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A B S T R A C T

Distributed renewable energy sources (D-RES) are growing, transforming electricity consumers into producer–
consumers (‘‘prosumers’’). Retail electricity tariffs require new mechanisms to fairly purchase D-RES generation
from and transfer costs to prosumers. Otherwise, cross-subsidy (wealth transfers from some prosumers
to others) can worsen tariff outcomes. Tariffs depend on metering infrastructure, where two choices can
significantly impact cross-subsidies: (a) metering generation and consumption separately, and (b) using
advanced metering infrastructure (AMI) that allows for more granular accounting of energy trade. We use high-
resolution energy data from 2016 from Austin, TX, USA, to study these impacts in a high-D-RES distribution
grid. We consider multiple tariffs and metering scenarios, thus separating their effects. We find that traditional
tariffs using legacy metering create median annual cross-subsidy values from 38% to 100% of real costs.
However, AMI can reduce these values by 2 to 3 orders of magnitude when a tariff that utilizes AMI’s
options is used. In contrast, metering generation separately from consumption appears to have little impact
on cross-subsidies. Our results have implications for metering infrastructure choices and tariff design for grids
undergoing rapid growth of D-RES generation.

1. Introduction

The electricity supply chain is undergoing significant upheaval. As
renewable energy sources (RES, renewables) are favored over fossil
fuels for electricity generation, they are rapidly displacing conventional
plants in many regions. Some of this displacement is happening within
distribution grids, where distributed RES (D-RES, e.g. solar photovoltaic
panels) are installed. Electricity production thus becomes cleaner and
less centralized.

Owners of D-RES typically purchase electricity from a distribution
grid retailer. Such retailers purchase electricity wholesale, transfer
it via a distribution grid to end-users, and recover costs via tariff
subscriptions. These tariffs are designed to meet specific objectives
based on specific assumptions (Reneses and Ortega, 2014). However,
the increase in D-RES is swiftly upending many of these assumptions,
particularly for smaller residential users. For example, these users were
often assumed to be passive consumers. Installing D-RES changes these
consumers into active producer–consumers, or ‘‘prosumers’’. Conse-
quently, the tariffs they are subscribed to fail to meet multiple of their
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1 Stands for ‘‘Feed-in Tariff’’. There are multiple tariffs possible when generation and consumption are metered separately, and FiTs are one such tariff type.
FiT tariffs are the most common in dual-meter setups, so for simplicity we refer to dual-metering tariffs as FiT.

intended objectives (Picciariello et al., 2015a). In particular, D-RES can
impact tariff fairness considerations, i.e. ensuring equal customers pay
equal prices for the same good. Past research has shown D-RES can
worsen ‘‘cross-subsidies’’, where one consumer subsidizes the product
for another (Simshauser, 2016). Thus, tariff design must be revisited to
properly account for the impact of D-RES growth.

Tariff design is by nature dependent on how electricity is measured.
As D-RES increases, jurisdictions have approached the issue of metering
generation from two directions: metering generation and consumption
separately (FiT1 metering) or together (net metering). While the former
allows for more versatility in tariff design, the latter is simpler (and thus
cheaper) to bill and account and requires a smaller up-front investment
in infrastructure. However, the cross-subsidies of most FiT metering
tariffs have not been directly compared with net metering tariffs. In
particular, there is little prior research on these tariffs regarding a
distribution grid with high levels of D-RES (Picciariello et al., 2015a).

Tariff design also depends on the measurement capabilities of grid
infrastructure. Advanced metering infrastructure, also known as ‘‘smart
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meters’’, have many benefits and are rapidly being adopted across many
regions (Alahakoon and Yu, 2016). Smart meters measure and commu-
nicate (and sometimes control) electricity flow with far more time gran-
ularity than legacy metering infrastructure. This finer time granularity
is particularly important for measuring D-RES generation, which can
vary over short time spans. High-resolution measurements are impor-
tant for electricity pricing, particularly for grid infrastructure costs (Hu
et al., 2015). Thus, AMI’s influence in tariff design has become a
common focus of study, for example in dynamic pricing (Feuerriegel
et al., 2016).

Despite these developments, existing literature lacks a comprehen-
sive assessment of how these matters affect fairness within a high D-RES
grid. We take a data-driven approach with high-resolution electricity
consumption, generation, and pricing data from Austin, TX, USA, for
2016, to understand the influence of tariff and metering choices on this
matter. We implement commonly-used and -debated tariff designs that
differ in their dependence on (a) FiT versus net metering, and (b) legacy
versus smart meters. These tariffs include flat-rate volumetric prices,
two-tier Time-of-Use rates, real-time pricing, and demand charges.
Our metric of fairness is cross-subsidization, or cost transfers between
households subscribed to a common tariff.

Our methods and data differ from most past work in two impor-
tant ways: first, we use high-resolution per-minute consumption and
generation data, which can significantly impact cost calculations (Hu
et al., 2015). Less granular rates may prevent some cross-subsidies from
being calculated, e.g. in Picciariello et al. (2015b). Second, most past
work calculates cross-subsidy by comparing revenues from two tariffs.
Our work separates the real costs of electricity delivery from tariff rev-
enue, thus creating a common reference for comparing cross-subsidies
between all tariffs.

Our results show significant variation in cross-subsidy. Key insights
from our work include (details in Section 6):

1. Using AMI instead of legacy infrastructure appears to signif-
icantly impact cross-subsidies. Non-AMI based tariffs exhibit
cross-subsidies two or three orders of magnitude higher on the
median (dependent on tariff) than AMI-based tariffs.

2. Metering consumption and generation separately (under FiT
metering) or together (under net metering) has a far smaller
effect on cross-subsidies.

3. Aside from metering choices, tariff design can significantly im-
pact cross-subsidy. When compared against a real-time pricing
tariff, a simpler two-tier time-of-use tariff creates an order-of-
magnitude increase in cross-subsidies, mainly due to divergences
in real-time energy cost from energy value. However, a tar-
iff based on peak demand charges creates cross-subsidies two
order-of-magnitude higher by mispricing capacity costs.

4. Price elasticity of consumption does not significantly alter our
results.

Thus, metering and tariff choices have varying effects on cross-subsidies
within a distribution grid. We discuss the overlaps and divergences
in the effects of these choices and form recommendations for high-
renewables distribution grids. In particular, the common discussion
focus of net versus FiT metering appears less consequential in terms
of fairness than AMI versus no AMI. Elasticity may marginally im-
pact cross-subsidy and should be considered; however, its effects on
cross-subsidy are far weaker than installing AMI.

In the following section 2, we review previous research related
to cross-subsidies in electricity tariffs. Section 3 provides details on
calculating costs, cross-subsidies, and demand elasticity. We describe
the datasets used in this analysis in Section 4 and their numerical results
in Section 5. Section 6 discusses policy implications, and includes some
limitations of work and further study options.

2. Background and literature review

Historically, retail electricity tariffs have been influenced by both
politics and economics (Yakubovich et al., 2005). An interested reader
can refer to Simshauser (2016, Section 3) for a concise historical
review. Based on Bonbright’s original principles (Bonbright, 1961), Re-
neses and Ortega (2014) list the following principles for electricity tariff
design:
P1. Sustainability or Sufficiency of revenue: Recovering sufficient rev-
enue for grid operation from tariffed consumers.
P2. Equity or non-discriminatory access: Ensuring equal charges for
equal power consumption, irrespective of user characteristics.
P3. Economic efficiency: Allocating resources to those who value them
most.
P4. Transparency: Clarity in tariff design process and outcome.
P5. Simplicity: Tariff designs being easy to understand and react to for
subscribers.
P6. Stability: Controlling the variation of tariff design (tariff formula-
tion) and tariff charges (the values within the formulation) over long
time periods.
P7. Consistency with larger regulatory framework: Ensuring that regu-
lation of the electricity sector is not at odds with regulation in (other)
public goods.
P8. Additivity of costs elements: Ensuring that the final charge is equal
to the added sum of each tariff component.

