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Abstract

Objective: The purpose of this study was to explore the diagnostic yield and clinical

utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses

with a wide range of congenital anomalies detected by ultrasound imaging.

Methods: In this observational study, we analyzed the first 54 cases referred to our

laboratory for prenatal rWES to support clinical decision making, after the sono-

graphic detection of fetal congenital anomalies. The most common identified congen-

ital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital

anomalies (n = 17) and intracerebral structural anomalies (n = 7).

Results: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Patho-

genic variants were detected most often in fetuses with skeletal dysplasia (n = 11)

followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intrace-

rebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of
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54 cases, indicated that the rWES results impacted clinical decision making in 68% of

cases.

Conclusions: These results suggest that rWES improves prenatal diagnosis of fetuses

with congenital anomalies, and has an important impact on prenatal and peripartum

parental and clinical decision making.

1 | INTRODUCTION

Fetal congenital anomalies are detected in 2% to 5% of pregnancies

by routine ultrasound.1,2 The occurrence of these anomalies can cause

significant distress for the expecting parents and have a major impact

on perinatal mortality and long-term morbidity.3,4 The underlying eti-

ology of these anomalies is diverse and includes genetic factors. Cur-

rent routine prenatal genetic testing strategies often include

molecular rapid aneuploidy testing (RAD) and chromosomal microar-

ray analysis (CMA), designed to detect numerical and structural chro-

mosome abnormalities, respectively, which show a combined

diagnostic yield of approximately 40%.5,6 However, this means that

for the large majority of cases, the underlying cause of the identified

congenital anomalies remains unknown. The latter is most prominent

for congenital anomalies that are a result of monogenic disorders cau-

sed by point mutations and/or small insertion deletion events. Whole

exome sequencing (WES) in a postnatal setting has shown to increase

diagnostic yield for genetically heterogeneous (monogenic) disorders

to up to 58%, depending on the clinical preselection of the cohort and

subset(s) of genes analyzed.7-9 The turn-around times (TATs) of rou-

tine WES, being several months, has so far always hampered this

assay to be implemented in routine prenatal diagnostics. A decrease

of this TAT may help to diagnose those fetuses with congenital anom-

alies in which the genetic diagnosis remained elusive using routine

prenatal procedures.

Rapid whole exome sequencing (rWES), with TATs varying

from 4 days to several weeks, has been shown to contribute to clin-

ical decision making in pediatric and neonatal critical care.10-13 It is

very likely that rWES has the same potential for prenatal clinical

decision making. In a recent study on the use of rWES for fetuses

presenting with skeletal anomalies, 81% of cases were genetically

diagnosed.14 Although this increase in diagnoses enabled more

accurate prediction of pregnancy outcome, providing parents more

certainty in prenatal decision making, the contribution of skeletal

anomalies only accounts for around 30% of all fetal congenital

anomalies.15,16 The efficacy of adopting rWES as a first tier test for

the full spectrum of fetal congenital anomalies detected during rou-

tine ultrasound imaging has also been recently studied in a few

pilot studies.17-20 The vast majority of these studies focused on the

diagnostic yield and TAT as outcome parameters, rather than focus-

ing the effect of the rWES result on clinical decision making. Here

we report the rWES results of 54 fetuses with congenital anomalies

in ongoing pregnancies and highlight the effect of rWES on clinical

decision making.

2 | METHODS

2.1 | Patient eligibility and selection for
prenatal rWES

Since January 2016, rWES has been offered as a routine diagnostic test

at the Radboudumc for cases whose medical management could be

directly impacted by a genetic diagnosis. For prenatal cases, rWES was

offered following the detection of multiple fetal congenital anomalies

suggestive of a possible genetic etiology detected by ultrasound imag-

ing in level III academic centers, executed or supervised by Maternal

Fetal Medicine specialists. In case of an isolated major anomaly or (mul-

tiple) soft markers,21 rWES was only offered if there was a high suspi-

cion of a genetic cause. A detailed case by case description of the

clinical presentation is provided in Appendix S1. Fetal materials derived

from a pregnancy that had ended in fetal death, or from a termination

of pregnancy (TOP) were not included in this study.

