

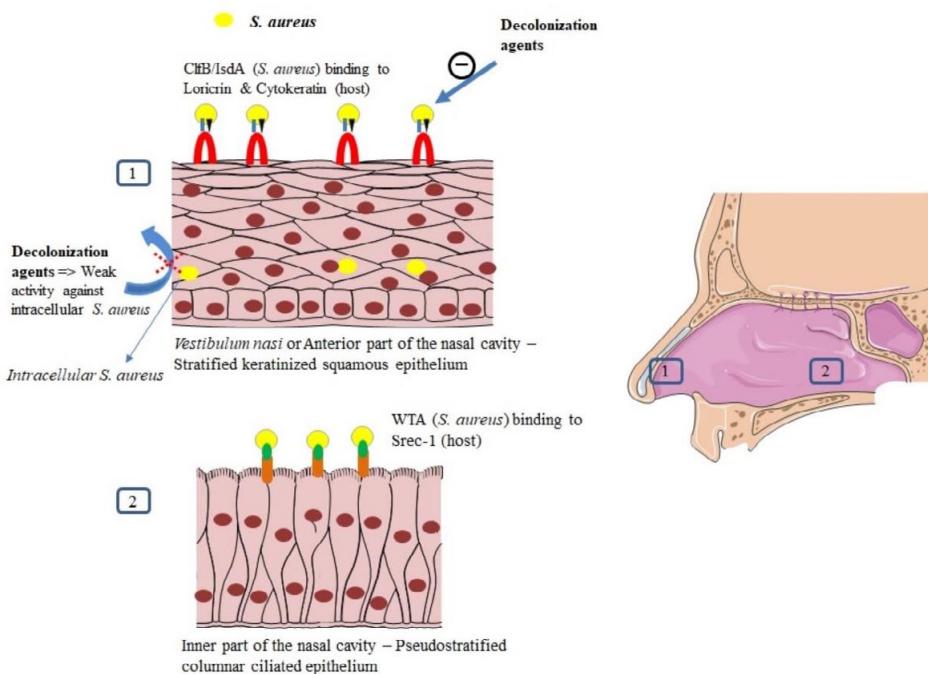
General introduction

GENERAL INTRODUCTION

***Staphylococcus aureus* colonization and carriage**

Scottish surgeon Sir Alexander Ogston discovered staphylococcus in 1881 as a cause of wound infection. The nomenclature was derived from his microscopic observation of grape-like clusters (in Greek: *staphyle*) (1). In 1884, *Staphylococcus aureus* (*S. aureus*), synonymous with 'golden staph' because of its golden appearance on agar plates, was first isolated from human pleural fluid by Anton Rosenbach (2). *S. aureus* is capable of colonizing human skin and mucosa (3). The predominant niche of *S. aureus* is the anterior nares, and 20-30% of humans are colonized with this bacterium (4). Generally, the nasal microbiome is unique per individual and it may be influenced by health status. It is composed of different bacterial species, of which the *Staphylococcus* genus is the most abundant, besides the genera *Corynebacterium* and *Propionibacterium* (5). The chance of becoming colonized with *S. aureus* could also depend on the composition of the local microbiome. Frank et al. studied the influence of different bacterial species on nasal *S. aureus* colonization and they found that *Staphylococcus epidermidis* (*S. epidermidis*) has a negative influence on *S. aureus* nasal colonization (5, 6). *S. aureus* colonization extends beyond only the nose; other carriage locations are the pharynx, axilla, inguinal area, vagina and perineum (7). Traditionally, there are three patterns of nasal *S. aureus* carriage described: persistent-, intermittent- or non-carriage (4). Yet, during the years there have been many debates on how to classify the different *S. aureus* carriage patterns, as intermittent carriage was considered equal to non-carriage, in view of the shared characteristics (8). Additionally, even several definitions for persistent carriage are described. Nouwen et al. proposed the definition for persistent carriage as carriage with 10^3 or more colony forming units (CFU) of *S. aureus* in two consecutive cultures with a one-week interval (9). Other interpretations for persistent carriage were: all swabs in one individual needed to be cultured positive for *S. aureus*, independent of the number (10), or the use of a cut-off value of the number of positive swabs per total number of swabs was used (4). Finally, an interesting phenomenon is observed in the group of persistent nasal *S. aureus* carriers. In a human inoculation experiment, in which a mixture of different *S. aureus* strains including the individuals' endogenous strain was used, was observed that persistent carriers select their own strain back and harbor it over years (11).