Realistically, it is impossible to simultaneously adhere to all prin-
ciples. Hence, tariff design has been a (often political) process of
compromise, prioritizing some principles over others (Reneses and
Ortega, 2014).

Practical difficulties in measuring product consumption have di-
rectly impacted tariff design possibilities. The most common metering
approach for residential users, based on volume of energy consumed
over a long time horizon (volumetric metering), has limited the diver-
sity of possible tariffs (Borenstein, 2016). Recent increases in D-RES
ownership by prosumers can make these tariffs no longer suitable for
recovering the costs of electricity generation and transport (Borenstein,
2016; Picciariello et al., 2015a). For these smaller users, retailers
and regulators struggle with simultaneously meeting P1 (sufficiency of
revenue), P2 (equity), and P6 (stability) (Sakhrani and Parsons, 2010
detail some examples from tariffs used in Spain and Portugal).

These challenges can be partially addressed by advances in metering
infrastructure. Advanced metering infrastructure (AMI) can provide
instantaneous power measurement and bi-directional information and
(in some cases) control signals. These capabilities create many more
options for tariff design (Alahakoon and Yu, 2016). Designing tariffs
based on hourly pricing has drawn much attention recently (Eid et al.,
2014; Fridgen et al., 2018; Sakhrani and Parsons, 2010). AMI can also
significantly increase demand elasticity for end-users, making elasticity
potentially more important for tariff design.

We focus here on P2, the equity (or fairness) principle, constrained
by the principles of revenue neutrality (P1) and tariff stability (P6).
One measure of equity in tariffs is cross-subsidy, which occurs when
one population of tariff subscribers pays more than they should for a
product, while another population pays less (Heald, 1997). High cross-
subsidies exist within many distribution grids, mainly because of other
tariff design principles taking precedence over equity. Many studies
use consumption-based data to calculate cross-subsidies and discuss
their implications for various stakeholders (Faruqui, 2010; Borenstein,
2007; Simshauser and Downer, 2016; Passey et al., 2017; Blank and
Gegax, 2014; Azarova et al., 2018; Burger et al., 2019b). Although
informative, results from these consumption-based studies may not be
applicable to high D-RES grids. Increasing D-RES has myriad effects
on the distribution grid and on retailers, which cannot be captured by
studies based on consumption patterns alone (Picciariello et al., 2015b).

Some past studies of high D-RES scenarios detail these effects for
cross-subsidy and equity in general. Johnson et al. (2017) show some
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Fig. 1. Tariffs used in this study and their dependence on metering infrastructure.

between-sector cross-subsidies caused by renewables. We focus here on
residential within-sector cross-subsidies, i.e. transfers from households
to households. Using Australian data, Simshauser (2016) investigated
the effect of capacity costs on wealth transfer in a solar-heavy dis-
tribution grid. With a similar model, Strielkowski et al. (2017) study
wealth transfers between customer groups in the UK. Borenstein (2017)
compares wealth transfers resulting from various economic instruments
(direct payments, tax incentives, and tariff-based transfers) on the
cost distribution of solar PV panels in the US state of California.
Picciariello et al. (2015b) simulated various US-based distribution grids
and calculated the effects of solar PV panels on tariff-based cross-
subsidies. Clastres et al. (2019) similarly simulate French distribution
grids and focus on cross-subsidies formed by self-consumption of D-
RES generation. Fontana (2016) also study a case of cross-subsidies in
a simulation of a Portuguese grid. These past studies do not consider all
cost components of electricity trade and/or do not use a representative
range of tariffs. The former may mask the actual cross-subsidies of a
tariff (Burger et al., 2019a), while the latter would allow us to separate
the effects of metering infrastructure and tariff design. Thus, our goal
is to conduct such a comprehensive analysis and separate the effects of
metering and tariffs on cross-subsidy in a high D-RES grid.

3. Methods

3.1. Choice of tariffs

Tariff design is constrained by its dependence on metering infras-
tructure (Fig. 1). In a distribution grid with high penetration of D-RES
generation, electricity metering requires two important choices. The
first choice is whether to meter generation and consumption separately
or together. Some jurisdictions (e.g. Austin, TX, USA) choose separate
(FiT) metering, while others (e.g. US state of California) opt for meter-
ing the two together as net demand (indicated by ‘‘Net’’ in Fig. 1). This
choice usually follows D-RES growth policies and how each jurisdiction
chooses to compensate D-RES generation.

There is a second choice with regard to devices used for metering.
Traditional (or legacy) meters allow for tariff designs dependent on
monthly accounting and billing, such as flat-rate and volumetric tariffs.
An upgrade to AMI is required for metering and billing with high time
resolution or to measure separated capacity costs. Given these metering
choices, we choose and formulate tariffs based on common use by
utilities, discussion between utilities and regulators, and prior academic
studies (Fig. 1). These tariffs are summarized in Table 1.

The tariffs are designed to recover the retailer’s costs for electricity
supply (and provide its credits for purchase). These costs typically
consist of three elements. The first, energy costs, relates to the provision

of electricity from the transmission grid or from the utility’s local gen-
eration units. These costs are usually a function of how much energy is
demanded by the grid at each time. The second element, capacity costs,
consists of the sunk and fixed costs of maintaining network infrastruc-
ture. These costs typically reflect returns on investment or maintenance
costs, which depend on how much power (i.e. energy flow) the grid can
support with specific reliability constraints (Simshauser, 2016). Finally,
other costs, such as billing, accounting, and other overhead costs,
depend mainly on how many subscribers the retailer has. Similar to
most past studies, we assume this final group of costs do not contribute
to cross-subsidies and ignore them here.

Crediting D-RES generation of subscribers can also be considered an
‘‘energy cost’’ source. These credits are akin to negative energy costs
and are often treated in the same way. In some rate designs, bonuses
for D-RES are included in the scheme as a subsidy for (or an ‘‘inter-
nalization’’ of) the positive externalities of clean renewable generation.
Based on Rábago et al. (2012), we assume the positive externalities
of this generation can be best represented and compensated for by a
per-kWh bonus.

3.2. Tariff design and cross-subsidy calculations

We first explain our study’s assumptions and formulation and then
detail calibration methods for each tariff. All prices are from the
perspective of households, i.e. negative prices are a funds transfer from
utility to household. Nomenclature is listed in Table 2.

For this study, our main assumptions are:

1. Household metering infrastructure is homogeneous: all house-
holds either have or lack AMI, and all households measure
generation and consumption either together or separately.

2. All households in the study population are subscribed to the
same tariff.

3. The retailer, who trades electricity on behalf of the households
with the external grid, operates on a revenue-neutral basis. In
other words, its revenues match costs.

To model tariff prices and cross-subsidies, we first need to define the
billing period 𝑇 . This is the period within which we take tariff design
and subscriptions to be constant. Like most past studies (e.g. Burger
et al., 2019a) and most utility tariff update cycles, we assume account-
ing is done yearly, i.e. T = 1 year. Let 𝑀 and 𝑁 represent the household
set and the tariff set, with index 𝑖 and 𝑗 referring to household 𝑖 ∈ 𝑀
and tariff 𝑗 ∈ 𝑁 , respectively. 𝑥𝑖, 𝑔𝑖, and 𝑑𝑖 are energy consumption,
generation, and net demand of household 𝑖 ∈ 𝑀 at every time interval
𝑡 ∈ 𝑇 , where 𝑑𝑖 = 𝑥𝑖 − 𝑔𝑖.2 Take 𝑝𝑚𝑎𝑥,𝑖(𝜏) as peak net power (capacity)
use of household 𝑖 within given time horizon 𝜏; the price per energy
unit of consumption (𝐸𝑗), generation (𝐺𝑗), and net demand (𝐷𝑗) are
specified based on tariff 𝑗 ∈ 𝑁 ; and 𝛼𝑗,𝑖 is any extra credit reimbursed
for D-RES generation, for household 𝑖 and tariff 𝑗, aside from regular
tariff reimbursements (e.g. reimbursements from the sale of Renewable
Energy Certificates). Finally, 𝐶𝑗 represents the per power unit capacity
price of tariff 𝑗, i.e. revenue for all costs related to long term capacity-
related investments and maintenance. These prices and values can be
a function of time, energy volume over a time horizon, and/or power
flow.

