G.
Note that the property of being a resolving set is superhere-
ditary, which means that every superset of a resolving set is
also a resolving set. In addition, the property of not being a
resolving set is hereditary, that is, each subset of a non-
resolving set is also a non-resolving set. Hence, in order to
determine if a resolving set is minimal, all you have to do is
to check that S� fvg is a not resolving set, for every v 2 S:

The maximum cardinality of a minimal resolving set for a
connected graph G is called the upper metric dimension of G and
is denoted dimþðGÞ: The upper metric dimension was

introduced by Chartrand, Poisson, and Zhang [2] in 2000. It fol-
lows from the definitions that for any connected graph G,
dimðGÞ � dimþðGÞ: In [2] it is shown that for every positive
integer k, there exists a connected graph G for which dimþðGÞ �
dimðGÞ � k: The authors were not able to prove the following:

Conjecture [Chartrand, Poisson, Zhang]. For every pair a,
b of positive integers with 2 � a � b, there exists a connected
graph G for which dim(G) ¼ a and dimþðGÞ ¼ b:

In the following sections we introduce several new
parameters, all stemming from the concept of a resolving set
and the definition of the metric dimension of a graph.

3. The upper and lower kth dimension of a graph

A third, and still equivalent, definition of metric dimension
can be given as follows. The (metric) upper dimension
Dim(x) of a vertex x 2 V equals the maximum cardinality of
a set S � V such that x� u, v: for any pair of distinct verti-
ces u, v 2 S: Thus, DimðxÞ ¼ maxfjSjjS � V and x� Sg:
Similarly, we can define the lower dimension dim(x) of a
vertex v to equal the minimum cardinality of a maximal set
S such that x� u, v, for any pair of distinct vertices u, v 2 S:

Proposition 2. For any vertex x in a connected graph
G, dimðxÞ ¼ DimðxÞ ¼ 1þ eccðxÞ:
Proof. Let x be a vertex in G, and let S be a set of maximum
cardinality such that x� S: It follows that no two vertices
u, v 2 S can be at the same distance from x, else dðx, uÞ ¼
dðx, vÞ, and therefore x does not resolve S. By definition,
there can be at most 1þ eccðxÞ distinct distances from verti-
ces in V to x. Thus, DimðxÞ � 1þ eccðxÞ: Let u be any ver-
tex for which dðx, uÞ ¼ eccðxÞ, let x, u1, u2, :::ueccðxÞ ¼ u be a
shortest path from x to u, and let S be the set of vertices on
this path. Then clearly x� S, and jSj ¼ 1þ eccðxÞ:
Thus, DimðxÞ � 1þ eccðxÞ:

Similarly, let S be a maximal set of minimum cardinality
such that x� S, that is, dimðxÞ ¼ jSj: Define for x, the 1þ
eccðxÞ sets Xi, where for every vertex w 2 Xi, dðx,wÞ ¼ i, for
0 � i � eccðxÞ: By definition jS \ Xij � 1, and if there exists a
j such that S \ Xj ¼ ;, then S is not a maximal set. Thus,
jSj ¼ 1þ eccðxÞ: w

Definition 1. For any connected graph G, the upper k-th
dimension DimkðGÞ of G equals the maximum cardinality of a
set T � V such that there exists a set S of cardinality k and
S�T: The lower k-th dimension dimkðGÞ of G equals the min-
imum cardinality of a maximal set T � V such that there exists
a set S of cardinality k and S�T: Such a set T is called a dimk-
set of G, while the set S is called a dimk-resolving set for T.

Notice from the definitions that if a set T is a dimk-set of G
and the set S is a dimk-resolving set for T, then it must follow
that S � T, since if S�T then by definition S�T [ S:

The following inequalities are easily established.

Proposition 3. For any connected graph G of order n,

k � DimkðGÞ � Dimkþ1ðGÞ � n:
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3.1. The first dimension of a graph

We determine the first dimension of a connected graph in
terms of its diameter and radius.

Proposition 4. For any connected graph G,
Dim1ðGÞ ¼ 1þ diamðGÞ:
Proof. Let x be a vertex for which eccðxÞ ¼ diamðGÞ, let ud
be a vertex for which dðx, udÞ ¼ diamðGÞ, let x, u1, u2, :::ud
be a shortest path of length d ¼ diamðGÞ from x to ud, and
let S be the set of vertices on this path. Then, clearly x� S,
and therefore, Dim1ðGÞ � 1þ diamðGÞ:

To show that Dim1ðGÞ � 1þ diamðGÞ, let x be a vertex
for which DimðxÞ ¼ Dim1ðGÞ, and let S(x) be a largest set,
such that x� SðxÞ: Clearly no two vertices, say u and v in
S(x) can be at the same distance from x, else x cannot
resolve the pair u, v. There can be at most 1þ diamðGÞ dis-
tinct distances from any vertex in V to all vertices in V.
Thus, jSðxÞj � 1þ diamðGÞ: w

In like manner, by selecting a vertex x such that eccðxÞ ¼
radðxÞ, one can prove the following; we omit the proof.

