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A greedy heuristic for a three-level multi-period
single-sourcing problem

H. Edwin Romeijn∗ Dolores Romero Morales†

January 27, 2000

Abstract

In this paper we consider a model for integrating transportation and inventory
decisions in a three-level logistics network consisting of plants, warehouses, and re-
tailers (or customers). Our model includes production and throughput capacity
constraints, and minimizes production, holding, and transportation costs in a dy-
namic environment. We show that the problem can be reformulated as a certain
type of assignment problem with convex objective function. Based on this observa-
tion, we propose a greedy heuristic for the problem, and illustrate its behaviour on
a class of randomly generated problem instances. These experiments suggest that
the heuristic may be asymptotically feasible and optimal with probability one in
the number of customers.

1 Introduction

The tendency to move towards global supply chains, the shortening for the product life
cycle, and fast technological changes force companies to consider redesigning their logistics
networks. The majority of the quantitative models proposed in the literature for the
tactical problem of evaluating (usually with respect to costs) the layout of a distribution
network assume a static environment. Hence the adequacy of those models is limited to
situations where, in particular, the demand pattern is stationary over time. In addition,
inventory decisions cannot be supported using stationary models.

In this paper we will study a multi-period single-sourcing problem (MPSSP) that
can be used for evaluating logistics network designs with respect to costs in a dynamic
environment. The logistics network consists of a set of plants, a set of warehouses, and
a set of customers. For a given planning horizon, we assume that each plant has known,
finite, and possibly time-varying capacity. Similarly, we consider that each warehouse
has known, finite, and possibly time-varying throughput capacity. We assume that each
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116595, Gainesville, Florida 32611-6595; email: romeijn@ise.ufl.edu.
†Rotterdam School of Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotter-
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warehouse has essentially unlimited physical capacity. Moreover, the customers’ demand
patterns for a single product are assumed known. Finally, each customer needs to be
delivered by (i.e., assigned to) a unique warehouse in each period. The decisions that
need to be made are (i) production sites and quantities, (ii) assignment of customers to
facilities, and (iii) location and size of inventories.

Since this problem is NP-Complete (see Martello and Toth [12] and Romero Morales,
Van Nunen and Romeijn [17]), it is unlikely that efficient methods exist that can solve large
problem instances to optimality. Therefore, it is appropriate to study heuristic approaches
to this problem. We will show that our problem can be formulated as a certain type of
assignment problem with convex objective function. This structure motivates the use
of the class of greedy heuristics proposed by Martello and Toth [11] for the Generalized
Assignment Problem (GAP), together with the family of pseudo-cost functions proposed
by Romeijn and Romero Morales [14, 15, 16] for the GAP and two-level multi-period
single-sourcing problems. Based on the structure of the LP-relaxation of our problem, we
propose a suitable parameter choice, thereby identifying a particular greedy heuristic for
the problem. We will provide numerical results on the performance of this heuristic, and
conjecture that this member yields a heuristic that is asymptotically feasible and optimal
in a probabilistic sense.

As mentioned above, related literature focuses mainly on static models. Examples
are Geoffrion and Graves [9], Benders et al. [2], and Fleischmann [7]. Duran [6] studies
a dynamic model for the planning of production, bottling, and distribution of beer, but
focuses on the production process. Klose [10] analyzes the one-product version of the
model proposed by Geoffrion and Graves [9]. Chan, Muriel and Simchi-Levi [3] study
a dynamic, but uncapacitated, distribution problem in an operational setting. Arntzen
et al. [1] present a multi-echelon multi-period model with no single-sourcing constraints
on the assignment variables which was used in the reorganization of Digital Equipment
Corporation.

The remainder of the paper is organized as follows. In Section 2 we will formulate
the multi-period single-sourcing problem as a mixed-integer linear programming problem,
and derive some properties of its LP-relaxation. In Section 3 we show the relationship
with the GAP through a reformulation of the problem as a certain assignment problem
with convex objective function. In Section 4 we will discuss a class of greedy heuristics for
the problem, and select a suitable member of that class for which numerical experiments
will be presented. The paper ends in Section 5 with some concluding remarks.

