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epidemiology, prevention and management of 
osteoporotic fractures

In Europe, 3 million fractures occur each year accounting for 2 million disability-

adjusted life years.1 The fracture incidence varies between and within countries, 

which can be attributed to diverse factors including age, sex, geography, ethnicity, 

and socioeconomic status. 2,3,4,5 In the Rotterdam Study the annual incidence of non-

vertebral fracture between 1989 and 2013 was 21 cases per thousand persons from 

which the majority experienced hip, wrist or humerus fracture. 2 In addition, we ob-

served a plateau in the incidence of all-type and site-specific non-vertebral fractures 

between 1989-2001 and 2001-2013. 2 Worldwide, cohort studies have reported simi-

lar trends, with some even showing decrease in fracture incidence. 6,7,8,9,10 Even though 

fragility fracture incidence rates might remain stable, demographic changes in the 

decades to follow will lead to an increase in the absolute number of fracture cases. 

It has been projected that by the end of 2050 the number of hip fractures worldwide 

will range between 7.3 and 21.3 millions. 11 Nevertheless, I believe that with our cur-

rent understanding of the epidemiology, pathophysiology, and management of fra-

gility fractures, we can significantly reduce these numbers. Thus, identifying people 

at increased fracture risk and implementing preventive measures and subsequent 

targeted interventions should be of paramount importance for decreasing the number 

and burden of fragility fractures in the years to come.

Identifying People at High Fracture Risk
Fractures in elderly people are typically consequence of osteoporosis. The corner-

stone of diagnosis and management of osteoporosis is BMD. Likewise, low BMD is a 

strong predictor of future fractures in postmenopausal women and elderly men. 12 

Some of my work showed that one measurement of femoral neck BMD after the age 

of 45 years could predict fractures over 20-23 years in both men and women (Chapter 

2.1.). As anti-osteoporotic treatment reduces future fracture risk for individuals with 

osteoporosis, the BMD assessment can identify people at risk who might benefit 

from treatment. However, BMD has high specificity but low sensitivity in predicting 

fractures as most fractures still occur in individuals with BMD above the osteoporosis 

treatment threshold (Chapter 2.1.1). Therefore, measuring BMD might offer more 

benefits in diagnosis and treatment than for fracture risk stratification. The current 

therapeutic approach focuses on using a clinical threshold, established as a T-score 

lower than 2.5; but in practice a T-score of -2.5 and a T-score of -2.2 do not represent 

much risk difference. Further, treatment is only indicated in the former case leaving 

the latter group at imminent risk of fracture without intervention. Thus, intervention 

thresholds for identifying a fraction of individuals with considerable fracture risk 

General Discussion 3



should not be the function of a fixed T-score. 13 Nevertheless, by considering simul-

taneously clinical risk factors for osteoporosis (such as age, family history, together 

with secondary causes of osteoporosis) in prediction models, we can increase the 

sensitivity of BMD. These clinical factors have been successfully incorporated in dif-

ferent algorithms and risk assessment tools such as the Garvan, 14 QFracture, 15 and 

FRAX 16 which have been shown to improve treatment decision-making. For instance, 

an individual with osteopenia lacks treatment indication by the BMD-value alone; yet, 

treatment will be indicated for the same individual if on top of the BMD measure-

ment, a history of fragility fracture or a very high risk based on the FRAX algorithm 

is present. 16 Nevertheless, there is room to improve further the existing fracture risk 

algorithms. One immense pitfall of the FRAX algorithm is the omission of falls history 

in the prediction model, even though its inclusion has been shown to enhance the 

predictive capacity of the model. 17 Further, current FRAX efforts are attempting to 

include muscle mass and function, as they are likely causally-related with fracture 

risk; 18 yet, muscle strength and function are also fall-related risk factors. 19

I also investigated whether sarcopenia augments the risk of fracture in osteopo-

rotic individuals, given that sarcopenia is considered analogous to osteoporosis, but 

then for muscle- instead of bone-mass loss. Indeed, some of my work showed that 

pre-sarcopenic and sarcopenic individuals have higher prevalence of non-vertebral 

fractures compared to the rest of our study population. However, these differences 

were notoriously driven by age and sex (Chapter 3.2). Moreover, the strength of 

the association between osteoporosis and prevalent fractures remained essentially 

unchanged in the presence of sarcopenia (Chapter 3.2). Current evidence shows that 

DXA- or bioimpedance-derived lean mass is of very limited value in the prediction 

of incident fractures independent of BMD. 20 In contrast, alternative methods for as-

sessing muscle mass, such as peripheral quantitative computed tomography (pQCT) 

or labelled creatinine dilution (D3-Creat) could provide valuable and/or more accu-

rate information regarding muscle health and its effects on fracture. As such pQCT 

measurements allow the assessment of fat infiltration in muscle, while D3-Creat 

constitutes an unbiased determination of muscle mass independent of total water 

content. Yet, including muscle mass in the FRAX algorithm is unlikely to provide added 

value, whereas omitting falls history may be detrimental to its prognostic value. It is 

worthwhile mentioning that instead of muscle mass, measures of muscle function, 

such as physical performance, may have an independent effect on fractures 21 that 

should be explored extensively in future efforts.

Beyond BMD: Measures of Bone Geometry and Microstructure
In older adults, a large fraction of fractures can occur in the presence of osteopenic and 

even normal BMD levels 2 indicating that either the threshold needs to be optimized, 
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or that other bone parameters besides BMD may have an important contribution to 

fracture risk. Bone strength, which is the main determinant of fracture risk, is char-

acterized by a variety of bone properties such as bone geometry, cortical thickness 

and porosity, trabecular bone morphology, and tissue mineralization density. 22 Under 

some assumptions, selected aspects of bone geometry and strength can be assessed 

on DXA scans with the use of hip strength analysis (HSA), like estimates of cortical 

thickness, cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), sec-

tion modulus (Z) and buckling ratio (BR). 23 The HSA approach is not free of limitations, 

assessing 3D aspects from a 2D projection. In contrast, 3D assessments of volumetric 