Proposition 5. For any connected graph G,
dim1ðGÞ ¼ 1þ radðGÞ:

3.2. The second dimension of a graph

Proposition 4 asserts that the upper first dimension of a
connected graph is 1 plus its diameter. This raises the fol-
lowing question:

Question 1. Can you characterize the upper second
dimension Dim2ðGÞ of a connected graph G?

A partial answer to this question follows from the
definitions.

Proposition 6. For any graph G of order n � 2, dim(G) ¼ 2,
if and only if Dim2ðGÞ ¼ n.

Corollary 7. For any cycle Cn, Dim2ðCnÞ ¼ n:

Proof. It is well known that for any cycle Cn, dimðCnÞ ¼ 2,
since any pair of adjacent vertices in a cycle is a resolving
set for Cn. w

It should be pointed out that in general, dim2ðCnÞ <
Dim2ðCnÞ is possible. For example, we have just pointed out
that Dim2ðC6Þ ¼ 6, since any pair of adjacent vertices of C6

is a resolving set for S ¼ VðC6Þ: However, any set of two
antipodal vertices of C6, that is, any two vertices u, v, for
which dðu, vÞ ¼ 3 in C6, is a set that can only resolve four
vertices, and any such set of four vertices is a maximal
resolving set for such a pair u and v. This shows
that dim2ðC6Þ ¼ 4 < Dim2ðC6Þ ¼ 6:

Corollary 7 leads us to ask, what is dim2ðCnÞ? We answer
this question in the next two results. Recall that an internal ver-
tex on a path is a vertex that is not one of the ends of the path.

Proposition 8. For any cycle C2kþ1 of odd order,

dim2ðC2kþ1Þ ¼ Dim2ðC2kþ1Þ ¼ 2kþ 1:

Proof. Let S ¼ fu, vg be a set of two vertices in C2kþ1: From
the proof of Corollary 7 we know that if u is adjacent to v
then S�VðC2kþ1Þ: Next let u and v not be adjacent. Let P1
and P2 be the two edge-disjoint paths between u and v on the
cycle C2kþ1: It is easy to see that S�VðP1Þ and S�VðP2Þ:
Therefore, let x be an internal vertex of P1, and let y be an
internal vertex of P2. We will show that S�fx, yg:

We can assume, without loss of generality, that P1 is
shorter than P2. This implies that the distances d(u, x) and
d(v, x) are the lengths of the subpaths of P1 between the
respective vertices. Suppose that dðx, uÞ ¼ dðy, uÞ: Then it
follows that dðx, yÞ ¼ dðx, uÞ þ dðu, yÞ ¼ 2dðx, uÞ: Now we
compare d(v, x) and d(v, y). The value of d(v, y) depends on
the length of the two paths between v and y in C2kþ1: One
of these contains both x and u. If this one is the shorter of
the two, then, obviously, we have dðv, xÞ < dðv, yÞ, so
dðv, xÞ 6¼ dðv, yÞ: If the other (v,y)-path is the shorter one,
then dðv, xÞ þ dðv, yÞ ¼ 2kþ 1� dðx, uÞ � dðu, yÞ ¼ 2kþ 1
�2dðx, uÞ, which is odd. So again we get dðv, xÞ 6¼ dðv, yÞ:
In both cases it follows that S�fx, yg:

Otherwise, we have dðu, xÞ 6¼ dðu, yÞ, in which case
S�fx, yg trivially. w

Proposition 9. For any cycle C2k of even
order, dim2ðC2kÞ ¼ kþ 1:

Proof. Let S ¼ fu, vg be any two vertices on the cycle C2k such
that dðu, vÞ ¼ k, and let P1 and P2 be the two edge-disjoint
paths between u and v on the cycle C2k: By definition, jVðP1Þj ¼
jVðP2Þj ¼ kþ 1: It follows that S�T ¼ VðP1Þ: It also follows
that the set T is a maximal set resolved by S of order kþ 1.

Next let S ¼ fu, vg consist of two vertices of C2k with
dðu, vÞ ¼ m < k: Let Q1 and Q2 be the two edge-disjoint
paths between u and v on the cycle, with Q1 of length m
and Q2 of length 2k�m � kþ 1: It is easy to see that
S�VðQ2Þ: So S resolves at least kþ 2 vertices.

Thus we have shown that the smallest maximal set that is
resolved by two vertices is of order kþ 1. w

Question 2. What are good upper and lower bounds for
the second dimensions Dim2ðGÞ and dim2ðGÞ of a graph?

We know of course, for any graph G, that

1þ diamðGÞ ¼ Dim1ðGÞ � Dim2ðGÞ � n:

But, are there better bounds? For the case of trees see [7].

3.3. The computational complexity of the second
dimension of a graph

Question 3. Can the second dimension of a connected graph
be computed in polynomial time?

We present some observations that might be a first step
in answering this question.

