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ABSTRACT

A sensible Bayesian model selection or comparison strategy implies select-
ing the model with the highest posterior probability. While some improper
priors have attractive properties such as, e.g., low frequentist risk, it is gen-
erally claimed that Bartlett’s paradox implies that using improper priors for
the parameters in alternative models results in Bayes factors that are not
well defined, thus preventing model comparison in this case. In this paper
we demonstrate this latter result is not generally true and expand the class
of priors that may be used for computing posterior odds to include some
improper priors. Our approach is to give a new representation of the issue
of undefined Bayes factors and, from this representation, develop classes of



improper priors from which well defined Bayes factors may be derived. This
approach involves either augmenting or normalising the prior measure for
the parameters. One of these classes of priors includes the well known and
commonly employed shrinkage prior. Estimation of Bayes factors is demon-
strated for a reduced rank model.

Key Words: Improper prior; Bayes factor; marginal likelihood; shrinkage
prior; measure.
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1 Introduction.

Accounting for uncertainty associated with stochastic variables and parame-
ter estimates is a central issue in statistical analysis. A natural extension is
to account for uncertainty associated with the statistical or economic model
of the process used in the analysis. A typical approach to data analysis is
to select the ‘best’ of a set of competing models and then condition upon
a particular model and ignore the uncertainty associated with that model.
An attractive feature of the Bayesian approach to inference is the natural
way in which model uncertainty may be assessed and incorporated into the
analysis via the posterior probabilities of the models. An important method
of incorporating this uncertainty that has attracted much attention in re-
cent years is through Bayesian model averaging (BMA). In either BMA or
Bayesian model selection the important entity is the posterior probabilities
of the models in the model set.

Another attractive feature of Bayesian analysis is the ability to incorpo-
rate into the analysis the prior distribution. This brings advantages such
as allowing the researcher to reflect in the analysis a range of prior beliefs
- from ignorance to dogma - that may reflect personal preferences, or that
have justifications on decision-theoretic grounds, or that result in improved
estimation performance. However, since Bartlett (1957) it has generally been
accepted, even occasionally explicitly stated, that improper priors on all of
the parameters of one or more models result in ill-defined Bayes factors and
in posterior probabilities that prefer (with probability one) the smaller model
regardless of the information in the data. This is commonly termed Barlett’s
paradox.

As a result of Bartlett’s paradox, the principle is generally adopted when
computing posterior model probabilities that the use of improper priors



should be restricted to the common parameters (such as the variance and
perhaps the intercept in a linear model) and proper priors must be specified
for the remaining parameters. The adoption of this principle has precluded
the use of improper priors in model comparison and model selection where
posterior probabilities play an important role. The perceived problem is,
essentially, that a well-defined posterior distribution for the model set is not
obtainable. This result contrasts with analysis of the parameters in a par-
ticular model for which well defined posteriors can be obtained even with
improper priors on some or all parameters. This is a well understood result.
However, as the model may be considered by a Bayesian as just another
parameter, it seems incongruous - even paradoxical - that the use of im-
proper priors does not also result in a well defined posterior distribution for
the model. In this paper we show that this is a paradox only and not an
inconsistency, and does not hold generally.

Our aim is to widen the class of priors that may be used to obtain posterior
probabilities for use in such exercises as BMA, to include some improper
priors!. To further this end, we demonstrate that Bartlett’s paradox does
not hold for all improper priors - contrary to conventional wisdom. We
provide a new representation of the issue by decomposing the differential
term for the vector of parameters in a model into one term that is a measure
for a compact space such that it results in a finite term in the normalising
constant of the prior, and a second term defined on the unbounded space
such as Rt = {z:x > 0}, which results in an infinite prior measure for
this space. We use this representation in two ways. First, this representation
allows us to develop a new prior that results in well defined Bayes factors and
has properties similar to some priors already in use. Second, we demonstrate
that the improper shrinkage prior - which has good properties in terms of
frequentist risk (see for example Ni and Sun, 2003) - also results in well
defined Bayes factors.

Much of the earlier and some of the more recent literature on BMA has
focused upon the Normal linear regression with uncertainty in the choice
of regressors (for a good introduction to this large body of literature, see
Fernandes, Ley and Steel 2001). Another contribution of this paper is to
extend the class of models and problems that may be considered with BMA.

'We emphasise that it is not the aim of this paper to produce another method of ob-
taining inference on model uncertainty that may be regarded as objective or as a reference
approach. This research takes a different direction.



For much of the discussion we leave the form of alternative models largely
unspecified except for their dimension. We demonstrate application of the
priors discussed in a cointegrating vector error correction model (VECM)
in which we consider the uncertainty associated with numbers of stochastic
trends, type of deterministic processes, identification of the cointegrating
space and lag length.