The literature describes an association between *S. aureus* carriage and risks of developing an infection with the bacterium in populations that are prone to carriage. It was shown that persistent *S. aureus* carriers have a higher risk of developing infections than other carriers (12-14). In addition, some patient populations are because of their underlying disease more at risk for nasal *S. aureus* colonization. For instance, both dialysis-dependent diabetic patients and human immunodeficiency virus (HIV)-infected patients have a higher prevalence. Patients with atopic dermatitis and furunculosis also show increased carriage rates. Regarding autoimmune diseases, there is a relation between increased *S. aureus* carriage in


patients suffering from rheumatoid arthritis and granulomatosis with polyangiitis (5). Until now, there is no clear explanation why these populations are at risk for carriage. As far as we know, genetic factors do not play a role in whether or not humans become *S. aureus* carriers (15, 16).

So why is a subgroup of healthy and patient populations susceptible to *S. aureus* colonization, while others are non-receptive? A lot of research has been carried out in humans and several animal models, to understand *S. aureus* (de)colonization/carriage, which has certainly resolved some questions. First, the anterior nares or the *vestibulum nasi* is built up out of stratified, keratinized, non-ciliated squamous epithelium and ciliated columnar epithelium (17, 18). *S. aureus* recognizes both as habitats, after which colonization follows in susceptible individuals (19, 20). Multiple mechanisms are described that play a role in bacterial binding to the nasal tissue. The keratinocytes in the cornified layer of the epidermis produce and express several proteins, e.g. loricrin and cytokeratin 10 (K10), to which some staphylococcal proteins are known to adhere. Examples are the surface proteins iron-regulated surface determinant A (isdA) and clumping factor B (clfB) (20-25). Recently, it has been shown that loricrin is the most important target for clfB to favor nasal colonization in mice. In a murine model, mice were inoculated with a *S. aureus* strain harboring clfB, whereupon in loricrin-deficient mice colonization mostly failed (20).

To help making colonization more successful, the bacterium needs to express locally many adhesive molecules that strengthen the pathogen-host interplay (26). In a human nasal inoculation experiment, Wertheim et al. showed that clfB plays an important role in colonization, as the inoculated clfB⁺ *S. aureus* strain survived longer in comparison to the mutant strain. The study also showed the *in vitro* interaction of clfB with cytokeratin 10, which was mentioned earlier (22). Furthermore, wall teichoic acid (wta), a cell surface glycopolymer, was considered essential in colonization in a cotton rat model, as wta mutants were unable to adhere to nasal cells (27). In addition, the interaction between wta and SREC-1 (a member of the F-type scavenger receptor), a receptor that is expressed on epithelial cells in the nasal cavity of humans and cotton rats, positively influenced colonization (19). In a recent review on *S. aureus* colonization, a few other potential *S. aureus*-host ligands are mentioned, e.g. isdA-fibrinogen/fibronectin and sdrD-desmoglein 1 (5). Finally, Hanssen et al. described the intracellular localization of *S. aureus* in nasal tissue after biopsy in healthy individuals (28), of which we might speculate that the bacterium is capable of hiding from the immune system but also from antibiotic therapy. In Figure 1, a schematic overview is presented with the different mechanisms. It depicts the most important bacterial components involved in the process of nasal colonization.

