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Summary

We examine the properties and forecast performance of multiplicative volatility
specifications that belong to the class of generalized autoregressive conditional
heteroskedasticity–mixed-data sampling (GARCH-MIDAS) models suggested in
Engle, Ghysels, and Sohn (Review of Economics and Statistics, 2013, 95, 776–797).
In those models volatility is decomposed into a short-term GARCH component
and a long-term component that is driven by an explanatory variable. We derive
the kurtosis of returns, the autocorrelation function of squared returns, and
the R2 of a Mincer–Zarnowitz regression and evaluate the QMLE and forecast
performance of these models in a Monte Carlo simulation. For S&P 500 data,
we compare the forecast performance of GARCH-MIDAS models with a wide
range of competitor models such as HAR (heterogeneous autoregression), real-
ized GARCH, HEAVY (high-frequency-based volatility) and Markov-switching
GARCH. Our results show that the GARCH-MIDAS based on housing starts
as an explanatory variable significantly outperforms all competitor models at
forecast horizons of 2 and 3 months ahead.

1 INTRODUCTION
The idea of modeling volatility as consisting of multiple components has a long tradition in financial econometrics
(see, e.g., Ding & Granger, 1996; Engle & Lee, 1999). Early models typically featured additive volatility components and
did not allow for explanatory variables in the conditional variance. More recently, the focus has shifted to multiplicative
component models (see, e.g., Amado & Teräsvirta, 2013, 2017; Engle, Ghysels, & Sohn, 2013; Engle & Rangel, 2008;
Han & Kristensen, 2015). In particular, the class of generalized autoregressive conditional heteroskedasticity–mixed-data
sampling (GARCH-MIDAS) models proposed in Engle et al. (2013) has been proven to be useful for analyzing the link
between financial volatility and the macroeconomic environment (see Asgharian, Hou, & Javed, 2013; Conrad & Loch,
2015; Dorion, 2016). In GARCH-MIDAS, a unit-variance GARCH component fluctuates around a time-varying long-term
component that is a function of (macroeconomic or financial) explanatory variables. By allowing for a mixed-frequency
setting, this approach bridges the gap between daily stock returns and low-frequency (e.g., monthly, quarterly) explana-
tory variables. For further applications of GARCH-MIDAS-type models see, for example, Conrad, Loch, and Rittler (2014),
Opschoor, van Dijk, and van der Wel (2014), Dominicy and Vander Elst (2015), Lindblad (2017), Amendola, Candila,
and Scognamillo (2017), Pan, Wang, Wu, and Yin (2017), Conrad, Custovic, and Ghysels (2018), and Borup and Jakobsen
(2019). For a recent survey on multiplicative component models see Amado, Silvennoinen, and Teräsvirta (2019).
Throughout this paper, the GARCH-MIDAS model will be our leading example for a multiplicative component GARCH
(M-GARCH) model. However, we will also discuss how the class of M-GARCH models nests other specifications such
as the Markov-switching GARCH (MS-GARCH) of Haas, Mittnik, and Paolella (2004), the spline-GARCH of Engle and
Rangel (2008), and the multiplicative time-varying GARCH (MTV-GARCH) of Amado and Teräsvirta (2008).
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Our contribution to this recent strand of literature is twofold. In the first part of this paper, we analyze several statistical
properties of the GARCH-MIDAS model that have not received much attention so far. In the second part of the paper, we
compare the out-of-sample (OOS) forecast performance of GARCH-MIDAS with the performance of various competitor
models such as the heterogeneous autoregression (HAR) of Corsi (2009), the realized GARCH of Hansen, Huang, and
Shek (2012), the high-frequency-based volatility (HEAVY) of Shephard and Sheppard (2010), and the MS-GARCH.

Our main theoretical findings can be summarized as follows. In the GARCH-MIDAS model, the kurtosis of the returns is
always bigger than the kurtosis of the returns in the nested GJR-GARCH (see Glosten, Jagannathan, & Runkle, 1993) com-
ponent. If the long-term component is sufficiently persistent, the autocorrelation function (ACF) of the squared returns as
well as the ACF of the conditional variances is more persistent than the corresponding ACFs in the nested GJR-GARCH.
Both findings suggest a multiplicative component structure in the volatility of stock returns as a potential explanation
for the common failure of simple one-component GARCH models to adequately capture the stylized facts of returns and
realized variances. It should also be noted that our results are remarkably similar to findings in Han (2015) on GARCH-X
models, even though Han considers models with an additive explanatory variable in the conditional variance and focuses
on the asymptotic limit of the sample kurtosis and the sample ACF. Further, we derive an upper bound for the popula-
tion R2 in the k-step-ahead Mincer and Zarnowitz (1969) regression (henceforth MZ regression) of the squared return
on the volatility forecast. We show that the population R2 decreases monotonically in the forecast horizon but increases
monotonically in the variability of the long-term component. The latter feature leads to the unpleasant property that the
goodness-of-fit is particularly high in situations in which the squared error loss is also high. Clearly, this finding ques-
tions the usefulness of the MZ R2 for comparing forecast accuracy across volatility regimes. In this context, we derive an
explicit expression for the one-step-ahead R2 of the GARCH-MIDAS specification and obtain the results from Andersen
and Bollerslev (1998) for the simple GARCH(1, 1) as a special case.