BMD and bone micro-architecture have recently gained momentum. Several non-

invasive low-radiation methods such as pQCT can estimate some aspects of bone 

micro-architecture. The pQCT method provides volumetric BMD and can distinguish 

between cortical and trabecular BMD, which may exert distinct impact on the risk of 

fracture. 24 High-resolution p-QCT (HR-pQCT) can also measure parameters of micro-

architecture (i.e., cortical porosity and trabecular number and connectivity), but these 

additional parameters remain highly correlated with trabecular and cortical BMD. In a 

set of approximately 560 individuals, my work showed that DXA-derived parameters 

of BMD (total body, femoral neck, and lumbar spine BMD) are moderately correlated 

with pQCT bone parameters at the tibia (trabecular density, cortical density and area) 

(Chapter 3.1). Interestingly, the DXA-derived areal BMD as compared to the pQCT cor-

tical and trabecular BMD showed stronger correlation with strength stress index (SSI) 

(Chapter 3.1); an important pQCT-based indicator of fracture risk. This, further un-

derscores the strength of DXA-derived BMD as a key fracture determinant. Trabecular 

microarchitecture can also be assessed from DXA images through the trabecular bone 

score (TBS). There is a growing body of evidence supporting the additive value of TBS 

in fracture risk prediction 25,26 i.e., TBS may hold additional clinical value, as a recent 

large scale meta-analysis reported that the TBS effect on major osteoporotic fractures 

is largely independent of BMD.27 While initially TBS was only measured at the lumbar 

spine, recent efforts have allowed expanding its assessment to other skeletal sites 

and X-ray based technologies.

Fragility Fractures and Osteoporosis Care Gap
In Europe, the treatment gap of osteoporosis, i.e. number of people who need to be 

treated but are not, ranges between 25-95%; 28 being the lowest in Spain and highest 

in Bulgaria. As there are two sides to every story, there are two major problems for 

the substantial treatment gap in the osteoporosis field i.e., poor treatment initiation 

and poor treatment adherence. For start, despite the guidelines and available treat-

ment options in clinical practice most patients suffering a fragility fracture do not 

receive medications to reduce the risk of future fracture in the year following the 
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fracture, nor are they evaluated for osteoporosis. For example, in the US Medicare 

population, up to 72% of women within 12 months of index fracture were untreated. 
29 Similarly, in a Canadian study, only 20% of patients who sustained a traumatic 

fracture (predominantly of the distal radius, proximal humerus, or proximal femur) 

were evaluated for osteoporosis and received adequate osteoporotic treatment at 

1-year follow-up. 30 Most importantly, this therapeutic gap has been shown to be par-

ticularly wide in the elderly people in whom the importance and impact of treatment 

is higher. 31 On the other hand, a significant proportion of the treated patients do not 

take osteoporosis medication at all and yet others do not receive properly prescribed 

medications. In the most recent global review (124 studies) the prevalence of medica-

tion adherence varied between 12 and 95%. 32 Further, persistence and adherence 

to treatment decline over time even in RCT. 33 Clearly, suboptimal persistence and/or 

adherence to osteoporosis medication can reduce the treatment benefits of detaining 

loss or gaining BMD and increase the rik of fractures. 34 This was recently quantified 

by a large meta-analysis showing that fracture risk may increase by approximately 

30% with both non-adherence and non-persistence to oral bisphosphonates. 35 

Yet another problem is early treatment cessation that can lead to reversal of the 

effect of medication on BMD and even on fracture prevention. This holds for most 

anti-resorption treatments but has been particularly observed after suspending de-

nosumab, a modern anti-resorptive compound mimicking the action of endogenous 

osteoprotegerin. Thus, current practice recommends switching to other osteoporosis 

treatment if denosumab is discontinued. 36 Overall, we should be viewing the future 

of our patients with osteoporosis with optimism, because we now have several drugs 

that can substantially reduce fracture incidence, by as much as 70% in the case of 

vertebral fractures and 30% in case of non-vertebral fractures. In addition, liaison 

services also have a promising impact on improving fracture prevention and decreas-

ing the treatment gap. Liaison service represents a coordinated system by which 

experienced health professionals (a nurse practitioner, physician assistant, nurse or 

other professionals) ensure that individuals who suffer a fracture receive appropriate 

diagnosis, treatment and support soon after. 37 Future focus needs to be placed on the 

successful implementation in clinical practice of strategies to improve the assessment 

of treatment indication, adherence and, when fractures are unavoidable, liaising with 

proper strategies directed at minimizing the risk of future fractures. Last but not least, 

the recent advances in the genomics of osteoporosis will bring us a step closer to 

precision medicine i.e., gene-based individualized assessment of fracture risk and 

osteoporosis personalized therapy (discussed below). 38
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Changing the Narrative of Calcium and Vitamin D Supplementation
The majority of individuals at increased fracture risk receive calcium and vitamin D 

supplementation as prevention treatment. However, there have been emerging evi-

dence from randomised controlled trials (RCT) showing that vitamin D supplementa-

tion alone or in combination with calcium does not reduce fracture incidence among 

community-dwelling older adults. 39,40 High dosages of vitamin D (>2000 IU/day) have 

also been ineffective and have even led to increased fracture risk mediated by poten-

tial increased propensity to fall. 41 Several aspects of my work included a Mendelian 

Randomisation (MR) approach (discussed below), which is analogous to RCT, allowing 

to infer causality between determinants and outcomes in a largely unconfounded set-

ting. Using such MR approach, I showed that genetic predisposition to higher levels 

of serum vitamin D are not causally associated with increased BMD or a decrease in 

fracture risk (Chapter 2.2.4). Similarly, using the MR approach employing as instru-

ment a Lactose intolerance genetic marker i.e., a proxy for (avoidance of) calcium 

intake, I showed that genetically determined increases in calcium levels have as well 

no effect on fracture risk. In subsequent recent work, we could confirm this conten-

tion using a genetic instrument of calcium serum levels (instead of calcium intake 

avoidance). 42 In both our studies, we assumed a linear effect of vitamin D or calcium 

on fracture risk. Future studies should assess possible threshold effects representing 

the true vitamin D deficiency state. The benefit of vitamin D in treating severe vitamin 