As a counterpart of colonization studies, multiple decolonization strategies are studied in different animal models with mice and cotton rats. These experiments are often laborious because effects of decolonization cannot be monitored longitudinally, since separate groups of animals are needed at the different measuring points and animals have to be sacrificed

Figure 1. Interactions in *S. aureus* nasal colonization. Figure adapted from Sakr et al. (5)

at pre-specified time intervals to study the bacterial load (29-31). Decolonization studies are as important as colonization studies, because they enhance knowledge on how to eradicate carriage to lower infection rates, especially in populations at risk. In spite of all the research that has been performed on nasal (de)colonization in animals, probably the best way to study this is by using the human inoculation model (8, 11, 22, 32). Although, for ethical reasons, we are frequently dependent on the use of alternative animal models that could be helpful, a properly human-like animal model is lacking. As rhesus macaques have recently been added to the list of natural hosts of *S. aureus* (33), possibly these animals could be the answer.

Besides the possibility of using animal or human models, less invasive *in vitro* experiments may yield information on which bacterial components are involved in colonization and/or infection. Several studies have been published on induction of the humoral immune response by *S. aureus* colonization, infection, and on whether these antibodies were protective. In general, the *S. aureus* humoral immunoglobulin IgG antibody responses are studied extensively. In persistent *S. aureus* carriers, the serum levels of IgA and IgG directed to many staphylococcal proteins have been reported to be higher than they are in non-carriers (8). In mice models, different IgG responses indicate that there are numerous *S. aureus* antigens that are of importance and could be targeted, for example, in future vaccine studies (34, 35). In addition, in human *S. aureus* carriers versus non-carriers, IgG responses to toxic shock

syndrome toxin 1 (tsst-1), staphylococcal enterotoxin A (sea), clumping factor A (clfA) and clfB may predict the risk and outcome of *S. aureus* infections (36, 37).

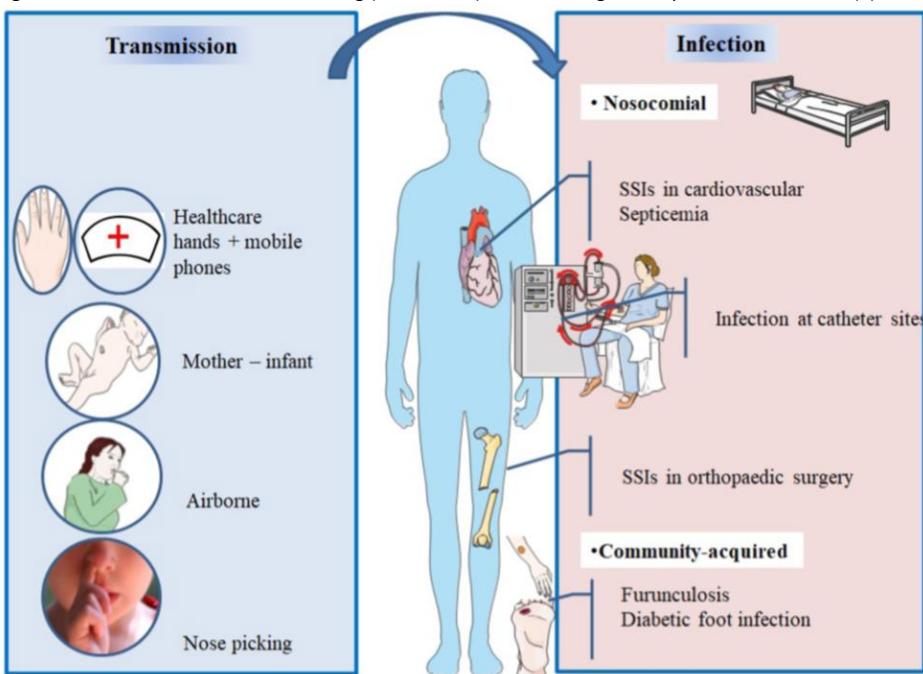
***S. aureus*: the emerging pathogen causing (nosocomial) infections**

The asymptomatic presence of *S. aureus* and its behavior of mostly acting as a commensal bacterium, does not imply that it is not pathogenic. *S. aureus* causes infections that vary from skin and soft tissue infections like impetigo and furunculosis, to more severe infections, such as pneumonia and osteomyelitis (38). *S. aureus* is an important causative microorganism in surgical site infections, especially in orthopedic and cardiac procedures (5). Furthermore, *S. aureus* is common in bloodstream infections (39) and they are associated with endocarditis and prosthetic device infections (40, 41).