With this notation, for each household 𝑖 ∈ 𝑀 and tariff 𝑗 ∈ 𝑁 , total
tariffed costs of electricity supply, 𝜃𝑗,𝑖, is

𝜃𝑗,𝑖 =
∑

𝑡∈𝑇
𝐸𝑗𝑥𝑖(𝑡) +

∑

𝑡∈𝑇
𝐺𝑗𝑔𝑖(𝑡) +

∑

𝑡∈𝑇
𝐷𝑗𝑑𝑖(𝑡) +

∑

𝜏∈𝑇
𝐶𝑗𝑝𝑚𝑎𝑥,𝑖(𝜏) + 𝛼𝑗,𝑖. (1)

Total costs for the entire population 𝑀 for tariff 𝑗 is 𝜃𝑗 =
∑

𝑖∈𝑀 𝜃𝑗,𝑖.

2 Net demand is separately defined here as it is separately measured in
net metering scenarios. This simplifies later comparisons between net and FiT
metering.
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Table 1
Tariffs used in this study.

Tariff AMI Required FiT/Net Notes Past Studies / Relevance

Conventional No FiT Status quo Current tariff in use

Flat-rate No FiT/Net Most common tariff design Borenstein (2007, 2017, 2016), Picciariello et al. (2015b)

Two-tier time-of-use Yes FiT/Net Intended as middle-ground between simpler Flat-rate and
accurate RTP pricing

similar to pilot tariffs in Texas and Netherlands

Real-time pricing Yes FiT/Net Sacrifices simplicity and predictability for accurate pricing Azarova et al. (2018), Horowitz and Lave (2014)

Demand charge Yes Net Encourages households to flatten demand Passey et al. (2017), Simshauser (2016), Borenstein (2016)

Table 2
Nomenclature.

Label Unit Description

x kWh Consumption
g kWh Generation (always > 0)
d kWh Net Demand
𝑝𝑚𝑎𝑥(𝜏) kW Maximum Net Power over period 𝜏
E $/kWh Consumption price
G $/kWh Generation price
D $/kWh Net Demand price
C $/kW Capacity price
𝑃𝑔 $/kWh Green Certificate reimbursement price
𝛼 $ Green Certificate reimbursement cost
𝛿𝑝 $ Capacity surcharge per unit of power
𝛿 $ Capacity surcharge
𝜃 $ Total costs
L $ Lump sum payment (extra fixed cost)
i – House index
j – Tariff index
r – Real costs index
t min Time unit (1 min)
𝑇 – Billing period
𝜏 – Time horizon
𝜆 – Cross-subsidy Ratio
𝜈 $ (Cross-subsidy) Net difference

Our study assumes revenue neutrality, i.e. all tariffs return the same
revenue to the electricity provider, and this revenue is equal to the real
costs of electricity delivery (denoted by index 𝑟):

∀𝑗 ∈ 𝑁 ∶ 𝜃𝑗 = 𝜃𝑟. (2)

Some tariff calibrations require an additional degree of freedom to
ensure this constraint is met. For these, we add a lump sum 𝐿𝑗 to
each household’s bill. This extra charge is distributed equally across
households so as not to mask the cross-subsidies inherent in each tariff.

We first detail the makeup of the real costs of electricity trade, then
explain each tariff’s calibration.

3.2.1. Real costs
As discussed in 3.1, the real costs of electricity trade depend on

energy costs and credits and capacity costs, plus any additional D-RES
reimbursements. For consumed energy 𝐸𝑟, the real price at each instant
is assumed to be equal to real-time locational-marginal prices (RTLMP).
These prices are real-time wholesale market clearing prices at each
instance in a region, biased by network conditions (e.g. congestion,
losses) at each location (or node). The generation credit 𝐺𝑟 is set to 𝐸𝑟,
plus the bonus 𝛼𝑟,𝑖, which is based on a per-kWh credit 𝑃𝑔 . To simplify,
we integrate both as 𝐺𝑟 = 𝐸𝑟 + 𝑃𝑔 .

Capacity costs of the utility’s distribution grid mainly depend on
the maximum net power demand over a time horizon (Simshauser,
2016). Thus, 𝐶𝑟 is taken to be a constant per-kW price, which is then
multiplied by the net power demand of the utility that remunerates
these costs. Since the real costs of consumption and generation are
calculated separately, 𝐷𝑟 = 0.

We next discuss how different tariffs are calibrated with respect to
real costs.

3.2.2. FiT metering tariffs
The FiT Metering tariffs consist of tariffs under conventional me-

tering, i.e. the Conventional tariff and the flat-rate tariff; and tariffs
under AMI, namely the Time-of-Use and the Real-Time Pricing tariffs
(see Fig. 1). Since generation and consumption are metered separately,
net demand is not used to price electricity and 𝐷𝑗 = 0.
(1) Conventional tariff3: This is the tariff currently used in the area
under study. Our dataset is from households in a neighborhood of
Austin, TX, USA, currently subscribed to Austin Energy’s residential
tariff. This tariff consists of tiered volumetric consumption prices and a
flat-rate generation credit. The consumption price 𝐸1,𝑖 for household 𝑖
depends on the total monthly consumption of the household and the
month of the year (𝑇𝑚, 𝑚 ∈ {1..12}). Hence, each household sees a
different price per month, 𝐸1,𝑖(

∑

𝑡∈𝑇𝑚 𝑥𝑖(𝑡), 𝑇𝑚). The generation price 𝐺1
is set to Austin Energy’s Value of Solar rate for 2016 (11.3 c/kWh,
details in Rábago et al., 2012). Since all values are known, 𝜃1,𝑖 is known.
Note that this is the only tariff where consumption prices 𝐸1,𝑖 differ
among households.

As all tariff elements are calibrated by Austin Energy, a lump
sum 𝐿1 is added to households as a fixed charge to ensure revenue
neutrality (Eq. (2)) is met. This additional cost is levied equally across
all households so that it does not contribute to cross-subsidies:

𝜃𝑟 = 𝜃1 =
∑

𝑖∈𝑀
(𝜃1,𝑖 + 𝐿1). (3)

(2) Flat-rate FiT tariff:
The volumetric tariff described above was designed to promote

energy efficiency, at the expense of equal prices. To compare this tariff
with one designed for equal prices, we include a flat-rate tariff, i.e. 𝐸2
and 𝐺2 are constant values:

𝜃2 =
∑

𝑖∈𝑀
𝜃2,𝑖 =

∑

𝑖∈𝑀

∑

𝑡∈𝑇
[𝐸2𝑥𝑖(𝑡) + 𝐺2𝑔𝑖(𝑡)] (4)

𝐺2 is set based on a fixed rate calculated as the value of D-RES
(e.g. in Rábago et al., 2012), including additional subsidies (i.e. 𝛼2,𝑖 =
0). In addition, capacity is not separately priced (𝐶2 = 0), and the
related costs are included in the flat rate for consumption 𝐸2. The
only unknown is 𝐸2, which can be calculated by the revenue neutrality
constraint, i.e. setting 𝜃2 = 𝜃𝑟.
(3) TOU FiT tariff:

The Time-of-Use tariff depends on AMI, and hence can have dif-
fering prices for consumption (𝐸3) according to the hour of day. We

3 To refer to the formulations, we index tariffs 𝑗 ∈ {1..8}. Within the results,
however, the tariffs are only referenced by name.



Energy Policy 145 (2020) 111736

5

M. Ansarin et al.

investigate a two-tier TOU which prices electricity during daytime (𝑇𝑑)
and nighttime hours (𝑇𝑛) separately:

𝐸3 =

{

𝐸3,𝑑 when 𝑡 ∈ 𝑇𝑑
𝐸3,𝑛 when 𝑡 ∈ 𝑇𝑛.

