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Abstract

This paper studies the balance constraint (debit=credit) in bookkeeping, its

causes and its consequences for accounting. Balance in the ledger is shown to:

1) imply balance in journal entries and vice versa; 2) link the value definitions

in the earnings statement and balance sheet; 3) have direct implications for val-

uation puzzles encountered in accounting, like accounting for OCI or stock-based

compensation, and the difference between earnings or balance-sheet approaches to

valuation. These system-wide effects on accounting highlight a design question:

why do we have the balance constraint in bookkeeping? Backward-engineering

shows 6 axioms that logically lead to double-entry bookkeeping. The balance con-

straint follows from the existence of a residual account: owner’s equity. A class of

equivalently powerful record keeping systems is shown to exist. These systems use

double-entry bookkeeping without the monetary-unit assumption and can be used

to record other outputs of the organization, like societal impact. These systems

can be implemented in relational databases, a blockchain, or a different technol-

ogy all together. The discussion covers links with other mathematical descriptions

of bookkeeping and potential avenues for future research in the mathematics of

bookkeeping.
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1 Introduction

Accounting for an economic event occurs in three steps, first the event (transaction) is

translated into accounting definitions, second the value of this event is defined, third the

event is recorded. The first two steps deal with the definitions and valuation of trans-

actions, they are covered by the accounting definitions within IFRS or local GAAP and

are often discussed in the accounting literature. The third step, the actual bookkeeping,

seems to have received less attention in recent accounting research.

Bookkeeping is the primary technology for accounting and a primary source of data for all

of economics. The importance of the bookkeeping process for economic record-keeping

should not be underestimated. A significant part (if not most) of accounting data is

recorded through double-entry bookkeeping. This data is used for decision making within

companies, to decide on stock investments by investors, to supply tax authorities with

information, to calculate national income accounts, etc. The better we understand book-

keeping, the better we understand the data that it generates. Furthermore, as the last step

in the accounting process, it should be the first step in the improvement or optimization

of this process.1 This is why questions about the best design for bookkeeping processes

recur every time new technologies for record keeping are introduced. They were asked

around the advent of business operations research (see for instance Mattessich 1964), with

new developments in Accounting Information Systems (see for instance McCarthy 1982;

Harper 1985; Geerts et al. 2013) and now again with the rise of a new type of record

keeping: the blockchain (Andersen 2016; Arnold 2018; ICAEW 2019).

As bookkeeping is the primary technology of accounting, questions about the design of

bookkeeping are particularly relevant for this field. Providing answers increases both

the academic relevance (e.g. Arya et al. 2003; Demski 2007; Fellingham 2007; Basu

2012) and the practical relevance of accounting research (e.g. McCarthy 2012; Ellerman

2014). Through the design of improved or alternative record-keeping systems, we can (re-

)evaluate how our current system serves its goals of stewardship and decision-usefulness

in response to changing circumstances (Olivier 2000; Ravenscroft and Williams 2005).

This paper takes some steps in the suggested direction and studies the cause and ef-

fect of the requirement that debit = credit in any valid financial statement (further the

balance constraint).2 The results of this analysis shows why we impose the balance con-

1In optimization, as in planning and budgeting, Bellman’s principle requires us to work backwards.
Planning for a company starts with the sales budget, optimizing the accounting process starts with
bookkeeping and both move backwards in time.

2There are several interpretations of this equality and its link to double entry bookkeeping, that have
led to several names being used to discuss this idea in different streams of literature. Most accounting
texts appear to imply that this constraint defines double-entry, since it requires that at least 2 accounts
are present, one with a debit balance and one with a credit balance. Therefore, this constraint could be
called the double-entry constraint. In mathematical treatments, double-entry refers to the two entries
–debit and credit –in each element, regardless of balance. This difference in definitions of double entry
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straint, some issues it causes in accounting and what solutions exist to these issues, and

how double-entry bookkeeping can be used in alternative record-keeping systems like

blockchain-based systems, or societal impact accounting systems.

Bookkeeping has a strict set of rules that need to be followed. As long as these rules are

followed, processing a transaction (journal entry) transforms one set of valid bookkeeping

statements (the ledger) into another set of valid bookkeeping statements (e.g. updated

ledger). An operation that takes two elements of a set and transform them into a third

element from the same set is analogous to a group law operating on its associated group

set. This paper expands the group-theoretical work of Ellerman (1982, 1985), it adds

the balance constraint to the Abelian group used to describe bookkeeping. A one-to-

one relation between this Abelian groups and the group of Rn with vector addition is

shown. Because these groups are equivalent, we can use what we know about addition

of real numbers to more easily understand the mathematical description of bookkeeping.

The first proposition shows that the balance constraint as imposed on the entire set of

accounts held by an economic entity, implies that every journal entry made by this entity

has to be balanced. The reverse result is also shown, if we require every journal entry

made to be balanced, the resulting ledger will be balanced.

The balance constraint does, however, act as a constraint. The logic that implies that

the change caused by a journal entry is balanced, also implies that any change caused

by new definitions of value has to be balanced. If we change the value definitions that

determine earnings, for instance because earnings are manipulated or we switch from

IFRS to local GAAP, both the pre- and post-change financial statement are still required

to be balanced. This is only possible if we adjust the value definitions used in the

balance sheet and the value definitions used in earnings simultaneously. The balance

constraint thus ties together the value definitions used in the balance sheet and income

statement, making it impossible to define these separately. The connection between the

value definitions used for the balance sheet makes statements falsifiable and thus creates

control options, but it also means we loose flexibility in the definitions of value. The loss

in flexibility can cause a relevance-reliability trade-off. For instance, to achieve maximum

relevance of the earnings statement, we would want to value and record performance as

accurately as possible regardless of the organizational-valuation effects. Similarly, we

want to report existing valuation in the organization as accurately as possible, regardless

can lead to confusion and some irritation, see e.g. Ellerman (2014). Furthermore the balance constraint
does not require debit and credit entries, but can be equivalently imposed on a list of scalar accounts,
see Lemma 2. In theoretical accounting research, like Mattessich (1964); Ijiri (1975), this requirement is
captured in the concept of duality. However, duality of each value flow is closely linked to the classification
(what account) and measurement or valuation (what amount) of the transactions, while here we only
require balance in recording. Hence, in this paper we will call it the balance constraint. The balance
sheet equality, i.e. the fact that debit = credit on a well-formed balance sheet, is a specific example of
this more general requirement.
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whether it is due to performance or random shocks. However, the value definitions of

the earnings statement are tied to the value definitions of the balance sheet, such that

these independent value definitions are not possible. This has direct implications for

some valuation and reporting puzzles in accounting and the examples of OCI and stock

awards are discussed. However, as the discussion of OCI and stock awards show, extra

accounts can be used to overcome the relevance–reliability trade-offs. These accounts

can act as buffers that absorb the differences between optimal performance and valuation

measures of value. This suggests that the difference between the earnings and balance-

sheet approaches to value, which is often perceived to exist in standard setting (Benston

et al. 2007; Dichev 2008, e.g.), could be resolved by adding accounts. Such extra accounts

have statistical properties that allows us to learn more about the measurement problem

they are used for. If, for instance, OCI is consistently negative, that can indicate a upward

bias in earnings reporting. However, if OCI is very volatile but has an expected value

near 0, this indicates that the balance constraint was a severe impediment to relevant

and reliable reporting of performance through net change in equity.

The restrictions, and relevance-reliability trade-off caused by the balance constraint does

pose a fundamental design question: if balance imposes these issues on record keeping,

why do we require it in the first place? Double-entry bookkeeping, with the balance

constraint, has survived the test of time. Several alternative bookkeeping systems existed

at the time of Pacioli (1494), which seems to indicate that this system works better than

alternatives. To show what design choices caused double-entry bookkeeping to thrive,

one first has to find the choices made. These choices are shown through a proposed

axiomatic basis for double-entry bookkeeping. The six axioms are: 1, there is an entity

that experiences events that require bookkeeping; 2, value is defined in the form of signed,

real measures; 3, there is a list of n <∞ values to keep track of; 4, all value is measured

in some common (monetary) unit; 5, the event ’no transaction occurred’ has zero value;

6, one of the n elements absorbs the residual value of the other n− 1 elements. The first

4 of these stem from earlier work in accounting theory, most directly from Mattessich

(1964) and Ijiri (1975). They combine the need for an administrative system (1,3) with

the monetary-unit assumption in accounting (2,4). The fifth and sixth axioms form the

reason for the balance constraint. The fifth axiom means that we do not have to keep

track of events that do not impact valuation. The sixth axiom follows from the definition

of owner’s equity. The owners of a company receive anything that remains of the assets

after the debt is paid, this automatically means that if the assets increase by more than

the liabilities, owner’s equity increases with the residual value. This account (and its

sub-accounts) thus balances out the accounting system.

The results derived can be applied directly to the design of different record keeping

systems. As long as all transactions are balanced, we can string them together into a
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balanced set of books. For blockchain-based record keeping, this means that any general

ledger – when constructed from the record of individual, balanced transactions in the

public ledger– will resemble the balance sheet of a central bank. Coins outstanding form

one side of the derived ledger, the number of coins owned by private parties are posted

at the other side of the derived ledger, as if the coins are deposited there. For relational

databases, the equivalence between balanced journal entries and balanced ledgers can

be used to aid efficient design. Verifying balance at the individual transactions implies

that the balance verification of the entire system is redundant and thus could be skipped

without any loss. The axiomatic design shows that as long as we can define a real

measure for all relevant outputs and a marginal price for all these measures, double-entry

bookkeeping can provide a measure of performance for the total impact these companies

have on wider society. This performance number number can be calculated in a similar

fashion as profits. Such a single-number performance measure allows the use of well-

known performance contracts, like exist for profit maximization, to be applied around

maximization of societal impact.