2 The multi-period single-sourcing problem

2.1 A mixed-integer formulation

Let n denote the number of customers, m the number of warehouses, q the number of
plants, and T the number of time periods. The demand of customer j in period t is denoted
by djt, while the production capacity at plant l in period t is equal to blt, and the maximal
throughput capacity at warehouse i in period t is equal to rit. The production, handling
and transportation costs per unit produced at plant l and transported to warehouse i in
period t are clit. The costs of delivering the demand of customer j from warehouse i in
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period t (i.e., the costs of assigning customer j to warehouse i in period t) are aijt. Each
customer needs to be assigned to a single warehouse in any given period, which implies
that the transportation costs can be an arbitrary (nonnegative) function of demand and
distance. The inventory holding costs per unit at warehouse i in period t are hit. (Note
that all parameters are required to be nonnegative.)

The multi-period single-sourcing problem (MPSSP) can now be formulated as follows:

minimize
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +
T∑
t=1

m∑
i=1

hitIit

subject to (P)

n∑
j=1

djtxijt + Iit =

q∑
l=1

ylit + Ii,t−1

i = 1, . . . ,m; t = 1, . . . , T (1)
m∑
i=1

ylit ≤ blt l = 1, . . . , q; t = 1, . . . , T (2)

n∑
j=1

djtxijt ≤ rit i = 1, . . . ,m; t = 1, . . . , T (3)

Ii0 = 0 i = 1, . . . ,m (4)
m∑
i=1

xijt = 1 j = 1, . . . , n; t = 1, . . . , T (5)

xijt ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T (6)

ylit ≥ 0 l = 1, . . . , q; i = 1, . . . ,m; t = 1, . . . , T

Iit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T,

where ylit is the amount produced at plant l and delivered to warehouse i in period t,
xijt is 1 if customer j is assigned to warehouse i in period t and 0 otherwise, and Iit
denotes the inventory level at warehouse i at the end of period t. Constraints (1) impose
the balance between the inflow, the storage and the outflow at warehouse i in period
t. The maximal production capacity at plant l in period t is restricted by (2) and the
maximal throughput capacity at warehouse i in period t by constraint (3). Without loss
of generality, we impose in (4) that the inventory level at the beginning of the planning
horizon is equal to zero. Constraints (5) and (6) ensure that each customer is delivered
by exactly one warehouse in each period.

This model extends the classical Single-Sourcing Problem (SSP) (see De Maio and
Roveda [5]) in two directions. Firstly, the static character of the SSP prohibits the pos-
sibility of explicitly including decisions related to inventory management in the model.
Secondly, the SSP assumes a layout of the distribution network where the production
quantities are not included, or at least are not relevant (for instance when there is a
one-to-one correspondence between warehouses and plants).

In the following section we will derive some properties of the LP-relaxation of the
MPSSP.
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2.2 Properties of the LP-relaxation of the MPSSP

The LP-relaxation of (P) can be formulated as follows:

minimize
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +
T∑
t=1

m∑
i=1

hitIit

subject to (LP)

n∑
j=1

djtxijt + Iit =

q∑
l=1

ylit + Ii,t−1

i = 1, . . . ,m; t = 1, . . . , T
m∑
i=1

ylit ≤ blt l = 1, . . . , q; t = 1, . . . , T (7)

n∑
j=1

djtxijt ≤ rit i = 1, . . . ,m; t = 1, . . . , T (8)

Ii0 = 0 i = 1, . . . ,m (9)
m∑
i=1

xijt = 1 j = 1, . . . , n; t = 1, . . . , T

xijt ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

ylit ≥ 0 l = 1, . . . , q; i = 1, . . . ,m; t = 1, . . . , T

Iit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T.

The following lemma derives a bound on the number of split assignments in the optimal
solution for (LP). Let B be the set of (customer-period)-pairs such that (j, t) ∈ B means
that customer j is split in period t (i.e., customer j is assigned to more than one warehouse
in period t, each satisfying part of its demand).