(5)

We set 𝐺3 to the real-time value of solar generation detailed in the
Real-time Pricing tariff below. Since 𝑝𝑚𝑎𝑥 is known at each instance,
capacity costs can be recovered separately. Hence, the price for these
costs is set similar to 𝐶𝑟. In total, we have:

𝜃3 =
∑

𝑖∈𝑀

∑

𝑡∈𝑇𝑑

[

𝐸3,𝑑𝑥𝑖(𝑡) − 𝐺3𝑔𝑖(𝑡)
]

+
∑

𝑖∈𝑀

∑

𝑡∈𝑇𝑛

[

𝐸3,𝑛𝑥𝑖(𝑡) − 𝐺3𝑔𝑖(𝑡)
]

+ 𝐶2𝑝𝑚𝑎𝑥

(6)

By setting this equal to real costs 𝜃𝑟, we have one equation with two
unknowns (𝐸3,𝑛 and 𝐸3,𝑑), i.e. one degree of freedom. To solve this
equation, we require another constraint. We assume that 𝐸3,𝑑 and 𝐸3,𝑛
are proportionally scaled (with scaling factor 𝑟3) based on average
RTLMP prices during daytime (𝑃𝑑) and nighttime (𝑃𝑛):
{

𝐸3,𝑑 = 𝑟3𝑃𝑑

𝐸3,𝑛 = 𝑟3𝑃𝑛
(7)

With this additional constraint, Eq. (6) can be solved for 𝑟3.
(4) RTP FiT tariff:

For the Real-time Pricing tariff (RTP), consumption prices are taken
to be equal to average RTLMP prices per hour. Thus, each hour has its
own price, 𝐸4(𝑡). The generation remuneration price 𝐺4 is taken to be
𝐸4 with a known bonus element for reimbursements, 𝐺4 = 𝐸4 + 𝑃𝑔 .
Capacity prices 𝐶4 are set equal to 𝐶𝑟. Hence, 𝜃4 is defined, but may
not meet the revenue neutrality constraint (Eq. (2)). To this end, an
equally shared lump sum (𝐿4) is added:

𝜃4 =
∑

𝑖∈𝑀
(𝜃4,𝑖 + 𝐿4) = 𝜃𝑟, (8)

and Eq. (8) is solved for 𝐿4.

3.2.3. Net metering tariffs
Net demand tariffs, as the name suggests, assume a net metering

scenario. Hence, 𝐸𝑖 = 𝐺𝑖 = 0, while 𝐷𝑖 ≠ 0. To allow for a comparison
of costs with FiT metering tariffs, we assume prices for net metering
tariffs, 𝐷𝑖(𝑡), are independent of net demand, 𝑑𝑖,𝑗 (𝑡).

In all net metering tariffs, D-RES bonuses are accounted for as 𝛼𝑗,𝑖,
separate from the metering of net demand. We assume here that the
kWh generated by each solar panel can be accurately calculated based
on panel characteristics and weather data. Thus, a lump bonus of 𝛼𝑗,𝑖
can be calculated based on a fixed per-kWh credit, 𝑃𝑔 . This ensures
that any cross-subsidies due to choosing net versus FiT metering relate
to tariff design itself, rather than how D-RES subsidies are distributed
among producers. The following tariffs fall into the Net Metering
category (Fig. 1).
(5) Flat-rate net tariff:

This tariff is defined based on a fixed price for net demand at any
instance, i.e. 𝐷5 is a constant. Similar to the flat-rate FiT tariff, capacity
costs are included in the flat rate, 𝐶5 = 0. For 𝜃5 we have:

𝜃5 =
∑

𝑖∈𝑀
𝜃5,𝑖 =

∑

𝑖∈𝑀

[

∑

𝑡∈𝑇
𝐷5𝑑𝑖(𝑡) + 𝛼5,𝑖

]

= 𝐷5
∑

𝑖∈𝑀

∑

𝑡∈𝑇
𝑑𝑖(𝑡) + 𝛼5 (9)

By setting 𝜃5 = 𝜃𝑟, Eq. (9) can be solved for 𝐷5.
(6) TOU net tariff:

The TOU net tariff is defined as a TOU tariff similar to the TOU
FiT tariff, where the consumption price formulation is used instead
for the net demand price 𝐷6. 𝐷6,𝑑 and 𝐷6,𝑛 are defined according to

RTLMP daytime and nighttime prices with a ratio 𝑟6. Capacity costs are
calculated similar to the TOU FiT tariff.
(7) RTP net tariff:

Likewise, the RTP Net Demand Tariff is defined to be similar to
the RTP FiT metering tariff. 𝐷7 is defined according to average hourly
RTLMP prices and a lump sum is added to ensure revenue neutrality.
Capacity costs are similarly calculated.
(8) Demand Charge tariff:

The Demand Charge tariff combines real-time pricing of energy
costs with a monthly demand charge for capacity costs. The price for
net demand at each instance is set similar to the RTP net tariff, or
𝐷8 = 𝐷7. To recover capacity costs, for each household 𝑖 there is a price
(𝐶8) per kilowatt of maximum power demand during each month 𝑇𝑚,
𝑝𝑚𝑎𝑥,𝑖(𝑇𝑚). The cost for household 𝑖 over 𝑇 equals 𝐶8

∑

𝑇𝑚∈𝑇 𝑝𝑚𝑎𝑥,𝑖(𝑇𝑚).
The per-kilowatt capacity price 𝐶8 is set to ensure capacity costs are

equal to real capacity costs:

𝐶𝑟𝑝𝑚𝑎𝑥(𝑇 ) = 𝐶8
∑

𝑇𝑚∈𝑇
𝑝𝑚𝑎𝑥,𝑖(𝑇𝑚). (10)

The equation can be solved for 𝐶8.
Similar again to the RTP net tariff, the overall energy costs 𝜃8 are

defined as equal to real energy costs 𝜃𝑟, with a lump sum 𝐿8 required
(based on Eq. (2)) to ensure the equality:

𝜃𝑟 = 𝜃8 =
∑

𝑖∈𝑀

[

∑

𝑡∈𝑇
𝐷8𝑑𝑖(𝑡) +

∑

𝑇𝑚∈𝑇
𝐶8𝑝𝑚𝑎𝑥,𝑖(𝑇𝑚) + 𝛼8,𝑖 + 𝐿8

]

(11)

3.2.4. Cross subsidies
Cross-subsidy is the ratio of the difference in real versus tariffed

costs, divided by the absolute value of the real cost of electricity supply,
or

∀𝑖 ∈ 𝑀 ; 𝑗 ∈ 𝑁 ∶ 𝜆𝑗,𝑖 =
𝜃𝑗,𝑖 − 𝜃𝑟,𝑖
|𝜃𝑟,𝑖|

. (12)

This ratio is used in most prior literature to calculate and compare
cross-subsidies.4 However, these studies mostly do not consider genera-
tion, and/or use a denominator that depends on a tariff’s revenue. Thus,
their per-household cross-subsidy ratios all include denominators that
are well above zero. In our study, some households’ real costs are offset
by generation credits and the total costs of electricity transfer become
close to zero. This leads to the denominator of Eq. (12) being very
small, leading to exaggerated cross-subsidy ratios. We include these
ratios to allow for a comparison of our results to past studies. However,
we rely on the numerator of Eq. (12) instead to compare our tariffs,
which represents the ‘‘Net Difference’’ between real costs and tariffed
costs:

∀𝑖 ∈ 𝑀 ; 𝑗 ∈ 𝑁 ∶ 𝜈𝑗,𝑖 = 𝜃𝑗,𝑖 − 𝜃𝑟,𝑖. (13)

3.3. Demand elasticity

Electricity for residential households generally has very low demand
elasticity. Similar to past research (Borenstein, 2012; Horowitz and
Lave, 2014; Burger et al., 2019b), we assume that each household 𝑖
is demand-elastic in each timeslot 𝑡 according to a constant elasticity
rate 𝜖, i.e. 𝑥 = 𝐴𝐸𝜖 (black curve in Fig. 2). The constant 𝐴 depends on
initial consumption and initial price values, i.e. 𝐴𝑖,𝑡 = 𝑥𝑖,𝑐𝑜𝑛𝑣,𝑡∕(𝐸𝜖

𝑖,𝑐𝑜𝑛𝑣,𝑡).
We make the following assumptions to ensure a change in prices at

each instance induces an appropriate change in consumption:

4 Examples of such studies include Azarova et al. (2018), Borenstein (2017,
2007), Simshauser and Downer (2016), Strielkowski et al. (2017), Passey et al.
(2017), Johnson et al. (2017).
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Fig. 2. The Demand Curve (black) shows the relationship between prices and
(consumption) quantities.