As already mentioned, improper priors play an important role in Bayesian
analysis not just because they are convenient and commonly employed rep-
resentations of ignorance. Some of these priors have information theoretic
justifications such as the Jeffreys’ prior, while others result in estimators
that are better in some sense such as having lower frequentist risk. This lat-
ter result is important for exercises such as forecasting or impulse response
analysis. Being able to use some of these priors when calculating posterior
model probabilities would therefore allow us to retain these benefits.

The structure of the paper is as follows. In Section 2 we outline the ex-
planation for why the posterior distribution is well defined when a flat prior
for the parameters with unbounded support is employed, while the Bayes
factors are not. This also explains why improper priors on common para-
meters can be employed in estimating posterior probabilities of the models.
This is already a reasonably well understood issue, but we present it using
the decomposition of the differential term to motivate the approach in the
rest of the paper. In Section 3 we discuss other approaches to obtaining in-
ference with improper priors that have been presented in the literature. The
improper priors are developed in Section 4 and, in Section 5, are applied to
some well known theoretical examples and to an empirical example relating
to the term structure of Australian interest rates. Section 6 contains some
concluding comments and suggestions for further research.

First we must introduce some notation for matrix spaces and measures
on these spaces for use in developing the discussion. For further discussion
of these concepts see Strachan and Inder (2004) and Strachan and van Dijk
(2004). The r x r orthogonal matrix C'is an element of the orthogonal group
of r x r orthogonal matrices denoted by O (r) = {C (r x r) : C'"C' = I,.}, that
is C € O(r). The n x r semi-orthogonal matrix V is an element of the
Stiefel manifold denoted by V,.,, = {V (n x r) : V'V = I,}, that is V € V,,,.
If r =1, then V is a vector which we will denote by lower case such as v and
v € Vi,. Finally, let A (A) denote the Lebesgue of the collection of spaces A,
and A (A) = oo to denote that A has infinite Lebesgue measure.



2 The posterior and Bartletts’ paradox.

In this section we restrict ourselves to the uniform prior as used in Bartlett’s
original example as this is sufficient to demonstrate the methods we use and
motivate the later derivations.

Consider the investigation of the properties of a vector of data y. Let the
i*" model in a model set be denoted by M;, i = 1,2,... and the n; vector of
parameters for this model as ;. The posterior probability of the model given
by P (M;|y) is a useful measure of the support in y for M;. The ratio of the
posterior probabilities for two models is proportional to the Bayes factor for
these two models, B;;, and if the two models are considered a priori equally
likely, this ratio is equal to the Bayes factor. It is through this relationship
with the Bayes factor (i.e. by assuming equal prior model probabilities) that
the posterior probabilites are most often obtained. Our aim in this section is
to provide an alternative representation of Bartlett’s paradox. However, we
begin with a discussion of the definition of the posterior with improper priors
as this explanation is well understood, generally accepted?, and leads directly
to an understanding of why some improper priors result in well defined Bayes
factors.

Let the n; vector of parameters 6; have support defined by 6, € ©;, C R™
with A (©;) = oo. We ignore parameters with compact supports with finite
Lebesgue measure as they do not cause problems with the interpretation of
the Bayes factor. Therefore when we refer to a model having a particular
dimension, we intend by this the dimension of the space ©; of the model. If
the prior density on 6; is m; (6;) = h; (6;) /¢; where ¢; = [ h; (6;) df;, and the
likelihood function is L; (6;) , the posterior density is defined as

T (ez‘y) = f@i L; (0;) m; (6;) do;
( )

Notice that even if we use an improper prior such as with h; (6;) = 1 and
A (©;) = oo such that ¢; = oo, the posterior is well defined so long as the

2 Although we ackowledge that there remain some issues with the resulting posterior -
see for example Stone and Dawid (1972).



integral p; = fei L; (0),h; (6;) db; converges. We assume this is the case
throughout the paper such that we only consider proper posteriors.
For comparison of two models M; and M; we can use the posterior odds
ratio written as
Pr(Mily) — Pr(M;) m;  Pr(M;)

_ -\
Pr(M;ly)  Pr(M;)m;  Pr(M;)"

where B;; = m;/m; is the Bayes factor (in favour of model ¢ against model
j) and m; = p;/c¢; is the marginal density of y under model i. Therefore,
B,; = pi/pj X ¢;/¢;. As we only consider proper posteriors the ratio p;/p; will
be well defined. If a proper prior is used for each model such that ¢; < oo
and ¢; < oo are well defined - and possibly known or able to be estimated -
the Bayes factor is well defined as the ratio ¢;/¢; is also defined.

If, however, we use an improper prior of the form h; (6;) = 1 with A (©,) =
oo for M; and a proper prior for M;, then ¢; will be infinite such that the ratio
¢;/¢; is 0o and so the Bayes factor is not well defined and nor are the posterior
probabilities in the sense that their value will not reflect any information in
the data. Further, if we use an improper prior of the form hy (6;) = 1 for
both k = 1,2, then the ratio ¢;/c; is either 0, 1 or co depending upon the
relative dimensions of the two models and so, in the first and last cases, the
Bayes factor is not always well defined and nor are the posterior probabilities.
The exception being when ¢;/¢; = 1, which is not entirely helpful as it only
holds when the dimensions of the models match.