2.2 | Informed consent and counseling

Patients received pre- and posttest rWES counseling by a clinical

geneticist. Diagnostic informed consent was identical to our routine

What's already known about this topic?

• Several pilot studies report on an added value of prenatal

rapid whole exome sequencing (rWES), when routine

techniques fail to identify a genetic diagnosis in fetuses

with congenital anomalies detected by ultrasound

imaging.

What does this study add?

• We determined the diagnostic yield for rWES in 54 cases

with fetal congenital anomalies detected by ultrasound

imaging in pregnancies being 33% and show its impact on

clinical decision making.

• Rapid aggregation of prenatal molecular and clinical infor-

mation into a conclusive diagnosis is challenging and

requires cooperation of a dedicated team.
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postnatal procedure, and comprised of a two-tiered process to limit

the chance of uncovering incidental findings. In tier 1, interpretation is

focused toward gene variants in dedicated (in silico) disease gene

panel(s), which are selected by the clinical geneticist based on the clin-

ical presentation of the fetus. In this study, 12 different in silico

disease-gene panels were used, in size ranging between 48 genes for

“Fetal Akinesia” and 1158 for “Intellectual Disability” (Table 1, Appen-

dix S1). To allow immediate interpretation of all genes with a known

disease phenotype in tier 1, “The Mendeliome Panel” (also referred to

as clinical exome) can be requested, containing 3605 genes with well-

established genotype–phenotype associations. In tier 2, generally only

performed after a negative (or possible) result for the in silico disease

gene panel(s), interpretation is extended to the Mendeliome as well as

all other protein-coding genes with currently unknown disease-rela-

tionships. In this study, tier 2 analysis was performed for 12 cases, of

whom eight cases already had had a negative Mendeliome analysis in

tier 1 (Appendix S1). An overview of all genes included in the in silico

disease-gene panels, as well as our policy for disclosing of incidental

findings, can be found online in https://order.radboudumc.nl/en/

genetics/rapid-exome-sequencing.

2.3 | rWES

For fetal samples, DNA was isolated from fetal material without cul-

turing of cells, whereas DNA from the parental samples was isolated

from blood obtained through venipuncture. DNA library preparation

was performed using SureSelect QXT in combination with the Sure

Select All Human Exon Kit (v5, Agilent), followed by 2x150bp paired-

end sequencing on a NextSeq500 (Illumina). Sequence coverage was

200 to 300×. Automated data analysis pipeline included rapid BWA

mapping, GATK variant calling and custom-made annotation. Parental

and fetal DNA was sequenced simultaneously in 53 of 54 cases (trio-

based analysis) to favor interpretation of results. For the remaining

case, paternal DNA was unavailable.

Prior to rWES, aneuploidies for trisomy 13, 18 and 21 and mono-

somy X were excluded in all cases by quantitative fluorescent poly-

merase chain reaction (QF-PCR) using routine procedures.22

TABLE 1 Overview of cohort characteristics and rWES analysis
and interpretation strategies

Cohort characteristics Number

Number of cases, n 54

Referring academic medical center, n (%)

Amsterdam University Medical Centre

(AUMC)

5 (9%)

Erasmus Medical Centre (EMC) 4 (7%)

Maastricht University Medical Centre

(MUMC+)

10 (19%)

Radboud University Medical Centre

(RUMC)

18 (33%)

University Medical Centre Groningen

(UMCG)

1 (2%)

University Medical Centre Utrecht

(UMCU)

16 (30%)

Pregnancy duration, median in weeks
(range)

21w5d (17w5d-39w1d)

Maternal age, median in years (range) 30 (20-39)

Primary clinical feature

Skeletal dysplasia 20 (37%)

MFCAa 17 (31%)

Intracerebral structural anomalies 7 (13%)

Otherb 10 (19%)

Chromosomal Microarray analysis (CMA)

Normal CMA result prior to rWES 22 (41%)

CMA and rWES in parallel 25 (46%)

No CMA performed 2 (4%)

Unknown 5 (9%)

rWES analysis and Interpretation strategiesc Number

rWES analytical approach

Trio-based analysis 53 (98%)