Lemma 2.1 The optimal solution for (LP) satisfies:

|B| ≤ 2mT + qT.

Proof: Rewrite the problem (LP) with equality constraints by introducing slack variables
in the production capacity constraints (7) and in the throughput capacities constraints (8).
We then obtain a problem with mT+qT+mT+nT = 2mT+qT+nT equality constraints.
Now consider the optimal solution to (LP). The number of variables having a nonzero value
in this solution is no larger than the number of equality constraints in the reformulated
problem. Since there is at least one nonzero assignment variable corresponding to each
assignment constraint, and exactly one nonzero assignment variable corresponding to each
assignment that is feasible with respect to the integrality constraints of (P), there can be
no more than 2mT + qT assignments that are split. 2
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After eliminating the variables Ii0 using equations (9), the dual of (LP) can be formu-
lated as

maximize
T∑
t=1

n∑
j=1

vjt −
T∑
t=1

q∑
l=1

bltωlt −
T∑
t=1

m∑
i=1

ritνit

subject to (D)

vjt ≤ aijt + λitdjt + νitdjt i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

λit ≤ ωlt + clit i = 1, . . . ,m; l = 1, . . . , q; t = 1, . . . , T

−λit + λi,t+1 ≤ hit i = 1, . . . ,m; t = 1, . . . , T − 1

λit free i = 1, . . . ,m; t = 1, . . . , T

ωlt ≥ 0 l = 1, . . . , q; t = 1, . . . , T

νit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T

vjt free j = 1, . . . , n; t = 1, . . . , T.

The following proposition suggests a way to use the dual optimal solution to distinguish
split assignments from non-split ones.

Proposition 2.2 Suppose that (LP) is feasible and non-degenerate. Let (x∗, y∗, I∗) be a
basic optimal solution for (LP) and let (λ∗, ω∗, ν∗, v∗) be the corresponding optimal solution
for (D). Then,

1. For each (j, t) 6∈ B, x∗ijt = 1 if and only if

aijt + λ∗itdjt + ν∗itdjt = min
k=1,...,m

(akjt + λ∗ktdjt + ν∗ktdjt)

and
aijt + λ∗itdjt + ν∗itdjt < min

k=1,...,m; k 6=i
(akjt + λ∗ktdjt + ν∗ktdjt).

2. For each (j, t) ∈ B, there exists an index i such that

aijt + λ∗itdjt + ν∗itdjt = min
k=1,...,m; k 6=i

(akjt + λ∗ktdjt + ν∗ktdjt).

Proof: See the Appendix. 2

3 A convex assignment formulation for the MPSSP

The MPSSP has been formulated as a mixed integer linear programming problem in the
assignment, production and inventory variables. The throughput constraints (3) together
with constraints (5) and (6) suggest a relationship between the MPSSP and the GAP. In
fact, we will prove in this section that (P) can be reformulated as a convex assignment
problem in the variables x. The feasible region of this reformulation is formed by the
Cartesian product of the feasible regions of T SSPs, which are linked by the objective
function, which is the sum of a linear and a convex function in x.
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The following lemma will be used in the proof of Proposition 3.2. The lemma derives a
necessary and sufficient condition for the feasibility of a dynamic extension of the standard
transportation problem. As in the standard transportation problem, the problem is to
satisfy the demand at a set of demand points from a set of supply points. However, the
extension lies in the dynamic nature of the problem, and the fact that early deliveries are
allowed.

Hereafter, let R+ denote the set of nonnegative numbers, i.e., R+ = [0,+∞).

Lemma 3.1 The condition

t∑
τ=1

m∑
i=1

δiτ ≤
t∑

τ=1

q∑
l=1

γlτ for each t = 1, . . . , T (10)

is necessary and sufficient for the existence of a vector y ∈ RqmT+ such that

m∑
i=1

ylit ≤ γlt l = 1, . . . , q; t = 1, . . . , T (11)

and
t∑

τ=1

q∑
l=1

yliτ ≥
t∑

τ=1

δiτ i = 1, . . . ,m; t = 1, . . . , T. (12)

Proof: It can easily be seen that condition (10) is necessary to ensure the existence of a
nonnegative vector y ∈ RqmT+ satisfying (11) and (12). We will show, by induction on t,
that this condition is also sufficient.