For any pair u, v of vertices, define Dimðu, vÞ ¼
maxfjTjjT � V and fu, vg�Tg: The upper second dimension
of a connected graph G is therefore Dim2ðGÞ ¼
max fDimðu, vÞju, v 2 Vg:
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Let D(G) be the n-by-n distance matrix of a connected
graph G ¼ ðV, EÞ, where Dði, jÞ ¼ Dðj, iÞ ¼ dðvi, vjÞ, and
consider any two vertices vi, vj 2 V: We seek to determine
Dimðvi, vjÞ, that is, the maximum cardinality of a set T � V
such that fvi, vjg�T:

Consider the ith and jth rows of the matrix D and con-
struct the following graph Gði, jÞ ¼ ðV, Eði, jÞÞ: Two vertices
vx and vy, for 1 � x < y � n, are adjacent in G(i, j) if and
only if (i) dðvi, vxÞ ¼ dðvi, vyÞ and (ii) dðvj, vxÞ ¼ dðvj, vyÞ:
Thus, the edges vxvy of the graph G(i, j) correspond to the
pairs of vertices vx, vy that are not resolved by either vi or
vj. Thus, if fvi, vjg�T, then vx and vy cannot both be in T.

Proposition 10. For any connected graph G, and any two
vertices vi, vj in V,

Dimðvi, vjÞ ¼ aðGði, jÞÞ:

Proof. Let T � V be an independent set of maximum car-
dinality aðGði, jÞÞ in G(i, j). Since no two vertices in T are
joined by an edge in G(i, j), it follows that for every pair
vx, vy 2 T, either dðvi, vxÞ 6¼ dðvi, vyÞ, or dðvj, vxÞ 6¼ dðvj, vyÞ,
whence fvi, vjg�T: Therefore, Dimðvi, vjÞ � jTj ¼ aðGði, jÞÞ:

Conversely, let T � V be a maximum cardinality set such
that fvi, vjg�T: Thus, Dimðvi, vjÞ ¼ jTj: It follows that for
any two vertices vx, vy 2 T, either dðvi, vxÞ 6¼ dðvi, vyÞ, or
dðvj, vxÞ 6¼ dðvj, vyÞ: But in this case there is no edge
between vx and vy in G(i, j). Thus, the set T must be an
independent set in G(i, j). Therefore, by definition,
Dimðvi, vjÞ ¼ jTj � aðGði, jÞÞ: w

Corollary 11. For any connected graph G,

Dim2ðGÞ ¼ maxfaðGði, jÞÞjvi, vj 2 Vg:

It is well known that the decision problem corresponding
to the independence number aðGÞ of a graph is NP-com-
plete. However, we do not know whether this decision prob-
lems remain NP-complete, when it is restricted to such
graphs G(i, j). We leave this as an open problem.

We conclude this section with a simple observation on
the relation between the kth upper dimensions of a graph
(k � 1) and its metric dimension.

Proposition 12. For any connected graph G of order n,

dimðGÞ ¼ minfkjDimkðGÞ ¼ ng:

Proof. Let k be a smallest integer for which there exists a set
S with jSj ¼ k and S�V: Then, by defin-
ition, dimðGÞ � k ¼ minfkjDimkðGÞ ¼ ng:

Conversely, let S be a smallest set in G such that S�V,
that is, by definition, dimðGÞ ¼ jSj: Then
minfkjDimkðGÞ ¼ ng � jSj ¼ dimðGÞ: w

4. Total metric dimension

A fourth, and still equivalent, definition of the metric dimen-
sion can be given as follows. A set S � V is an external resolv-
ing set if S�V � S, that is, for every two distinct vertices
u, v 2 V � S, there exists a vertex x 2 S, such that x� u, v:

The external metric dimension xdim(G) equals the min-
imum cardinality of an external resolving set S in G; such a
minimum cardinality external resolving set is called an
external metric basis for G. Since every resolving set S for G
is by definition an external resolving set, it follows that for
any graph G,

xdimðGÞ � dimðGÞ:
However, the following is true.

Proposition 13. For any graph G, xdimðGÞ ¼ dimðGÞ:
Proof. It follows from the definitions that every resolving set S
for G is automatically a resolving set for V – S. It only remains
to show that the converse is true: every resolving set S for V – S
is a resolving set for V, and therefore, for G. This follows from
the previous observation above that any two vertices u, v 2 S
have distinct metric representations with respect to S, since
dðu, uÞ ¼ 0 < dðv, uÞ: Furthermore, the same statement applies
to any vertex u 2 S and any vertex v 2 V � S: w

The property of being a resolving set for V – S is, there-
fore, the same as being a resolving set for V. However, this
V – S versus S difference becomes clearer if we make a
minor, but significant change in the definition.

Consider the following reworded definitions of a domi-
nating set and a total dominating set of a graph G. A set
S � V is a dominating set of a graph G if for every vertex
v 2 V there exists a vertex u 2 S such that u dominates v, or
u is adjacent to v. Notice that we assume that a vertex v
dominates itself, and therefore if v 2 V is in fact a vertex
v 2 S � V, then we may choose vertex v 2 S so that v dom-
inates v. But in total domination we cannot choose a vertex
to dominate itself.

A set S � V is a total dominating set of a graph G if the
set S totally dominates the set V, that is, for every vertex v 2
V there exists a distinct vertex u 2 S such that u dominates
v, that is, v is a neighbor of u. This implies that u 6¼ v:

We can make the same distinction with regard to a ver-
tex u resolving a pair of vertices v, w. Recall the definition,
a set S is a resolving set of a graph G if, for every pair of dis-
tinct vertices v,w 2 V, there exists a vertex u 2 S, such that
u resolves v, w, or u� v,w: Notice that we assume that a
vertex resolves itself and any other vertex, thus, u� u, v: A
total dominating version of resolving is total resolving.