D deficiencies that lead to increased fracture risk and or severe bone malformations 

such osteomalacia and rickets is undisputable. Thus, supplementation is compulsory 

for individuals with severe low vitamin D or calcium levels, e.g., like institucionalized 

elderly individuals, while supplementation in individuals with adequate levels should 

be avoided. Similarly, children or adolescents with vitamin D deficiency may be at 

risk of not reaching maximum peak bone mass. 43,44 Moreover, vitamin D and calcium 

supplementation have been also related to adverse outcomes, such as falls 41 and 

increased risk of myocardial infarction. 45 Recenty it has been shown using the MR 

approach that the majority of the observational effects on vitamin D are due to the 

fact that the diseases or traits have causal effect on vitamin D contentrations and 

not other way around.46 Overall, the general practitioner, endocrinologist or the or-

thopaedic surgeon who will treat an individual at increased fracture risk should seek 

treatment alternatives in individuals with normal vitamin D and calcium levels, that 

have a greater likelihood of being effective.
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there is more to bone than meets the eye

Although bone seems to be a very static organ, the bone tissue itself is dynamic 

because of the constant remodelling resulting from osteoblast and osteoclast activ-

ity, resulting in a panoply of enzymes, proteins, and by-products that are released in 

the circulation. Moreover, bone is an important regulator of calcium and phosphate 

metabolism, acts as a storage for many minerals, and is involed in maintaining the 

acid-base balance (buffering metabolic acidosis). 47 All these metabolic functions 

have been extensively studied in the past decade. One bone-active factor that de-

mands further investigation is osteocalcin; which has been implicated in a variety 

of physiological processes, namely glucose homeostasis, 48 brain development, 49 

cognition, 50 and male fertility. 51 Although osteocalcin has been proposed to regulate 

bone formation, mice models have demonstrated very minor effects of osteocalcin on 

bone density and mineralization. 52 Interestingly, the extra-skeletal effects have been 

very prominent in mice such as increased adoposty, glucose intolerance and insulin 

resistance in oc -/- mice. 48,53 At the same time, there is an unmet need to translate the 

mice findings to humans given the potential health benefits of osteocalcin. Yet, before 

such clinical translation is made possible, we need to establish what is the active form 

of osteocalcin in humans. Osteocalcin exists in two forms in the circulation: carboxyl-

ated and undercarboxylated. The latter lacks γ-carboxylation at one or more sites. In 

mice models, the undercarboxylated osteocalin is considered to be the active form of 

the molecule. However, we are lacking information from human studies as currently 

the majority of studies have measured only total serum osteocalcin levels. In addition, 

osteocalcin levels have been shown to have a U shape across the life course (high-

est in early adulthood, lower in mid-life, and then high again in older adults). 54 We 

observed a stronge inverse association between osteocalcin BMD and BMI (Chapter 

2.1.3) which later we showed not to be causal (Chapter 2.2.2). Osteocalcin had a 

bidirectional causal association with femoral neck BMD; indicating that it can serve as 

a good marker of bone turover but it does not provied strong evidence if osteocalcin 

has a direct effects on bone. Overall, future studies examining the skeletal and extra 

skeletal-effects of osteocalcin should: i) assess both carboxylated and undercarboxyl-

ated osteocalcin; ii) evaluate longitudinal effects; and iii) estimate the effects across 

different age ranges.
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insights into the determinants of musculoskeletal 
health

The loss of bone and muscle with aging is bound to happen. However, the degree of 

bone weakening and rate of muscle loss, together with its clinical consequences are 

something we can modulate by identifying specific risk factors and subsequent inter-

ventions. Therefore, in this thesis, I examined both genetic (Chapter 2 and Chapter 4) 

and environmental factors (Chapter 2 and Chapter 3) that may affect musculoskeletal 

health and influence disease processes.

The role of environmental factors
The age-related loss of bone and lean mass, together with its function can be ag-

gravated by a variety of lifestyle factors affecting one or both tissues, such as physical 

activity and nutrient intake. Given that osteoporosis and sarcopenia share many modi-

fiable environmental factors, we can kill two birds with one stone. Importantly, the 

environment plays an essential role in bone and lean mass accrual and their mainte-

nance throughout life. For instance, failure to reach an optimal peak bone mass (PBM) 

before the age of 30 may substantially increase the risk of osteoporosis and fragility 

fractures later in life. 55 It has been estimated that a 10% increase in PBM would delay 

the onset of osteoporosis by an average of 13 years. 56 Moreover, the structural and 

biomechanical properties of the bone acquired during the first three decades of life 

are also related with increased fracture risk in older adults. 57 Therefore, aiming to 

optimize reaching a high PBM should be the first step towards improving bone health 

in adults and elderly people. The advances in the field of paediatric bone health over 

the recent years have brought many insights into the clinical determinates of PBM. 58 

Several important modifiable factors, such as nutrition, hormonal status, and physical 

activity, can influence bone acquisition in children. Children’s parents and caregivers 

i.e, paediatricians need to be well informed regarding all these factors in order to 

maximize PBM attainment. Then, after the age of 35 years, there is a gradual loss of 

bone and lean mass without any manifestation until an ominous clinical endpoint 

occurs, such as fracture. A multitude of clinical, lifestyle and environmental factors 

can accelerate the loss of bone and muscle mass. Increasing awareness about pre-

disposing risk factors and prevention strategies among the general population and 

the general practitioners, will have tremendous impact on the primary prevention of 

osteoporosis and sarcopenia. Similarly, educating the general population on proper 

nutrition (increased protein intake, avoidance of alcohol, antioxidant rich food) and/

or adequate physical activity will very likely improve the musculoskeletal health of 

young adults and later in their life as well. The age-related decline in lean mass could 

be easily reverted and even increased using well-structured and detailed exercise 
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regimes. However, only increasing lean mass is not sufficient; changes in mass need 

to be also followed by an increase in muscle strength and power as well. Recently, the 

National Institute on Aging (NIA) launched an exercise and physical activity campaign 

called Go4Life to encourage older people to be active in order to prevent osteoporosis, 

reduce falls and fracture risk among other chronic conditions. This program contains 

well-curated evidence-based exercises for increase of endurance, strength, balance, 

and flexibility. The exercises are easy to follow and are accommodated to individuals 

with specific chronic conditions. Overall, environmental factors have a large impact 

on musculoskeletal health and by intervening on them from a young age, we can suc-

cessfully delay/prevent the onset of osteoporosis and sarcopenia later in life. Notably, 

even in individuals with higher genetic predisposition for osteoporosis or sarcopenia, 

lifestyle and environmental modifications can reduce disease risk notably.