The bookkeeping process has been modeled mathematically before, for instance in terms

of matrix algebra (e.g. Mattessich 1964; Butterworth 1972; Arya et al. 2000; Ijiri 1993).

There are clear links between the matrix-description and the formalism used in this paper.

The group theoretic work in this paper focuses more on fundamental properties of the

information structure and how they influence the bookkeeping system, while the matrix-

based description focuses more on the processes of updating the books and how this

process can be modeled. As such they serve different, but complementary goals. Section

5 discusses the links between the mathematical descriptions in more detail.

In the following sections show the properties of the group used in double-entry book-

keeping and the crucial role played by the balance constraint. Section 2 derives the first

proposition that relates the balance in the total system to balance in journal entries. Sec-

tion 3 discusses how the balance constraint actually constraints the valuation choices and

possibilities to record information in the accounting system and gives some important

examples. Section 4 proposes an axiomatic basis underlying our current system. The

axioms show how the definition of owner’s equity leads to a bookkeeping system with the

balance constraint. An extension of the basic axioms also shows that the monetary-unit

assumption is without loss of generality in a much larger class of equivalent bookkeeping

systems. Because part of the mathematical description in this paper is new, links to other

mathematical descriptions of the paper are only discussed Section 5, after which the final

section concludes the discussion. Formal proofs are relegated to the appendix whenever

possible, while the main text focuses on accounting examples and intuition.
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2 A mathematical description of bookkeeping

The first 2 lemma’s in this section are due to Ellerman (1982) and are re-derived to keep

this paper self-contained. To build an accounting system, we first define the smallest

element used to keep track of some value. Since our bookkeeping system keeps track of

many different values, we will build a larger system with more than one of these elements

later.

Define an α-element as an ordered pair of non-negative numbers, αi = [di // ci], where

di ≥ 0 is a debit value and ci ≥ 0 is a credit value. The subscript i is used to index

individual α-elements. The box, [ ], is used to separate α-elements, while the double

slashes, //, are used to separate debit and credit entries in an element. Note that, the lay-

out of a T-account achieves the same goal by having a title (for indexing), and a vertical

line between the debit and credit column (to separate the entries). If we would only denote

the column totals in the T-accounts, and not the entries of individual transactions, they

would be equivalent to an α element. Denote the set off all α-elements as:

A = {[d // c]|d, c ≥ 0, d, c ∈ R}

If we take two of these α-elements, α1 = [d1//c1], α2 = [d2//c2], we can add them together

by separately adding debit and credit values: α1 +dc α2 = [d1 + d2//c1 + c2] = a3. Here

we denote by +dc the operation where we separately add the debit and credit values.

Since a3 is also an ordered pair of non-negative numbers, a3 ∈ A. Every account in the

bookkeeping system can be associated with an α-element. For an inventory, the debit

entry would equal the sum of all additions to the inventory, the credit entry the sum of all

outflows out from the inventory. The value of the element (inventory) is found by taking

the difference between debits (inflows) and credits (outflows) in the element (inventory).

This property automatically implies that two of these α-elements have the same value

if the difference between their debit and credit entries is the same. In our inventory

example, debiting it for 60 and crediting it for 50, or debiting it for 100 and crediting

it by 90, has the same result of 10 debit. That is, the value of two of these elements is

equivalent (denoted by ') if the difference between their debit and credit values is the

same: [60//50] ' [100//90]).3

A binary operation that takes two elements from a set (the α-elements here) and yields a

third element from the same set is what defines a group law. A set of elements combined

with a group law defines a group, so that these α-elements together with the group law

of separate addition of debit and credit values (+dc) forms a group. We will refer to this

3Mathematically differences, subtraction and the equivalence relationship have to be defined with
regards to the α-elements and the +dc operation. Since this leads to the intuitive definitions, this is left
to the Appendix subsection A.1 and subsection B.3.
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group as the A-group, this group has been dubbed the Pacioli-group due to it’s link with

bookkeeping (Ellerman 1982, 1985, 2014).

Lemma 1. the A-group (or Pacioli-group), {A,+dc}, consisting of elements α ∈ A and

the group law of addition of debit and credit values, +dc, forms a group.

Proof. See appendix, a more general version of this result can be found in the appendix

of Ellerman (1982).

The appendix shows that the four necessary and sufficient properties for a group are met:

closure; associativity; existence of an identity element in the set; and existence of an

inverse element for every element in the set. We will briefly explain these requirements

with the example of an inventory account and its associated α-element.

Closure is defined mathematically as ∀α1, α2 ∈ A, α1 +dc α2 ' α3 ∈ A. For an inven-

tory, this means that if we (correctly) add the debits and the credits of two inventories

together (α1, α2), the resulting combined inventory account (α3) is also a member of this

group-set, so a valid account in this system.

Associativity requires (α1 +dc α2) +dc α3 ' α1 +dc (α2 +dc α3), such that the order of

operations does not matter. This holds in our inventory example since the order of the

transactions does not change the final result. If we first debit the inventory for 60 and

then credit it for 50, the total debit value increases by 10. Similarly, if we first credit it

for 50 and then debit it for 60, this also increases the debit value by 10.

The existence of an identity element, e, is defined as: ∃e s.t. α + e ' α ∀α ∈ A. There

has to be some element in the group set that, when used with the group law, does not

change the value of the other elements. Clearly, this element has to have zero-value:

e = [0//0] ' [x//x] ∈ A. If we debit and credit our inventory by the same amount, i.e.

net zero, this does not change the inventory value as required.

Similarly, the presence of an inverse elements is easily shown. Formally the requirement

is defined as ∀α ∈ A ∃α−1 s.t. α +dc α
−1 = e. In our setting the element e = [0 // 0] is

an element without any value, like an empty inventory. If we want to set an inventory

to zero value, we simply credit it for the existing debit value. We can construct the

inverse elements for any account in this way, simply by exchanging the debit and credit

values. The resulting inverse element is a pair of non-negative numbers, so the inverse of

α1 = [d1//c1] is simply α−11 = [c1//d1] ∈ A.

These 4 properties of the A-group are necessary and sufficient to proof the group defini-

tion, and they provide a simple algebra to manipulate elements of the group and analyze

the resulting expressions.

One interpretation of these elements with two non-negative values is as a trick to avoid

using negative numbers (Ellerman 1985). We could have equivalently used negative num-
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bers for credits and positive numbers for debits (or vice versa).4 The relationship between

the real numbers and the α-elements is in fact one-to-one, as the red line in Figure 1 shows.

This makes the interpretation of these accounts and the operation of addition of debit

and credit considerably easier, as it allows us to use normal addition and subtraction on

real numbers to understand this group and group algebra.

Lemma 2. There is a group-isomorphism from {A,+dc} to the group formed by the real

line and the group-law of addition, {R,+}.

Proof. See appendix, a similar result is derived in the appendix of Ellerman (1982).

[FIGURE 1 SOMEWHERE HERE]

The bijection between the α-elements and the real line is from every possible real number

to all α-elements with the same value di − ci, i.e. an equivalence class of such elements.

The bijection maps the number −10 on the real line to an element holding the value

10 credit, regardless of whether that 10 credit is caused by crediting the element by 10

and debiting it by 0, or by crediting it by 10, 005 and debiting it by 9995 since these

operations yield equivalent results. If we have an element with a credit value of 10 and

we credit it by 10, we get a credit value of 20. The equivalent operation on the real line

looks like: (−10) + (−10) = −20. The value −20 is mapped to an element [0//20], such

that both the operations and the elements match, as required for a group bijection.

An accounting system has many accounts that keep track of different values, so the

description of an accounting system requires more than one element. To make an ac-

counting system, every account in the trial balance (or ledger) has to have an associated

α-element. With n < ∞ accounts, we require a list of n individual α-elements. We

will denote such lists with capital letters, such that A = {α1, ..., αn} ∈ An, where An is

the set of all length-n lists of α-elements. Within each list we use subscripts to index

different elements, for instance, α1 could be our cash account, α2 the materials inventory,

etc. Ledgers, trial balances, balance sheets, and journal entries all consist of such lists of

accounts with associated α-elements. Collectively such lists will be referred to as book-

keeping statements, or statements for short. Appendix D shows that the set of lists of

length n forms a group with the same binary operator, +dc, applied over each indexed

element i. Figure 2 shows how we can form a prototypical accounting system from this

4Historically, this system of notation was developed before the use of negative numbers took root.
Since one can work with negative quantities of debit value – credit value – in this system without having
to define negative numbers, it was a very convenient step in the development of number theory.
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mathematical description.

[FIGURE 2 SOMEWHERE HERE]

If we update the balance sheet in Figure 2a through the journal entry in Figure 2b, we have

to credit account 1 and debit account 2 by the amounts given in the journal entry. The

resulting updated ledger-accounts, Figure 2c, have both debit and credit entries consisting

of non-negative numbers, so they are also elements of the set A. Since all elements have to

come from the same set, A5, the journal entry has three zero-value elements, a3, a4, a5. In

accordance with the property of the identity element in the group, the updated balance

sheet shows these zero-elements do not affect the value of the accounts a3, a4, a5. In

practice, these zero accounts are usually suppressed in the notation of a journal entry,

such that only α1 and α2 would be shown.

As with the individual accounts, we call two statements equivalent if each of their elements

has the same value: A ' A′ ↔ αi ' α′i, ∀i, 1 ≤ i ≤ n. The group satisfies closure

and associativity in the same way as each of the elements in the lists does. The identity

element is a list of elements with zero value. The inverse of any statement, is the statement

where the debit and credit values are exchanged within each α-element. In the same

way that each individual α-element can be mapped to R with a bijective mapping, all

statements of length n can be mapped to Rn with a bijective mapping. So that the group

{An,+dc} is isomorphic to {Rn,+}. Through this mapping the mathematical structure

of the bookkeeping system can be compared to vectors and vector addition.