Definition 2. A vertex u 2 S in a connected graph G totally
resolves two distinct vertices v,w 2 V, denoted u 	 v,w, if
dðu, vÞ 6¼ dðu,wÞ and v 6¼ u 6¼ w:

It no longer follows from this definition that for any ver-
tex u 2 S, and any distinct vertex v 2 V � fug, u 	 u, v,
since all three vertices must be distinct.

Definition 3. A set S � V totally resolves a set T � V,
denoted S 	 T, if, for every two distinct vertices v,w 2 T,
there exists a distinct third vertex u 2 S such that u 	 v,w:

Note that according to this definition, it is not necessarily
true that every set S totally resolves itself and all sub-
sets S0 � S:
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Definition 4. A set S � V is a total resolving set or a TRS
for G, if S 	 V, that is, if for every two distinct vertices
v,w 2 V, there exists a distinct third vertex u 2 S, such
that u 	 v,w:

The total metric dimension dimtðGÞ equals the minimum
cardinality of a total resolving set S for G; a minimum cardin-
ality total resolving set is called a total metric basis for G. It
follows from these definitions that for any graph G of order n,

dimðGÞ � dimtðGÞ:
This inequality raises the following question.

Question 4. For which connected graphs G do we
have dimtðGÞ ¼ dimðGÞ?

Notice, first of all, that by definition, if S is a TRS of a
graph G, then jSj � 3: Thus, if a graph G of order n has a
TRS, then

3 � dimtðGÞ � n:

The next lemma follows immediately from the definition,
but is quite helpful in the sequel.

Lemma 14. If a connected graph G has a total resolving set S
of order 3, then the distances between the three pairs in S are
all different.

Proof. Let S ¼ fu, v,wg: If, say, dðu,wÞ ¼ dðv,wÞ, then S
does not totally resolve the pair u, v. w

A few examples will serve to illustrate the properties of
total resolving sets. Notice next that not all graphs have a
TRS. These include complete graphs Kn with n � 3, and all
graphs having a vertex that is adjacent to two or more
leaves. This observation immediately raises the following
two questions.

Question 5. Can you characterize the family of graphs
having a TRS?

Question 6. What is the complexity of the following deci-
sion problem?

TOTAL RESOLVING SET
Instance: a graph G ¼ ðV, EÞ
Question: does G have a TRS?

4.1. Paths and cycles

For convenience, let us assume that the vertices of the path Pn
of order n are simply labeled 1, 2, 3, :::, n: Clearly, the three
pairs of vertices in the path P3 of order 3 do not have different
distances. So, by Lemma 14, it does not have a TRS.

Proposition 15. For any n � 4, dimtðPnÞ ¼ 3:

Proof. We show that the set S ¼ f1, 2, 4g is a TRS. It is easy
to see that for every 2 � u < v � n, we have 1 	 u, v, since
dð1, uÞ < dð1, vÞ: This only leaves the following vertex pairs
to be totally resolved, as follows: 4 	 1, 2; 4 	 1, 3; and 2 	
1, v, for all v � 4: w

Vertex 1 resolves each pair in the path Pn, so dimðPnÞ ¼
1, for all n.

Again, for convenience, let us assume that the vertices of
the cycle Cn of order n are labeled in circular order
1, 2, 3, :::, n, 1: Again by Lemma 14, it is obvious that the
cycle C3 of order 3 does not have a TRS.

Proposition 16. The cycle C4 does not have a TRS:

Proof. No pair of non-adjacent vertices can be totally
resolved. Hence there is no TRS in C4. w

Proposition 17. dimtðCnÞ ¼ 4, for n¼ 5 or 6.

Proof. It is easy to see that the 5-cycle does not contain
three vertices with pairwise different distances.
So dimtðC5Þ > 3:

The 6-cycle C6 does have three vertices with pairwise dif-
ferent distances. Without loss of generality, this set is {1, 2,
4}. In this case we have dð1, 2Þ ¼ dð1, 6Þ ¼ 1 and dð4, 6Þ ¼
dð4, 2Þ ¼ 2: So the pair 2, 6 is not totally resolved. Thus we
have dimtðC6Þ > 3:

It is straightforward to check that the path P on the four
vertices is a TRS in C5 as well as C6. So, indeed, we have
dimtðC5Þ ¼ dimtðC6Þ ¼ 4: w

Theorem 18. For any n � 7, dimtðCnÞ ¼ 3:

Proof. Let S ¼ f1, 2, 4g: We will show that S is a TRS of Cn,
that is, for every u, v 2 f1, 2, 3, :::, ng, there exists a vertex
w 2 f1, 2, 4g, such that w 	 u, v:

Consider first all six vertex pairs u, v for 1 � u < v � 4:
It is easy to see the following: first 4 totally resolves the pair
1, 2, the pair 1, 3, and the pair 2, 3, next 2 totally resolves
the pair 1, 4, and the pair 3, 4, and finally 1 totally resolves
the pair 2, 4. This deals with all pairs in the set f1, 2, 3, 4g:

Since 2 is adjacent to 1, but not to any vertex v with v �
5, it follows that 2 	 1, v, for v � 5: Similarly, 2 is adjacent
to 3, but not to any vertex v with v � 5, so 2 	 3, v, for
v � 5: Since 1 is adjacent to 2, but not to any vertex v with
5 � v � n� 1, it follows that 1 	 2, v, for 5 � v � n� 1:
Since n � 7, we have dð4, nÞ � 3: So 4 	 2, n: Next either
1 	 4, v or 2 	 4, v, for v � 5: Notice in this case that if
dð1, 4Þ ¼ dð1, vÞ ¼ 3, for some v � 5,
then 2 ¼ dð2, 4Þ 6¼ 3 � dð2, vÞ:

This leaves the vertex pairs u, v for 5 � u < v � n: But it
is easy to see that either 1 	 u, v or 2 	 u, v, since, if
dð1, uÞ ¼ dð1, vÞ, for 5 � u < v, then dð2, uÞ 6¼ dð2, vÞ: w

The set {1, 2} resolves each pair of the cycle Cn, so
dimðCnÞ ¼ 2, for all n � 3:

4.2. The 3-cube Q3

Observe that the property of being a total resolving set is
superhereditary, similar to the case of resolving set, that is,
every superset of a total resolving set is also a total resolving
set. This implies that a total resolving set S is minimal if
and only if for every vertex x 2 S, the set S� fxg is not a
total resolving set. It follows therefore, that every vertex x in
a minimal (total) resolving set must (totally) resolve some
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pair of vertices u, v that is not (totally) resolved by any
other vertex in S, that is x� u, v: We speak of such a pair u,
v as a private (total) resolving pair for vertex x, or a private
pair, for short.

The n-cube Qn is the graph whose vertices correspond 1-
to-1 with all possible n-tuples of 0 s and 1 s, such that two
vertices are adjacent if and only if the corresponding n-
tuples differ in exactly one position. It has many nice prop-
erties, amongst which are abundant symmetries and auto-
morphisms. We will use this without mention. The 3-cube
Q3 is the well-known 3-dimensional cube having order 8.
Note that the minimal resolving sets in Q3 are the 3-sets
that induce either a path of three vertices or three independ-
ent vertices. So dimðQ3Þ ¼ 3:

Proposition 19. For the 3-cube, dimtðQ3Þ ¼ 6:

Proof. In Figure 1 we see the three types of sets of order 6
in Q3 depicted as the gray vertices. In Case (A), the two ver-
tices not in the set have distance 3. In Case (B), they have
distance 1, and in Case (C), they have distance 2. In Case
(C), the pair a, b is not resolved by any other gray vertex.
So this set of six vertices is not a TRS.

We will show that the sets in Cases (A) and (B) are minimal
total resolving sets. Since any set of 7 or 8 vertices contain a set
of type (A), such sets are not minimal total resolving sets.
Moreover any set of 5 vertices is contained in a set of type (A)
or type (B). Thus it will follow that the sets of type (A) and (B)
are precisely the minimal total resolving sets of Q3.

First we show that the sets are total resolving sets. Note
that, since Q3 is bipartite, any pair of vertices at odd dis-
tance is resolved by any other vertex. So one only needs to
check vertices at distance 2. Note that, for any vertex u of
Q3, there is a unique vertex u0 at distance 3, its antipodal
vertex. Clearly, u0 totally resolves any pair containing u.

In Case (A), the antipodal vertex of a gray vertex is again
a gray vertex. Any pair u, v at distance 2 contains a gray
vertex, so the antipodal vertex of this gray vertex totally
resolves this pair.

In Case (B), there are two different types of gray vertices:
vertices of degree 2, of which the antipodal vertex is also
gray, and vertices of degree 3, of which the antipodal vertex
is white. Any pair u, v at distance 2 containing a gray vertex
u of degree 2 is totally resolved by u0: So we only need to
check pairs u, v at distance 2 such that u is a gray vertex of

degree 3, and v is a white vertex. Now the antipodal vertex
v0 of v is a gray vertex, and totally resolves u, v.

To show that each gray vertex has a private resolving pair,
we have indicated for each type of vertex u such a pair u1, u2.
In Case (A), there is only one type of vertex indicated as x. In
Case (B), there are two types of vertices indicated as x and y.

Thus we have shown that the sets in Cases (A) and (B)
are minimal total resolving sets, which concludes the
proof. w

Since Q2 ¼ C4, the 2-cube does not have a TRS.

Question 7. Can you determine dimtðQnÞ, for n> 3?

4.3. The Petersen graph

Next consider the Petersen graph P: We take the Petersen
graph in its usual drawing, with an outer 5-cycle and an
inner 5-cycle, and a connecting matching, see Figure 2. The
Petersen graph has many symmetries and automorphisms.
For instance, we may take any 5-cycle as the outer cycle,
whereby the remaining five vertices form the inner cycle.
We make use of this fact when we visualize the arguments
in the proof below. Since the distances between two distinct
vertices in the Petersen graph are either 1 or 2, a vertex x
totally resolves a pair x1, x2 if and only if x is adjacent to
one of the two and not adjacent to the other. We use these
facts below in the proof without mention. We denote the
path of order n by Pn.