For t = 1, the inequalities in conditions (11) and (12) together with the nonnegativity
assumption on y define the feasible region of a standard transportation problem. More-
over, the inequality in condition (10) for t = 1 says that the aggregate demand cannot
exceed the aggregate capacity, which clearly is a sufficient condition for feasibility of the
standard transportation problem.

Now, we will assume that if the inequality conditions in (10) hold for t = 1, . . . , t′,

then there exists a nonnegative vector y ∈ Rqmt
′

+ so that the inequalities in conditions
(11) and (12) are satisfied for t = 1, . . . , t′. We will show that the same result holds for
horizon t′ + 1.

We will distinguish two cases, depending on the difference between the aggregate
demand in period t′+ 1 and the aggregate capacity in the same period. First consider the
case where the aggregate demand is no more than the aggregate capacity, i.e.,

m∑
i=1

δi,t′+1 ≤
q∑
l=1

γl,t′+1.

Then there exists a vector z ∈ Rqm+ such that

m∑
i=1

zli,t′+1 ≤ γl,t′+1 l = 1, . . . , q

and
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q∑
l=1

zli,t′+1 ≥ δi,t′+1 i = 1, . . . ,m.

Moreover, by the induction hypothesis there exists a vector y ∈ Rqmt
′

+ such that

m∑
i=1

ylit ≤ γlt l = 1, . . . , q; t = 1, . . . , t′ (13)

and
t∑

τ=1

q∑
l=1

yliτ ≥
t∑

τ=1

δiτ i = 1, . . . ,m; t = 1, . . . , t′. (14)

It is easy to see that (y, z) a nonnegative vector satisfying the inequalities in conditions
(11) and (12) for t = 1, . . . , t′ + 1.

Next, we will consider the case where

m∑
i=1

δi,t′+1 >

q∑
l=1

γl,t′+1.

It suffices to show that the excess demand in period t′ + 1, i.e.,

m∑
i=1

δi,t′+1 −
q∑
l=1

γl,t′+1

can be supplied in previous periods. This is easy to see since

t∑
τ=1

m∑
i=1

δiτ ≤
t∑

τ=1

q∑
l=1

γlτ t = 1, . . . , t′ − 1

and
t′∑
τ=1

m∑
i=1

δiτ +
m∑
i=1

δi,t′+1 −
q∑
l=1

γl,t′+1 ≤
t′∑
τ=1

q∑
l=1

γlτ .

2

Proposition 3.2 Problem (P) can be reformulated as:

minimize
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +H(x)

subject to (P ′)

n∑
j=1

djtxijt ≤ rit i = 1, . . . ,m; t = 1, . . . , T

m∑
i=1

xijt = 1 j = 1, . . . , n; t = 1, . . . , T

xijt ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

7



where H(x) is the convex function given by the optimal value of the following linear
problem:

minimize
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

hitIit

subject to

Ii,t−1 − Iit +

q∑
l=1

ylit =
n∑
j=1

djtxijt i = 1, . . . ,m; t = 1, . . . , T

m∑
i=1

ylit ≤ blt l = 1, . . . , q; t = 1, . . . , T

Ii0 = 0 i = 1, . . . ,m

ylit ≥ 0 l = 1, . . . , q; i = 1, . . . ,m; t = 1, . . . , T

Iit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T.

Proof: The result follows by a decomposition argument. Let F be the feasible region of
(P). We then have that

min
(x,y,I)∈F

(
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +
T∑
t=1

m∑
i=1

hitIit

)
=

= min
x:∃(y′,I′) (x,y′,I′)∈F

(
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt+

min
(y,I):(x,y,I)∈F

(
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

hitIit

))

= min
x:∃(y′,I′) (x,y′,I′)∈F

(
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +H(x)

)
.