To explore this issue further, we assume ©; = R™ and use the decom-
position of the n; x 1 vector 6; into 6; = v;7 where the n; x 1 vector v; is
the polar part and defines the direction of the vector and 7 > 0 defines the
vector length. The vector for the polar component is of unit length vjv; = 1
and is therefore defined as an element of a Stiefel manifold Vi ,,, v € Vi,,.

The compact space Vi ,,, has a measure defined by dvi" =k = QKvg’kdv where
V = [vi,vi2, ... ,Vin], V'V =1,, and V},, has volume
Wp, = / dvlt = 272 T (n; /2) < 00 (1)
Vl,ni

(Muirhead, 1982). We can therefore decompose the differential term for 6;
into df; = 7™t (dr) dvl".

The expression for the differential term leads to the following explana-
tion for Bartlets’ paradox and therefore why, although the posterior is well
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defined, the Bayes factors are not well defined when we use improper priors
and models of different dimension. Using the above decomposition of the
differential term we can decompose the integral ¢; into a convergent (finite)
part, w,,, and the divergent part, a,,,. That is,

a= [ an= [ ran [ ap=om, @)
R™ Rt Vi,

where
ap, = / il (dr) = o0. (3)
Rt

Note that the integrals «,, and w,, do not depend upon the chosen model,
only its dimension, n;.

Next consider an n; dimensional model with parameter vector ; = v;7
with differential term df; = 7%~ (d7) dvy” and, similarly, with integrals

¢ :/ db; :/ 7t (dT)/ dvy? = Qp; W, -
R"™i Rt %1

ST

Recall that the posterior is well defined even if the integral ¢; = [.n; h; (6;) d6;
does not converge because the integrals in the numerator and denominator
diverge at the same rate such that their ratio is one. This same reasoning
implies that if n; = n; and h; (6;) = h; (6;) = 1, then the Bayes factor

Bij = my/m; =p;/p; X ¢j/¢
= Pi/pj X O, [0, X Wy, [T, = Di/D;

is well defined since ay,, = a,,; and @,, = @,; and so ¢; /¢; = 1. This result
does not require that the models nest, simply that they be of the same
dimension, or at least that the number of parameters with supports with
infinite Lebesgue measure are the same. When n; > n;, the integrals of 7 (the
term «,) diverge at different rates. That is [ 7" (dr) > [ 7! (d7),
such that the ratio a,, /i, = 00. The values of these ratios can be derived
by treating them as limits and using I’Hopital’s rule and the Radon-Nikodym
derivative. The term in B;; due to the polar part will always be finite and
known with value

I (ni/2)

T (n,/2) )

n;—mn;)/2
wnj/wni — ﬂ-( i—ni)/



However, the Bayes factor B;; is again undefined. More extensive discussion
of this issue can be found in, for example, Bartlett (1957), Zellner (1971),
O’Hagan (1995), Berger and Perrichi (1996) and Lindley (1997).

3 Approaches suggested in the literature to
deal with this problem.

As posterior model probabilities can be sensitive to the prior used, much effort
has been devoted in the literature to obtaining inference with objective or
reference prior. The aim of this work has generally been to obtain a technique
that produces posterior model probabilities that contain no subjective prior
information. One important reason for using improper priors such as the
uniform prior on the support of the parameters is that this is often seen
as representing ignorance or uninformative prior beliefs such that inference
based on this prior may be regarded as objective or as a reference to which
inferences can be compared. However, as we have shown, only inference
conditional upon a particular model is obtainable with this uniform prior.

A number of authors have suggested that the undefined ratio ¢;/¢; may
be replaced with estimates based upon some minimal amount of information
from the sample. Examples of such approaches are Spiegelhalter and Smith
(1982), O’Hagan (1995), and Berger and Pericchi (1996). This approach
has an intuitive appeal and has been supported by asymptotic arguments.
However, as discussed in Ferndndes, Ley and Steel (2001), the use of the
data to attribute a value to ¢;/¢; involves an invalid conditioning such that
the posterior cannot be interpreted as the conditional distribution given the
data.

An alternative approach that has been proposed which maintains a valid
interpretation of the posterior is to use proper priors. The rationale here is to
compare Bayes factors for models with the same amount of prior information.
To this end, Fernandez et al. (2001) propose reference priors for the linear
regression model which allow such comparison of results. They use improper
priors on the common parameters - the intercept and the variance - and
a zero mean normal prior on the remaining coefficients. This approach is
supported by the argument of Lindley (1997) that only proper priors should
be employed to represent uncertainty. Lindley used model comparison as one
motivating example.