S. aureus bacteremia is also common in very low birth weight (VLBW) infants, which makes this bacterial species one of the most important pathogens in neonatal intensive care units (NICU) (42-44). A significant risk factor for *S. aureus* bacteremia in VLBW infants is the presence of intravascular catheters, which are frequently required (45-47). All-cause mortality among neonates suffering from *S. aureus* bacteremia varies between 10 and 20% (46, 48). Yet, *S. aureus* is a well-established nosocomial pathogen that also causes multiple other types of neonatal infections (49, 50).

***S. aureus* treatment and outbreaks**

Traditionally penicillins, especially methicillin, was the first-choice antibiotic for infections with this bacterium. Unfortunately, the first detection of methicillin-resistant *S. aureus* (MRSA) occurred rapidly after the introduction of methicillin (51). Since the 1960s, MRSA-related infections have been a problem in hospitals worldwide. Nowadays, in some communities, the emergence of (new) clones of MRSA has also occurred in the community among individuals who were not in contact with healthcare (52). The group of glycopeptides is one of the few groups of antibiotics that are left to treat MRSA-related infections (53).


In the Netherlands, the prevalence of MRSA at hospital admission is very low, namely 0.13% between 2010-2017 (54). Due to a Search and Destroy policy (S&D), we are able to keep these numbers low. In Europe, including the Netherlands, for years there has been an increased incidence of carriage of a livestock-associated (LA)-MRSA. People in direct contact with livestock, such as farmers and veterinarians, are at risk of becoming a LA-MRSA carrier. The majority of these LA-MRSA cases is caused by ST398 (55). It was reported that humans, who temporarily are in close contact with livestock, easily acquire LA-MRSA ST398, but also shed the strain in less than one day (56). Furthermore, the nosocomial transmission of LA-MRSA ST398 was 72% less likely than with non-ST398 MRSA strains (57). At this moment, there is no data concerning the intrinsic capacity of ST398 to colonize the human nose.

Data on outbreaks with methicillin-susceptible *S. aureus* (MSSA) in adults is missing, as these outbreaks remain undetected. Yet, Price et al. showed that patients on an adult

intensive care unit got colonized and infected with genetically identical *S. aureus* strains transmitted via patients, the environment and healthcare workers (HCWs). Whole-genome sequencing (WGS), the most discriminatory typing method, was used to prove *S. aureus* transmission (58).

Neonates, with their immature microbiome, low gestational age and birth weight, and the immaturity of their organ systems, are prone to developing healthcare-associated infections (HAIs) (59). NICU outbreaks of MRSA and MSSA are frequently described and different typing techniques are used to show the genetic relatedness of the strains (60-67). As there is no direct patient-to-patient contact on a NICU, transmission via the hands of HCWs seems questionable. Studies are published in which HCWs are the source of *S. aureus* infections in neonates, resulting in outbreaks (65, 66). Risk factors for nosocomial transmission on the NICU are, besides the environment, overcrowding of patients and understaffing (58, 68, 69). Figure 2 shows the transmission of *S. aureus* causing (nosocomial) infections.

Figure 2. Transmission of *S. aureus* causing (nosocomial) infections. Figure adapted from Sakr et al. (5)

AIM AND OUTLINE OF THE THESIS

The primary aim of this thesis was to gain more insights in the colonizing capacity of *S. aureus*. For this purpose, we developed a novel experimental decolonization and carriage

model in rhesus macaques (*Macaca mulatta*), and we performed an artificial human inoculation study.

The secondary aim of this thesis was to investigate, by using whole-genome sequencing, whether nosocomial acquisition of *S. aureus* via healthcare workers occurred in neonates admitted to a neonatal intensive care unit. By determining the genetic makeup of neonatal bloodstream isolates, transmission could be detected and presence of specific virulence genes might possibly explain the invasiveness.