Observe that
t∑

τ=1

n∑
j=1

djτ ≤
t∑

τ=1

q∑
l=1

blτ for each t = 1, . . . , T (15)

is a necessary condition for feasibility for both (P′) and the decomposed problem. Thus,
hereafter we will assume that condition (15) holds. It remains to be shown that

F ′ ≡ {x ∈ RmnT : ∃ (y, I) ∈ RqmT × RmT such that (x, y, I) ∈ F}

is the feasible region of (P′).
It is obvious that F ′ is contained in the feasible region of (P′). Now let x be a feasible

vector for (P′). Lemma 3.1 and condition (15) imply that there exists a vector y ∈ RqmT+

such that
m∑
i=1

ylit ≤ blt l = 1, . . . , q; t = 1, . . . , T

and
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t∑
τ=1

q∑
l=1

yliτ ≥
t∑

τ=1

n∑
j=1

djτxijτ i = 1, . . . ,m; t = 1, . . . , T.

Now define Iit, for i = 1, . . . ,m and t = 1, . . . , T , as

Iit =
t∑

τ=1

q∑
l=1

yliτ −
t∑

τ=1

n∑
j=1

djτxijτ .

It is easy to see that Iit is nonnegative and (x, y, I) ∈ F , and thus x ∈ F ′.
Using strong duality for linear programming, it is straightforward to show that the

function H is convex. 2

This result shows that, for each assignment solution to (P′), corresponding optimal
values for the production and inventory variables exist. A similar result was derived by
Freling et al. [8], for the case where there exists a one to one correspondence between
warehouses and plants. In this case, the objective function of the assignment problem is
separable in the index i. The separability of the objective function allows the reformulation
of the problem as a set partitioning problem, which can be used to construct a Branch
and Price algorithm for this class of problems.

4 Solving the MPSSP

4.1 A greedy heuristic for the MPSSP

In the previous section we have shown that the MPSSP can be formulated as a collection
of T SSP’s that are joined through a convex objective function. Since the Single Sourcing
Problem is a special case of the GAP, we propose to use a greedy heuristic similar to the
one proposed by Martello and Toth [11] for the GAP, using a pseudo-cost function from
the family introduced by Romeijn and Romero Morales [14].

The idea of the heuristic is that each possible assignment of a (customer,period)-pair
(j, t) to a warehouse i is evaluated by a pseudo-cost function f(i, j, t). For each assign-
ment to be made, the difference between the two smallest values of f(i, j, t) (called the
desirability of making the cheapest assignment with respect to the pseudo-cost) is com-
puted, and assignments are made in decreasing order of this difference. Along the way, the
remaining capacities of the warehouses, and consequently the values of the desirabilities,
are updated to ensure feasibility. Note, from formulation (P′) of the MPSSP, that only
the throughput capacities play a role with respect to feasibility.

Romeijn and Romero Morales [14] propose to use the following family of pseudo-cost
functions:

f(i, j, t) = aijt + αitdjt

where α ∈ RmT+ . We may observe that this pseudo-cost function combines costs (aijt) with
demands (djt) (i.e., the use of the scarce throughput capacity at the warehouses). The
result of Proposition 2.2, where the split and nonsplit assignments in the LP-relaxation of
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(P) are characterized, suggests using the following member of the family of pseudo-cost
functions:

f(i, j, t) = aijt + (λ∗it + ν∗it)djt

where λ∗ ∈ RmT+ is the vector of optimal dual multipliers of the flow conservation con-
straints in (LP), and similarly ν∗ ∈ RmT+ is the vector of optimal dual multipliers of
the throughput constraints (where the corresponding constraints are reformulated as ≥-
constraints, so that the dual multipliers are nonnegative). A probabilistic analysis of such
heuristics on similar problems leads us to conjecture that this choice will yield a heuristic
that is asymptotically optimal in a probabilistic sense (as n goes to ∞).