Note that the α-elements do not have a meaning independent of their context. They

register the value of something in the entity. Therefore we have to associate every α-

element to some part of the entity through the subscripts i. In mathematical notation

it is easiest to work with i as a number between 1 and n and assign the same number

to the corresponding account. It would, however, be just as correct to denote our cash

account as qcash rather than i = 1 and work with a list of names instead. Figure 2d shows

an example indexing. For every index i it has a corresponding account in the accounting

system, and thus some aspect of the entity that the element keeps track of. To model

the entire accounting system every account in the entire chart of accounts should be

associated to an element. Every element is uniquely connected to a single account, and

all accounts are uniquely linked to a single element, such that we can refer to accounts

and elements interchangeably without causing confusion. Through the association in

Figure 2d, for instance, we see that the journal entry in Figure 2b corresponds to a cash

purchase of materials for inventory.
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The rules of bookkeeping have an additional important requirement: debit = credit. For

each of the panels a,b, and c in Figure 2, we require that the sum of all debit values

equals the sum of all credit values in the statement. Denote the value of a list A as:

V al(A) =
∑n

i=1 di −
∑n

i=1 ci where di, ci denote the debit and credit values of the ith-

element in the list. Similarly let dr(A), and cr(A) denote the sum of all debit, and credit

values in the list A respectively. Note that the value of an individual element i (a list of

length 1) is equal to di − ci, so this corresponds to the mapping in Lemma 2.

If any of the statements in Figure 2 is not balanced, this statement is not well-formed.

Only those statements A ∈ An where V al(A) = dr(A)− cr(A) = 0 are valid statements.

Define the set of all balanced statements with n elements as Bn = {A ∈ An|V al(A) = 0}.
Denote item i on the list as bi, these are α-elements indexed by i as before. By construc-

tion Bn ⊂ An, the elements in Bn are all in An. However, all unbalanced statements of

length n are not part of the strictly smaller set Bn. In bookkeeping we keep track of all

the values of inventories, liabilities, revenues, costs etc. A list of values, B, registered for

some entity, describes the state of values in this entity. Since every element in the set

An could describe a possible state of the entity, this implies that there are possible states

in An that we cannot record in Bn. In this way the balance constraint, constraints the

record keeping system to a smaller set of potential recorded values.

The group structure gives us a formal syntax to analyze bookkeeping mathematically.

There are also important benefits of this group-structure for the use of accounting as a

communication tool. The shared understanding of the rules used in accounting, allows

us to clearly communicate differences between different states of the world through the

reported values. This makes a group-based accounting structure very well suited for

the purpose of communicating financial, or value information (Stecher 2011). To ensure

we keep both the formal syntax of the group-algebra, and use bookkeeping for effective

communication of value, the next lemma shows that a balanced-constraint bookkeeping

system together with the balance constraint also forms a group:

Lemma 3. {Bn,+dc}, the set Bn with the group-law of itemwise addition of debit and

credit values forms a group.

Proof. see appendix.

A bookkeeping statement B is a reasonable description of many bookkeeping tools. For

instance, if we take the trial balance, or general ledger they contain a list of accounts in

which we keep track of different values. Each account has a different value and name,

so they are separated and we could link each different account to a different index i

(for instance via the decimal schedule). To each account we can post both debit and

credit values and we know that the sum of all credit values equals the sum of all debit

values in the list, such that the general ledger and the trial balance satisfy the balance
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constraint.

With this notation and description of the balanced bookkeeping group, we can derive

the first proposition. This proposition shows how the constraint on the entire accounting

system, that if we add up all the debit values in the list it equals the total of the credit

values in the list, implies that every entry made, for all individual transactions, has to

be balanced:

Proposition 1. The difference between two balanced lists of accounts is balanced:

∀B,B′ ∈ Bn (B +dc (B′)−1) = (B −dc B′) ' B′′ ∈ Bn.

Proof. see appendix.

Mathematically, the result is straightforward. From the group definition we know the

inverse element of any element is also in the group, and thus balanced. Under addition

on the real line, adding the inverse element is the same as taking differences. The same

relation holds for the lists B, the difference between two lists is equivalent to adding the

inverse of the second list to the first list with the +dc operation. Because B satisfies the

group identity, this inverse list is an element of the group-set, and thus the difference

must also be an element of the group-set. The difference between two balanced lists must

thus be balanced. From an accounting point of view, the result is extremely relevant.

The general ledger should always be balanced, and thus it is an element of Bn at any

moment. Now take the ledger at two different moments, denoted as B1, B2. Then we

know that B2 −dc B1 = ∆B ∈ Bn, but the way we update the general ledger is via a

journal entry like Figure 2b, so that this too has to be an element of Bn. We require the

general ledger to be balanced and Proposition 1 shows that this implies that the journal

entry of every single transaction has to be balanced.

With a small addition, this same result also holds the other way round. If we start with

a balanced statement and require all changes to be balanced, the resulting statement is

also balanced.

Corollary 1. If a statement is balanced (B0) and all statements it is combined with (Bi)

are also balanced, the result after T <∞ manipulations (BT ) is balanced:

B0, Bi ∈ Bn → B0 +dc B1 +dc ...+dc Bt = BT ∈ Bn ∀0 < T <∞

Proof. Since V al(Bi) = 0 ∀i, it is immediate that V al(BT ) = 0 + 0 + ..+ 0 = 0.

Before any transactions occur, an entity starts with a list of zero values –an empty

statement– i.e. before investment by owners in the company, the company does not have

any values to keep track of. If we restrict all transactions to be recorded via balanced

entries, the resulting general ledger is always balanced over all. These two restrictions, a

balance of the general ledger, or a balance of every journal entry, are thus mathematically
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the same. Therefore, we can verify the balance of the entire general ledger at the level

of individual transactions. Checking all individual transactions is sufficient to guarantee

the balance of the entire ledger by construction. Note that the result is much more

general than just applying to the general ledger and journal entries. The result holds

for any balanced set of elements. So it holds, for instance, for any set of accounts in

our accounting system that we know to be balanced. At the moment we make a balance

sheet, we make sure that the list of accounts it contains is balanced. Even though this is

a much smaller set of accounts than the ledger, the result holds for balance sheets and

differences between balance sheets. The result in Proposition 1 applies to the difference

between two balance sheets, regardless of what causes the difference: changes over time,

differences between economic entities, or differences between sets of valuation rules for

the same entity at the same moment. All that is required is that both statements are of

the same length, and that they are both balanced.

This result is quite useful in the design of accounting systems. If we look at the Accounting

Information Systems based on relational databases, these consist of large tables that

summarize the current state of the entity(Everest and Weber 1977). A consistency check

that sums all debit values and credit values is easily implemented in such designs, similarly

a restriction that allows only balanced transactions can be implemented to the same

effect(Barra et al. 2010; Gentili and Giacomello 2017). Since both will have equivalent

results, only the simplest one has to be implemented. In a blockchain system the public

ledger stores a record of individual transactions.5 In such a system, requiring that each

individual transaction record is balanced is more natural.

In the discussion on the future of accounting systems, the blockchain is seen as a promis-

ing new technology to prevent falsification of data. If professional organizations and

the popular press are anything to go by, this technology will have a deep and lasting

impact on the accounting profession (Andersen 2016; Arnold 2018; ICAEW 2019). How-

ever, how to use the blockchain in accounting and what information should be encoded

on the blockchain for accounting practice, are largely an unanswered question (Dai and

Vasarhelyi 2017). Showing how the blockchain can implement a double-entry bookkeep-

ing system, with a transaction level check on balance could be a useful step. Finding

the fundamental design choices in our accounting system is an important further step

towards implementing blockchain technology in double-entry accounting, and is taken up

in Section 4. The next sections will discuss some examples of implications in valuation

problems.

5A small note on terminology, the public ledger of a blockchain holds a history of all transactions on
the chain. As such, it more closely resembles a journal that records all transactions, than the general
ledger that shows the current state of the entity.
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3 Valuation consequences of the balance constraint

The implications of the balance constraint in Proposition 1 go beyond the bookkeeping

process per se. As bookkeeping is the final step in accounting for economic events, by the

Bellman principle, we have to take bookkeeping into account in all earlier steps. Balance

in bookkeeping statements can only be satisfied if we define and measure value in the

accounts in a manner that preserves balance. That is, accounting valuation has to the

bookkeeping balance constraint into account. For any given event, if we change valuation

definitions of the transaction, the change immediately has to have the opposite effect on

the recorded value elsewhere. For example, if we change our valuation of an receivable and

thereby increase its net debit value in the books (i.e. reduce the allowance for doubtful

accounts), we have to increase the credit value elsewhere (i.e. increase revenues).

In the notation used in this paper, valuation aspects have mostly been ignored. However,

a lot of accounting definitions can still be found easily. Net income, for instance, is −1

times the value of all revenue and cost accounts in the trial balance (value is debit, equity

is credit). To find it, first make a list of all accounts that are added together to form

earnings, AE. All other accounts form a second list ACE, so that each list is either in AE

or in its complement:

B = AE
⋃

ACE, AE
⋂

ACE = ∅ → V al(AE) + V al(ACE) = 0

Net income can then be found as NI = −V al(AE). Similarly the balance total is found

by defining a list of all items that are reported on the balance sheet (directly or as part of

some aggregated account), ABST , and then taking dr(ABST ) = cr(ABST ), etc. This type

of definition via the value of a sublist of accounts is not part of the B-group definition

for two reasons. First, the resulting value (like net income) is not an element with two

numbers, so it cannot be a member of Bn. Second, the calculation does not change the

recorded information in the accounts, so it is not an operation like the group law. Most

reporting, as is done in the annual statements, can be done through such read-not-write

operations on the set of accounts reported in the trial balance.

With this notation in place, we can look at the forced interaction between valuation in

the balance sheet and the income statement:

Corollary 2. The recording process through the Bn-group binds the definitions in the

balance sheet to the definitions of costs and revenues in the income statement.