Clinical exome interpretation 32 (59%)

Mendeliome 25

Mendeliome +1 other in silico disease gene panel 4

+ Intellectual disability 1

+ Congenital heart disease 1

+ Craniofacial anomalies 1

+ Skeletal dysplasia and short stature 1

Mendeliolome +2 other in silico disease gene panels 1

+ Skeletal dysplasia and short stature + metabolic

disorders

1

Mendeliolome +3 other in silico disease gene panels 2

+ Intellectual disability + Movement disorders

+ Epilepsy

1

+ Skeletal dysplasia and short stature + disorders of

sexual development + vision disorders

1

Initial interpretation only for in silico disease-gene panel (s) 22 (41%)

1 in silico disease gene panel 21

Skeletal dysplasia and short stature 20

(Continues)

TABLE 1 (Continued)

rWES analysis and Interpretation strategiesc Number

Disorders of sex development 1

3 in silico disease gene panels 1

Fetal Akinesia + muscle disorders + hereditary motor

sensory neuropathy

1

aMFCA: multiple fetal congenital anomalies.
bOther: anomalies such as congenital diaphragmatic hernia or fetal

akinesia.
cAnalytical details per case are listed in Appendix S1.

Abbreviation: rWES, rapid whole exome sequencing.
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Additionally, CMA was performed prior to (n = 22, 41%), or in-parallel

with (n = 25, 46%) rWES.

2.4 | Variant classification

Classification of variant pathogenicity for single nucleotide variants

(SNVs) or copy number variations (CNVs) was based on European

guidelines.23,24 If insufficient clinical information, or potential discrep-

ancy between molecular and clinical causality was noted, variants were

discussed in a multidisciplinary team, consisting of a clinical laboratory

geneticist, a clinical geneticist and a fetal maternal specialist. Overall,

this resulted in reporting of (likely) pathogenic variants (class 4 and 5)

related to the fetal phenotype, as well as the reporting of variants of

unknown significance (VUS; class 3) if the multidisciplinary team con-

cluded that the VUS was likely to contribute to the fetal phenotype.

2.5 | Primary end points

Primary end points were (a) diagnostic yield, (b) TAT (in calendar days)

and (c) the influence of rWES in perinatal clinical decision making. The

diagnostic yield was defined as the percentage of cases from the total

cohort for whom the genetic variant (likely) explained the identified

phenotype. The TAT was measured from the moment the rWES was

requested until the return of the written diagnostic rWES report. The

influence of rWES in perinatal clinical decision making was analyzed

with the help of a survey sent to the requesting clinicians to collect

additional data related to, amongst others, the reason for the rWES

request, the pregnancy outcome, and management adaptations

(Appendix S1). Impact was defined as to influence the decision:

• To opt for a TOP before 24 weeks of gestation, which—in the

Netherlands—is the legal limit for a TOP; and/or

• To request for a late TOP after 24 weeks of pregnancy, which—in

the Netherlands—is only allowed when a severe fetal outcome is

imminent; and/or

• To continue the pregnancy; and/or

• To adjust peripartum management.

To assess the representativeness of the responses for the total

cohort, we compared the diagnostic yield in responders and non-

responders using a Fisher's exact test.

3 | RESULTS

3.1 | Cohort characteristics

From May 2016 to November 2018, we received 54 requests for prena-

tal rWES after the identification of fetal congenital anomalies. The median

gestational age was 21 weeks and 5 days (range: 16 + 5 to 38 + 1 weeks)

and the median maternal age was 30 years (range: 20-38 years).

The most common clinical indications were skeletal dysplasia

(n = 20; 37%), multiple major fetal congenital anomalies (n = 17; 31%)

and intracerebral structural anomalies (n = 7; 13%). Ten cases pres-

ented with other congenital anomalies, such as congenital diaphrag-

matic hernia, fetal akinesia and ambiguous genitalia. An overview of

the cohort characteristics is provided in Table 1, with details in Sup-

plementary Table 1.