4.2 Some numerical results

In this section we will illustrate the behaviour of the greedy heuristic as described in
the previous section on a set of randomly generated test problems. For each problem
instance, we generate a set of n customers, a set of m warehouses, and a set of q plants
uniformly in the square [0, 10]2. For customer j (j = 1, . . . , n), we generate a random
demand Djt in period t (t = 1, . . . , T ) from the uniform distribution on [5σt, 25σt], where
the vector σ contains seasonal factors, which we have chosen to be σ = (1

2 ,
3
4 , 1, 1,

3
4 ,

1
2)>.

The production costs are assumed to be equal to the distance, i.e., clit = distli, where
distli denotes the Euclidean distance between plant l and warehouse i. The assignment
costs are assumed to be proportional to demand and distance, i.e., aijt = djt ·distij, where
distij denotes the Euclidean distance between warehouse i and customer j. Finally, we
generate inventory holding costs Hit uniformly from [10, 30].

We have chosen the capacities equal to blt = 1
q · β · n and rit = 1

m · ρ · n, where

β = δ · 15 · max
t=1,...,T

(
1

t

t∑
τ=1

στ

)
ρ = δ · 15 · max

t=1,...,T
σt.

The results of Lemma 3.1 and Romeijn and Piersma [13] show that the instances generated
by this probabilistic model are asymptotically feasible with probability one (as n goes to
∞) if δ > 1, and infeasible with probability one (again as n goes to ∞) if δ < 1. To
account for the asymptotic nature of this feasibility guarantee, we have set δ = 1.1 to
obtain feasible instances for finite n.

We have fixed the number of plants at q = 3, the number of warehouses at m = 5,
and the number of periods at T = 6. We let the number of customers vary from n = 50
till n = 500 in increments of 50 customers. For each class of instances and each size of
the problem we have generated 50 instances. All the runs were performed on a PC with
a 350 MHz Pentium II processor and 128 MB RAM. All LP-relaxations were solved using
CPLEX 6.5 [4].

Table 1 illustrates the behaviour of the greedy heuristic (using the pseudo-cost function
mentioned in Section 4.1). Clearly, n denotes the number of customers. The table shows
the number of instances for which the LP-relaxation was feasible, as well as the number
of instances for which the heuristic found a feasible solution. In addition, the time needed
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to solve the LP-relaxation, as well as the total time needed to find the heuristic solution
(i.e., including the time needed to solve the LP-relaxation) is shown. Finally, an upper
bound on the average error of the heuristic solution is shown, as measured by the relative
deviation of the heuristic solution value from the optimal LP-value. This average was
calculated only using the instances where the heuristic found a feasible solution.

LP heuristic
n # feasible time (sec.) # feasible time (sec.) error (%)

50 42 0.17 35 0.21 1.26
100 48 0.42 47 0.46 0.59
150 50 0.68 50 0.74 0.42
200 50 1.20 50 1.26 0.28
250 50 1.80 50 1.87 0.24
300 50 2.34 50 2.42 0.28
350 50 2.90 50 2.98 0.16
400 50 3.37 50 3.46 0.17
450 50 3.91 50 4.00 0.12
500 50 4.83 50 4.93 0.12

Table 1: Greedy heuristic

Although we cannot guarantee that the heuristic will always find a feasible solution
(recall that even to determine whether a particular instance of the MPSSP is feasible is an
NP-complete problem), a feasible solution was always found for instances with at least
150 customers. Note that feasibility of the LP-relaxation does not imply feasibility of the
MPSSP, so that the inability of the heuristic to find a feasible solution could be caused
by infeasibility of the instance, even when the LP-relaxation is feasible.

Except for the smallest class of instances, the average error was always well below 1%.
Moreover, the fact that the average error decreases as the number of customers increases
supports our conjecture that the heuristic is asymptotically optimal.

In addition to using the heuristic, we have also used the MIP solver of CPLEX to try
to solve the problems to optimality for the two smallest problem sizes. The procedure was
cut after 30 minutes, which happened for 12 problem instances with 50 customers, and for
29 instances with 100 customers. For the instances with 50 customers, the average time
spent by CPLEX was 525 seconds (and 122 seconds when we disregard the most difficult
instances where the optimal solution was not found within 30 minutes). For the instances
with 100 customers, these numbers were 1200 and 362, respectively. Comparing these to
the times spent by the heuristic, we conclude that the heuristic is a very effective way of
finding a high quality solution with little effort.