The role of genetic factors
Positive family history is an independent risk factor for many medical conditions, 

importantly among which fragility fractures. Unravelling the genetic underpinnings 

of fracture risk could considerably improve the diagnostic and risk stratification ac-

curacy. However, several challenges are impeding genetic discoveries underlying frac-

ture risk, such as: a) phenotypic and genotypic heterogeneity – a variety of factors and 

pathways can all lead to fracture alone or in combination; b) information bias – when 

fractures are collected retrospectively using a variety of questionnaires or lacking 

validation; c) time-to-event – fractures occur later in life and we need a consider-

able follow-up time to capture their occurrence; and d) case definition –majority of 

high-trauma fracture cases are considered to occur in individuals without a diagnosis 

of osteoporosis and in the presense of normal BMD. With regard to the latter, high-

trauma fractures have been systematically exluded from any observational studies 

or clinical trials. Nevertheless, hight-trauma fracture can also be associated with low 

BMD and increase the risk of future fracture in eldery people. 59 Some methods to 

overcome these limitations include increasing the discovery sample size and/or by 

using instead so-called “endophenotypes”. What can be a better endophenotype for 

osteoporosis and fracture risk than BMD? As discussed above, low BMD is a strong and 

well-established risk factor for fractures. Further, BMD is widely available as is used in 

clinical practice to diagnose osteoporosis. BMD also constitutes a very precise mea-

surement with stable standard deviations across devices and geographical regions 

allowing realiable comparisons between studies. Last but not least, BMD is a highly 

heritable trait picking up very well “true” bone biology, altogether representing an 

extremely good endophenotype. GWAS on BMD alone have yielded an outstanding 

amount of discoveries along the past decade identifying many variants pointing to 

genes involved in relevant bone pathways (mesenchymal stem cell differentiation 
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or WNT signalling among many others) but also novel unexplored ones (like onco-

genic pathways and melanogenesis) (reviewed in Chapter 2.2.1 and Chapter 4.1). 60,61 

Nevertheless, DXA-based areal BMD measurements hold limitations as they cannot 

provide information on volumetric BMD, trabecular or cortical density nor microarchi-

tecture. Thus, there might be other components to assess fracture risk beyond BMD 

that are yet to be discovered. Until today, there are no known genes affecting fracture 

risk independently of BMD. Nonetheless, I observed a moderate genetic correlation 

between risk of falling and fracture risk (Chapter 4.3) which can reflect that some 

genes that predispose people to fall may also increase fracture risk. While all known 

fracture loci are also BMD loci, we did not observe any genetic correlation between 

falls and BMD. This implies that low BMD and increased falls risk might have different 

biological mechanisms emerging towards the same endpoint i.e., fracture. Despite 

the null genetic correlation, falls and BMD might still hold shared influence on some 

comorbidities. For example, a variety of medications can increase the propensity to 

fall on one hand, while weakening our bones on the other hand (e.g. glucocortico-

steroids). Thus, depicting the genetic architecture of the medication-induced falls 

and/or medication-induced bone loss is a promising future step to understand the 

underlying biology of fracture risk. Finally, BMD is a necessary but not necessarily a 

sufficient factor leading to fracture. Fracture risk at the end will depend on bone mass, 

architecture, strength, and quality in relation to the response to forces applied to it.

Lean mass and handgrip strength can also be good endophenotypes to investigate 

the genetic landscape of sarcopenia, and risk of falling and fractures. However, genetic 

studies on muscle mass have lagged behind BMD discoveries, and only few GWASs 

have been conducted so far. In the first GWAS meta-analysis on lean mass, which 

was measured by DXA or bioimpedance (BIA) and adjusted for sex, age, height, and 

fat mass, only five loci incuding 2q36.4 (IRS1), 4q22.1 (HSD17B11), 5q14.2 (VCAN), 

15q25.2 (ADAMTSL3), and 16q12.2 (FTO) were identified despite a large sample size 

(n=80,652). 62 Although both DXA and BIA techniques show relatively high correlation, 
63 they still might be assessing different biological properties of lean mass. In a recent 

large-scale study from the UK Biobank (450,580 individuals), in total 561 loci were 

identified as associatied with BIA-derived appendicular lean mass explaining ~11% of 

the phenotypic variance. 64 Further investigations directed at establishing the differ-

ent yield in genetic discoveries between DXA and BIA assesments of lean means are 

warranted. Genetic variants have been also associated with measures of muscle func-

tion. For example, we performed the first GWAS on handgrip strength, using muscle 

strength as a marker of muscle performance, identifying 16 variants (POLD3, TGFA, 

ERP27, HOXB3, GLIS1, PEX14, MGMT, LRPPRC, SYT1, GBF1, KANSL1, SLC8A1, IGSF9B, 

ACTG1, DEC1, and HLA). 65 Recently, in much larger well-powered study settings (com-

prising over 330,000 individuals) the number of known loci associated with handgrip 
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strength surpassed 100 and showed an important role of the central nervous system 

in strength performance. 66 Overall, the past five years have been quite important for 

muscle research and I expect in the next five years for us to examine in more depth the 

biological role of all these novel discoveries using human-cells and animal models.

One gene, one disorder or one gene, multiple disorders?
Lean mass and BMD hold high phenotypic (~0.40)67 and genetic correlation (~0.50). 
68 The genetic correlation refers to the shared heritability between these traits and 

it can be an indication of the presence of genes that affect both BMD and lean mass 

variation i.e., pleiotropy. In Chapter 4.1, I reviewed the existing literature on GWAS 

studies for both traits and found several cross-phenotypic correlations. 61 Currently, 

in the NIHGR GWAS catalogue, around 44% of the reported genes are associated with 

two or more traits. 69 Recently, 341 loci were reported as pleiotropic across 42 traits; 70 

which is a large number among the tested diseases. In the next years, more GWAS will 

emerge and the number of shared loci is expected to increase accordingly. 