However, as we have argued, some improper priors have attractive prop-
erties and do result in well defined Bayes factors and posterior probabili-
ties. Ome approach to using improper priors is given in Kleibergen (2004)
who uses the Hausdorff measure and Hausdorff integrals rather than the
Lebesgue measure and integrals to develop prior probabilities for models and
prior distributions for parameters within models nested within an encom-
passing model. An advantage of this approach is that it can be used with
a very general form for the prior, not simply improper priors. A restriction
is that prior model probabilities are designed to diverge at such a rate as to
offset the divergent behaviour of the Bayes factor, and so we are restricted
in choosing prior model probabilities.

It should be noted that the following result does not require models to
nest, nor does it place any restriction upon the specification of the prior
probabilities for the models and produces valid Bayesian inference. We show
how certain improper priors result in well defined Bayes factors independent
of the prior odds ratio. This second point is important as it allows us to
employ subjective beliefs such as the statement “I believe M; is twice as
likely to be true as My", or PROR = Pr (M) / Pr (M) = 2.

4 Improper priors with well defined Bayes
factors: Exceptions to Barlett’s paradox.

Augmenting the differential term.

The lack of definition of the Bayes factor for models of different dimen-
sions results from the different rates of divergence in the integrals av,,, k = 1, j,
which in turn results from the different dimensions of the two models. One
approach to resolving this issue which suggests itself, is to match the dimen-
sions of the models by augmenting the smaller model with a fictitious vector
of parameters of appropriate size and to impose a restriction within the dif-
ferential to achieve a measure for the smaller model. This augmenting does
not require the models to nest, nor do we restrict the augmenting parameter
in the same way.

To proceed, let the model M have vector of parameters 6 of dimension n
while M, has parameter vector 6, of dimension ny = n — ny, ny > 0, such
that the difference in the dimensions is n;. Let 6 = {6, 0]} where 6, is a
ni-dimensional vector. The measure for the prior i (6) = 1 is given in (2)



as ¢ = a,w,. To obtain the measure for the model M, we give it the vector
of parameters # and impose the restriction #; = 0. This does not require the
models to nest nor that the parameters even have the same interpretation.
It can be shown that it is not even necessary that the parameter vectors
have the same support, simply that they have support with infinite Lebesgue
measure.

The restriction #; = 0 can be imposed by restricting the direction of v in
the decomposition # = vr. First, define the n x n orthogonal matrix

V = [U VJ_j|
=]
U1
Voo, Vo,
v, o= | oL Yo 5
- [vm VH,J (5)

such that V'V = I, (V € O (n)) and vy is of dimension ng x 1, V| is of dimen-
sion nx (n — 1), Vg, is of dimension ngx (ng — 1), and the dimensions of the
remaining matrices are thus defined. The differential (df) = 7! (d7) (dv})
derives from the exterior product of the elements of the vector

(d9) = v’(de)—v' (dr) + V' (dv) T

- Vw } @+ | v |7

]

since V' (df) = |V'| (dF) , \V\ =1, and v/ (dv) = — (dv)' v = 0.

To reduce the dimension of model M from n to ng, we set v; = 0, which
is equivalent to ; = 0. That is, we restrict the direction of the vector € such
that the subvector 6y is zero. Since v'v =1 at all points in V;,, including at
v; = 0, then at this point vyvy = 1 and so vy € V3 ,,, and will have the matrix

)+
}
Lo
(

orthogonal complement Voo | € Vj,i—1p,. If V| is any matrix that spans the
orthogonal compliment space of v, then using a similar partitioning as for V|
in (5), we have at v, =0,

Viv=

T 7

K)O,LUO + %1,¢U1 _
! /!

Vi 1vo+ Vi1

!
%O’J‘,UO —= O
p .
Vm,ﬂ’o

10



This implies that at the point v; = 0, then Vi, = Vik for k € O(mn-—r)
will be an orthogonal rotation of the matrix V| with Vjp | = Vo/1, , =0 and
Vi1, = I,,. That is, generally, the space spanned by VL will lie in the ny
plane passing through the last n; co-ordinate axes and so will have the same
differential term as V) since for any Kk € O (n—r), |k| = 1. To see this,
consider the simple case where n = 3 and ny = 2. Thus v = (v11, Vo1, 1131)' is
a vector in a three dimensional space and each element of the vector relates
to a different coordinate of the 3-coordinate system. The column vectors in
the matrix V) lie in (and define) the plane spanned by all vectors orthogonal
to the vector v. The restriction v; = v3; = 0 implies the third coordinate
is always zero and so the vector v is now restricted to the two dimensional
plane defined by the first two coordinate axis and the matrix V|, now always
lies in the plane passing through the third coordinate axis and defined by the
matrix

V12 0
VJ_ = V22 0
0 1

This restriction implies that to obtain the differential term we need only
employ the matrix V| and, at the point v; = 6; = 0, we take exterior products
of elements of the vector

(d6y) = V'(d#y) =V'v(dr)+ V' (dv)T

[ vhve + iy v’ (dv)