1. We choose elasticity values at the low (𝜖 = −0.1) and high
(𝜖 = −0.3) ends of past empirical results, similar to past re-
search (Burger et al., 2019b; Borenstein, 2012, 2007). These are
close to estimates of short- and long-term elasticity (respectively)
for residential households (Labandeira et al., 2017).

2. The initial observed price 𝐸𝑖,𝑐𝑜𝑛𝑣,𝑡 is chosen as the conventional
tariff’s average prices. For our dataset, this consists of increasing-
block prices, where the marginal price increases with monthly
consumption. However, following Ito (2014), we take the house-
hold’s average price in each month to be its initial observed
price.

3. Demand elasticity functions are applicable to positive prices.
However, some timeslots may have negative or zero prices. In
these cases, we choose the consumer’s observed price to be 0.1
c/kWh, which, when compared to a new price of 10 c/kWh (and
𝜖 = −0.1), creates a consumption increase of 58%. This happens
most for the RTP tariff, for 1.5% of instances overall.

4. For tariffs that separate capacity costs, we assume these costs
are discounted from price estimates of the average conventional
price, i.e. 𝐸𝑖,𝑐𝑜𝑛𝑣,𝑡 is reduced to reflect that it also contained
capacity costs. This follows from past evidence that consumers
discount (i.e. do not respond to) fixed charges (Burger et al.,
2019b).

The Demand Charge tariff is designed to also induce demand elas-
ticity based on the demand charge for capacity costs. Using a similar
model, we assume ‘‘acceptable’’ peak demand over a month is depen-
dent on the change in price of capacity costs per kW of peak demand.
Thus, all timeslots are checked versus new acceptable peak demand. If
lower, all timeslots with higher consumption are lowered to the new
peak; if higher, consumption is increased to its original value or to
the new acceptable peak demand (whichever is lower). This accounts
for the demand charge signal of flattening demand, while allowing for
deviations due to exceptionally low (or high) energy prices.

We use these elasticity approaches to calculate a new consumption
profile per household per tariff. Much of tariff price calibration depends
on real costs, which depend on consumption profiles, which depend
on tariff prices. This requires iteration until an equilibrium is reached.
Our algorithm iterated on costs until the sum of absolute changes in
household bills was less that 0.1% of all bills combined. The final
household bills were used to calculate net differences and cross-subsidy
ratios.

4. Data

One could quantitatively compare cross-subsidies for various tariffs
and metering setups with suitable high-resolution real-world data from
a distribution grid and its consumer population. We were able to obtain
such data containing all necessary elements for a grid in Austin, TX,
USA. These datasets consist of two parts:

1. Energy consumption and generation data. This data was ob-
tained with an academic license from the Pecan Street Dataport.5
The dataset was narrowed down based on multiple criteria:

(a) Per-minute data available for entire year of 2016. Tariff
design and utility costs calculations are done annually,
so a duration of one year was chosen as a representative
period. 2016 was chosen due to higher data availability.

(b) Household contains solar photo-voltaic panels.
(c) Consumption and generation data contained less than 5%

missing or erroneous data points.

144 households’ energy data met all criteria and was included.
2. Electricity pricing data for calibrating tariffs. This data was

collected from two sources local to the energy data. We gathered
real-time locational-marginal clearing prices (RTLMP) at the
Austin load zone from the transmission grid (and wholesale
market) operator, Electric Reliability Council of Texas (ERCOT).6
These nodal prices are cleared in quarter-hourly intervals. The
dataset obtained from ERCOT contained no missing values. Tar-
iff rates from Austin Energy, a local public utility, were also
obtained to calibrate tariff values.7 These two data sources were
used for tariff calibration in the following ways:

(a) ERCOT’s RTLMP values were used as real energy costs
(𝐸𝑟) at each time.8

(b) Real capacity price (𝐶𝑟) was set equal to the capacity price
of a similarly-sized commercial or industrial entity on the
Austin Energy grid.9

(c) Austin Energy’s 2016 Value of Solar rate (11.3 c/kWh)
was used for the flat FiT tariff’s generation price, 𝐺2,
based on calculations from Rábago et al. (2012).

(d) Texas includes a market for solar Renewable Portfolio
Standards (also known as Renewable Energy Certificates),
which returns about 2.5 c/kWh for each unit of solar
generation (Rábago et al., 2012). We took this value as
𝑃𝑔 , i.e. the bonus for D-RES generation.

(e) The Time-of-Use tariff’s high- and low-price hours were
chosen similar to pilot tariff schemes from Austin Energy
and other local utilities as 6:00–22:00 for daytime and
22:00–6:00 for nighttime.

The final tariff set is summarized in Table 3.

Figs. 3 and 4 show summary statistics of the two datasets. A
histogram of annual household consumption (Fig. 3(b)) matches the
log-normal distribution expected of a distribution grid with residential

5 More information at https://www.pecanstreet.org/dataport/.
6 ERCOT RTLMP details and values can be found at http://ercot.com.
7 Dataset and more information at https://austinenergy.com/ae/.
8 Our data has assumed energy costs equal to the ERCOT RTLMP prices at

each instance. While this is commonly used a proxy for the value of energy at
each instance (Burger et al., 2019b; Fridgen et al., 2018; Rábago et al., 2012),
energy is often procured through multiple other sources, which differ in price
compared to real-time market prices, in this case ERCOT RTLMP prices. These
deviations are assumed to be relatively small and have been shown to have a
negligible effect on cross-subsidies (Borenstein, 2007).

9 Prices can be found at https://austinenergy.com/ae/commercial/rates/
commercial-electric-rates-and-line-items.

https://www.pecanstreet.org/dataport/
http://ercot.com
https://austinenergy.com/ae/
https://austinenergy.com/ae/commercial/rates/commercial-electric-rates-and-line-items
https://austinenergy.com/ae/commercial/rates/commercial-electric-rates-and-line-items
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Table 3
Tariff values (all values in c/kWh, except 𝐶𝑗 in $/kW).

# Tariff name Consumption
(𝐸𝑗 )

Generation
(𝐺𝑗 )

Net demand (𝐷𝑗 ) Capacity
(𝐶𝑗 )

REC Credit
(𝑃𝑔)

1 Conventional 𝐸1 −11.3 0 0 0

2 Flat-rate FiT 𝐸2 −11.3 0 0 0

3 TOU FiT 𝐸3,𝑑 , 𝐸3,𝑛 −(𝐸4 + 2.5) 0 8.3 0

4 RTP FiT RTP hourly (𝐸4) −(𝐸4 + 2.5) 0 8.3 0

5 Flat-rate net 0 0 𝐷5 0 −2.5

6 TOU net 0 0 𝐷6 8.3 −2.5

7 RTP net 0 0 𝐷7 8.3 −2.5

8 Demand charge [net] 0 0 𝐷8 𝐶8 −2.5

– Real costs ERCOT RTLMP
(𝐸𝑟)

−(𝐸𝑟 + 2.5) 0 8.3 0

Fig. 3. Total annual per-household generation (a) and consumption (b) distributions and ERCOT RTLMP clearing price distribution for 2016 (c). 0.86% of clearing prices are not
displayed in the ercot histogram, as they represented extreme values in the range of {100,1511} $/MWh.

end users in the Austin, TX, area. These households generally expe-
rience peak consumption in the early evening hours, mainly due to
use of HVAC units (Fig. 4(b)). Annual household generation (Fig. 3(a))
is also distributed as expected, with values close to the 7289 kWh/y
average value. A histogram of hourly ERCOT RTLMP values for the
Austin load zone for the year of 2016 are plotted in Fig. 3(c). On rare
occasions, prices rise above 1000$/MWh. On average, however, these
prices fluctuate strongly during the day, with very high prices at high
demand moments during the early evening hours (Fig. 4(c)).