Pleiotropy can be classified as: a) genome-wide, b) regional, and c) single variant 

pleiotropy. Currently, there are a multitude of methods developed to assess pleiot-

ropy. They can be classified into univariate and multivariate. Univariate methods 

utilize summary statistics data of singe-trait GWAS, whereas, multivariate methods 

require individual level data. Similarly, pleiotropy can be assessed at genome-wide 

level using polygenic risk scores (PRSs) to test if variants associated with one trait/

disease explain a significant proportion of the variance of a different trait/disease. 

Moreover, genetic correlations have been widely used as an indicator of pleiotropy. 

Multivariate methods for assessing genetic correlation include tools such as GCTA71 

and BOLT-REML. 72 Nowadays, we can also estimate the genetic correlation between 

traits by simply using summary statistics as implemented in linkage disequilibrium 

score regression (LDSR or LDSC). 73 As described above, genetic correlation is only a 

general indication of pleiotropy between traits. Therefore, we can narrow the search 

to a specific region, i.e., regional pleiotropy. Univariate approaches for assessment of 

regional pleiotropy include pleiotropic region identification method (PRIMe) 74 and 

GWAS-pw, 70 whereas, multivariate approaches include canonical correlation analysis 

metaCCA 75 and mtSET 76 among others. Last but not least, a single point method for 

determining pleiotropy has been incorporated in many tools such as cross-phenotype 

meta-analysis (CPMA), 77 ASSET, 78 MultiMeta 79 and conditional false discovery rate 

(cFDR). 80 Recently, a new method has been developed named multi-trait analysis of 

GWAS (MTAG). 81 This method is a generalization of the inverse-variance weighted 

meta-analysis and provides adjusted effect estimates for all included traits taking 

into account the genetic correlation between them. All of the above methods and 

tools have been successfully reviewed and discussed elsewhere. 82,83,84 The majority 
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of GWAS data has been made publically available, facilitating the search of cross-

phenotype associations. Nowadays, browsing GWAS results has been facilitated with 

the development of the GWAS Atlas, which at the moment of writing the database 

contained 4,756 GWAS from 473 unique studies across 3,302 unique traits and 28 

domains. 85 On this platform, we can also obtain estimates of genetic correlation be-

tween multitudes of traits. Furthermore, we can also browse phenome-wide associa-

tion results (PheWAS). This approach is similar to GWAS but it relates a selected SNP 

with a multitude of traits i.e., the phenome scan. The musculoskeletal community is 

currently developing the Musculoskeletal Knowledge Portal (http://www.mskkp.org/) 

which constitutes a genomic data mining platform aimed at accelerating discoveries 

for musculoskeletal traits and diseases; enabling browsing, searching, and analysing 

human genetic and genomic information linked to functional assesments relevant to 

musculoskeletal biology. Importantly, this web-based tool is very well suited to study 

complex pleiotropic relationships, i.e., identifying antagonic effects across traits 

and diseases. For instance, some SREBF1 variants have shown to increase BMD and 

decrease lean mass. 68 Yet, it is important to remember that all the above statistical 

approaches only provide evidence of pleiotropy but they do not provide information 

on the underlying biological mechanisms, which need to be delineated by follow-up 

functional studies. Information on pleiotropic gene effects will have important clinical 

value especially in drug repurposing efforts or in situations where a gene-drug treat-

ment is beneficial for one trait but detrimental for another, i.e., pinpointing adverse 

effects.

clinical translation of GWAS discoveries

GWAS have helped us to gain insight into the genetic landscape of many traits and 

diseases that have had vast practical implications such as:

i.	P redicting individual risks of disease using genetic risk scores (GRS), which are 

simply defined as a sum of genetic variants associated with a specific trait/disease. 

The higher the number of deleterious alleles the higher the score. GRSs follow a 

normal distribution of disease risk implying that most individuals will have an aver-

age number of risk alleles, while at both ends of the distribution (left and right) 

there will be a cluster of individuals with very low or very high disease risk alleles. 

This is in principle a proof of concept that genetic information can be utilised in 

non-genetic disease risk prediction. Many successes and failures have followed the 

early stages of incorporating genetics into prediction models. Nowadays, GRSs have 

achieved great successes in relationship with many complex diseases such as dia-

betes, 86,87 coronary artery disease ,88 and depression.89 In addition, Khera et al. have 
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shown that genome-wide polygenic scores for complex diseases such as coronary 

artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and 

breast cancer can identify individuals with a risk equivalent to that of monogenic 

mutations. 87 Despite early discouraging results of GRSs in relationship with fracture 

risk (i.e. low prediction accuracy),90 drastic improvement in the prediction model-

ling have been achieved with novel genetic discoveries and improved statistical 

modelling 91 and I expect many more to follow. Currently, there is some scepticism 

regarding the clinical value of the GRS approach. Nevertheless, genetics forms part 

of a person’s disease profile and represents the earliest measurable disease risk 

factor; thus, I firmly believe a PRS can be quite informative by adding value over and 

above clinical risk factors. Besides identifying people at the highest risk categories, 

GRSs can also help in identifying people at risk for disease progression or complica-

tions.92,93 Genetics can contribute to improve treatment strategies by identifying 

people who will most benefit from treatment or are at higher risk of adverse effects. 
94 Importantly, given that genetic effects are stable across the life-course, we may be 

also able to predict the onset of disease decades before it occurs. On the other hand, 

low risk re-assurance is another important and often neglected use embedded in 

the PRS risk gradient; this can for example be used to avoid performing unnecessary 

(and usually expensive) diagnostic workup or interventions in people who do not 

need them. Altogether, I believe in no time genetic information will be incorporated 

in the clinical guidelines to prompt medical decision-making.

ii.	   Strengthen causal inference in observational research: Besides disease prediction 

and risk stratification the use of GRSs has been further expanded into linking traits 

and diseases to provide more robust evidence of causality. As we discussed above, 

RCTs are the golden standard in testing whether exposure is causal for a specific 

outcome. However, it is not always feasible to conduct an RCT and alternatives have 

been sought. As our genotypes are randomised by nature at conception (Mendel’s 

second law of independent assortment), the MR approach has been developed to 

derive more robust evidence of causal associations. I describe the MR approach in 

detail in Chapter 2.2.5. Shortly, MR uses genetic variants that are fixed after concep-

tion as instrumental variables for modifiable risk factors to derived un-confounded 

causal estimates. Several assumptions of MR need to be satisfied in order the 

estimates  to be valid (see Chapter 2.2.5 and Box 1 in the introduction section). 