= Voo o+ Vo 11 | (dr) + | Vooo (dv ) + Voo (dvr) | 7

| Vi, v+ Vii 1 m Vio,1 (dvo) + Vi; 1 (dvn)

(@) y

= Voo,1 (dvg) 7 | at vy =0 where V| = { 00,1 }
(dvy) T

1 0 0 (dr)

= 0 Voo 0 (dvo)

| 0 0 I, 7 (dvy)

and obtain (df) |g,—0 = 7" (d7) (dv}) |,,=0 = 7' (d7) (dv]®). By condi-

tioning on (dv}) |,,—0 = (dv®), we thus obtain the measure

o = [ @)= [ ran [ @

R
= QpWhpy-

11



The ratio of the normalising constants ¢ and ¢y for the priors is then

C _ @ el (70/2)

0 QpUp, I'(n/2)

and the Bayes factor is well defined as B = py/p x ¢/¢q such that the posterior
probabilities can be obtained.

In the following we develop the prior implied by this augmenting of the
differential for the smaller model. The prior for M is 7 (6) = h(0) /¢ = 1/c.
Under My, as 6y = vt implies (dfy) = 777! (d7) (dv}®) and 6,0y = 72, the
implied prior for M is then

™ (0) lo=0 (d0) lo,.=0 = 1 (6) lo=0 (dF) |9,=0/c0
= 7" (dr) (dv}®) /e
= 7™M (dr) (dvlP) [

= (6400)™"* (dby) /co.

As it is the difference in the rates of divergence of the integrals with
respect to 7 (i.e., ay,) that cause the problems with the Bayes factors, a less
formal way of arriving at the same prior is to consider the two differential
forms

(d) = 7" (dr) (dv})
(dby) = 7ol (dr) (dvi®) .

Since n = ng+ny and 6)0y = 72, then clearly if in the prior for M, we replace
(do) by

0,00 m/2 dhy) = Tt (dr) (dote
0 1
ol (dr) (dvi®),

we have the same result.
Note that for the posterior to be proper requires

/ (9690)n1/2 LO (90) d@o =q <00
R™0

where ¢ is finite. The convex form of the prior is similar to the form of
the Jeffreys’ prior for many models and to the prior of Kleibergen and Paap

12



(2002). Use of these priors also requires existence of a similar function of the
parameters.

Normalising the differential term: Shrinkage priors.

The above augmentation of the differential term results in an improper
prior which produces well defined Bayes factors, however it would be rea-
sonable to argue that the implied measure of this approach does not seem
a very natural one. We demonstrate in this subsection that an alternative
and theoretically more acceptable improper prior is the shrinkage prior ad-
vocated and employed by several authors (see for example Stein 1956, 1960,
1962, Lindley 1962, Lindley and Smith 1972, Sclove 1968, 1971, Zellner and
Vandaele 1974, Berger 1985, Judge et al. 1985, Mittelhammer et al. 2000,
and Leonard and Hsu 2001).

An important feature of this prior is that it tends to produce an estima-
tor with smaller expected frequentist loss than other standard estimators as
may result from flat or proper informative priors (see for example, Zellner
2002 and Ni and Sun 2003). Ni and Sun (2003) provide evidence of this im-
proved performance for estimating the parameters of a VAR and the impulse
response functions from these models. Although this prior does not appear
to have been considered for model comparison by posterior probabilities, as
we now show, it will produce well defined Bayes factors.

The form of the shrinkage prior is

6172 = (o'9)" "7,

To demonstrate our claim that the Bayes factor will be well defined, we again
use the decomposition 6 = v7 such that (¢/6)*/* = 7. Thus differential form
of the prior is

00" (dg) = D (dr) (do)
= 7(d7) (dvy)

and this form holds for all models. The normalising constant for model M;
of dimension n is then

G i / n(e'e)*"*”/? (d) = /R 7(dn) /V ) (D)

such that the ratio of the normalising constants for the shrinkage priors for
models of different dimensions is always finite and well defined as the same

13



term aw in the normalising constants cancel. Consider two models - the first
model M, with dimension n; and the second M, with dimension n;. The
Bayes factor for comparison of the two models with the shrinkage priors will
contain the ratio of the normalising constants in the priors. This ratio will
be @, /w,, which is given in (4) and is finite and known.

5 Applications

We start with two simple theoretical examples that are well known in the
literature, i.e., a comparison between a lognormal and an exponential model
and simple zero restrictions in a regression model. Next we analyze a case of a
reduced rank regression model which is commonly employed in econometrics
for the study of cointegration.