5. Results and discussion

For each household, we first calculate the real costs of electricity
trade and each tariff’s revenues. We then compare these values based
on net difference and cross-subsidy ratio. To illustrate this, Fig. 5 shows
tariffed revenue and real costs for one sample household from the
population. The differing tariff revenues are compared with real costs
(Fig. 5, beige) to find the net difference, which is compared within and
across tariffs. All net difference values reported here are on a per annum
basis.

5.1. Comparison of tariffs based on legacy metering

The residential tariff currently employed by Austin Energy, albeit
flat-rate, consists of a volumetric increasing price for consumption. That
is, each month a high energy user would pay more per kWh than a low
energy user. This policy choice, while sacrificing some welfare transfer,
intends to motivate energy efficiency by residential users (Borenstein,
2017). Thus, comparing such a tariff with other tariffs would not
only consider cross-subsidies from flattening the temporal dynamics of
energy prices, but also from this intentional policy choice. To balance
this out, another conventional tariff, a flat-rate fee, was designed and

calibrated to match this volumetric tariff without the added volumetri-
cally increasing prices, and thus without cross-subsidy from the policy
instrument (ibid). This Flat-rate tariff is designed in two ways, with one
based on Net metering and the other based on FiT metering (Table 3).

Fig. 6 shows the cross-subsidy spread from the three non-AMI tariffs,
per household, sorted based on value. While some households observe
fairer costs under a flat-rate tariff (i.e. closer to the horizontal axis), oth-
ers are put into a less fair position (further to the extremes). However,
at the medians, results are marginally different. The median values of
positive and negative cross-subsidies (i.e. the median of all positive and
all negative cross-subsidy ratios) from the flat-rate tariffs are worse
than the conventional tariff (Table 4). In terms of net differences,
the flat-rate tariffs see median positive ‘‘transfers’’ of $229.50 (FiT)
and $259.07 (Net) and median negative transfers of −$212.53 (FiT)
and −$232.64 (Net), while the conventional tariff’s median transfers
are $157.12 and −$164.59, respectively. Thus, the flat-rate tariffs are
marginally worse overall at ensuring cost-causality. The flat fee added
for calibration to the conventional tariff reduces some cross-subsidies
that are due to capacity costs. These cross-subsidies are larger than the
cross-subsidies inherent in the volumetric design of the energy portion
of the Conventional tariff. As a result, this tariff maintains lower overall
cross-subsidies than the flat-rate tariffs.

5.2. Comparison of tariffs based on AMI

Our AMI tariffs consisted of two sets of tariffs (TOU and RTP)
dependent on two different metering setups (FiT and net metering).
These 4 tariffs are compared with each other and the corresponding
flat-rate tariffs in Figs. 7 and 8. Both TOU and RTP tariffs produce
far less cross-subsidy than the flat-rate tariffs. In FiT metering (Fig. 7)
for example, median net differences for the flat-rate tariff are $229.50
(positive transfers) and −$212.53 (negative transfers). Compare this
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Table 4
Numerical comparison of tariff cross-subsidies.

Tariff Prosumers w/ negative
Cross-subsidy, NegRatio
(% of population)

Median negative
cross-subsidy,
MedNegCross

Median positive
cross-subsidy,
MedPosCross

Median household
negative costs transfer,
MedNegTransfer (USD)

Median household
positive costs transfer,
MedPosTransfer
(USD)

Conventional 64 −0.7234 0.3807 −164.59 157.12
Flat-rate FiT 62 −0.8886 0.4815 −212.53 229.50
TOU FiT 72 −0.05072 0.04877 −7.26 7.75
RTP FiT 45 −0.002041 0.001803 −0.53 0.55
Flat-rate net 63 −1.008 0.5391 −232.64 259.07
TOU Net 48 −0.01953 0.02399 −6.60 6.90
RTP Net 47 −0.002270 0.001954 −0.61 0.55
DC Net 63 −0.302 0.209 −65.8 91.8

Fig. 4. Generation (a) and consumption (b) of households and average ERCOT RTLMP (c) per hour-of-day. Shaded areas indicate one standard deviation (Except for (c), whose
standard deviations were too large to display with averages).

Fig. 5. Sample household costs per tariff and real costs.

with median positive and negative transfers of $7.75 and −$7.26
for TOU and $0.55 and −$0.53 for the RTP tariff. This 2-order-of-
magnitude difference is due to two factors. First, tariffs based on AMI
(TOU and RTP) capture the capacity costs of the distribution grid and
can recover those separately from the per kWh energy charge. Second,
they are able to reflect the temporal dynamics of wholesale energy
prices. These both contribute to a significantly reduced cross-subsidy
spread, which is reflected in the median values of positive and negative
net differences.

The TOU tariff performs similarly to the RTP tariff in most cases
(Fig. 9, Table 4). While the cross-subsidies spread between the TOU
tariffs and the RTP tariffs are quite different, they are very small
compared to the flat-rate tariffs. For example, the TOU net tariff’s
median positive and negative cross-subsidy ratios amount to 2.4% and

Fig. 6. Net difference (sorted) for the conventional Austin Energy tariff and the flat-rate
tariffs under FiT and Net metering per household.

−1.9%, respectively, while those of the RTP tariff are one order of
magnitude less (namely 0.2% and −0.2%, respectively).

The TOU tariff is designed to reflect some of the temporal dynam-
ics of energy price fluctuations, while remaining relatively simple in
design. That is, it provides a suitable economic signal while reducing
some of the cross-subsidies from energy prices. In previous research,
simulations have shown that new peaks can form due to consumers
reacting to the new price signal (Valogianni and Ketter, 2016). Energy
prices are from wholesale market locational-marginal rates for electric-
ity supply at the transmission level, a market in which the utility is
assumed to be a price-taker (i.e. its demand changes do not significantly
impact market prices). Hence, the formation of these new peaks in a
distribution grid is not expected to increase energy prices, and thus
energy costs, at peak demand moments. Yet they may cause higher
peak demand, thus increasing capacity costs (ibid). A time-of-use tariff’s
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Fig. 7. Net difference for FiT metering tariffs per household.

Fig. 8. Net difference for net metering tariffs per household.

Fig. 9. Net difference for tariffs based on advanced metering infrastructure (AMI) per
household. RTP tariff results under net metering and FiT metering are very similar, so
only one line is plotted.

prices are not reactive to such peak demand changes and thus do not
provide a suitable economic signal for peak demand reductions in the
long term. A possible solution for passing on such an incentive would
be the Demand Charge tariff, which is discussed in the next subsection.

The RTP tariff is designed to be the least cross subsidy-inducing
tariff as cross-subsidies from both energy and capacity costs are mostly
removed. However, this tariff’s pricing mechanism is difficult for house-
holds to act on. Even with the presence of a suitably accurate prediction

Fig. 10. Net difference for Flat-rate, Demand Charge, and RTP tariffs, all under net
metering, per household.

algorithm, such a tariff often requires that a household installs au-
tomatic control and monitoring of switchable devices (i.e automated
demand response) in order to act on the economic signal. In other
words, the economic signal is both ‘‘difficult to decode’’ and ‘‘difficult to
react to’’. Moreover, these devices need to be able to elicit and/or rep-
resent consumer preferences in a way that is simultaneously effective in
demand response and accurate in its elicitations/representations (Bich-
ler et al., 2010). Hence, we see that the tariff indeed performs best in
cost causality, at least by an order of magnitude compared to the TOU
tariff. However, it lags behind the TOU tariff and others in simplicity
and providing suitable economic signals.