Running an MR analysis prior to a RCT can be helpful to foresee adverse effects 

and or expected outcomes. One pitfall of the MR studies is that only test for linear 

relationships between the exposure and outcome.

iii.	   Dissect genetic association signals through deep phenotyping can help us gain 

additional insight into the underlying biology of complex traits and diseases. 

Performing deep phenotyping in extremely large cohort studies is impractical and 

14 Erasmus Medical Center Rotterdam



expensive. 95 Thus, observational studies have opted to do deep phenotyping in 

smaller sample sets selected based on the extremes of the phenotypic distribution 

of the trait of interest. However, selecting groups of interests from truncate trait dis-

tributions from measured factors in observational studies can be easily confounded 

and result in biased selections, that end up sacrificing power. We can follow a similar 

approach but then leveraging genetic information, which, as we discussed above, 

should be un-confounded under the principle of Mendelian randomization. This ap-

proach, referred to as Recall by genotype (RbG), 95 is defined as a prospective recruit 

of individuals with extremely low and high genetic predisposition for a specific trait 

or disease. The efficacy of the design will depend on the trait under investigation, 

sample size, the study design, how the variants were selected, and unbalanced loss 

to follow-up by genotype. Thus, we should carefully assess all these factors while 

framing our RBG study.

iv.	   Reveal potential drug targets: GWAS studies have been successful in rediscovering 

known drug targets and have underlined potential novel drug targets. Up to 2,205 

of the 20,300 protein-coding genes annotated in Ensemble version 73 have been 

drugged or are druggable; 96 mapping GWAS findings to these drugggable proteins 

can facilitate drug target identification in relation to a specific trait of interest. Se-

lecting genetically supported drug targets could double the success rate in clinical 

development. 97 Further, genomics can facilitate pinpointing medications subjet to 

drug repurposing, i.e., a compound that has already being subject to the long-lasting 

and very expensive process of approval can be identified as indicated for another 

indication, distinct but equally (or more) effective than the original purpose for 

which it was developed. 98

practical limitations of GWAS of musculoskeletal 
traits and beyond

“But, alas, that which glitters in not always gold”

Despite large successes in the past decades, there are still several limitations to 

GWAS, that we need to acknowledge related to the trait under investigation or the 

discoveries:

i.	 Trait heterogeneity: Phenotypic misclassification is a problem in many case-control 

studies that can reduce the power to detect association. 99,100 It has been suggested 

that heterogeneity of 50% requires three times larger sample size as compared to 

a scenario of no heterogeneity. 101 Heterogeneity may also affect the heritability 

estimates and the trait variance explained by genetic variants. In addition, hetero-

geneity can lead to an underestimation of the effect estimates identified by GWAS. 

General Discussion 15



Heterogeneity is common in the association analysis of complex traits, and to reduce 

it the two main approaches consist of either a) selecting homogeneous subgroups 

of the study population in the analysis (sacrificing power); or b) increase sample 

size (typically at expense of phenotype definition). In our studies, both falling risk 

and fracture risk constitute highly heterogeneous traits. Instead of doing sub-group 

analysis across homogeneous groups, we conducted our studies in extremely pow-

erful study settings that helped overcome the high heterogeneity of these two traits 

and provided adequate power to detect true GWAS signals.

ii.	  Tagging true causal variants: The large-scale discoveries have made it difficult 

for us to keep up the transition from GWAS to function. In order to establish the 

function, we need to delineate first the right causal genes, a path that has not been 

well-paved in the past but which is now critical to the present. Tagging the underly-

ing true causal variants has been difficult due to the strong LD existing between 

the most significant disease-associated variant and the co-inherited variants. In 

addition, a large proportion (>80%) of the genome-wide significant (GWS) variants 

are located in non-protein-coding regions; making the follow-up analysis even more 

difficult given the ill-defined regulatory regions of genes. In addition, the relevance 

of function is not always clear with respect to target tissues. Currently, the search 

for causal genes involves creating credible sets of SNPs using Bayesian approaches, 

fine-mapping these sets to functional elements such as eQTLs facilitated by the 

Encyclopedia of DNA Elements (ENCODE) project, 102 the NIH Roadmap Epigenomics 

Consortium, 103 the FANTOM5 project, 104 among others, that altogether encompass 

several hundred human cell types and tissues created to facilitate the (epi)genomic 

annotations. The eQTL approach has been fruitful for many traits, however, given the 

lack of bone and muscle tissues in publicly available databases, not much progress 

has been made in relation to musculoskeletal outcomes. Therefore, creating bone- 

or muscle-specific eQTL resources can facilitate the post-GWAS analyses, providing 

more insight into the disease processes underlying osteoporosis and sarcopenia. 