Proof. See appendix.

To change reported net income, we have to change both an Earnings account (to change

net income), and some account outside of the earnings list (to keep the balance in the
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ledger). At the level of aggregation in the annual statements, this can only be achieved by

a change in value on the balance sheet (in the list ABST
⋂
ACE). The gist of this corollary

is quite familiar, we know that distorting measurement of assets and liabilities can be used

to manage earnings. For instance, by managing the revenue booked for sales on accounts

to increase earnings. However, this connection goes beyond the individual examples

discussed in the literature. The connection is baked into to the bookkeeping system by

design and no amount of clever tinkering can remove it. By definition, to find earnings

all costs are subtracted from all revenues. To change the earnings number below the

line and preserve the balance, it is therefore necessary to adjust an inventory or liability.

It also holds regardless where the change in reported earnings comes from, whether it is

caused by a change in accounting definitions of value, e.g. the change from local GAAP to

IFRS, or because a value was altered to change earnings, e.g. earnings manipulation, or

any other reason. Without the balance constraint, any manipulation of any account can

be done without showing where the recorded value comes from. The balance constraint

causes us to show the source and the destination of all value flows, what (Ijiri 1975) calls

the causal duality of accounting. This makes it impossible to individually adjust earnings

or asset numbers. It forces one to adjust at least two accounts. This requirement that

both a stock and a flow have to change to alter the net recorded flow accounts, is part of

the error-detection code build into the double-entry accounting system.

Corollary 2 is not without subtleties. We cannot manipulate the final earnings number

without adjusting the balance total, but we can change the balance total without affecting

reported earnings by increasing both assets and liabilities. One way of doing this would be

to transfer IP-property to the company and paying for it in notes payable, or through the

reduction of the value in these same accounts. Any such manipulation of balance-sheet

items, changes the balance-sheet bottom line, without necessarily changing net earnings.

Simultaneously, since all costs and revenues are netted out in earnings numbers, we can

freely reclassify costs (or revenues) between accounts without necessarily affecting the

balance sheet total or net income.

This corollary also shows that any earnings manipulation, for instance management of

earnings through under- or over-estimation of some accrual, has to be reflected in the

balance sheet at end of period. In models of earnings management this immediately

means that manipulations should be ’parked’ on the balance sheet as some sort of accrual.

Managed earnings could therefore be as detectable in the balance sheet as they are in the

earnings statement. Modeling earnings management as a pure mismatch of cash-flows

to accruals can lead to ill-specified models. Without the additional step of parking the

manipulation on the balance sheet, the models do not take into account the algebra used

to record the manipulation.

The direct relation between the value definitions in the balance sheet and the income

13



statement also means there should be no fundamental difference between the balance-

sheet approach of measuring value that the IASB seems to adhere to, and an earnings-

based approach that is proposed by some authors (Benston et al. 2007; Dichev 2008,

e.g.). The balance constraint ties these value definitions together. Any change in how

we measure a cost or benefit directly changes the way we define the balance sheet item

these costs and benefits flow to and from. Through the definition of equity, the residual

claim on the value in the company, such changes also immediately alter what we mean

by equity. The same holds for the definition of the value of a stock, they imply the value

of flows to and from and the stock.

3.1 Adding buffer accounts, the example of OCI

So far we assumed a fixed length of the list n. However, what if we add an extra account

and start working with n + 1 elements? This is more than some academic discussion,

it is a common solution to valuation problems. Examples include translation differences

for foreign profits and possessions, variances in standard costing systems, as well as the

introduction of Other Comprehensive Income (OCI) discussed below.

OCI is loosely defined as ’revenues and expenses, gains and losses that are not part

of net income’. Common examples are gains or losses in the value of assets that are

not held for trade, or not (yet) realized. Common examples are increases in the value

of assets held in dollars by Euro companies caused by exchange fluctuations.6 There

are good reasons to want to keep track of OCI outside of net income. The accounting

literature has so far focused on the empirical properties of OCI. Items reported in OCI are

found to be more transitory, more volatile, and more likely to revert than other income

componentsJones and Smith (2011). This means they do not predict future performance

very well, leading to a lower value relevance of income including OCI then of income

excluding OCI. Different empirical properties of the components, is clearly a reason to

separate them for prediction and valuation goals.

There are additional, conceptual arguments for separately reporting OCI in the steward-

ship and governance goals of accounting. Net income is a performance measure of the

company and its management. A good performance measure should closely follow the

actions taken by the decision maker that impact performance. This means the measure

has to be (a.o.) congruent and precise (Feltham and Xie 1994) indicators of actual per-

formance. Reporting OCI separately from the rest of net income, creates a net income

excluding OCI without the noisy, volatile and transitory OCI items. This allows the net

income measure of performance to be a more precise measure of performance then net

income with these OCI items included. Net income excluding OCI is also more congruent,

6For an overview of the research on this topic (Rees and Shane 2012; Bratten et al. 2016; Black 2016).
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since it excludes items that partially reverse. If an item reverses, it is not a persistent

addition to value, and thus not actual performance. Another, important principle in

performance management is the principle of controllability. This principle says that per-

formance measures used in incentive systems should reward good actions under control of

the agent, not random shocks.7 As a change in exchange rates is not something one can

attribute to any individual entity, it can violate the controllability principle to include

value changes due to the Dollar-Euro exchange rate in measured performance of the en-

tity or manager. Reporting OCI separately can allow a better view of the performance

of the entity and its top management, and thus aids in accountability.

Without the balance constraint, we could freely define earnings as the best possible

measure for performance and report the current value of assets and liabilities as accurately

as possible. For instance, by defining an earning number like net income excluding OCI,

and use fair value accounting for all balance items. However, the total change in equity

measured via the change in fair value of assets and liabilities does not correspond to the

reported net income excluding OCI. Without separately reporting OCI, this combination

of valuation measures violates the balance constraint. Hence, the need to report OCI

separately, rather than simply report an optimal earnings number and fair value balance

items, is caused by the interdependence of value definitions. It is forced by the balance

constraint.

Adding accounts to our bookkeeping system is equivalent to changing from an n-element

bookkeeping system, to an n+ 1 element system. Since n+ 1 <∞, this does not require

a change in the mathematical description of the system. The resulting imbalance in

the books is absorbed by the new account, OCI for instance. This seems to violate the

idea of Corollary 2. If we would make the financial statements over some year in the

n-element system, without OCI this would lead to a statement B ∈ Bn. Then if we

redo everything in an n+ 1-elements system incorporating OCI, this leads to a different

statement B′ ∈ Bn+1. The difference between the first n elements in the reports will not

be balanced, but this is only a seeming contradiction, since the introduction of the new

account means the issue is avoided:

n∑
i=1

(di − ci)− (d′i − c′i) = −(d′n+1 − c′n+1) = −V al(b′n+1) 6= 0

An alternative interpretation of the introduction of OCI is that the system always had

a n + 1 list of accounts, but this last account was set to 0 until the introduction. The

difference between the two n + 1 length lists, where the element bn+1 = [0//0] until the

introduction of OCI, we would find that the change is balanced. To start measuring

7For a general discussion on controllability see for instance Antle and Demski (1988). The same idea
is presented in micro-economic theory under the name informativeness, e.g. Holmstrom et al. (1979).
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OCI in bn+1, we have to change the associated measure qn+1, so that it yields non-zero

values. As before, balance requires that the same value is then taken from some other

measure. Just like a change in NI requires a non-earnings account to change as was shown

in Corollary 2, booking value as OCI requires that some other account changes in the

opposite direction. This makes the attention given to this type account quite warranted.

The accounting system is used to compare entities over time, the introduction of OCI

causes a change in value definitions of related income accounts. We have to take these

changes in their definitions into account in later analysis.

3.2 Stock based compensation

The valuation of stock awards is a known issue in accounting. Stock grants, whether

to the executives or to employees, are part of the payment to people working for the

company. They differ from cash salaries because payment of cash salaries decreases a

debit-stock (cash on hand) while the payment in stocks increases a credit stock (stocks

outstanding). What is more, this credit stock is part of equity. Recording a cost decreases

net income and equity, while the increase in the stock increases equity. Hence, payment

in stocks appears to be equity-neutral. Stock based compensation cannot be classified as

any other cost in the bookkeeping system because equity does not decrease. The payment

is not, however, neutral to the existing owners. Existing owners see their stock dilute

and loose the value awarded. This can create a problem in the assessment of the value

of the firm and in measurement of the performance of the organization. When there are

stock awards, the standard residual income and clean surplus models of investor valuation

are mis-specified (Hess and Lüders 2001). The standard model assumes that only the

owners of the firm will get the future residual income, but in fact employees that receive

stock awards will claim part of these cash flows. The same holds for the performance

as measured by net income. If the stocks would be sold on the market for cash, and

consequently the same amount would have been awarded as salaries, the value of the

salaries would be reported as part of total costs. Thus if we do not book the awarded

treasury stock as costs, we decrease total cost and inflate performance as measured by

net income.

Like with OCI, without the balance constraint the earnings definition could be adjusted

without issue, with the constraint we need additional accounts to clean the performance

measure. Adding an account of ’awarded stocks’ as part of equity, next to an account of

’previous existing stock’ would allow stock awards to be shown as a cost to the current

stock holders. This does raise a question for longer-term record keeping: at what point

does the ’awarded stocks’ become part of normal equity? After receiving a stock award,

any later awards also dilute the equity of the previously ’awarded stocks’. As such, it is

questionable if keeping track of this ’awarded stocks’ account in equity makes much sense
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after the first accounting cycle.

The bookkeeping system focuses on providing information on the entity, not information

for the shareholders. In this transaction there is a big difference between the two. Note

that this difference did not exist in OCI, which could explain why a different solution was

found in these cases. Similar problems will occur with the related issue of convertible

debt, where the conversion means fewer debts for the entity (higher equity) but dilution

and loss in value for the existing owners.