In this thesis we explored the possibility of developing an experimental decolonization and inoculation procedure in rhesus macaques, as a human-like animal model is still lacking (**Chapter 2.1**). As data concerning the intrinsic capacity of *S. aureus* ST398 to colonize the human nose are not available, an artificial human inoculation experiment was performed with a mixture of a bovine methicillin-susceptible *S. aureus* ST398 (CC398) strain and a methicillin-susceptible *S. aureus* ST931 (CC8) of human origin. Over a period of 21 days, we determined their ability to survive in the anterior nares of healthy volunteers (**Chapter 2.2**). In **Chapter 3.1**, we explored whether healthcare workers could possibly be involved in the *S. aureus* transmission to neonates on a neonatal intensive care unit by using whole-genome sequencing. Finally, we studied the transmission and genetic makeup of neonatal bloodstream isolates by using whole-genome sequencing in **Chapter 3.2**, to explore whether these data support the frequent occurrence of neonatal *S. aureus* bacteremia.

REFERENCES

1. Ogston A. Micrococcus Poisoning. *J Anat Physiol*. 1882;17(Pt 1):24-58.
2. Cowan ST, Shaw C, Williams RE. Type strain for *Staphylococcus aureus* Rosenbach. *J Gen Microbiol*. 1954;10(1):174-6.
3. Williams RE. Healthy carriage of *Staphylococcus aureus*: its prevalence and importance. *Bacteriol Rev*. 1963;27:56-71.
4. Eriksen NH, Espersen F, Rosdahl VT, Jensen K. Carriage of *Staphylococcus aureus* among 104 healthy persons during a 19-month period. *Epidemiol Infect*. 1995;115(1):51-60.
5. Sahr A, Bregeon F, Mege JL, Rolain JM, Blin O. *Staphylococcus aureus* Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. *Front Microbiol*. 2018;9:2419.
6. Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. The human nasal microbiota and *Staphylococcus aureus* carriage. *PLoS One*. 2010;5(5):e10598.
7. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in *Staphylococcus aureus* infections. *Lancet Infect Dis*. 2005;5(12):751-62.
8. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of *Staphylococcus aureus* nasal carriage types. *J Infect Dis*. 2009;199(12):1820-6.
9. Nouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, van Belkum A, et al. Predicting the *Staphylococcus aureus* nasal carrier state: derivation and validation of a "culture rule". *Clin Infect Dis*. 2004;39(6):806-11.
10. Muthukrishnan G, Lamers RP, Ellis A, Paramanandam V, Persaud AB, Tafur S, et al. Longitudinal genetic analyses of *Staphylococcus aureus* nasal carriage dynamics in a diverse population. *BMC Infect Dis*. 2013;13:221.
11. Nouwen J, Boelens H, van Belkum A, Verbrugh H. Human factor in *Staphylococcus aureus* nasal carriage. *Infect Immun*. 2004;72(11):6685-8.
12. Bode LG, Kluytmans JA, Wertheim HF, Bogaers D, Vandebroucke-Grauls CM, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of *Staphylococcus aureus*. *N Engl J Med*. 2010;362(1):9-17.
13. Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of *Staphylococcus aureus*: epidemiology, underlying mechanisms, and associated risks. *Clin Microbiol Rev*. 1997;10(3):505-20.
14. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial *Staphylococcus aureus* bacteraemia in nasal carriers versus non-carriers. *Lancet*. 2004;364(9435):703-5.
15. Andersen PS, Pedersen JK, Fode P, Skov RL, Fowler VG, Jr., Stegger M, et al. Influence of host genetics and environment on nasal carriage of *staphylococcus aureus* in danish middle-aged and elderly twins. *J Infect Dis*. 2012;206(8):1178-84.
16. Roghmann MC, Johnson JK, Stine OC, Lydecker AD, Ryan KA, Mitchell BD, et al. Persistent *Staphylococcus aureus* colonization is not a strongly heritable trait in Amish families. *PLoS One*. 2011;6(2):e17368.
17. Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of *Staphylococcus aureus*? *Trends Microbiol*. 2001;9(12):605-10.
18. Weidenmaier C, Goerke C, Wolz C. *Staphylococcus aureus* determinants for nasal colonization. *Trends Microbiol*. 2012;20(5):243-50.
19. Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, et al. A nasal epithelial receptor for *Staphylococcus aureus* WTA governs adhesion to epithelial cells and modulates nasal colonization. *PLoS Pathog*. 2014;10(5):e1004089.

20. Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ, et al. Nasal colonization by *Staphylococcus aureus* depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. *PLoS Pathog.* 2012;8(12):e1003092.
21. Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, et al. Immunization with *Staphylococcus aureus* clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. *Infect Immun.* 2006;74(4):2145-53.
22. Wertheim HF, Walsh E, Choudhury R, Melles DC, Boelens HA, Mijajlovic H, et al. Key role for clumping factor B in *Staphylococcus aureus* nasal colonization of humans. *PLoS Med.* 2008;5(1):e17.
23. Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, et al. Identification of in vivo-expressed antigens of *Staphylococcus aureus* and their use in vaccinations for protection against nasal carriage. *J Infect Dis.* 2006;193(8):1098-108.
24. Clarke SR, Wiltshire MD, Foster SJ. IsdA of *Staphylococcus aureus* is a broad spectrum, iron-regulated adhesin. *Mol Microbiol.* 2004;51(5):1509-19.
25. Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. *Biochim Biophys Acta.* 2013;1833(12):3471-80.
26. Burian M, Wolz C, Goerke C. Regulatory adaptation of *Staphylococcus aureus* during nasal colonization of humans. *PLoS One.* 2010;5(4):e10040.
27. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, et al. Role of teichoic acids in *Staphylococcus aureus* nasal colonization, a major risk factor in nosocomial infections. *Nat Med.* 2004;10(3):243-5.
28. Hanssen AM, Kindlund B, Stenkvist NC, Furberg AS, Fisman S, Olsen RS, et al. Localization of *Staphylococcus aureus* in tissue from the nasal vestibule in healthy carriers. *BMC Microbiol.* 2017;17(1):89.
29. Daniel A, Euler C, Collin M, Chahales P, Gorelick J, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant *Staphylococcus aureus*. *Antimicrob Agents Chemother.* 2010;54(4):1603-12.
30. Desbois AP, Sattar A, Graham S, Warn PA, Coote PJ. MRSA decolonization of cotton rat nares by a combination treatment comprising lysostaphin and the antimicrobial peptide ranalexin. *J Antimicrob Chemother.* 2013;68(11):2569-75.
31. Kokai-Kun JF, Walsh SM, Chanturiya T, Mond JJ. Lysostaphin cream eradicates *Staphylococcus aureus* nasal colonization in a cotton rat model. *Antimicrob Agents Chemother.* 2003;47(5):1589-97.
32. Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, et al. Immune evasion cluster-positive bacteriophages are highly prevalent among human *Staphylococcus aureus* strains, but they are not essential in the first stages of nasal colonization. *Clin Microbiol Infect.* 2011;17(3):343-8.
33. van den Berg S, van Wamel WJ, Snijders SV, Ouwerling B, de Vogel CP, Boelens HA, et al. Rhesus macaques (*Macaca mulatta*) are natural hosts of specific *Staphylococcus aureus* lineages. *PLoS One.* 2011;6(10):e26170.
34. Schulz D, Grumann D, Trube P, Pritchett-Corning K, Johnson S, Reppschlager K, et al. Laboratory Mice Are Frequently Colonized with *Staphylococcus aureus* and Mount a Systemic Immune Response-Note of Caution for In vivo Infection Experiments. *Front Cell Infect Microbiol.* 2017;7:152.
35. Zhao F, Cheng BL, Boyle-Vavra S, Alegre ML, Daum RS, Chong AS, et al. Proteomic Identification of saeRS-Dependent Targets Critical for Protective Humoral Immunity against *Staphylococcus aureus* Skin Infection. *Infect Immun.* 2015;83(9):3712-21.
36. Verkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C, et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of *Staphylococcus aureus*. *J Infect Dis.* 2009;199(5):625-32.

37. Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Neela VK. Differences in humoral immune response between patients with or without nasal carriage of *Staphylococcus aureus*. *Eur J Clin Microbiol Infect Dis*. 2017;36(3):451-8.
38. Lowy FD. *Staphylococcus aureus* infections. *N Engl J Med*. 1998;339(8):520-32.
39. Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. *Arch Intern Med*. 1995;155(11):1177-84.
40. Fowler VG, Jr., Olsen MK, Corey GR, Woods CW, Cabell CH, Reller LB, et al. Clinical identifiers of complicated *Staphylococcus aureus* bacteremia. *Arch Intern Med*. 2003;163(17):2066-72.
41. Wang A, Athan E, Pappas PA, Fowler VG, Jr., Olaison L, Pare C, et al. Contemporary clinical profile and outcome of prosthetic valve endocarditis. *JAMA*. 2007;297(12):1354-61.
42. Carey AJ, Duchon J, Della-Latta P, Saiman L. The epidemiology of methicillin-susceptible and methicillin-resistant *Staphylococcus aureus* in a neonatal intensive care unit, 2000-2007. *J Perinatol*. 2010;30(2):135-9.
43. Dolapo O, Dhanireddy R, Talati AJ. Trends of *Staphylococcus aureus* bloodstream infections in a neonatal intensive care unit from 2000-2009. *BMC Pediatr*. 2014;14:121.
44. Ericson JE, Popoola VO, Smith PB, Benjamin DK, Fowler VG, Benjamin DK, Jr., et al. Burden of Invasive *Staphylococcus aureus* Infections in Hospitalized Infants. *JAMA Pediatr*. 2015;169(12):1105-11.
45. Ekkelenkamp MB, van der Bruggen T, van de Vijver DA, Wolfs TF, Bonten MJ. Bacteremic complications of intravascular catheters colonized with *Staphylococcus aureus*. *Clin Infect Dis*. 2008;46(1):114-8.
46. Hakim H, Mylotte JM, Faden H. Morbidity and mortality of Staphylococcal bacteremia in children. *Am J Infect Control*. 2007;35(2):102-5.
47. Murdoch F, Danial J, Morris AK, Czarniak E, Bishop JL, Glass E, et al. The Scottish enhanced *Staphylococcus aureus* bacteraemia surveillance programme: the first 18 months of data in children. *J Hosp Infect*. 2017;97(2):127-32.
48. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. *Clin Microbiol Rev*. 2004;17(3):638-80, table of contents.
49. Jeong IS, Jeong JS, Choi EO. Nosocomial infection in a newborn intensive care unit (NICU), South Korea. *BMC Infect Dis*. 2006;6:103.
50. Reichert F, Piening B, Geffers C, Gastmeier P, Buhrer C, Schwab F. Pathogen-Specific Clustering of Nosocomial Blood Stream Infections in Very Preterm Infants. *Pediatrics*. 2016;137(4).
51. Jevons MP, Coe AW, Parker MT. Methicillin resistance in staphylococci. *Lancet*. 1963;1(7287):904-7.
52. Deurenberg RH, Stobberingh EE. The evolution of *Staphylococcus aureus*. *Infect Genet Evol*. 2008;8(6):747-63.
53. Tenover FC, Biddle JW, Lancaster MV. Increasing resistance to vancomycin and other glycopeptides in *Staphylococcus aureus*. *Emerg Infect Dis*. 2001;7(2):327-32.
54. Weterings V, Veenemans J, van Rijen M, Kluytmans J. Prevalence of nasal carriage of methicillin-resistant *Staphylococcus aureus* in patients at hospital admission in The Netherlands, 2010-2017: an observational study. *Clin Microbiol Infect*. 2019;25(11):1428 e1- e5.
55. Wulf MW, Sorum M, van Nes A, Skov R, Melchers WJ, Klaassen CH, et al. Prevalence of methicillin-resistant *Staphylococcus aureus* among veterinarians: an international study. *Clin Microbiol Infect*. 2008;14(1):29-34.
56. van Cleef BA, Graveland H, Haenen AP, van de Giessen AW, Heederik D, Wagenaar JA, et al. Persistence of livestock-associated methicillin-resistant *Staphylococcus aureus* in field workers after short-term occupational exposure to pigs and veal calves. *J Clin Microbiol*. 2011;49(3):1030-3.