Two simple examples: To provide some simple theoretical examples
for applying the above priors, we take the example from Cox (1961) of a
comparison of the non-nesting log-normal versus exponential models. For an
observation y; we have the two competing models

My = f (y:l0) = f: (0) = ?Jt_l (27T92)71/2 exp {— 20,
—00 < 6 < oo, 0< by < o, yr >0

My = gl =g:(v) =7 "exp{—u/7}
v > 0 Yy >0

(Iny; — 91)2 }

That some of the parameters are strictly positive is not a problem as their
supports have infinite Lebesgue measures. The differentials for the vectors
of parameters are (df) = 7 (dr) (dv?) and (dy) = (dr). For this example
we consider using the augmentation of the differential to give the following
priors:

1
7y (0) = 1/c; where ¢f = 5/

1
T(dT)/ (dv?) = - apws; and,
Rt Vi 2

7y () = /¢, where ¢, = / 7 (dr) = Q.
Rt
Thus the ratio of the normalising constants is E—fc = w% = (27r)_1 and the
Bayes factor will be well defined in that it will reflect the evidence in the

data.
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We will use slightly more complicated models as examples using the
shrinkage prior. Here we consider the models

M, Yi = Qo+ oqTi; + Qea; + 33, + &
a = (ag, o1, ag, as) € R* and

M, Yi = Yo+ V1T1i + Yo%a; +E;
v = (v, M, 72) € R®

The shrinkage priors in which the differential terms are normalised are

m (@) = (a’a)™" Je; where ¢; = /

T (dT)/ (dv}) = aswy and
Rt V14

m () = (7)™ /ey where ¢ = / 7 (dr) / (dvy) = s

R+ Vis
Thus the ratio of the normalising constants entering into the Bayes factor is
@ = = = - 1/2008) — (63662,

c1 w4 F(3/2)
If we instead augment the differentials we obtain the priors

71 (o) = 1/¢y where ¢; = /

7 (d’r)/ (dv}) = auwy and
Rt Via

w5 (7) = (v'7)"* Jes where ¢; = /

73 (dT)/ (dvi’) = Qu03.
R+ Vis

Thus the ratio of the normalising constants is again E—f = 22

Empirical example: In this section we investigate the reduced rank
regression model which in the study of economic time series has several in-
teresting features which allow us to provide a reasonably complete model
set. We set up an empirical application of the priors for a p-dimensional
time series vector, y; = {y;:} for j = 1, ..., p. The results are reported at the
end of this section. In the application we use, p = 4 and the data for this
example is T" = 94 monthly observations of the 5 year and 3 year Australian
Treasury Bond (Capital Market) rates and the 180 day and 90 day Bank Ac-
cepted Bill (Money Market) rates from July 1992 to April 2000. This data

was previously analyzed in Strachan (2003), Strachan and van Dijk (2003),
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and Strachan and van Dijk (2004). Our aim is to investigate a simple model
implied by the rational expectations theory for the term structure of inter-
est rates (Campbell and Shiller, 1987) in which interest rates are I (1) while
the spreads between rates of different maturity are I (0), thus forming coin-
tegrating relations and implying these rates share one common stochastic
trend. Although for these variables we might accept that the cointegrating
relations (which could possibly be the spreads) may have non-zero means, we
would not expect there to be trends in either the levels or the cointegrating
relations.

With a maximum of 5 lags and differencing, we have an effective sample
size of 88 observations. The VECM of the 1 x p vector time series process
v = (Y1ty---ypt), t = 1,..., T, conditioning on the ! observations ¢t = —[ +
1,...,0,is

Ayt = yt_l/B+Oé + dt,U/ —+ Ayt_lfl + ...+ Ayt_lrl + Et

= 2ot = Zl’tﬁa + Zg’tq) + &

where zp; = Ay, = yi — yi—1, and we define 2z; 4, 224, and @ in the following
discussion. The matrices 1 and o/ are p x r and assumed to have rank r.
We define d;pu shortly.

Common features of economic and statistical interest relating to this
model are: the number of lags () required to describe the short-run dy-
namics of the system; the form of the deterministic processes in the system
(indexed by d); the number of stochastic trends in the system (p—7); and the
form of the long-run equilibrium relations or the space spanned by the coin-
tegrating vectors (indexed by o). Parameterisation of models with different
[ is obvious and in the following paragraphs we explain the parameterisation
of models with different d, r and o.

For consideration of the range of deterministic processes, the vector p is
decomposed into p = iy a4pip where ji; = pa’ (a’) ™ and pg = pe’, (ara’)) " ay
such that p; represents the deterministic processes associated with ;3% and
o represents those for y; (see Johansen, 1995 Section 5.7 for further dis-
cussion). Assuming d; = (1,t), then for each j = 0,1, dipt; = pj; + tps.
Although a wider range of models are clearly available, the five most com-
monly considered may be stated as follows, where d denotes the model of
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deterministic terms at given rank r :

(d=1) : dip=p0+ pro; + (Hrs0 + pos)t

(d=2) dipr = pyio+ pog + p st
(d=23) dypt = 130+ o

(d=4) dipr = p o

(d=15) dip =0

These five models imply variously that Ay, and ;3" may have a nonzero
means or trends or some restriction upon these means and trends. For the
interest rate data, we would most likely expect d = 4 or d = 5, as these models
imply no trends but a non-zero mean for the cointegrating relation (d = 4)
or no deterministic processes (including no non-zero means) in the system
(d = 5). From the above decomposition we may define z1; = (d¢, 1),
20 = (dy, Ayp—1, ..., Ayy), B = (1], /B+,)/ and © = (o, I, . ... ,F;)/. Notice
that the dimension of y; determines the dimension of § as (p +2) x r for
d=1lor2 (p+1)xrford=3or4,orpxrford=>5. Although we consider
all five models in the application, in the following discussion we will assume
the last case (d = 5) for simplicity.