4 A set of Axioms for bookkeeping

The last section described two examples of issues caused by the balance constraint in

bookkeeping, more such issues were already hinted at in the discussion. Given the

system-wide effect on accounting, a logical question would be: ’Do we really need this con-

straint?’. This question strikes at the heart of our system of financial record keeping and

is unlikely to find a definitive answer in any single paper. It requires the careful considera-

tion of pro’s and con’s of alternative choices. A first step is to answer the simpler question:

’What design choices lead to a bookkeeping system like the current one?’. To keep nota-

tion to a minimum, this section will use Lemma 2 and work with real numbers rather than

with α-elements. Define for every element in A ∈ An a corresponding element in Ā ∈ Rn

via the transformation {[d1//c1], [d2//c2], ...[dn//cn]} 7→ {d1 − c1, d2 − c2, ..., dn − cn}.
Denote by āi the i-th item in the list Ā.

The choices leading to our system of bookkeeping form a set of basic axioms. If we want

a recording system with different properties, we will have to change at least one of these

axioms. This section proposes one such set of axioms:

1. There exists some set of events Ω with elements ω that we want to keep a record

of and some entity to do the recording for.

2. Value is defined in the form of real, signed measures qi(·) defined over Ω.

3. The system should have n elements to record value in, with 1 ≤ n <∞.

4. All values should be defined in the same monetary unit:

qi = qj → U(qi) ' U(qj), ∀qi, qj, where U(·) measures some utility of value.

5. A history without economic events, ω0, is valued at 0: qi(ω0) = 0 ∀ qi.

6. In the set of accounts Ā, there exist a closing element ān that absorbs the residual

value in the organization: −ān =
∑n−1

i Āi

The first 4 axioms are equivalent to axioms found in earlier work, in particular that of

Mattessich (1964) and Ijiri (1975). The first axiom captures the entity assumption in
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accounting, plus the definition of the events that are accounted for (event set Ω). Events

(transactions, or complete histories of transactions) are denoted as ω and the set of all

possible events as Ω. All elements in the bookkeeping system record value, where value

is defined via real, signed measures over the set of possible events. Different elements are

indexed through subscript i as before. These measures attach an interpretable, numeric

value to any possible outcome (event or history of events ω) in the set of all possible

events, qi : Ω→ R ∀ω ∈ Ω. This number is allowed to be positive, negative, or zero and

denotes the value (or change in value) associated with the outcome. If q1(·) is a measure

for the cash at hand account, it should be equal to the net inflow of cash to our cash

account for every possible outcome. Similarly, if q2(·) measures the value of the inventory

of raw material, it is equal to the monetary value of the net inflow into this inventory,

and this is negative for all outflows from the raw materials inventory and positive for the

inflows into the raw materials inventory.

The number, n, of different values in a bookkeeping system can vary from organization

to organization, but has to be finite. To keep the elements and their measures apart, we

use the index i to identify them, this leads to the third requirement.

The fourth axiom is the monetary-unit assumption in accounting. When everything is

measured in money, we should be indifferent between an extra unit of value – an extra

dollar– in one element or in the other. It also means that operations (journal entries)

that move value from one element in the system to the next, simply reduce the value

in one element (credit it) and increase the value in another element (debit it) by the

same amount. Similarly, we can sum the value over accounts and compare value between

them directly, since the numbers in each element are expressed in the same monetary

units. This monetary-unit assumption is a strong requirement, but it greatly simplifies

comparisons within and across organizations. For instance, the inventories in Figure 2

are elements 2 and 3. Because of axioms 2 and 4, the total value of inventories after a

history of transactions ω is equal to qinv =
∑3

i=2 qi(ω). The monetary-unit assumption

allows this comparison regardless of whether the inventories are farm products or medical

supplies. We can compare the inventory values both within organizations (compare q2 to

q3) as across organizations by comparing the monetary values of the inventories.

Under these first 4 requirements we logically have some collection of n elements each of

which records a value. Since we require value to be defined as a measure, we have addi-

tivity within the value definitions of each individual element automatically. Furthermore,

because elements are denoted in the same monetary units, adding values of different el-

ements together can be done numerically and a value of 10 in one element is equivalent

to a value of 10 in another element.

Requiring value to be a measure, implies that the empty event has zero value. This is a

desirable property to have, no event implies we do not have any value or change in value

18



to record. Before the organization starts we want the books to be empty. Similarly, after

the organization starts – and thus after it starts to keep track of the books – if nothing

happens, then the books should remain the same. We have to define our events in such a

way that the event ’no transactions’ is an empty set – which would make Ω the universe

of economic events–, or we have to define the measures in such a way that an event with

no economic relevance leads to qi = 0. Axiom 5 specifies that one or the other has to

occur for all accounts.

To complete the bookkeeping system as we currently use it, the balance constraint must

be implied in the system. One reason for having balance can be found in the definition of

owner’s equity. If we single out the n-th element, we can write the balance constraint as

−ᾱn =
∑n−1

i Āi as is done in axiom 6. This is exactly how owner’s equity (ᾱn) is defined

in our accounting system (axiom 6): whatever remains after subtracting the value of

liabilities from the value of all assets.

Requiring the presence of a residual account matches the development of double-entry

bookkeeping in Venice. At the time of Pacioli, several different bookkeeping systems

were in use. In Europe the most notable bookkeeping systems were the double-entry

system used by the merchants of Venice and the factor bookkeeping used in the Hanseatic

tradition (Yamey 1967; ten Have 1973; Funnell and Robertson 2011). The Venetians

used the books to check on establishments that were run with money they invested at a

distance, very similar to foreign subsidiaries in current time. This makes the existence of

an ”owner’s equity” account very relevant. A residual account makes it possible to show

how much money is owed to the Venetian merchant-bankers at any time, as well as how

much profit was made over a period of time. In the Hanseatic tradition, individual traders

in the trade network acted as trustees of the other traders for specific consignments of

goods. When the goods were traded and the money was returned, the books were closed

on this shipment. So the most important thing is that all goods are accounted for and

no clear equivalent to owner’s equity needed to exist.8

4.1 OCI and stock-awards revisited

Axiom 6 also provides a different interpretation of the balance constraint. Rather than

casting the system as one where we keep track of n different values that are somehow

related, it shows an unconstrained system of n − 1 values (all assets and all liabilities

and changes therein) and a restricted, residual account. In this interpretation any imbal-

ance between these n − 1 accounts is passively absorbed by the n-th, residual account.

8Historians of accounting argue from time-to-time about the exact starting point of modern ”sci-
entific” double-entry bookkeeping. Some place it when debits and credits are separated, some when
they are balanced in such a way that a periodic profit number could be calculated, others only when
a separate (owner’s) capital account is maintained (ten Have 1973; Funnell and Robertson 2011). The
owner’s equity account is clearly an important one in the development of bookkeeping.

19



However, as we saw with the discussion of OCI and stock-based compensation, if we try

to separately measure the value in the n-th account, equity, this creates problems. We

only have n − 1 degrees of freedom to define the value in n accounts, so that we can-

not define n measures independently. If the resulting measures for earnings and equity

(performance and value of the organization) do not have the desired result (are not con-

gruent with the goals of measurement), we have to conclude that we want to use different

value measures for performance than for valuation. This can only be achieved by adding

accounts and associated value measures so that the residual values correspond to our

desired definitions.

Adding extra accounts gives extra degrees of freedom, but also comes with extra valuation

choices. As the discussion around extra ’awarded stocks’ account shows, changing the

value definitions on one account requires an opposing change elsewhere. The difference

will either be short term costs and benefits, or have to remain in the books for a longer

period of time. Depending on the situation, several solutions are possible. In a standard

costing system, we see variances occur because two different measures of value for the

goods are used, purchasing price and standard price. The variance accounts are the

buffers used to balance the books. Variances are booked as a cost or benefit in the

running year. Another solution would be to keep the buffers on the books. Corporations

can use an account like Accumulated OCI – caused by two different measures of value

for income, average of the year and closing date exchange rates – this means they make

the opposite choice and keep accumulating the differences in their books. It is unclear if

either of these solutions is strictly better than the other. Most likely, the best solution

depends on the situation and the questions at hand. To find the best solution in a specific

measurement problem, one could compare the information generated by the spectrum of

choices and see what is more useful to decision makers.

4.2 More general axioms

So far we focused on the common assumption of monetary units, but this restriction is

too strong. A similar system would emerge if we expressed everything in other units, like

’one-kilogram-bushels-of-wheat equivalents’. However, monetary units are usually the

most natural choice. When we relax the monetary-unit axiom, a more general version of

the balance axiom is required as well:

4∗ The units of all qi should be linearly related such that there are ratios, λj, such

that 1 unit of q1 is equivalent in value to λj units of qj:

∃λj s.t. U(qi) ' U(λjqj), ∀qi, qj, where U(·) measures some utility of value.

6∗ In the set B̄, there exist an element ān that absorbs the residual value:

∃λ1, ...., λn, λi 6= 0 ∀i, s.t.− λnān =
∑n−1

i=1 λiāi.
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The more general unit requirement in Axiom 4∗ implies that for any two elements i, j in

our system, we can find a scalar λj such that we find 1 unit of qi is equivalent in value to

λj units of qj (we can set λ = 1 if j = i). If we are discussing the materials and completed

goods inventories in Figure 2, it is straightforward to see that λj would be the price-ratio

between the two inventory elements. If the price of our final product in inventory i = 3 is

twice that of the kilograms of raw material in inventory j = 2, we would need to multiply

the number of items in the final goods inventory by λ3 = 2 to express the value of the

final goods inventory in terms of kilograms of raw material. Note that axiom 4 requires

λi = 1 ∀ i and then axiom 4∗ holds automatically.9

With the more general unit requirement, axiom 6 requires some weighted sum of the

elements to be balanced, where the weights are proportional to λ. Note that the λ

weights are the same for all possible outcomes, they are fixed prices that allow us to

denote everything in a common unit. The condition in axiom 6∗ would hold vacuously

if λ was zero, so none of the prices can be zero. Under these alternative assumptions we

can show that there are many, equivalently powerful, specifications of our record keeping

system.