Empirically, we first evaluate the quasi-maximum likelihood estimator (QMLE) of GARCH-MIDAS models by means
of a Monte Carlo simulation. We show that the QMLE is unbiased and that the asymptotic standard errors based on Wang
and Ghysels (2015) are valid in the presence of exogenous explanatory variables. Further, we show that measurement
error in the explanatory variable or a misspecification of the lag structure has only minor effects. We also confirm our
theoretical result that the R2 of a MZ regression is highest in regimes with high volatility, although in those regimes
forecast performance is the worst. Following the arguments put forth in Patton and Sheppard (2009) and Patton (2011), we
use the QLIKE to evaluate the OOS forecast performance of the GARCH-MIDAS model against the MS-GARCH and the
nested GARCH. We find that the correctly specified and, in most settings, even the misspecified GARCH-MIDAS models
beat the competitor models.

Finally, we apply the GARCH-MIDAS model to a long time series of S&P 500 returns combined with data on US
macroeconomic and financial conditions. We consider GARCH-MIDAS models with one or two explanatory variables
and, for the OOS forecast evaluation, estimate all models on a rolling window using the appropriate real-time vintage
data. Because macroeconomic time series are revised substantially after the first release, we avoid a “look-ahead-bias”
by using real-time data. In the OOS forecast evaluation, we compare the GARCH-MIDAS with eight competitor mod-
els: Among those competitor models are the realized GARCH, the HEAVY, the MS-GARCH, and HAR models with and
without leverage. We evaluate all models jointly by constructing model confidence sets (MCS) as introduced in Hansen,
Lunde, and Nason (2011). For forecast horizons of 2 weeks and 1 month, the MCS consists of the realized GARCH, the
HAR, and GARCH-MIDAS models with the CBOE Volatility Index (VIX) (or the VIX combined with another explana-
tory variable). That is, at these forecast horizons the GARCH-MIDAS is on a par with those models but beats the HEAVY
as well as MS-GARCH models. At longer forecast horizons of 2 and 3 months ahead, only GARCH-MIDAS models are
included in the MCS. At both horizons the GARCH-MIDAS based on housing starts achieves the lowest QLIKE. This find-
ing is remarkable because our OOS period begins in 2010 and hence does not include the financial crisis and the collapse
of the housing bubble.

To facilitate the replication of our results, we provide R packages for downloading real-time data from the ALFRED
database of the Federal Reserve Bank of St. Louis (see Kleen, 2017), as well as for estimating GARCH-MIDAS models (see
Kleen, 2018).1

Our paper is organized as follows: In Section 2, the M-GARCH model and our theoretical results are presented. In
Section 3, we perform a simulation study and, in Section 4, we apply the GARCH-MIDAS model to S&P 500 return
data. The conclusion follows in Section 5. All proofs are contained in Supporting Information Appendix A of the Online
Appendix. Additional material can be found in Appendices B–H.

1The packages are available at: https://cran.r-project.org/package=alfred and https://cran.r-project.org/package=mfGARCH
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2 THE MULTIPLICATIVE COMPONENT GARCH MODEL

In this section, the M-GARCH model is introduced and its theoretical properties are derived. In particular, we show that
the M-GARCH model inherits certain time series properties that are in line with stylized facts typically observed for
financial return data but cannot be captured by simple GARCH models.

2.1 Model specification
We denote daily log-returns by ri,t, whereby the index t = 1, … ,T refers to a certain period (e.g., a week or a month) and
the index i = 1, … , It to days within that period. For simplicity, we model the returns as ri,t = 𝜇 + 𝜀i,t.2 The M-GARCH
model assumes that the scaled (demeaned) returns can be written as

𝜀i,t√
𝜏t

=
√

gi,tZi,t, (1)

where 𝜏 t is specified as a function of a (low-frequency) explanatory variable Xt, gi,t follows a GARCH equation, and Zi,t is
an i.i.d. innovation process with mean zero and variance one. Let i,t denote the information set up to day i in period t
and define t ∶= It ,t. If 𝜏 t depends on lagged values of Xt only, then