First we observe that dimðPÞ ¼ 3: Take a P3 on the outer
cycle, say, with ends u and v, and middle vertex z. Now let
S ¼ fu, v,wg, where w is a vertex on the inner cycle that is
not adjacent to u, v, or z. It is easy to see that S is a resolv-
ing set. Moreover, no 2-set in P is a resolving set.

Proposition 20. For the Petersen graph P, dimtðPÞ ¼ 5:

Proof. Let S be a set of at least three vertices in P, and let P½S�
be the subgraph of P induced by S. A pair of independent ver-
tices in P½S� is not resolved by any other vertex in S. If P2 is a
component in P½S�, then the pair of ends of this P2 is not
resolved by any other vertex in S. If P3 is a component in
P½S�, then again the pair of ends of this P3 is not resolved by
any other vertex in S. If K1, 3 is a component in P½S�, then no
pair of leaves of this K1, 3 is resolved by any other vertex in S.
Finally, assume that P4 is a component in P½S�: Then this P4 is

Figure 1. The sets of order 6 in Q3.
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part of a 5-cycle in P: We may take this 5-cycle as the outer
cycle in P, see Figure 2(A). Here we also have indicated a pair
u and v that is not resolved by any other vertex of this P4.
Thus we have shown that no 4-set in P can be a total resolv-
ing set. Hence dimtðPÞ � 5:

To show that dimtðPÞ ¼ 5, we have to exhibit a 5-set
that is a TRS. A candidate is the 5-cycle in Figure 2(B).
Note that the pair u, v that was not resolved in the case of
the P4 is now resolved by x. So it is a private pair for x. By
symmetry, each vertex on the 5-cycle has a private pair.

To totally resolve a pair, we need to find a vertex that is
adjacent to one, but not to the other. We list the different
types of pairs that we have to check. There are four types of
non-mixed pairs: two adjacent white vertices, two nonadja-
cent white vertices, two adjacent gray vertices, two nonadja-
cent gray vertices. There are three types of mixed pairs, one
with the white vertex adjacent to the gray vertex, one with
the white vertex adjacent to a neighbor of the gray vertex,
and finally, one with the white vertex not adjacent to a
neighbor of the gray vertex. In each case we easily find a
totally resolving gray vertex. w

In Figure 3 we depict the two other 5-sets that form a TRS
in the Petersen graph: A P4 with an independent vertex, and a
P5. We omit the proof that these 5-sets are a TRS. By only
considering the various types of pairs of vertices it is possible
to check that they are indeed a TRS within reasonable time. In
the case of the P5, it is easier to check all pairs by using a dif-
ferent, fairly common drawing of the Petersen graph, see
Figure 3(B). It is easier to show that the three other possible 5-
sets do not form a TRS. In two cases a P2 or a P3 appears as
component. In the third case, the subgraph induced by the set
is connected: it is a tree on five vertices with on vertex of
degree 3. The vertex of degree 3 has two leaves, which are not
resolved by any other vertex of the tree.

4.4. The grids PmwPn

Let G1 ¼ ðV1,E1Þ and G2 ¼ ðV2, E2Þ be two graphs. The
Cartesian product of these graphs is the graph G ¼ G1wG2

with vertex set V1 
 V2, where ðu1, u2Þðv1, v2Þ is an edge if
and only if either u1v1 is an edge in G1 and u2 ¼ v2 or u1 ¼
v1 and u2v2 is an edge in G2. The m
 n grid is the
Cartesian product PmwPn of two paths of orders m and n,

respectively, with m, n � 2: Without loss of generality, we
may assume that m � n:

Note that P2wP2 ¼ C4, so the 2
 2 grid does not have a
total resolving set. In this section we determine the total
metric dimension of the larger grids.

First we consider the case m¼ 2 and n � 3: The 2
 n
grid, with n � 3, is also known as the ladder graph or the
n-ladder. It consists of two copies of the path Pn on n verti-
ces, and a matching between corresponding vertices. We
draw the two n-paths horizontally from left to right: a bot-
tom path and above it a top path, so that the matching
between the two paths consists of vertical lines. See Figure 4
for an illustration. The vertices of the bottom path will be
called bottom vertices, and those of the top path top vertices.
The four vertices of degree 2 are the corners of the n-ladder.

Now we search for total resolving sets S for the ladder
graph. Since a total resolving set S is of order at least 3, we
may assume, without loss of generalization, that S contains at
least two bottom vertices. Let u be the left most bottom vertex
in S, and let v be the right most bottom vertex in S. In Figure
4(A), the pairs containing u and the pairs contained in a box
are the pairs that are not totally resolved by u. We see two
types of boxes: an upward box consists of a bottom vertex and
a top vertex to the right of it, and a downward box consists of
a bottom vertex and a top vertex to the left of it. Let us call a
pair in a box just a box. So u does not resolve upward boxes
on the left and downward boxes on the right.

Next we also consider v. Now v will resolve downward
boxes to the left of v. It also resolves pairs containing u
except for the upward box containing u. In Figure 4(B), we
see all the boxes that are not resolved by the set {u, v}. The
only other pair that is not yet totally resolved is the pair u,
v itself.