57. Wassenberg MW, Bootsma MC, Troelstra A, Kluytmans JA, Bonten MJ. Transmissibility of livestock-associated methicillin-resistant *Staphylococcus aureus* (ST398) in Dutch hospitals. *Clin Microbiol Infect.* 2011;17(2):316-9.
58. Price JR, Cole K, Bexley A, Kostiou V, Eyre DW, Golubchik T, et al. Transmission of *Staphylococcus aureus* between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. *Lancet Infect Dis.* 2017;17(2):207-14.
59. Phillips P, Cortina-Borja M, Millar M, Gilbert R. Risk-adjusted surveillance of hospital-acquired infections in neonatal intensive care units: a systematic review. *J Hosp Infect.* 2008;70(3):203-11.
60. Huang YC, Lien RI, Su LH, Chou YH, Lin TY. Successful control of methicillin-resistant *Staphylococcus aureus* in endemic neonatal intensive care units--a 7-year campaign. *PLoS One.* 2011;6(8):e23001.
61. Regev-Yochay G, Rubinstein E, Barzilai A, Carmeli Y, Kuint J, Etienne J, et al. Methicillin-resistant *Staphylococcus aureus* in neonatal intensive care unit. *Emerg Infect Dis.* 2005;11(3):453-6.
62. Reich PJ, Boyle MG, Hogan PG, Johnson AJ, Wallace MA, Elward AM, et al. Emergence of community-associated methicillin-resistant *Staphylococcus aureus* strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. *Clin Microbiol Infect.* 2016;22(7):645 e1-8.
63. Achermann Y, Seidl K, Kuster SP, Leimer N, Durisch N, Ajdler-Schaffler E, et al. Epidemiology of Methicillin-Susceptible *Staphylococcus aureus* in a Neonatology Ward. *Infect Control Hosp Epidemiol.* 2015;36(11):1305-12.
64. Ramsing BG, Arpi M, Andersen EA, Knabe N, Mogensen D, Buhl D, et al. First outbreak with MRSA in a Danish neonatal intensive care unit: risk factors and control procedures. *PLoS One.* 2013;8(6):e66904.
65. Gomez-Gonzalez C, Alba C, Otero JR, Sanz F, Chaves F. Long persistence of methicillin-susceptible strains of *Staphylococcus aureus* causing sepsis in a neonatal intensive care unit. *J Clin Microbiol.* 2007;45(7):2301-4.
66. Koningstein M, Groen L, Geraats-Peters K, Lutgens S, Rietveld A, Jira P, et al. The use of typing methods and infection prevention measures to control a bullous impetigo outbreak on a neonatal ward. *Antimicrob Resist Infect Control.* 2012;1(1):37.
67. Lin MF, Huang ML, Lai SH. Investigation of a pyoderma outbreak caused by methicillin-susceptible *Staphylococcus aureus* in a nursery for newborns. *J Hosp Infect.* 2004;57(1):38-43.
68. Andersen BM, Lindemann R, Bergh K, Nesheim BI, Syversen G, Solheim N, et al. Spread of methicillin-resistant *Staphylococcus aureus* in a neonatal intensive unit associated with understaffing, over-crowding and mixing of patients. *J Hosp Infect.* 2002;50(1):18-24.
69. Popoola VO, Budd A, Wittig SM, Ross T, Aucott SW, Perl TM, et al. Methicillin-resistant *Staphylococcus aureus* transmission and infections in a neonatal intensive care unit despite active surveillance cultures and decolonization: challenges for infection prevention. *Infect Control Hosp Epidemiol.* 2014;35(4):412-8.