5.3. Evaluating the demand charge tariff

The Demand Charge tariff is designed to recover energy costs based
on the RTP tariff while offering a net demand flattening signal to
households. Despite sacrificing some cross-subsidy, this pricing ensures
that suitable economic signals are given to households for stabilizing
net demand. The cross-subsidies for this tariff, with median costs
transfers of −$65.8 and $91.8, are less than that of the Flat-rate Net
tariff (medians −$232.64 and $259.07) and more than that of the RTP
Net tariff (medians −$0.61 and $0.55, Fig. 10).

Implementing this tariff can significantly increase demand elasticity
for the capacity portion of electricity costs. These costs typically ac-
count for about 60% of a distribution grid’s costs, (Simshauser, 2016)
with percentage being generally lower for higher-density grids. In this
study’s case, these costs were about 55% of total costs (excluding gen-
eration credits). Most residential households experience demand peaks
at similar times. However, there are differences between individual
demand peaks and the distribution grid’s demand peak. Consequently,
there is cross-subsidy when households are charged based on individual
peaks (as in the Demand Charge tariff) whereas costs depend on the
utility’s peak demand (as is priced in the RTP tariff). Given that the
charge depends on maximum kilowatts used per month, there is a
direct incentive for households to flatten (or reduce) their demand,
rather than shift it to a period where electricity use is ‘‘cheaper’’,
as in the TOU and RTP tariffs. As this demand flattens, updates of
capacity costs would reduce the DC tariff’s demand charge, leading to
an equilibrium of all elastic demand flattened, without direct increases
in other (energy) costs. Hence, this tariff can be expected to consistently
motivate a reduction in overall peak demand, and thus capacity costs,
in the long run.
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5.4. Comparing fit metering and net metering

The FiT and Net metering tariffs perform relatively similarly in
cross-subsidy (Figs. 6 and 9). The primary costs of electricity trade
depend on energy and capacity for the utility. Both these costs com-
ponents depend on the net demand of the entire grid as a function
of time. Hence, the choice of metering generation and consumption
separately or together cannot be expected to significantly influence
costs of electricity supply.

The same cannot be said for the credits given for generation re-
sources. These credits often are energy prices over time, plus any
subsidies given by local, national, or international governments or
institutions. Energy prices, similar to electricity supply, depend on net
demand per time. Subsidies, however, often depends on the D-RES unit
itself; sometimes the nature of the resource (e.g. whether it is a wind-
based or solar-based unit), often also the total electricity produced
by the unit. In the case of our dataset, in Austin, TX, USA, these
additional credits take the form of the Renewable Energy Certificate
reimbursement, calculated as 2.5 c/kWh (Rábago et al., 2012). Without
separate measurement of generation via a feed-in tariff, this reimburse-
ment cannot be accurately credited. Thus, the policy goal of promoting
renewable energy uptake depends on this metering choice. On the
other hand, there are multiple ways this promotion can happen without
incentives that depend on precise generation metering. Examples of
these can be found in Germany (Yildiz et al., 2015) and the US state
of California (Borenstein, 2017). In this article, we separately account
for these costs, and thus they do not contribute to cross-subsidy. The
study of which form of subsidy best promotes uptake of renewables is
a topic for future analysis.

As real costs between FiT and net metering cannot be expected
to differ, we turn our attention to tariff revenue. We find that our
(generalized) tariff setups do not create significant differences between
net metering and FiT metering. For the flat-rate tariffs, the differences
between FiT and net metering can be reduced to choosing two different
flat rates, or just one flat rate. Aligning with intuition, we find that
using two flat rates creates a fairer scenario with cross-subsidies curves
closer to the horizontal axis in Fig. 6. However, this difference is far
smaller than the difference between non-AMI and AMI-based tariffs.
For TOU and RTP tariffs, we find similar results, mainly due to similar
differences between using two rates versus one. Consequently, we find
that measuring generation and consumption separately (under FiT me-
tering) or together (under Net metering) does not affect cross-subsidies
as strongly as implementing AMI.

5.5. Demand elasticity effects

Finally, we examine the effect of demand elasticity on the compar-
ison between net and FiT metering, and between AMI and non-AMI
tariffs.

Elasticity affects the cross-subsidy rates of each tariff in differing
ways,shown in Figs. 11 and 12. For the flat-rate tariffs in both net
and FiT metering, elasticity has a minimally increasing effect on cross-
subsidies (Figs. 11(a) and 11(b)). This is mainly because the flat-rate
tariffs have prices close to the initial price at consumption, which
also includes capacity costs. Hence, a user has little incentive at each
instance to reduce or increase consumption. Tariffs based on legacy
metering show the same cross-subsidy rates, with little dependence on
elasticity.

The case for AMI-based tariffs is more nuanced. For the TOU tariff
in both metering setups, we also find that elasticity increases cross-
subsidies (Figs. 11(c) and 11(d)). However, the effect is stronger than
for the legacy tariffs. Compared to the flat-rate tariffs, the price signals
for TOU tariffs are more divergent from initial prices. Thus, consumers
react with stronger changes in demand, causing further cross-subsidy.
For the RTP tariff, the results are reversed (Figs. 11(e) and 11(f)). As
elasticity increases, both net and FiT metering-based RTP tariffs show

significant decreases in cross-subsidy, with net difference curves closer
to the horizontal axis. The RTP tariff is designed to signal the most cost-
reflective price to end-users. Consequently, any change in consumption
would lead to tariff revenue being closer to real costs, i.e. reduced
cross-subsidies.

We witness increasing cross-subsidies for the DC tariff as well
(Fig. 12(a)). The demand charge misprices capacity costs, which en-
courages households to change their monthly peak. Indeed, the sum
total of all household monthly demand peaks decreases if there is elas-
ticity (with larger decreases with more elasticity, Fig. 12(b)). However,
demand charges signal for reductions in a household’s peak, not on the
grid peak. Thus, users often change demand at times different from
the grid peak hour, with little benefit for grid costs. Surprisingly, we
find that the grid peak instead is higher for high elasticity scenarios
(Fig. 12(b)). This indicates that the demand charge indeed gives poor
signals for reducing grid costs, with worse results in high elasticity
scenarios. This mirrors predictions by Borenstein (2016), which appear
extensible to a high-D-RES grid.

We can compare the effects of elasticity to those of AMI and net-
versus-FiT metering. From this relative perspective, elasticity’s effects
are weak. The ratio of median net difference for flat-rate FiT and TOU
FiT tariffs (absent elasticity) is 29.21 on the positive (losing) side and
29.09 on the negative (winning) side. We can compare this with a
similar ratio for high- and zero-elasticity results for the tariffs most
influenced by elasticity (the RTP FiT or Net tariffs). This ratio is 1.98
(positive side) and 1.57 (negative side), far lower than differences
between AMI and non-AMI based tariffs. Hence, elasticity’s effects are
far weaker than AMI, but similar to or stronger than net-versus-FiT
metering choices.

6. Conclusion and policy implications

Electricity has historically been thought of as a public good and
its supply (and consequent pricing) has been as much subject to pol-
itics as to economics (Yakubovich et al., 2005; Reneses and Ortega,
2014). As a result, tariff design has sometimes followed economically
suboptimal but politically viable paths. With an increasing share of
D-RES, a distribution grid subject to democratic decision-making can
be politically bound to pursue tariffs that do not cause widespread
resentment. Some (socially progressive) tariffs have been designed to
transfer costs from the vulnerable to the privileged; despite their higher
cross-subsidies, they have been considered acceptable (Heald, 1997).
For a distribution utility organized as a highly regulated and non-profit
entity, we can expect two metrics to influence decision-making; (1) the
ratio of subscribers negatively impacted, and (2) how strongly they are
affected. For our study, the ratio of prosumers paying less than their
real costs (NegRatio) is above 50% for tariffs based on legacy metering
(Table 4). This is often the equilibrium for current tariffs (Borenstein,
2007; Simshauser and Downer, 2016). However, a NegRatio above
50% implies that in a high D-RES grid using conventional tariffs, a
tariff change would negatively impact most subscribers and would be
unpopular. The value of the cost transfer (median negative transfer,
MedNegTransfer, and median positive transfer, MedPosTransfer) define
the pressure to support new tariff designs. In simpler terms, while
NegRatio shows how much of a subscriber group would support tar-
iff design change, MedPosTransfer and MedNegTransfer indicate how
strong that support would be.