5 Conclusions

In this paper we have analyzed a model for evaluating the design of a logistics network
in a dynamic environment. The network consists of plants, warehouses and customers.

11



The model deals with production and throughput constraints, as well as standard single-
sourcing constraints. Based on a reformulation of the problem as a convex assignment
problem, we have proposed a greedy heuristic. The numerical illustrations indicate that
the heuristic may be asymptotically feasible and optimal.
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Appendix

Let (x∗, y∗, I∗) be a basic optimal solution for (LP). In the following lemma, which will
be used in the proof of Proposition 2.2, we derive a relationship between the num-
ber of split assignments, the number of fractional assignment variables, the number of
(plant,warehouse,period)-triples having a positive flow, the number of (plant,period)-pairs
where the plant is used to full capacity in that period, the number of (warehouse,period)-
pairs where the warehouse is used to full capacity in that period and the number of strictly
positive inventory variables. Let F be the set of fractional assignment variables, Q the set
of (plant,period)-pairs where the plant is used to full capacity in that period, W the set
of (warehouse,period)-pairs where the warehouse is used to full capacity in that period,
Y + the set of (plant,warehouse,period)-triples having a positive flow and I+ the set of
strictly positive inventory variables, i.e.

F = {(i, j, t) : 0 < x∗ijt < 1}

Q = {(l, t) :
m∑
i=1

y∗lt = blt}

W = {(i, t) :
n∑
j=1

djtx
∗
ijt = rit}
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Y + = {(l, i, t) : y∗lit > 0}
I+ = {(i, t) : I∗it > 0}.

Lemma A.1 If (LP) is non-degenerate, then for a basic optimal solution of (LP) we have

|F |+ |Y +|+ |I+| = mT + |Q|+ |W |+ |B|.

Proof: Denote by slt the slack variables corresponding to the production capacity con-
straints in (LP) and Sit the slack variables corresponding to the throughput capacity
constraints. Thus, including these variables, (LP) can be reformulated as

minimize
T∑
t=1

q∑
l=1

m∑
i=1

clitylit +
T∑
t=1

m∑
i=1

n∑
j=1

aijtxijt +
T∑
t=1

m∑
i=1

hitIit

subject to

n∑
j=1

djtxijt + Iit =

q∑
l=1

ylit + Ii,t−1

i = 1, . . . ,m; t = 1, . . . , T
m∑
i=1

ylit + slt = blt l = 1, . . . , q; t = 1, . . . , T

n∑
j=1

djtxijt + Sit = rit i = 1, . . . ,m; t = 1, . . . , T

Ii0 = 0 i = 1, . . . ,m
m∑
i=1

xijt = 1 j = 1, . . . , n; t = 1, . . . , T

xijt ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

ylit ≥ 0 l = 1, . . . , q; i = 1, . . . ,m; t = 1, . . . , T

Iit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T

slt ≥ 0 l = 1, . . . , q; t = 1, . . . , T

Sit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T.

Let (x∗, y∗, I∗, s∗, S∗) be a basic optimal solution for (LP). Then, sets Q and W , defined
above, are equal to

Q = {(l, t) : s∗lt = 0}
W = {(i, t) : S∗it = 0}.

Under non-degeneracy, the number of nonzero variables at (x∗, y∗, I∗, s∗, S∗) is equal to
2mT + qT + nT , the number of constraints in (LP). The number of nonzero assignment
variables is equal to (nT − |B|) + |F |, where the first term corresponds to the variables
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x∗ijt = 1, the second one to the fractional assignment variables. With respect to the slack
variables, we have (qT − |Q|) + (mT − |W |) nonzero variables. By definition |Y +| is the
number of nonzero production variables. The same follows for I+. Thus, by imposing
that the number of nonzero variables at (x∗, y∗, I∗, s∗, S∗) is equal to 2mT + qT + nT , we
obtain

2mT + qT + nT = (nT − |B|) + |F |+ (qT − |Q|) + (mT − |W |) + |Y +|.