3.2 | Clinically relevant CMA results prior to, or in
parallel with, rWES

A (likely) pathogenic CNV was detected in two of the 47 cases for

whom CMA was performed prior to, or in parallel with, rWES: in case

#51 a de novo pathogenic deletion of 17p13.3 (Miller-Dieker

Lissencephaly syndrome, OMIM #247200) was detected in the medi-

cal center of referral (Appendix S1). This copy number variant,

although retrospectively identified in rWES, was initially not reported

by rWES, as analysis was restricted to the gene panel requested which

did not include the genomic loci of the genes in the 17p13.3 region. In

case #54, CMA detected a potential clinically relevant paternal micro-

deletion of 1q21.1 including RBM8A. Simultaneous analysis of the

rWES detected a maternal pathogenic RBM8A SNV as well as the

paternal 1q21.1 microdeletion, together explaining the phenotype of

thrombocytopenia absent radius syndrome (TAR syndrome, OMIM

#27400) observed in the fetus.

3.3 | rWES procedure and turn-around time

rWES interpretation was guided by in silico analysis of gene panels as

requested by the referring physician and to reflect the clinical features

observed on ultrasound (Appendix S1). The most commonly requested

were the panels “Mendelian inherited disorders” (59%, n = 32/54) and

“short stature/skeletal dysplasia” (43%, n = 23/54). A combination of

multiple panels was requested for eight patients. For 16 of 54 patients

(30%), exome wide analysis (tier 2) was requested in case panel analy-

sis (tier 1) would not result in a diagnosis. In four of these 16, a causa-

tive variant was identified within the gene panel, and therefore exome

wide analysis was only performed for the remaining 12 patients. The

median TAT for rWES was 10 days (range 4-28 days) and was lowest

in case #22 (4 days) since DNA isolation had already been performed

at the referring medical center at the time of rWES request. Cases

whose analysis was restricted to panel analysis (n = 42) had an identi-

cal median TAT (10 days) as those for whom exome wide analysis was

also performed (n = 12).

3.4 | Diagnostic yield of rWES

A conclusive diagnosis was obtained in 18 of the 54 cases (33%)

(Figure 1; Table 2; Appendix S1). The highest diagnostic yield was

obtained for skeletal dysplasia (61%, n = 11/18), followed by multiple

4 DEDEN ET AL.



major fetal congenital anomalies (22%, n = 4/18) and intracerebral

structural anomalies (17%, n = 3/18; Figure 1). In the ten cases with

other congenital anomalies, no molecular diagnoses were made

(Figure 1). Among the 18 diagnoses, autosomal dominant

(AD) disorders accounted for 72% (n = 13), of which the majority was

caused by a de novo variant (n = 11/13; 85%). Autosomal recessive

(AR) disorders were diagnosed in the remaining five (28%). Interest-

ingly, in case #7, a homozygous pathogenic variant was detected in

ERCC5, which had resulted from maternal segmental uniparental iso-

disomy of the distal part of chromosome 13q. The isodisomic segment

was confirmed after re-analysis of the CMA data, which was per-

formed prior to the rWES and was reported as normal.

In two additional cases (4%), it was initially unclear if the

variant(s) obtained contributed to disease (Figure 1; Table 2; Appendix

S1). Follow-up, using additional clinical information that had become

available either through postmortem examination (case #43) or

through a next pregnancy of a fetus showing identical ultrasound

abnormalities and the same genetic variants (case #16), led to re-

evaluation of variants pathogenicity, and with this, to conclusive diag-

noses in both cases.

3.5 | The influence of rWES in perinatal clinical
decision making

A survey to evaluate clinical decision making obtained a response rate

of 69% (37/54). Based on diagnostic yield, being 35% for the

responders (n = 13/37) and 29% for the non-responders (n = 5/17)

respectively, we concluded this set as the representative for the total

cohort (Fisher's Exact P = 0.76). For 25 of 37 (68%) responders, it was

reported that rWES outcome contributed to clinical decision making,

despite the fact that in 44% (11/25) of these cases no genetic cause

was identified (Figure 2, Appendix S1).