The aim of cointegration analysis is essentially to determine the dimension
and the direction of the cointegrating space. The dimension is determined
by the number of common stochastic trends in the system. Of interest when
considering the number of stochastic trends is the coefficient matrix # which
is of dimension p x r and we have rank (fa) = r < p. When 0 < r < p,
y; is cointegrated and contains (p — r) stochastic trends, (3 is the matrix of
cointegration coefficients and « is the matrix of factor loading coefficients or
adjustment coefficients.

It is common to specify some form for the long-run relations implied by
economic or financial theory involving cointegration by restricting the space
spanned by . This implies that, in addition to estimating the dimension
of the cointegrating space, we also wish to explore alternative models for
the space spanned by the cointegrating vectors. We therefore compare three
models for the spaces of interest. When no restriction is placed upon the
space and p = sp(f) is free to vary over all of the Grassman manifold,
G,.p—r, we denote the model by o = 1. For the second set of models (o = 2),
we refer to the expectations theory which implies the spreads should enter
the cointegrating relations and so we are interested in the model with coin-
tegrating space spanned by Hy = (ho1 ha2 hos ) where hoy = (1,—1,0, 0),
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hoo = (0,1,—1,0)", and hy3 = (0,0,1,—1)". In this model we have 3 = Hy¢p
where ¢ is 3 x r for r € [1,2,3]. As the interest rates come from differ-
ent markets, market segmentation suggests our third set of models of the
cointegrating space (o = 3) in which we have spaces of interest spanned by
B = Hsp where ¢ is 2 x r for r € [1,2] and H3 = (hg has ). The models
o = 2 and o = 3 restrict the cointegrating space to subspaces of the space in
o=1.

Finally, we introduce the following terms to simplify the expressions in the
posteriors. Let Z; = (2143 294), and the (pl + r + 1)xp matrix B = [o/ ®']’.
The model may now be written as zp; = 2B + ¢; and the dimensions of B
will depend upon [, d and r. The model with [ lags, p — r stochastic trends,
deterministic process d and restriction on the cointegrating space o will be
denoted by M ,.4,0). If we wish to discuss the general comparison of models
we will use M; to denote one model and M; to denote a different model.

The prior for 8 is uniform on V;., but we adjust the volume to imply a
uniform prior on the cointegrating space p = sp (6) € G, where G,.,,_, is
the Grassman manifold. The prior then becomes p (3) = -~ (Strachan and
Inder, 2004) where

oy T3/
' I [(r+1-4) /2]

The same prior is employed in all models for the covariance matrix. This
is the invariant Jeffreys prior for &, p(2) o [S]"%™/2 with normalising
constant cg = [y, 1S "2(4x) = .

The prior for model M; for the n;-dimensional vector b = vec (B) (n; =
(p(l=1)+7+1)p)isp(b) o ('b)*/? where K; = max (ny,)—n; for the prior
using augmentation of the differential and K; = — (n; — 2) for the shrinkage
prior. The normalising constant for the prior will be ¢;p = [, (V' b)) (db)
and so ¢;, equals either o, where ¢ = max (n,) or 2.

To sum up, we have the following models in our model set. The rank pa-
rameter is an element of r € [0, 1,2, 3,4], the indicator for the deterministic
process d € [1,2,3,4,5], the lag length [ € [0,1,2,3,4], and the indicator for
overidentification of cointegrating vectors o € [1,2,3]. This gives a total of
375 models. Taking account of observationally equivalent or aprior: impos-
sible models, we need only compute the marginal likelihoods for some 255
models.

In the remainder of this section, we describe a sampling scheme to en-
able estimation of the marginal likelihoods up to proportionality. Collect

1
Cr
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the parameters 3, ¥, and B into the vector 6. The posterior has the form
proportional to (b/b)K/2L(9) \EF(HI)/Q cl where ¢; = ¢,cxncip = ¢ Cn0Ty,.

Thus the marginal likelihood for this model is
1
C; )

mi — / )" L () []70D/2 (dp)

We know the ¢, and w, exactly and the term cy is common to all models
and so will cancel in the Bayes factor. Therefore to estimate the Bays fac-
tor, we need only obtain an estimate of m; up to an unknown but common
proportional constant. To obtain this, we use the proper density 7 (0) =
AL (0) B[~ P2 = ¢;ahx (0) where ¢; ; is the estimable normalising con-
stant ¢;» = [ hr(0)(df). Next we define the expectation of the function
(b'b)*/? with repect to this distribution as

= B [(007°] = [ @09 1o (0) (a6) —.