The desired result now follows from the last equality. 2

Proposition 2.2 Suppose that (LP) is feasible and non-degenerate. Let (x∗, y∗, I∗) be a
basic optimal solution for (LP) and let (λ∗, ω∗, ν∗, v∗) be the corresponding optimal solution
for (D). Then,

1. For each (j, t) 6∈ B, x∗ijt = 1 if and only if

aijt + λ∗itdjt + ν∗itdjt = min
k=1,...,m

(akjt + λ∗ktdjt + ν∗ktdjt)

and
aijt + λ∗itdjt + ν∗itdjt < min

k=1,...,m; k 6=i
(akjt + λ∗ktdjt + ν∗ktdjt).

2. For each (j, t) ∈ B, there exists an index i such that

aijt + λ∗itdjt + ν∗itdjt = min
k=1,...,m; k 6=i

(akjt + λ∗ktdjt + ν∗ktdjt).

Proof: Observe that

λ∗it = min
l=1,...,q

(clit + ωlt) ≥ 0 for j = 1, . . . , n; t = 1, . . . , T

and by using the nonnegativity of vector λ∗ we have that

v∗jt = min
i=1,...,m

(aijt + λ∗itdjt + ν∗itdjt) ≥ 0 for j = 1, . . . , n; t = 1, . . . , T.

Thus, without loss of optimality, we can add to (D) the nonnegativity constraints on the
vectors λ and v. By adding slack variables sijt, Slit and Uit to the constraints in (D), we
can reformulate it as

maximize
T∑
t=1

n∑
j=1

vjt −
T∑
t=1

q∑
l=1

bltωlt −
T∑
t=1

m∑
i=1

ritνit

subject to (D′)

vjt + sijt = aijt + λitdjt + νitdjt i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

λit + Slit = ωlt + clit i = 1, . . . ,m; l = 1, . . . , q; t = 1, . . . , T

−λit + λi,t+1 + Uit = hit i = 1, . . . ,m; t = 1, . . . , T − 1

λit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T
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ωlt ≥ 0 l = 1, . . . , q; t = 1, . . . , T

νit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T

vjt ≥ 0 j = 1, . . . , n; t = 1, . . . , T

sijt ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; t = 1, . . . , T

Slit ≥ 0 l = 1, . . . , q; i = 1, . . . ,m; t = 1, . . . , T

Uit ≥ 0 i = 1, . . . ,m; t = 1, . . . , T − 1.

Let (λ∗, ω∗, ν∗, v∗, s∗, S∗, U∗) be the optimal solution for (D′). For each (j, t) ∈ B, there
exist at least two variables x∗ijt that are strictly positive. Hence, by the complementary
slackness conditions, there exist at least two variables s∗ijt equal to zero. This proves
Claim 2.

To prove Claim 1, it is enough to show that for each (j, t) 6∈ B there exists exactly
one variable s∗ijt = 0. By complementary slackness conditions we know that at least
there exists one of these variables. We have to show the uniqueness, and we do it by
counting the variables at level zero in the vector (λ∗, ω∗, ν∗, v∗, s∗, S∗, U∗). There are at
least qT − |Q| variables ω∗lt, mT − |W | variables ν∗it, |F | variables s∗ijt corresponding to
(j, t) ∈ B, nT − |B| variables s∗ijt corresponding to (j, t) 6∈ B, |Y +| variables S∗lit equal to
zero, and |Y +| variables U∗it equal to zero. In total, we have at least qT − |Q| + mT −
|W |+ |F |+nT − |B|+ |Y +|+ |I+| = qT + 2mT +nT zeroes in the optimal dual solution,
where the last equality follows from Lemma A.1. So, these are exactly all the variables at
level zero in vector (λ∗, ω∗, ν∗, v∗, s∗, S∗, U∗). Then, for each (j, t) 6∈ B there exists exactly
one variable s∗ijt = 0, and Claim 1 follows. 2
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