The main reason to request rWES (n = 21; 57%) was to support clin-

ical decision making before 24 weeks of gestation (Figure 2; Appendix

S1). For eight of 21 cases, a negative rWES result provided an argument

to continue the pregnancy, whereas in the other 13 cases, pregnancy

was terminated. For 9 of 13, this decision was reinforced by the identifi-

cation of a severe genetic disorder, of which 8 were identified by rWES

and the other (#51) by CMA performed in the referring center in parallel

to the rWES (#51). In the remaining four cases, TOP was requested fol-

lowing the severity of the identified congenital anomalies.

0
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90

100

Total cohort

(n=54)

Skeletal dysplasia

(n=20)

Multiple major

congenital anomalies

detected by

ultrasound imaging

(n=17)

Intracerebral

structural anomaly

 (n=7)

Other

(n=10)

Diagnosis Possible diagnosis No diagnosis

***

F IGURE 1 Overview of total diagnostic yield and per indication of identified fetal congenital anomalies. Graphical representation of the
overall diagnostic yield of prenatal rapid whole exome sequencing. In addition, the yields of each clinical indication are provided. Diagnostic yields
were compared to one another to assess whether diagnostic yields differed by clinical cohort. Only statistical significant comparisons are

indicated (*: P < .05; **: P < .01; ***: P < .005), highlighting that overall, the fetuses with “other” clinical features than skeletal dysplasia, multiple
fetal ultrasound anomalies or intracerebral structural anomalies have a reduced chance on a diagnosis
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In 6 of 37 cases (16%), rWES was requested in relation to a late

TOP (Figure 2; Appendix S1). In three of them (#2, #15 and #22),

rWES results had impact on this decision. For case #15, late TOP was

initially rejected, but rWES revealed a severe skeletal dysplasia in the

spectrum of Antley-Bixler syndrome or Pfeiffer syndrome, which led

to a review of the initial request. In the other two cases (#2 and 22),

the lack of a (severe) genetic diagnosis, however, provided an addi-

tional argument for the parents to continue the pregnancy. In the

other three cases, rWES results did not impact decision making. In

two of them (#22 and #28) no diagnosis was obtained and in the third

one (#17), late TOP was already initiated abroad because of the sever-

ity of the identified skeletal anomalies prior to the return of the posi-

tive rWES results for Kniest dysplasia.

Lastly, in the remaining 10 cases the rWES was requested to

guide peripartum rather than prenatal management (Figure 2; Appen-

dix S1). In four cases, the rWES result was unable to have an impact

on peripartum management, either because of the absence of a

genetic diagnosis (n = 2), or fetal loss (n = 2) before the rWES report

returned. Also no genetic cause was identified in the latter two cases.

In the other six cases, the outcome of rWES did impact the clinical

decision making, albeit for one of these six prenatally rather than per-

ipartum. That is, during the course of the pregnancy of case #12 the

prognosis of the identified worsened diaphragmatic hernia and com-

bined with the identified neurodevelopmental disorder (KBG syn-

drome) it was decided to opt for a TOP. Also cases #1 and #3

presented with a diaphragmatic hernia during fetal ultrasound. Since

the rWES for them was negative, there was no reason to withhold

invasive treatments. In case #50 the identified genetic disorder

(Noonan syndrome type 4) guided adaptation of peripartum manage-

ment toward more personalized follow-up diagnostics for identifica-

tion of additional congenital anomalies related to Noonan

syndrome.25,26 In case #33, a VUS was identified in the FRKP gene,

fitting with the clinical suspicion of Walker Warburg syndrome, and

guided the decision that not to perform a caesarean section and to

withhold life-sustaining interventions if the child would deteriorate

postpartum. In case #7, the rWES report arrived on the first day post-

partum after an emergency caesarean section because of fetal distress

at 31 weeks of gestation. The severity of the identified genetic disor-

der (cerebro-oculo-facio-skeletal syndrome type 3, OMIM #616570)

was an additional argument toward withholding of life-sustaining

rWESwas requested to support clinical decision making

Did the rWESresult impact clinical decision making? 