CiJr

Thus we may regard the marginal likelihood, m;, as proportional to the
expectation of (0/b)*/? with respect to the density 7 (6) such that m; =
WiCix/Ci OC [LiCin (criwni)_1 and the Bayes factor for model ¢ to model j is

my _ HiCiw Cj

m; G HiCm

i Cr, CE 0Ty,

= HiCim BP0 Gince Ci = Crlxny T,
CriCxQqWn;  HjCjm
HiCi erwnj

Cr;Wn; MKjCjr

Next we decompose c; r using the following series of integrals in which
the functions h., are kernals of a density for the parameters in - :

o = [ L@ )
= [ [ [nesin0) @s) @) @
— oy [ [n018)R(3) (a5) (@)
csaen [ 1(5) (@9

= CoyChyCay-
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The first two terms ¢y, and ¢, are known exactly (see, for example, Zellner
1971). An estimate of ¢z, may be obtained by Laplace approximation of
Strachan and Inder (2003) or the MCMC approach of Strachan and van Dijk
(2003).

Finally, we estimate p; by fi; = £, (b(g)’b(g))K/ ? where the @ are
draws from 7 (f). Conditional upon 3, the parameters ¥ and B have the well
known inverted Wishart and Multivariate normal distributions respectively.
Draws from these distributions are easily obtained. However, § has a non-
standard distribution and so draws must be obtained via candidate densities.
Details on one method for obtaining such draws are available in Strachan and
van Dijk (2003).

We finish this section with a discussion of the results. The Johansen
sequential trace test results in selecting a rank of 2 at the 5% level which
agrees with the rank selected by AIC, although BIC prefers a rank of zero.
Conditional upon [ = 1, the classical test accepts both restrictions on the
cointegrating space, giving support to o = 3. Conditional upon r = 2,
the classical test accept both restrictions on the cointegrating space, giving
support to o = 3. Recall that the expectations theory implies the interest
rates will share one common stochastic trend and the spreads will be I (0).
Therefore, these results suggest there is one too many stochastic trends in
this system and that the spreads are not cointegrating relations. The extra
stochastic trend may result as the interest rates come from different markets
and the expectations relations may not hold when comparing rates from these
different markets. However, acceptance of o = 3 at r = 2 does not support
this conclusion, and the evidence for or against the theory is not clear. Using
information criteria, we find that conditional upon [ = 1, the AIC prefers
(d = 4,r = 2) while BIC prefers (d =5,r =1).

For the Bayesian investigation, we estimate the marginal likelihoods from
10,000 draws obtained using a Metropolis-Hastings Markov Chain Monte
Carlo technique. Using the shrinkage prior, the model with estimated pos-
terior probability one is M4, = M5,132). This implies the Bayesian re-
sults favour the model with no deterministic terms, no lags of differences, a
cointegrating rank of three and in which the matrix Hs lies in the cointegrat-
ing space. This result gives clear support - for this data set - to the main
features of the Efficient Market Hypothesis that the interest rates share a
single common stochastic trend and the spreads are stationary, with a rea-
sonable description of the deterministic and short-run dynamic structure.
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Using the approach in which we augment the measure, we find the model
with the highest posterior probability is M4 1,1) with posterior probabil-
ity P (M(471,1,1)|y) = 0.812. This implies there is at most a nonzero mean
in the cointegrating relation, one lag and three common stochastic trends.
The only other two models to receive support with this prior have posterior
probabilities of P (M(3717273)\y) = 0.156 and P (M(5717372)|y) = 0.032. The log
Bayes factor for M3 1,23) to M1,1,1) is —1.650, while the log Bayes factor
for Mis1,3.2) to M(4,1,1,1) is —3.231. These results imply some support for the
model selected using the shrinkage prior - M5 ; 32), however, they seem to
agree more closely with the classical, information criterian results.

6 Conclusion.

Bayesians have generally felt constrained to using proper priors when obtain-
ing posterior probabilities for models for such purposes as Bayesian Model
Averaging (BMA). This is unfortunate, as some improper priors have attrac-
tive features which the Bayesian may like to employ in such an BMA exercise.
Using a relatively simple and well-understood decomposition of the differen-
tial term for a vector of parameters, we have demonstrated that the class
of priors for which well defined Bayes factors obtain includes some improper
priors. One important class is the shrinkage prior which has been shown to
to produce estimates with lower frequentist risk than other approaches and
therefore are more likely to be admissible under quadratic loss. It is possi-
ble that the class of improper priors that permit valid Bayes factors extends
beyond those demonstrated in this paper and to others with other attractive
properties. This is a potential area for further investigation.
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