Every possible bookkeeping system can be associated with the space of possible values

it can record. The larger the space, the more states of the organization the system can

record. Every point in the space associated with the bookkeeping system defines a possible

recorded state of the entity – some combination of assets, liabilities, costs and revenues

– that can be recorded in this system. We can say two of these systems are equivalently

powerful if they can record the same set states of the entity and thus provide the same

information about the entity. For the A-group for instance, Lemma 2 shows this space is

Rn. The elements of a balanced system, B̄, form a (linear) subspace of Rn. This means

that the space B̄ is some (smaller) part of Rn with many of the same properties as Rn.

Because the B-group consists only of those elements of A that are balanced, we know the

corresponding space is smaller. This is formalized in the next lemma:

Lemma 4. Bn is a strict subspace of An.

B̄n, corresponding to Bn via the bijection of Lemma 2, is a strict subspace of Rn.

Proof. See appendix.

Under the more general axiom 6∗, every vector λ can be used as a price list, and all of

these lists have a corresponding record keeping system. In this system λi can be used

9The difference between axiom 4 and 4∗ is subtle. Since qi is a signed measure, we know that for
any real scalar λi, q̃i = λiqi is also a signed measure. If there is some underlying physical entity we can
count and price, then we can set the count as qi and the price as λi. In this case axiom 4 and 4∗ would
be equivalent since we would define value as q̃i = λiqi. This makes interpretation a lot easier, but is not
generally true. For instance, what would you have to count, or price, to get the value of owner’s equity
or intangibles?
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to relate the units of qi to some common unit. Superscripts l will index different lists

λl, while subscripts refer to items in the list as before. We can proof Lemma 4 for every

possible list λl = {λl1, ..., λln} as long none of the items in the list are equal to 0. For every

λl we can find a subspace, denoted by W l
λ that describes all possible recorded states of an

entity in the bookkeeping system, furthermore, all of these subspaces are equivalent.

Proposition 2. There exists a bijection between every two spaces Wλ1 ,Wλ2 as long as

none of the prices in λ are zero: λ1i , λ
2
i 6= 0.

Proof. See appendix.

The one-to-one relationships between all of these bookkeeping systems show that they

can all record the same states of the entity. If the system corresponding to λ1 can record

a particular state (or set of values) of the entity, we can guarantee that the system

corresponding to λ2 can record it too. The monetary-unit assumption (axiom 4) selects

a specific λ by requiring that all translations are done at a price-ratio of 1. The prices

λl do not determine the strength of the system, they simply determine how we translate

units from one account into units in the other accounts in the bookkeeping system. This

selects a unique bookkeeping system from this class of equivalent systems.

The equivalence between the systems has a direct, physical reason for items with a clear

quantity. For inventories, for example, we know that the value of the inventory i divided

by the price of the units in system 1 (λ1i ) gives the number of units in the inventory.

So if we know the price and the value of the inventory, we can find the physical count

in any record keeping system. To translate this physical count to the value in system

2, we multiply it by the price in system 2 (λ2i ). The same can be done for any other

quantity of property or liabilities, while the measures qi can be seen as an underlying

quantity. Proposition 2 indicates that the prices we attach to real quantities of properties

determine the below-the-line value we get from our recording system, but the list of prices

does not influence the states of the world the system can record. The fact that the price

lists, and thus accounting valuation, has little impact on the states that the system can

record can be made more strongly. Ellerman (1982, 1986) develop a multi-dimensional,

or vector accounting system that extends double-entry bookkeeping to bookkeeping for

property and liabilities without monetary values (i.e., bookkeeping without price-lists).

This recording system relies on the stock-flow equation in the same way that standard

double-entry bookkeeping relies on the balance constraint.

The equivalence between the record keeping systems can be used to generalize book-

keeping beyond ’merely’ tracking monetary performance and value. If one has a real

signed measure of some output of the entity and an associated unit price, it could be

integrated directly in the double entry system. A clear example would be the (net) CO2

emissions of the organization. This output is measured in metric tons, which satisfies
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the requirement of a real signed measure, denote it by qn+1. If we define a price for

it through the marginal social cost of emissions and denote that as λn+1, we have an

additional flow. To complete the group, and thus keep a balance, we need a counter

account. All stocks on the balance sheet are equal to the total net inflow into the ac-

count over the history of the organization. A similar total emissions account starting

from zero at a given point would allow us to keep the balance in the record keeping sys-

tem. In this record keeping a ’CO2-corrected’ performance measure is readily available:

PerfCO2 = −V al(AE)− λn+1qn+1 = V al(AE
⋃
αn+1), shows the profit net of social costs

of CO2-emissions as a list definition like net income. This could bring a clear incentive

to increase investment in abatement or compensation of CO2 emissions. All results of

such investment would be immediately visible in this extended record keeping system, in

similar fashion to the visibility of investment results on realized profit.

Under these 6 requirements – axioms 1-3, 4*, 5 and 6* – we get a system equivalent to

double-entry bookkeeping. There is something to do bookkeeping for (axiom 1), we get

a system that has a list (axiom 3) that is balanced after all possible outcomes (axiom

6*). The list (or vector) of values is closed under addition because we have well defined

measures (axiom 2 and 4*) of value, it has an identity element (axiom 5), the inverse of a

signed measure is the same measure with the opposing sign (axiom 2), such that we also

have an inverse element in all cases, and thus the necessary and sufficient requirements of

a group are met. Since all q̂i map to the real line, Lemma 2 together with Proposition 2

show that this is equivalent to our double-entry bookkeeping system based on the B-

group. This system is not unique, and Proposition 2 shows that there is a family of

equivalently strong systems under axiom 4∗. The monetary-unit assumption in axiom

4 simply selects a unique one from this class. However, Lemma 2 shows that even this

system has several representations. We present no indication that this set of axioms are

the only set of axioms that lead to our current system, others might exist. However, if

one wants to have the 6 properties captured in the axioms, then a system equivalent to

the B-group will result.

5 Different mathematical descriptions

The bookkeeping system can be modeled mathematically in many different ways. The

group-formalism used in the first part of this paper is intentionally chosen to describe the

bookkeeping in a very ’tight’ form. The group has easily recognizable underlying elements

and the group law corresponds to updating the books by processing a journal entry, a

well-known process in accounting. Different, complementary mathematical descriptions

of this system exist.

In a different form, the group-set Bn has appeared in the accounting literature before.
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Mattessich’s (1964) accounting matrices are formed by putting the list of accounts, i.e.

the list corresponding to B, on both the horizontal and vertical dimensions of an n × n
matrix. A transaction is posted to the matrix by adding some value to a cell. The row it

is placed in determines the debited account, the column the credited account. The value

of account i is then found by comparing the total of the i-th row to the total of the i-th

column. Each time a value is posted to a cell in this matrix, it automatically adds the

same amount to the debit total (via the row totals) and the credit totals (via the column

totals), thus the accounting system is balanced by construction. The combinations of

the row and sum totals in this matrix are equivalent to the lists in Bn. This type of

accounting matrix is also used in the vector accounting of Ellerman (1982, 1986).

Several papers study accounting through a different type of matrix combined with ma-

trix algebra (Ijiri 1967, 1975; Butterworth 1972; Ijiri 1993; Arya et al. 2000, e.g.). In

this matrix formalism, the process of updating the books forms the main focus point. In

an very interesting application, Li et al. (2019) show how the resulting matrices can be

studied using graph theory to create an internal control mechanism for inter-firm trans-

actions. There are clear links between this matrix formalism and the group formalism

in this paper. In this matrix notation, the changes in values of the accounts (λiqi in the

definitions of this paper), are stacked in a m dimensional vector y. All transactions in a

period are described in an n×m matrix A that contains only values {1, 0,−1}. The cells

in each row of A add up to 0 (which captures the balance constraint). The cells with a

1 in this matrix indicate debit values, while the cells with a −1 indicate a credit value.

This matrix is multiplied by vector y that captures the values of the transactions to yield

the resulting books captured in vector x. This allows one to denote all the journal entries

in a given period:

x = A · y (1)

The matrix A has a nullspace that is defined by the amount of aggregation that occurs

in the bookkeeping process. If the resulting vector x would allow you to identify the

net value of all transaction between any two accounts, the nullspace of A would be the

zero-vector. However, typically there are many values of y that satisfy this equation. In

the inventory example, increasing both the purchases and use of material by 1 leaves the

change of inventory-value the same. In this paper we look at the difference between debit

and credit values in any account. Hence, any change on the right-hand side of Equation 1

that yields the same difference between debit and credit (the nullspace of A) is included

in the equivalence definition of Section 2.

Barra et al. (2010) and Gentili and Giacomello (2017) study the updating process under

the balance constraint in two closely related papers. Barra et al. (2010) models the

accounting system with balance constraint through equational zero-vectors like in axiom

6. They link this description to the databases used in bookkeeping, showing how the
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zero-vectors can be used for the detection of fraud and errors. Altough the modeling

approach is different, this is very much in the same spirit as Li et al. (2019). Gentili and

Giacomello (2017) study the accounting systems through zero-terms, that are directly

related to the zero-vector equations. In this model, accounting data is updated through

a finite differences system in which the development of accounts over time becomes more

explicitly. In both cases the properties found are determined by the balance constraint,

rewritten as a zero-term equation of the form:

assets− equity − liabilities = 0

Another approach is to describe bookkeeping as a computational problem, for instance

in terms of Turing machines (Rambaud and Pérez 2005). Turing machines are closely

related to lambda-algebra’s, like the one formed by the group-set B. This can be used

to model the operations needed in a computer program to do the bookkeeping. The

links between the algebraic structure of the bookkeeping, like the Pacioli group, and the

computational problem, modeled via automatons, are studied extensively in Rambaud

(2010).