57%
(21/37)

Peripartum treatment options
27%

(10/37)

< 24 weeks of gestation
16%
(6/37)

Conclusive 
diagnosis 

8%
(1/12)

Contributed to clinical decision making:
68% (25/37)

No contribution to clinical decision making:
32% (12/37)

No diagnosis

92%
(11/12)

No: 24% 
(5/21)

No diagnosis

44%
(11/25)

Yes: 76% 
(16/21) 

No: 50% 
(3/6)

Yes: 50% 
(3/6) 

No: 40% 
(4/10)

Conclusive 
diagnosis

48%
(12/25)

Unclear

8%
(2/25)

Yes: 60% 
(6/10) 

Contributed to 
decision making 

regarding a late TOP 
(n=1)

Gave rise to 
adaptations in 

peripartum 
management (n=5) 

Fetal loss (n=2) before 
rWES report returned

No effect due to lack 
of a diagnosis (n=2)

Contributed to 
decision making 

regarding a late TOP 
(n=1),  or continuation 

of pregnancy (n=2)

Contributed to 
decision making 

regarding a TOP (n=8) 

or continuation of 
pregnancy (n=8)

Late TOP based on 
severity of congenital 

anomalies (n=1)

Ruptured membranes 
(n=1) before rWES
report returned

No effect due to lack 
of a diagnosis (n=1)

TOP based on 
severity of congenital 

anomalies (n=4) 

and/or the outcome 
of CMA (n=1)

≥ 24 weeks of gestation

F IGURE 2 Impact of rWES on clinical decision making. Schematic overview of the impact of rWES outcome on clinical decision making.
Three main categories for requesting rWES were identified. In each category, rWES impact clinical decision making. From this analysis, it can be
clearly shown that rWES impacts clinical decision making, even in the absence of a diagnosis. rWES, rapid whole exome sequencing
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interventions when the child was deteriorating, and this child died on

the second day postpartum.

4 | DISCUSSION

In this study, we aimed to determine the use of rWES in ongoing

pregnancies of fetuses with congenital anomalies detected by ultra-

sound imaging. Using our diagnostic rWES set-up, we identified the

underlying genetic cause in 33% of cases with a median TAT of

10 days. In 68% of the cases, the rWES result contributed to parental

and clinical decision making, even when no genetic cause could be

identified.

The diagnostic yield of 33% by rWES found in our study is com-

parable to other studies reporting a diagnostic yield between 18% and

40% when applied to all prenatal abnormalities and without pre-

selecting for certain phenotypes.17-20 However, if such pre-selecting

is performed, even higher diagnostic yields can be obtained, as was

shown for fetuses presenting with skeletal anomalies, in whom a diag-

nosis was reached in 13/16 cases (81%).14 Whereas this percentage

may seem to be higher than the 55% (11/20) obtained in our sub-

cohort of fetuses with skeletal anomalies, a statistical comparison did

not identify difference (Fisher's Exact test, P = 0.16). It may however

suggest a trend toward a higher diagnostic yield of rWES in fetuses

presenting with skeletal anomalies compared to other anomalies. This

trend is also observed for the diagnostic interpretation strategy,

showing that all conclusive disease-gene-panel-based diagnoses are

derived in the subcohort of sketelal dysplasia (11 of 22 cases) when

compared with the analysis of the clinical exome (6 of 32 cases; Fish-

ers Exact P = 0.020). These observations may however also be the

result of our relative small cohort size or clinical representativeness,

thereby limiting further firm conclusions from these observations.

Similarly, the vast majority of conclusive diagnosis were resulted from

point mutations and/or small insertion deletion events, rather than

the larger structural variants, which may be explained by a skewed

representation of our cohort biased toward cases with skeletal

dysplasia.

While the specificity of congenital anomalies already pointed

toward the underlying genetic cause in some cases, targeted genetic

testing for many of these disorders would have been challenging. An

important reason for this is the fact that our current knowledge of

genetic disorders is mainly based on postnatal phenotypes of the

respective disorders, for which prenatal presentation may differ. This

is evident from case #43, presenting with shortening of the long

bones and a narrow thorax, a possible heart defect and a mild intra-

uterine growth retardation. This combination of congenital anomalies

guided toward the clinical suspicion of a skeletal dysplasia, and there-

fore the short stature/skeletal dysplasia gene panel was requested.