If S contains other bottom vertices, then these lie between
u, being the left most bottom vertex in S, and v, being the
right most bottom vertex in S. No such vertex will resolve
any of the boxes. It might resolve the pair u, v. Hence, if
there are other bottom vertices in S than u and v, then jSj �
4: In order to totally resolve the boxes, we need top vertices.
Any top vertex in a box will not totally resolve that box.
The top left corner will not totally resolve the upward boxes,
and the top right corner will not totally resolve the down-
ward boxes. So, if a top vertex from a box, or a top corner,
is in S, then jSj � 4:

Any top vertex w between the boxes will totally resolve
all boxes. It will totally resolve the pair u, v if and only if
dðw, uÞ 6¼ dðw, vÞ: In Figure 4(B) there is no such top vertex
between the boxes. So, any total resolving set S with u and v
in S as depicted in Figure 4(B) is of order at least 4.

We can do better by taking u to be the left bottom cor-
ner, and v to be the right bottom corner, see Figure 5. In
this case the middle top vertex between the boxes still does
not resolve the pair u, v, but the other two top vertices
between the boxes resolve the pair u, v. If we take one of
these to be w, then the set S ¼ fu, v,wg totally resolves the
ladder graph, so that the total metric dimension is 3. We
can find such a top vertex w as soon as n � 6: As long as
n � 5, no single top vertex will simultaneously totally

Figure 2. The Petersen graph with an induced P4 and an induced C5.
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resolve the upward box containing the left bottom corner u,
the downward box containing the right bottom corner v and
the pair u, v. So we have dimtðP2wPnÞ � 4, for 3 � n � 5:
It is easily deduced from the above considerations that the
four corners totally resolve the n-ladder, for any n � 3:

Thus we have proved the following result.

Theorem 21. For the n-ladder P2wPn,

dimtðP2wPnÞ ¼
4 if 3 � n � 5

3 if n � 6:

(

Next we turn to the grids PmwPn with 3 � m � n: We will
show that, except for a few small cases, the total metric
dimension of such grids is 3. We use Figure 6 to illustrate
our arguments, but they apply to all larger grids (except for
the three small cases m ¼ n ¼ 3, 3 ¼ m < n ¼ 4, and 4 ¼
m < n ¼ 5, with which we deal separately).

To construct a TRS, we take the bottom left corner u
and the bottom right corner v of the grid. In Figure 6 we
give two instances. We see two boxes in each of these grids.
We call the one containing u the u-box, and the one con-
taining v the v-box. A u-pair is a pair in the u-box contain-
ing u, and, similarly, a v-pair is a pair in the v-box
containing v. Note that v does not resolve any pair in the u-
box, but u resolves the pairs of white vertices in the u-box.
A similar phenomenon holds for v.

Thus the set {u, v} neither totally resolves the pair u, v,
nor the u-pairs, nor the v-pairs. All other pairs, so also
any pair of white vertices within a box, are totally resolved
by the set {u, v}. Let w be a vertex in the top row of the
grid. If w is the top left corner, then it will not resolve the
pairs in the u-box. Similarly, if w is the top right corner,
then it will not resolve the pairs in the v-box. If w is in
the u-box, then it will not resolve the pair u, w. If w is in
the v-box, then it will not resolve the pair w, v. Next we
consider two cases where w is not in a box and is not
a corner.

Proposition 22. Let m � 3 and let n � mþ 2. Then
dimt(Pm w Pn) ¼ 3.

Proof. This case is illustrated in Figure 6(B). Since n �
mþ 2, the neighbor w of the top left corner is to the left of
the boxes. Hence w resolves all pairs in the v-box, in par-
ticular the v-pairs. The distance between w and any of the
white vertices in the u-box is m – 1, whereas dðw, uÞ ¼
mþ 1: So w resolves all the u-pairs as well.

Finally, we have dðw, uÞ ¼ mþ 1 and dðw, vÞ ¼
ðn� 1Þ þm � mþ 4: So w also resolves the pair u, v.
Hence {u, v, w} is a TRS: w

Proposition 23. Let m ¼ n ¼ 4 or 5 � m � n � mþ 1.
Then dimtðPmwPnÞ ¼ 3.

Figure 3. The sets of order 5 in the Petersen graph.

Figure 4. The ladder graph.
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Proof. The case m ¼ n ¼ 4 is illustrated in Figure 6(A). In
this case, but also in the case 5 � m � n � mþ 1, the top
vertex of the v-box is to the left of the top vertex of the u-box,
and there are at least two vertices in the top row between the
two boxes. At least one of these is a vertex w with dðw, uÞ 6¼
dðw, vÞ: So this vertex w resolves the pair u, v. Clearly such a
vertex w has smaller distances to the white vertices in the u-
box than to u, and also smaller distances to the white vertices
in the v-box than to v. Thus the set {u, v, w} is a TRS. w

The only cases, in which such a non-corner vertex w to
the left from the boxes, or between the boxes with different
distances to u and v, cannot be found, are when m ¼ n ¼ 3,
or m¼ 3 and n¼ 4, or m¼ 4 and n¼ 5. We consider these
three cases separately.