𝜎2
i,t ∶= gi,t𝜏t (2)

is the conditional variance of the daily returns; that is, 𝜎2
i,t = var(𝜀i,t|i−1,t). We refer to gi,t as the short-term component

of volatility and to 𝜏 t as the long-term component of volatility. Whereas gi,t varies daily, 𝜏 t is constant across all days
within period t and thus changes at the lower frequency only. The short-term component is intended to describe the
well-known day-to-day clustering of volatility and is assumed to follow a mean-reverting unit-variance GJR-GARCH(1,1)
process:

gi,t = (1 − 𝛼 − 𝛾∕2 − 𝛽) +
(
𝛼 + 𝛾𝟙{𝜀i−1,t<0}

) 𝜀2
i−1,t

𝜏t
+ 𝛽gi−1,t. (3)

Remark 1. We use the convention that 𝜀0,t = 𝜀It−1,t−1 and g0,t = gIt−1,t−1. Similarly, we can write the long-term
component as 𝜏 i,t = 𝜏 t for i = 1, … ,n and 𝜏0,t = 𝜏It−1,t−1 = 𝜏t−1. That is, for It > 1, 𝜏 t is piecewise constant. If It = 1,
then both components vary at the same frequency. In this case we can write 𝜀1,t = 𝜀t, g1,t = gt, 𝜀0,t = 𝜀1,t−1 = 𝜀t−1,
and g0,t = g1,t−1 = gt−1. Thus we can drop the index i.

A characteristic of the two-component M-GARCH model defined in Equation (1) is that the scaled returns, 𝜀i,t∕
√
𝜏t,

are assumed to follow a GARCH process. Hence the forcing variable in Equation (3) is 𝜀2
i−1,t∕𝜏t. This feature distinguishes

the two-component M-GARCH specification from standard GARCH models. In those models it is assumed that 𝜏 t = 1
and hence the returns themselves follow a GARCH process. Similarly, additive component GARCH models, such as
the model of Engle and Lee (1999), assume that 𝜏 t = 1 and decompose gi,t into two or more GARCH components
(with forcing variable 𝜀2

i−1,t). We make the following assumptions regarding the innovation process Zi,t and the parameters
of the short-term component.

Assumption 1. Let Zi,t be i.i.d. with E[Zi,t] = 0, E[Z2
i,t] = 1, and 1 < 𝜅 < ∞, where 𝜅 = E[Z4

i,t].

Assumption 2. We assume that 𝛼 > 0, 𝛼 + 𝛾 > 0, 𝛽 ≥ 0, and 𝛼 + 𝛾∕2 + 𝛽 < 1. Moreover, the parameters satisfy the
condition (𝛼 + 𝛾∕2)2𝜅 + 2(𝛼 + 𝛾∕2)𝛽 + 𝛽2 < 1.

Assumptions 1 and 2 imply that 𝜀i,t∕
√
𝜏t =

√
gi,tZi,t is a covariance stationary GJR-GARCH(1,1) process. The first- and

second-order moments of gi,t are given by E[gi,t] = 1,

E[g2
i,t] =

1 − (𝛼 + 𝛾∕2 + 𝛽)2

1 − (𝛼 + 𝛾∕2)2𝜅 − 2(𝛼 + 𝛾∕2)𝛽 − 𝛽2 , (4)

2It would be straightforward to allow for richer dynamics in the conditional mean. However, for daily return data a constant conditional mean is usually
sufficient. For simplicity, in the following we refer to 𝜀i,t as the (demeaned) return.
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and the fourth moment of
√

gi,tZi,t is finite. The role of the second component, 𝜏 t, is to describe smooth movements in the
conditional variance. In general, we specify 𝜏 t as a measurable, positive-valued function, f(·), of the present and K ≥ 1
lagged values of an explanatory variable Xt:

𝜏t = 𝑓 (Xt,Xt−1, … ,Xt−K). (5)

The appropriate choice of the explanatory variable Xt and of the function f(·) is up to the researcher and will depend on
the specific application at hand.3 The explanatory variable can either vary at the daily frequency (i.e., It = 1) or at a lower
frequency (i.e., It > 1). Thus, the choice of Xt defines the low frequency t. In GARCH-MIDAS-type models 𝜏 t depends on
lagged values of Xt only. By explicitly allowing 𝜏 t to depend on Xt in Equation (5), we ensure that our setting also covers
MS-GARCH models (see Section 2.2 for details). We make the following assumption about the explanatory variable Xt
and the function f(·):

Assumption 3. Let f(·) > 0 be a measurable function and Xt be a strictly stationary and ergodic time series with
E[|Xt|q] < ∞, where q is sufficiently large to ensure that E[𝜏2

t ] < ∞. Xt is independent of Zi,t−j for all t, i and j.