Yet, no (likely) pathogenic causative variant could be identified in

these genes. The informed consent allowed for an exome wide analy-

sis which identified a pathogenic variant in the NIPBL gene. It was

unclear, however, whether the identified shortening of the long bones

and possible heart defect could fit with Cornelia de Lange syndrome,

although it could explain the intra uterine growth retardation (OMIM

#122470). At postmortem examination after a TOP, distinctive recog-

nizable postnatal features, such as hirsutism, upper-limb reduction

defects and craniofacial abnormalities, were identified, supportive in

marking the NIPBL variant as causative. Whereas similar unanticipated

WES diagnoses are a well-known phenomenon in the postnatal set-

ting, this type of examples in a prenatal setting not only re-opens the

discussion on whether or not to add such genes to a (prenatal) skeletal

dysplasia gene panel but also on the clinical use of an exome-wide

strategy, and whether or not the evaluation of variant pathogenicity

in a pre- and postnatal setting are identical.27 Despite these complexi-

ties, our results, together with those of others, warrant the adoption

of rWES in a prenatal setting, provided that, it is performed in a spe-

cialized prenatal (academic) center, with expertise in rWES, and in the

presence of a multidisciplinary team consisting of (at least) a clinical

laboratory geneticist, a clinical geneticist and a fetal maternal special-

ist to discuss the rWES results in the clinical context of the fetus'

presentation.

One of the most important reasons for the introduction of rWES

in a prenatal setting is the possibility to impact prenatal and per-

ipartum clinical decision making. Previously, rWES has already proven

to impact clinical decision making for critically ill children, but support-

ive evidence for prenatal cases is still limited.10-14,17,28 Needless to

say, prenatal counseling guided by the severity of congenital anoma-

lies alone is often sufficient for parents to opt for TOP, as was also

noted for 6 of 37 cases for whom the impact on clinical decision mak-

ing was determined. In this study, we, however, now also show that

rWES outcomes strengthened parental and clinical decision making in

68%, mostly because of the more accurate predictions on the progno-

sis for parents after the identification of a genetic disorder, and preci-

sion medicine for peripartum management. Importantly, impact was

obtained for 44% of the cases in whom no causative mutation(s) could

be identified. The fact that also a negative rWES has impact on paren-

tal and clinical decision making indicates that the efficacy of prenatal

rWES should be evaluated by more variables than diagnostic yield

alone. This is particularly the case for the clinical subcohort in this

study defined as “Others”: in this subcohort no diagnoses were made,

which is significantly lower than in the other subcohorts. The latter

may suggest that this “Other” cohort does not benefit from rWES.

Yet, impact on clinical decision making was imminent in four of six

cases for whom the impact was assessed: for the parents of these

cases, it was the relief that most monogenic disorders were largely

excluded reinforcing their decision to continue the pregnancy.

Recently, two large prospective studies for prenatal rWES in

unselected cohorts of fetuses with structural anomalies also showed

that rWES can indeed add clinically relevant information to assist cur-

rent management of a pregnancy, but also highlighted that careful

consideration should be given to case selection to maximize clinical

usefulness.29,30 Based on our experience, the majority of eligible

patients were included in our study, however, we did not investigate

how often parents did not give consent for rWES. We were able to

report trends when comparing different subgroups of fetal congenital

anomalies and based on these small numbers we can suggest that

10 DEDEN ET AL.



performing rWES in skeletal dysplasia, intracerebral structural anoma-

lies and multiple major fetal congenital anomalies are beneficial. This

seems in line with the results from Lord et al. en Petrovski et al,29,30

and thus that our results contribute to improved patient selection and

enhance the clinical utility of rWES for prenatal diagnostics.

5 | CONCLUSION

We performed rWES in 54 cases of pregnancies in which fetal con-

genital anomalies by ultrasound imaging were detected, with a median

TAT of 10 days. The diagnostic yield in this cohort was 33%. Genetic

diagnoses were identified in fetuses who presented with skeletal dys-

plasia, intracerebral structural anomalies and/or multiple major fetal

congenital anomalies. In the majority of cases (68%), the rWES result

contributed to clinical decision making, even when no genetic cause

could be identified.
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