While eQTLs can be informative, they are quite ubiquitous (unespecific) and con-

stitute only a small piece of the biological puzzle. Thus, conclusions regarding 

causality of GWAS-identified variants should not be based solely on one level of 

evidence. Combining evidence from DNA methylation (mQTLs), DNase hypersensi-

tivity (dsQTLs), TF binding (bQTLs) and histone modification marks associated with 

regulatory elements will increase the degree of evidence for functional implication 

of the candidate causal variants. 105 In Chapter 2.2.1, we discuss a comprehensive 

target gene identification pipeline for functional testing we developed in Morris 

et al.106 to prioritize genes for heel BMD associated loci. The following steps are 

embedded in the pipeline: (a) identifying genes most proximal to the fine-mapped 

SNPs; b) identifying genes containing fine-mapped SNPs overlapping their gene 
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region; (c) determine genes containing fine-mapped SNPs coding variants; (d) assess 

genes identified to be in 3D contact with fine-mapped SNPs in human osteoblasts 

or osteocytes through high-throughput chromatin conformation capture (Hi-C) 

experiments; (e) establishing the closest gene to fine-mapped SNPs also mapping 

to ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) peaks 

in SaOS-2 (Sarcoma osteogenic) cells; and (f) verify genes within 100 kbp of fine-

mapped SNPs. Overall, combining and integrating multiple functional annotation 

tools will increase the likelihood for identifying the true causal gene.

iii.	  Analytical constraints: To date DXA images have been used to measure areal BMD, 

TBS, and hip shape. However, there are many additional features in the images that 

can provide valuable information that may improve fracture prediction. Recent 

advances in medical image analysis aided by various artificial intelligence (AI) ap-

proaches, can help to establish and derive patterns from the medical images that 

can discriminate between groups, such as images from individuals with or without 

a certain disease. Machine learning and deep learning are the two most trending 

AI approaches in medical image analyses although they differ in their capabilities 

and implications. Machine learning deals with simpler algorithms and operations 

and it typically requires guidance i.e., structured/labelled data. On the other hand, 

deep learning is a subset of machine learning, for which we don’t really need a 

structured/labelled data (unsupervised). In deep learning between the input (what 

we add) and output layer (what we get) there are multiple hidden layers so-called 

artificial neural networks, which will do all the work for us; each hidden layer will 

define a specific feature of the image that will pass it on the next layer and so on 

until a “decision” is made. Deep learning is highly accurate in the presence of a large 

amount of data at the expense of very large computational power. Both approaches 

require numerous data training sessions in order to learn enough to provide reliable 

and accurate results. Overall, “machine learning makes informed decisions based on 

what it has learned based on the features we define, whereas, deep learning creates 

a network that can learn and make an intelligent decision based on the features it 

creates on its own”. 107 Such artificial intelligence approaches are not confined to 

the analysis of phenotypes, but are also emerging as viable alternatives to model 

the complexity of genomic data; serving as data reduction approaches that do not 

require sacrificing information while maximizing the value of information hidden or 

awaiting interpretation across multiple layers of Big Data i.e., multi-omics integra-

tion.

iv.	  Generalizability and health disparities: Population stratification, a state where 

sub-populations are distinguishable by observed genotypes and differences in 

phenotype distribution, have been shown to lead to false positive or negative as-

sociations between a genotype and a trait. 108 In order to minimise this effect, GWA 
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studies in the past have focused on running analysis in ethnically homogeneous 

groups, e.g. European or Asian ancestry only. While effective for their original 

purpose, this has led to over-representation of participants of European ancestry in 

GWAS research which account for up to 80% of all GWAS samples. 109 This is quite 

relevant for clinical practice as information arising from a single ancestral group 

may not be applicable for the other ancestral groups and can affect the accuracy 

of the genetic prediction models across different populations. 109,110 For example, 

pathogenic variants associated with hypertrophic cardiomyopathy in the American 

white population have been shown to be benign for the American African ancestry 

population what has led to misclassification of benign variants as pathogenic in 

this population in clinical practice. 111 Overall, the predictive ability of European 

ancestry-derived PRS is lower in non-European samples for certain diseases; 110 

particularly for African samples where the linkage disequilibrium (LD) structure is 

highly fragmented (reduced LD and smaller haplotypes) compared to Europeans 

and thus, the true causal variants would be less likely captured. European derived 

PRSs are approximately one-third as informative for African individuals, as they 

are for European individuals. 110 These discrepancies can be the consequence of 

several factors, such as a difference in allele frequencies, LD and dissimilar genetic 

architecture (derived from differing environmental influences) across populations. 

This represents major ethical and scientific challenges surrounding clinical transla-

tion and, at present, the most critical limitation to genetics in precision medicine. 
109 Introducing diversity in genetic studies has been a top priority of the research 

community in the past few years. Studies including non-European populations are 

expected to uncover novel genotype-phenotype associations that can boost the 

predictive value of PRS in clinical practice. Last but not least, it is very important to 

mention that the abovementioned challenges are not applicable for all traits and 

diseases.

what does the future hold for genetics?

Multiple efforts to date have made significant contribution to the understanding of 

the genetic architecture of the musculoskeletal system. The term genetic architecture 

refers to the genetic factors responsible for the heritable phenotypic variation of 

any trait or disease; 112 succinctly defined by the number of genetic loci affecting a 

trait, their effect sizes and frequencies, and their interactions with other genes or 

environmental factors. 113 Establishing the genetic architecture of a trait or disease 

is crucial as it will provide the insight needed to choose study populations, study 

designs and technological approaches best suited for the successful identification of 
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underlying gene variants. In a perfect world, a scenario with accurate phenotyping, 

comprehensive scrutiny of genomic variation and sufficiently powered study popula-

tions will fully unveil the genetic architecture of trait or dieases. 114 As we are not 

there yet, there is still lot of work to be done. For start, the era of Big Data has led to 

remarkable breakthroughs in the field of genomics and will continue to do so with 

ever increasing sample size of GWAS and other types of genetic and non-genetic 

studies emerging in the upcoming years. Eventually, we will reach such large sample 

sizes that no novel loci will remain to be discovered, filling-in the knowledge gaps 

in the genetic architecture of many traits and diseases. Currently, in the bone field, 

the maximum sample size we have reached is half a million individuals with GWS 

SNPs explaining up to  20% of the variance of estimated heel BMD. Henceforth, form-

ing new large-scale biobanks or combing efforts across different existing biobanks 

such as the UKBB, 23andMe and the Million Veterans Program (MVP) will further 

push the boundaries of our knowledge in the complex landscape of osteoporosis and 

sarcopenia. Moreover, there is also an ongoing effort to collect data across the world 

and create a global public genome, health and trait database initiated by The Global 