6 discussion

The balance constraint in bookkeeping gets a prominent role in earlier fundamental work

like Mattessich (1964) and Ijiri (1975). Both these authors describe the balance constraint

as part of accounting duality. They discuss its origins as either a consequence of value

definitions (causal duality) or as a consequence of descriptive reality (claims on assets

and the assets should be worth the same). There is, however, another reason for duality

in bookkeeping. We keep track of all the stocks and all the flows of value in the company.

Given that we do not allow for value to spontaneously appear or disappear, bookkeeping

for the values in the entity is a closed system. Whatever value is created or lost has to

be absorbed by or taken from the residual account, a role taken by owner’s equity.

The balance constraint creates a fundamental link value definitions in earnings statements

and balance-sheets. The earnings statement and balance-sheet pertain to two different

dimensions of the entity, performance and valuation. We want to record and report

both of these dimensions as accurately as possible, but they cannot be separated in our

bookkeeping system. This makes the trade-off between the reliability and relevance of the

generated financial statements unavoidable. If we do not use double-entry bookkeeping,

we are free to define balance sheet value and earnings value in any way we like, but

we loose the debit = credit link that is so instrumental in verifying the reliability of the

financial statements. We also loose the definition of owner’s equity. This interdependence
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is not due to a lack of imagination or ingenuity of accountants and standard setters, this

trade-off is baked into the bookkeeping process via the design choices (axiom 6). It is a

direct consequence of the requirements of having a verifiable and thus reliable bookkeeping

system that keeps track of owner’s equity.

Double-entry bookkeeping is not so restrictive that we cannot improve value definitions.

This is clear from the discussion of OCI and stock-based compensation in Section 3. If we

want to accurately measure performance of the company via an income measure, we can

separate out incidental or transitory items by adding buffer accounts like OCI. However,

the change in equity always has include all changes. The balance constraint does not

allow us to treat the costs of stock-based compensation as a normal cost that reduces

equity. Here too, if we want to report it as a cost, the balance constraint would force us

to to keep extra buffer accounts. However, as with OCI, the balance constraint means

that the introduction of such extra accounts change more value definitions then just the

newly introduced accounts.

The value recorded in these buffer accounts shows the restrictiveness of the balance

constraint for a particular company and measurement problem. If change in equity is

highly volatile for non-performance related reasons, this would reduce the relevance of

change in equity as a performance measure. The swings in equity that are not related

to performance, are just noise in performance measurement. By changing the definitions

of value so that the noise is recorded under OCI, the resulting earnings number becomes

more relevant for performance measurement. The statistical properties of the new account

can be used to analyze its function for the record-keeper. Statistical noise, by definition,

has a zero average. If the buffer account is used specifically to reduce noise, it should

have an average value near 0 over time (ignoring the effect of inflation). The variance in

OCI thus shows how constraining the balance constraint was in recording performance.

If we see that OCI (or any other buffer account) is systematically different from 0, this

could indicate that the new earnings number is a biased performance measure. This bias

makes earnings (or the relevant measure) less relevant, but due to the balance constraint

it is detectable in principle.

The interdependence between value definitions also implies that the balance-sheet ap-

proach of measuring value that the IASB seems to adhere to and an earnings-based

approach as is proposed by some authors Benston et al. (2007); Dichev (2008, e.g.) are

not independent. Any change in the definition of a cost or benefit that changes recorded

earnings has to be matched by an opposing change of valuation on the balance sheet (and

vice versa). The difference in focus is mostly a rhetorical or didactic one. This distinction

is clearly important to clarify the conceptual framework to all users, but both approaches

have to take into account that the measurement of flows and the measurement of stocks

are related. Furthermore, any difference that occurs because of the different focus of both
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approaches can be resolved through buffer accounts.

If a new record keeping system is set up, fundamental choices have to be made about its

properties. These choices can be studied efficiently using mathematical formalisms like

the one in this paper. The double-entry accounting system has survived the test of time,

which is an indication it has desirable properties to its users. To show the design choices

made, a backwards-engineering exercise shows a set of axioms that lead to our current

system. A system that adheres to these 6 axioms will be mathematically equivalent,

regardless of the exact techniques used to record or store the data. A commonly heard

proposal for blockchain’s role in accounting is a triple-entry accounting system. The third

entry refers to a record indicating the other entity involved in the transaction on top of a

double-entry system. With the extra entry, each transaction record forms a signed receipt

that can be audited by comparing it to the transaction record at the counterpart. By

putting the third entries of both entities on a public ledger, fraud can be reduced as any

interested party can verify that both parties recorded the same transaction for the same

value, see for instance Dai and Vasarhelyi (2017) and references therein. If both sides

of the transaction are correctly recorded on the public ledger, the incoming monetary

values should equal the outgoing monetary values on this ledger. This public ledger thus

represents a balanced set of accounts and can be described, analyzed and studied through

the B-group just like the internal accounting system of an organization. Smart contracts

that rely on the blockchain record can thus use the apparatus developed for traditional

accounting systems, as well as the apparatus of the blockchain itself.

Identifying efficient ways of implementing required checks for data consistency is an im-

portant step to making a record keeping systems viable. Proposition 1 shows that several

options for a consistency test on balance of the record exit. Via Lemma 2 we can reduce

the amount of numbers to store, process and transmit, from 2 per element to 1. This

creates a single-entry system mathematically, but it has the data-integrity protection of

double-entry bookkeeping (Christiaanse and Hulstijn 2013). This system corresponds to

an equational zero-vector database as studied in for instance Barra et al. (2010) or the

zero-terms of Gentili and Giacomello (2017). The mathematical abstraction also makes

it much easier to think about extensions to the current record keeping system. A simple

example shows, that we can use double-entry record keeping to evaluate CO2-corrected

performance of organizations. If we can find real measures and real prices for the relevant

outputs, it is technically feasible to expand our bookkeeping and generate a single per-

formance measure of the organization capturing the triple bottom-line of people, planet

and profit. This would allow much clearer incentives to be placed on the societal impact

of organizations, since all the incentive systems developed for profit-maximization could

be directly adapted.

The axioms in this paper do not define what kind of events we want to record, or against
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what value we record them (except for empty events, and the equity account). These

valuation questions are left as questions on the shape of the qi. This paper focuses on

the bookkeeping aspects, so it only requires that these measures exist. The form and

value of these measures qi are the core of a mathematical description of the valuation

and classification questions discussed accounting papers and standards (see e.g. Ijiri 1975;

Mattessich 1964; Mock 1976)). Further definitions of these measures and how we can use

their properties to better define accounting standards could be an interesting topic for

future research.

The group formalism used to study the properties of the bookkeeping system, gives a

clear algebra to derive properties of our bookkeeping system. Mathematical structures

like these allow us to think about accounting and bookkeeping in a more abstract manner.

This can show commonalities between problems that do not, on the surface, look that

similar. One example of such a relation is the common source of accounting issues in

OCI and stock awards. Mathematical structures allow us to think about such problems

in a genera, but precise way. This analysis shows the trade-offs that cannot be avoided,

as well as potential choices we have in creating a system that would create different

trade-offs.
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A Appendix

A.1 Differences and the equivalence relation

In the main text we immediately subtract the credit entry from the debit entry in an

element to get to the differences between these entries. Strictly speaking, however, this

minus operation needs a proper definition before we can use it to define the equivalence

relation. Therefore, a cleaner definition of the equivalence relation and the difference

operation is in this appendix, in reversed order.

Equivalence is defined via the cross-product, two elements are equivalent iff their cross-

addition yields the same debit value as credit value. First take two elements: α1 =

[d1//c1], α2 = [d2//c2] Then we can take one of these elements and reverse the order of

the entries and add it to the other:

α1 + α−12 = [d1//c1] +dc [c2//d2] = [d1 + c2//c1 + d2] (A.1)

Then we define these elements to be equivalent iff the resulting sum has the same debit

as credit value:

α1 ' α2 ⇔ d1 + c2 = c1 + d2 (A.2)

However, if we rearrange the terms on the right-side of this definition we get:

d1 + c2 = c1 + d2 → d1 − c1 = d2 − c2

such that we see that this implies the difference between the debit and credit in both

elements is the same. Here we can avoid the problem with the undefined minus sign, as the

debit and credit entries (but not the α-elements) are defined as real numbers, such that

the subtraction operation is the standard difference operation. The difference operation

on the α-elements can then be defined via the inverse element as is done formally in

subsection B.3.

B A groups, Lemma 1

This section shows that the A-accounts meet the definition of an Abelian (symmetric)

group under the operation of addition of the debit and credit values as is stated in

Lemma 1. The underlying set, A, consists of the set of pairs of non-negative real numbers.

The group law is addition of the credit and debit values of the two accounts. All under

the equivalence relation defined in subsection A.1. To proof the group-structure, we need

to proof closure, symmetry, associativity, and the existence of a unique identity element,
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as well as an inverse element for each element in the set. By also showing symmetry of

the binary operation, we show that the group is Abelian.

B.1 Closure and symmetry

If we have 2 accounts α1 = [a // b] and α2 = [c // d], the outcome of operation of addition

is always the same:

α2 +dc α1 ' α1 +dc α2 ' [a+ c // b+ d] ' α3

since if 0 ≥ a, b, c, d <∞ then 0 ≥ a+ c, b+ d <∞ and thus α3 is finite and the outcome

is again a pair of non-negative numbers and thus α3 ∈ A. So that the set is closed under

this operation and the operation is symmetric.

B.2 Associativity

Associativity requires that (α1 +dc α2) +dc α3 ' α1 +dc (α2 +dc α3) = [d1 + d2 + d3 // c1 +

c2 + c3]. Given that we are dealing with addition, the order of addition does not impact

the results, such that the operation is indeed associative.