Lemma 24. dimtðP3wP3Þ ¼ 4:

Proof. Assume to the contrary that P3wP3 has a total resolving
set S of order 3. Then, by Lemma 14, all three distances
between the pairs in S must be different. This implies that S
cannot consist of only corners. Also S cannot consist of only
non-corners. This is easily checked in Figure 7(A). So S con-
tains at least one corner, without loss of generality, the left
bottom corner. Moreover S contains at least one non-corner.

Suppose S contains a neighbor of u, see Figure 7(B),
where two pairs are highlighted by boxes. It is straightfor-
ward to check that none of the other vertices totally resolves
both boxes. So S cannot contain a neighbor of u.

Suppose S contains a middle vertex of the top row or the
right most column, say the middle vertex of the top row, see
Figure 7(C). To avoid a corner with a neighbor in S, the two
top corners are not in S. To have different distances in S, the

third vertex in S must be the central vertex of the grid. But
now the pair in the box is not totally resolved by S.

Finally, there is only one possible non-corner vertex in S,
viz. the central vertex. Any third vertex must now be a cor-
ner, and the middle vertex has distance two to both these
corners. Again S is not a total resolving set.

Thus we have shown that no 3-set totally resolves the 3
 3
grid. In Figure 7(D), a 4-set S of the gray vertices is depicted,
which totally resolves P3wP3: This completes the proof. w

Lemma 25. dimtðP3wP4Þ ¼ 4:

Proof. Assume to the contrary that there is a total resolv-
ing set S of order 3. If S is contained in a 3
 3 subgrid,
then, by Lemma 24, already four vertices are needed to
totally resolve this subgrid. So S must contain a vertex of
the left most column and a vertex of the right most col-
umn. If S is contained in a 2
 4 subgrid, then we get a
similar contradiction by Theorem 21, which tells us that
there are four vertices needed to totally resolve a
2
 4 grid.

So S must contain a vertex from the left most column,
from the right most column, from the bottom row, and
from the top row. If S does not contain a corner, then
already four vertices are needed to satisfy this condition. So
S contains a corner, without loss of generality the left bot-
tom corner u. Let v be a vertex in S from the right most col-
umn. If v is the top corner on the right, then it is easily
seen that no third vertex simultaneously totally resolves all
remaining unresolved pairs. The same holds if v is the mid-
dle vertex in the right most corner. So v has to be the bot-
tom corner on the right. From our arguments above, it

Figure 5. Two corners in the ladder graph.

Figure 6. The larger grids.
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follows that again there is no third vertex that totally
resolves the remaining unresolved pairs.

Finally, the four corners of the 3
 4 grid totally resolve
the whole grid, by which the proof is complete. w

Lemma 26. dimtðP4wP5Þ ¼ 3:

Proof. We choose a vertex u and a vertex v as in Figure 8. In
the figure, we see boxes indicating the pairs that are not yet
totally resolved by u or v: the usual u-box containing the non-
resolved u-pairs, the v-box containing the non-resolved v-
pairs, but also three downward boxes on the right containing
non-resolved pairs. Obviously, w resolves all these pairs. So
S ¼ fu, v,wg is a 3-set that totally resolves the 4
 5 grid. w

Thus we have proved the following theorem.

Theorem 27. Let m and n be integers with 3 � m � n. Then

dimtðPmwPnÞ ¼ 4 if 3 ¼ m � n � 4
3 if m ¼ 3 and n � 5, or 4 � m � n:

�

To conclude, we observe that, in all cases, the two bottom
corners form a resolving set for the grid. So the metric
dimension of any m
 n grid is 2, for 2 � m � n:

5. Concluding remarks

The metric dimension of a graph G of order n is defined in
terms of the set of n ordered vectors, rðwjSÞ ¼

ðdðw, v1Þ, dðw, v2Þ, :::, dðw, vkÞÞ, consisting of the distances of
each vertex w 2 V to each member of an ordered set S ¼
fv1, v2, :::, vkg of k vertices in a graph G ¼ ðV, EÞ: The simple
condition for a resolving set is that no two of these ordered
vectors are identical. This leads one to ask, what other condi-
tions would be reasonable to impose on this set of n vectors?

For example, what if you only considered the set of k dis-
tances, with duplications possible, rather than the ordered
vector of distances, and you impose the condition that no
two of these multisets of distances are identical for two dif-
ferent vertices?

A different type of condition is studied in [6]. Here the
requirement for the vectors is that the entries in each vector
rðwjSÞ are distinct. Such sets are called different-distance sets
in [6]. Note that two vertices v and w now may have the
same vector rðvjSÞ ¼ rðwjSÞ, as long as the entries in this
vector are all distinct.

You could also consider situations in which the vectors
of distances of the vertices in V – S to the vertices in S must
satisfy some condition, but this condition does not apply to
the vectors of the vertices in S, similar to the case of total
resolving sets.

Notice that we have shown that for paths Pn of order
n � 4, dimtðPnÞ ¼ 3 and for cycles Cn of order n �
6, dimtðCnÞ ¼ 3: This is a best or smallest possible value of
dimtðGÞ: We say that a graph G of order n is TRS-min if
dimtðGÞ ¼ 3, and is TRS-max if dimtðGÞ ¼ n:

Question 8. Can you characterize the class of
TRS-min graphs?

Question 9. Can you construct a TRS-max graph?

Question 10. Can you characterize the class of
TRS-max graphs?
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