Network of Personal Genome Projects. 115,116,117 Nevertheless, a cautious interpreta-

tion of results from the large biobanks may be needed as they can be susceptible to 

selection bias and may not be representative for all groups of people. For instance, in 

the UKBB only 5% of the total invited individuals (9 million) have responded and are 

part of the study and this may lead to selection bias. 118 This has been recently evi-

denced by the identification of numerous artefactual associations with sex across the 

autosomes, appearing as result from differential participant response across sexes. 
119 Alongside sample size increments, the momentum Big Data is bringing can be also 

attributed to the rise of affordable NGS technologies, for targeted sequencing whole-

exome sequencing (WES), whole-genome sequencing (WGS). Not long ago, it would 

take years to sequence the whole genome (all 3 billion base pairs) at a very high cost, 

while nowadays, we can do it within a single day for less than 1,000 Euros. However, 

information about its applicability in clinical settings and the broader population is 

yet to be determined. Recently a small pilot study was set up in ordered to determine 

the risk and benefits of integrating WGS into primary care. 120 Nine primary care physi-

cians (PCPs) and 100 of their healthy patients were enrolled in this study. The patients 

later were randomized into receiving a family history report alone or in combination 

with an interpreted WGS report. Overall, one out of five health patients that were se-

quenced had previously unrecognized rare variants with potential risk for Mendelian 

disease, whereas, one out of 25 had clinically confirmed abnormalities that prompted 

clinical actions that would have not been taken without genome sequencing. 120 In the 

bone field, combining WGS and imputed GWAS data has yielded several rare variants 

(MAF<0.05) in relationship with BMD and fracture risk. 121,122,123 While 15 years ago 
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it was unimaginable to genotype a few hundred SNPs in a larger number of people, 

currently the same applies for performing WGS. The costs of WGS are expected to fall 

further with time, actually now making the costs of data storage the bottle neck for 

even more affordable costs. Nevertheless, I expect WGS to be embedded in the future 

of genetics and believe it will definitely transform personalized medicine by detect-

ing ultra-rare and individual-specific genetic variations which play a role on disease. 

Although, current imputation methods provide reliable estimates and approximate 

the power from WGS to assess less-frequent and even rare variants, ultra-rare variants 

with large effects and unmeasurable clinical implications cannot be imputed as they 

lack LD. Rare variants with MAF<0.01 and low LD metrics can account for up to 40% 

of the phenotypic variance for height and can only be reliably detected using WGS. 
124 Such increase in variance explained can substantially improve the GRSs prediction 

accuracy for many complex traits. 124 Another benefit of WGS is that we can study the 

burden of rare variants across different functional elements that cannot be assessed 

with ordinary GWAS. Large biobanks with genotyping arrays in combination with 

WGS will be important for gene discovery and or gene predictions in the following 

years. With limitations in mind, an alternative to WGS in the clinic, which can be both 

beneficial and cost-effective is the use of genotyping arrays. While rare variants not 

sitting on the array will be missed, fast and cheap (down to <30 euros per DNA sample) 

screens can be made on patients for a large number of selected DNA variations. This is 

the core goal of the Genotyping on ALL patients (GOALL) project lead by an excellent 

team of researchers’ part of Erasmus MC. The vision of this project is that all patients 

that come into Erasmus MC be genotyped in order to use this information to improve 

their diagnosis and treatment.

Next, there is also a scientific wave moving toward the multi-omics approach. 

However, as compared to GWAS, the other -omics approaches, such as epigenomics 

or microbiomics have yielded less findings due to several factors such as lack of trait-

specific tissues, large costs and/or low power. Specific to the musculoskeletal field, 

we can expect that changes in blood methylation can be a good proxy of methyla-

tion status of bone considering that osteoclasts and monocyte/macrophages share 

the same stem cell precursors. However, in our large-scale EWAS study (Nmax=5,515) 

we observed at most small effects of methylation changes in whole blood on BMD. 
125 In contrast, DNA methylation studies (Nmax=84) using bone biopsies have shown 

a significant difference in methylation levels between healthy and osteoporotic 

women. 126 Future well-powered efforts performing targeted EWAS of specific blood 

cell types with clear role in bone biology or in bone cells may be more informative 

of the epigenetic changes occurring in the bone tissue. On yet another -omic layer, 

there are several ongoing efforts seeking to characterize the association of the gut 

microbiome with different musculoskeletal outcomes. It has been suggested that the 
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gut microbiome can affect bone health by alterations in the immune system leading 

to defected osteoclasts activity. 127 On the other hand, oral probiotics, commercially 

prepared substances of living microorganisms with positive health benefits, have 

been associated with increased trabecular bone volume in mice and reduced bone 

loss. Impressively, similar effects have been observed in postmenopausal women. 128 

Assesing the mice findings in humans can provide additional understanding of disease 

mechanisms.

personalized medicine: the future is now

My research is a small contribution to a larger cause, i.e., genomic medicine. In the 

following decades, we will successfully integrate genomic and clinical data to support 

clinical decision-making at all three levels of musculoskeletal disease prevention i.e., 

primary, secondary and tertiary. Genetic testing before birth or at any time during a 

person’s life will be integrated into the existing clinical workflow and will improve the 

identification of people at risk of osteoporosis, sarcopenia and fracture risk (primary 

care) by aiding existing clinical algorithms. Next, genomics will drastically improve 

the diagnostic accuracy and therapeutic efficacy for many musculoskeletal outcomes 

(secondary care). Furthermore, genetics will also help to identify individuals with 

highest risk of disease progression and/or of severe complications (tertiary care). 

Most importantly, the diagnosis and treatment will be tailored for each individual 

patient based on his/hers genetic makeup. However, genetics will not be the ultimate 

element of personalized medicine. In the long run, information from the other omics 

fields such as epigenomics, transcriptomics, proteomics and metabolomics will also 

find their place in personalized medicine. This will result in a large influx of data that 

we would not be able to handle on our own, but there is no need to worry, as artificial 

intelligence has emerged to stay. Summa summarum, incorporating genetic informa-

tion into disease risk prediction and prevention will be a big step for one person and 

a giant leap for personalized medicine.
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