B.3 Identity element

There is a unique identity element, e = [0 // 0]. By definition of the addition operation,

we have α +dc [0 // 0] ' α. Uniqueness is given by the fact that under the equivalence

relationship we know that if

α +dc [x // x] ' α +dc [0 // 0] (A.3)

[x // x] ' [0 // 0] (A.4)

[x− x // 0] ' [0 // 0] (A.5)

Where the last equivalence holds since x − x = 0 by definition. Hence any element e

that can be applied to another element a to yield a is equivalent to the identity element,

[0 // 0].

B.4 Inverse element

An inverse of an element, maps the element to identity via the group law. Hence we need

to guarantee that for each element in the set, α ∈ A, we can find an inverse element,

α−1 ∈ A such that we have α−1 +dc α = [0 // 0]. Via the equivalence relationship this

element is easily identified for each pair [x // y] as [y // x]. We use this to denote the
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operation +dc α
−1
i as −dc αi which is equivalent to the definition of subtraction on the

real numbers.

Since this means the set A with the operation addition of the debit and credit values,

satisfies the necessary and sufficient conditions of having closure, associativity, a unique

identity and an inverse element (under the difference equivalence relation), so that it

forms a group.

Note that journalization is symmetric. If we have 2 accounts α1 = [a // b] and α2 =

[c // d], it does not matter whether we say that α1 is the original account and α2 comes

from the journal entry or the other way round, the outcome of the application is always

the same:

α2 +dc α1 ' α1 +dc α2 ' [a+ c // b+ d] ' α3

and the outcome is again a pair of non-negative numbers, so the group is an Abelian

group. In most cases in normal bookkeeping, however, the journal entry will only involve

a couple of accounts that change value, so that we usually do not denote the accounts

with zero-value.

C Isomorphism real line

To proof a group-isomorphism, we have to show a one-to-one correspondence between

the elements of the real line and the α-elements, as well as the correspondence in opera-

tions.

Through the equivalence relationship, we can organize all α-elements based on the size

of their debit or credit balance. If we make a line starting at 0 and increase the credit

balances to the right and the debit balances to the left, we get a line of elements in either

direction. We can put the real line orthogonal to this as is done in Figure 1, then for

every possible value of an α-element we find exactly 1 value on the real line as is shown by

the red line. The relationship between the sets is one-to-one and can be defined for every

element in both sets. Furthermore, the group law corresponds to normal addition on the

real line, which is quickly verified by looking at the corresponding operations:

[d1//c1] +dc [d2//c2] ' [d1 + d2//c1 + c2] (A.6)

(d1 − c1) + (d2 − c2) = (d1 + d2)− (c1 + c2) (A.7)

Note that the first α-element in A.6 is mapped to the real number between the first set of

brackets in A.7, etc. This one-on-one correspondence holds for all non-negative numbers,

and hence for all α-elements. So that the operation +dc corresponds to normal addition

on the real line, and that the equivalence relationship corresponds to equality of real
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numbers.

D The list of accounts, Lemma 3

To prove Lemma 3, we have to prove the same properties for the lists of accounts that

form the entire accounting system.

Associativity is given by the fact that Bn elements consist of a list of A-elements and

each α-group is associative, such that the Bn-elements consists of associative elements.

Since we only apply elements with the same index to each other, associativity is given by

the fact that each of the elements are associative.

Similarly the identity element can be obtained by combining n identity elements from

the A-group: [0 // 0], ...., [0 // 0].

The inverse element to Bn = [α1, ..., αn] is (Bn)−1 = [α−11 , ...., α−1n ], which is unique as all

of the elements have a unique inverse.

This group is also an Abelian group, as we have to do the addition per account, and thus

have the same result per account as we had under the A-group.

Any finite number of addition applications of accounts to each other, or any finite number

of journal entries applied to some set of accounts yields a set of transformed accounts

B′ ∈ Rn by the same logic. That is, we can conclude that the set of elements B ∈ Rn

is closed under finite debit-credit addition. While for each element in Bn we know that∑dc
i B ' [0 // 0], so that

∑
iB +dc

∑
iB
′ ' [0 // 0] +dc [0 // 0] ∀B,B′ ∈ Bn.

Or in bookkeeping terms, as long as we process valid journal entries, we end up with a

valid set of financial statements for any finite number of journal entries. Which proofs

Lemma 3.

E Balanced differences

The difference between two balanced lists of accounts is balanced:

∀B,B′ ∈ Bn (B −dc B′) = B +dc (B′)−1 ' B′′ ∈ Bn .

Proof. By definition of the inverse elements, the credit-balance of B′ is the debit-balance

of (B′)−1. By associativity, the order of addition of the balances does not matter. So that

we have
∑n

i=1(B −dc B′) =
∑n

i=1B
∑n

i=1(B
′)−1 = 0− 0 = 0, so the difference between to

balanced lists is similarly balanced.
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F Corollary 2, links value definitions

Corollary 2 proposes a link between the value on the earnings statement and the value

recorded in the balance sheet.

First recall the definitions. We make a list of accounts that are added or subtracted

from Earnings, AE, and its complement ACE, so that each account is on only one of these

sub-list:

B = AE
⋃

ACE, AE
⋂

ACE = ∅ → V al(AE) + V al(ACE) = 0

Furthermore, by definition, net income equals −val(AE). For a given history of events

ω (i.e. whatever happened in the fiscal year), we record its consequences under the

balance constraint. Let the resulting books for history ω denoted as B(ω), B′(ω) ∈
Bn respectively, where B,B′ refer to two different sets of books where the differences

are caused by differences in value definitions, i.e. different measures q, q′. These value

definitions could, for instance, be managed vs un-managed earnings, or IFRS and local

GAAP, or fair value and historic cost. We know that for any possible history, ω, we must

have: B −B′ ∈ Bn by Proposition 1. Hence any difference between two sets of balanced

valuations, has to be balanced itself.

If reported earnings differ between B and B′, i.e. V al(AE) 6= V al(A′E), this difference has

to be reflected in a balance sheet account. We will show this by contradiction. Assume

that there are 2 changes in value definitions, one in account i and one in j, denoted as

∆V al(qi),∆V al(qj). Proposition 1 tells us that ∆V al(qi) = −∆V al(qj). Furthermore,

assume that both of the associated elements are in the earnings list: αi, αj ∈ AE. Then

we know:

−V al(A′E) =
∑
AE

di −
∑
AE

ci + ∆V al(qi) + ∆V al(qj) =
∑
AE

di −
∑
AE

ci = V al(AE)

which violates the initial assumption that the recorded net income was different under

the new definitions. So that, if we assume V al(AE) 6= V al(AE)′ and we assume that

B,B′ ∈ Bn, then i and j cannot both be in the list of accounts in AE. One account has

to be in ACE. Since at the moment that we calculate earnings, all costs and revenues go

to earnings, the remaining accounts have to be some inventory that is reported on the

balance sheet. which completes the proof.
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G Subspaces, Lemma 4 and Proposition 2

First the proof of Lemma 4. A sufficient condition for a subspace W ∈ Rn requires that,

for two elements S̄, S̄ ′ ∈ W , we can proof:

vŜ + uŜ ′ ∈ W

(set u, v = 1 for the addition property; set v = 0, and u 6= 0 for the multiplication

property). For any n-vector µ of real numbers, define the space of elements W :

W = {x ∈ Rn|µx = 0}

In words, W consists of all vectors that have a zero inner product with µ. Assume that

both µS̄ = µS̄ ′ = 0, so that these two vectors are part of W . Then we can check that

(vS̄ + uS̄ ′)µ = vS̄µ + uS̄ ′µ = v0 + u0 = 0 ∀u, v ∈ R so that indeed the space W is

a subspace of Rn. This holds for any value of µ ∈ Rn and every value of µ defines a

subspace Wµ. Now set µ = 1 and we find our space B̄n. The isomorphism of Lemma 2

completes the result.

G.1 Proposition 2

Note that Lemma 4 holds for any value of µ ∈ Rn, so that by setting µ = λ we show

that in fact every bookkeeping system – each subspace Wλ found through the corre-

sponding vector λ – forms a linear subspace. All these linear subspaces are equivalent,

as a one-to-one mapping exists between any two of them. This is formally shown in

Proposition 2

To prove this, it is without loss of generality to show a bijection between Wλl and B̄n =

W1. First define κl = { 1
λli
, ..., 1

λln
}, this is a vector holding the multiplicative-inverse values

of the elements in λl. This vector must exist, as we required that none of the elements

in the vector λ are equal to zero. Now take some vector b̄ ∈ B̄n, then we know that∑n
i=1 b̄j = 0. We can define a transformation b̄ 7→κl {κlb̄1, ..., κlb̄n} = kl(b̄). Then we can

directly verify that

λlki(b̄) =
n∑
i=1

λliκ
l
ib̄i =

n∑
i=1

1b̄i = 0

This shows that kl(b̄) ∈ Wλl . Furthermore, every κli defines a linear mapping R 7→ R that

is invertible, one-to-one and covers the entire space R. Hence, it defines a bijection for

every element in the vector b̄. Which means κl defines a bijective mapping B̄n 7→κl Wλl ,

while the inverse of this mapping is determined in the same way through λl. As we have
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bijective mappings from any Wλl to and from B̄n, to find a bijective mapping from Wλl

to Wλk , simply combine the two relevant mappings to and from B̄n:

Wλl 7→κl B̄n 7→λk Wλk

Again, The isomorphism of Lemma 2 completes the result.
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H Figures

Figure 1

(a) Ledger (b) Journal entry (c) Updated ledger

(d) Association α-elements and accounts

Figure 2
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H.1 Figure captions

Figure 1 Bijection between set of α-elements and set of real numbers.

Figure 2 Processing of a journal entry in the notation of a n = 5 list of α-accounts.
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