While there is a big benefit overall in switching from a traditional
tariff to a less cross-subsidizing tariff, the initial unpopularity makes
such a change difficult. This has been documented for industrial and
commercial users with only consumption; Borenstein (2007) has rec-
ommended a payback mechanism for reducing the significance of the
initial overall cost increase for the majority of negatively affected
users. However, for such a payback mechanism to lead to a long-term
(closer to) optimal solution, end-user demand must become (more)
elastic (ibid). Historically, industrial and commercial consumers have
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Fig. 11. Net difference sorted per household per elasticity rate (colors). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 12. Net difference sorted per household for Demand Charge Net tariff 12(a) and overall population peak versus sum of individual household peaks, per elasticity ratio, as
percentage of zero-elasticity case 12(b).

had higher demand elasticity than residential users. This may still
hold, but the advent of AMI may significantly boost residential demand

elasticity (Alahakoon and Yu, 2016). Hence, such a payback mechanism
may work for residential users in the future.
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Table 5
Qualitative comparison of tariffs.

Tariff AMI required Short-term
economic
signaling

Long-term
economic
signaling

Energy costs
cross-subsidies

Capacity costs
cross-subsidies

Precise transfer of
D-RES subsidies

Conventional No Poor Average High High Yes
Flat-rate FiT No Poor Poor High High Yes
TOU FiT Yes Good Poor Low Low Yes
RTP FiT Yes Average Average Low Low Yes
Flat-Rate Net No Poor Poor High High No
TOU Net Yes Good Poor Low Low No
RTP Net Yes Average Average Low Low No
DC Net Yes Poor Poor Low Medium No

There is a separate question of how the costs of AMI compare to
the benefits. The costs of AMI have been well documented, both in
utility reports and in academic articles (for example see Feuerriegel
et al. (2016)’s cost–benefit analysis of AMI for demand response). Some
studies have investigated the benefits of tariffs dependent on AMI
(citations towards end of Section 2). We are not aware of any prior
analysis focused on AMI’s impact on cross-subsidies in a high-D-RES
grid. However, a cost–benefit analysis of AMI requires weighting the
benefits of cross-subsidy against other benefits and costs. It is not clear
what these weights would be: e.g. how the difference between median
cost transfers for the Flat-rate FiT and the TOU FiT tariffs (a difference
of $157.33) translate into a value stream for AMI. Determining these
weights enters the territory of what can be considered ‘‘due’’ and
‘‘undue’’ discrimination. Heald (1997) and Yakubovich et al. (2005)
describe these considerations and clarify that they do not respond well
to attempts to be quantified. They, and tariff design in general, are often
matters of public debate. Hence, we focused our study on quantifying
cross-subsidies and leave such value judgments to policymakers.

In this study, we used two datasets: one of energy (consumption and
generation values over time) and one of prices (market prices, tariff
calibrations, etc.). Both datasets are strongly region-dependent. Energy
consumption is a slave to weather and household habits, and generation
depends on weather and location. Additionally, prices depend on many
factors, including regulations, weather, demand, and regional geogra-
phy. This implies that the quantitative results can be expected to change
per region and this analysis mainly holds for Austin, TX. However,
our methods can be applied for any region, should the aforementioned
data be available. The main influencers in our analysis are weather and
electricity wholesale market prices, so similar results can be expected
for regions similar to Austin, TX, in these two matters. However, a
qualitative interpretation of these results should hold across regions as
well. For example, while the difference in cross-subsidy between the
Flat-rate tariff and RTP tariff might be smaller in a region with fewer
sunlight hours per year, the RTP tariff would still perform far better.
From this point onward, a more qualitative discussion follows, intended
to be generally applicable to other regions.

Our study shows that the differences between FiT and net metering
are dwarfed by differences between non-AMI and AMI. Net metering is
well-known to create distortion by pricing generation and consumption
together, leading to many problems including cross-subsidies (Boren-
stein, 2017). However, in the hypothetical scenario of a grid with
rapidly expanding D-RES generation, policy-makers concerned with
cross-subsidies should prioritize AMI implementation over installing
extra meters for generation sources.

Choosing a specific tariff (e.g. TOU, RTP, or DC) under an imple-
mented AMI system can also impact cross-subsidies. The cross-subsidies
in the TOU tariff entirely result from divergences in real-time electricity
value from the price of each tier at each minute. These divergences
mostly disappear for the RTP tariff, which more closely follows real-
time value and finds median cross-subsidies of one order-of-magnitude
lower. The DC tariff creates additional cross-subsidies on top of the RTP
tariff; these cross-subsidies are due to capacity value being different
from capacity charges. As discussed in Section 5.3, household monthly

peaks are often misaligned and thus misrepresent the true capacity
costs for which a household is responsible. These differences cause cost
transfers between households, higher by one order of magnitude than
those of the TOU tariff. Hence, the DC tariff and TOU tariff create
cross-subsidies, but from distinct sources and in differing amounts.

Our conclusions appear to be relatively agnostic to household de-
mand elasticity. Even with high elasticity, AMI-based tariffs strongly
outperform non-AMI-based tariffs whereas differences between FiT and
net metering are minor. The effect of elasticity itself is also compara-
tively small. Elasticity appears to be a weaker concern when consider-
ing the effects of metering setup on cross-subsidies.

Reducing cross-subsidies is often considered good. However, its
importance is sometimes diminished by more pressing concerns, such
as sending proper economic signals to end-users. We summarize these
conclusions in Table 5. The economic signaling aspects of various tariffs
have been discussed extensively in and follow from past literature,
e.g. Azarova et al. (2018). The cross-subsidy values for energy and
capacity costs are higher for flat rate tariffs than for the TOU, RTP,
and DC tariffs. On the other hand, precise transfer of D-RES subsidies
depends on their being measured separately (see e.g. Verbruggen and
Lauber (2012)). In this respect, FiT tariffs are better than Net tariffs.
Overall, we can formulate a suitable tariff design in a high-prosumer
grid. A Time-of-Use tariff for energy prices may offer the best middle
ground between simplicity and cost causality. A peak-coincident ca-
pacity charge for capacity costs may provide poor signals for reducing
the grid peak, but minimizes cross-subsidies. For generation credits, a
separate feed-in tariff designed with a premium over energy rates may
be the optimal design.

Our analysis of cross-subsidy in a high-DRES distribution grid has
two main conclusions: There is little difference between FiT and net me-
tering, and there is a large difference between using and avoiding AMI.
In addition, these conclusions appear unaltered by demand elasticity.
Our results are based on a numerical analysis of household, market,
and retailer data from 2016 from Austin, TX, USA. Insofar as electricity
consumption and generation and trade costs are similar to Austin, TX,
the quantitative results may be valid for other locales as well.

6.1. Future work

With regards to tariff design, this analysis was not intended to
explore the full design space. Instead, we picked common tariffs within
that space and used them to describe the various dimensions along
which tariffs can differ, leading to various economic and political
consequences. These consequences are often not only a function of
quantitative metrics, but also regional and local infrastructure and
politics. One tariff may work very well in Austin, TX, but perform
poorly in other regions. In addition, all tariff design changes require
transition management, e.g. paybacks to losing households that will
compensate for the higher (but fairer) costs they face.

Elements of this transition management are suitable for future re-
search in this area. One such topic can be the payback mechanisms that
most suitably compensate losers from tariff changes. In addition, Pic-
ciariello et al. (2015b)’s simulations notwithstanding, there is little
written previously about how increases in D-RES affect cross-subsidies.
We intend to continue this research with such an investigation.
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