Note that Assumption 3 implies that 𝜏 t is strictly stationary (see Billingsley, 1995, p. 495), covariance stationary, and
independent of the ‘GARCH part’ (i.e. gi,t−𝑗Z2

i,t−𝑗) of the model. In empirical applications the function f(·) > 0 is often
chosen as being linear in the lagged Xt:

𝜏t = m + 𝜋1Xt−1 + … + 𝜋KXt−K . (6)

The linear specification requires m > 0 and 𝜋l ≥ 0, for l = 1, … ,K, and is feasible only if Xt is a nonnegative variable.
If Xt can take positive as well as negative values, it is natural to opt for an exponential specification:

𝜏t = exp(m + 𝜋1Xt−1 + … + 𝜋KXt−K). (7)

The assumption that Xt is independent of Zi,t−j for all t, i, and j might appear to be rather strong. However, without
imposing any restrictions on the functional form of f(·), it greatly simplifies the analysis when discussing the statistical
properties of M-GARCH models in Section 2.3. From an empirical perspective, we believe that it is reasonable to assume
that a low-frequency explanatory variable Xt—such as monthly industrial production growth—is (close to being) indepen-
dent of the daily innovations Zi,t−j. For daily explanatory variables (e.g., measures of realized volatility) the independence
assumption might appear to be restrictive. However, even if there is a dependence between the innovation to the daily
returns and the daily explanatory variable, the dependence between 𝜏 t and Zi,t−j is likely to be negligible. This is because
𝜏 t is a rather smooth function that is obtained as a weighted average of many lags of the daily Xt. Indeed, in Section 3 and
Supporting Information Appendix D we illustrate in simulations that a mild violation of the independence assumption
does not affect our main results.

It should also be noted that the same independence assumption has been previously made in related literature on
M-GARCH models (see Han & Kristensen, 2015). Nevertheless, it clearly imposes a limitation that should be overcome
in future work. Two examples in this direction are the estimation of GARCH-MIDAS models employing lagged values of
realized variances (Wang & Ghysels, 2015) and testing for an omitted long-term component in one-component GARCH
models (Conrad & Schienle, 2018).

Assumptions 1, 2, and 3 imply that the 𝜀i,t have mean zero, are uncorrelated, and have an unconditional variance given
by var(𝜀i,t) = E[𝜏 t]. Moreover, the unconditional variance of the squared returns is well defined: var(𝜀2

i,t) = 𝜅E[𝜏2
t ]E[g

2
i,t]−

E[𝜏t]2. If the long-term component is constant and chosen as 𝜏 t = 𝜔∕(1−𝛼−𝛾∕2−𝛽), our model reduces to the GJR-GARCH
with intercept 𝜔.

A measure that is often used to quantify the relative importance of the long-term component is the following variance
ratio (see Engle et al., 2013):

VR = var(log(𝜏t))∕var(log(𝜏tgt)), (8)
where gt =

∑It
i=1 gi,t. The ratio measures how much of the total variation in the (log) conditional variance can be explained

by the variation in the (log) long-term component.

3While we focus on multiplicative GARCH models, Han and Park (2014) and Han (2015) analyze the properties of a GARCH-X specification with an
explanatory variable that enters additively into the conditional variance equation. See also Francq and Thieu (2019).
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2.2 Nested and related specifications
We first discuss two models that are directly nested in the M-GARCH setting. The two models are the GARCH-MIDAS
of Engle et al. (2013) and (a restricted version of) the MS-GARCH model of Haas et al. (2004). Closely related are the
Spline-GARCH of Engle and Rangel (2008) and the MTV-GARCH of Amado and Teräsvirta (2008). For further models
that have a multiplicative component structure see Amado et al. (2019).

2.2.1 GARCH-MIDAS
In the GARCH-MIDAS the long-term component is defined as in Equation (6) or (7), whereby the weights 𝜋l are
parsimoniously specified via a weighting scheme. The most common choice of long-term component is based on the
exponential specification with 𝜋l = 𝜃 · 𝜑l(w1,w2). Here, the parameter 𝜃 determines the sign of the effect of the lagged Xt

on the long-term component and the weights 𝜑l(w1,w2) ≥ 0 are parametrized via the Beta weighting scheme

𝜑l(w1,w2) =
[l∕(K + 1)]w1−1 · [1 − l∕(K + 1)]w2−1

K∑
𝑗=1

[𝑗∕(K + 1)]w1−1 · [1 − 𝑗∕(K + 1)]w2−1

. (9)

By construction, the weights sum to one; that is,
∑K

l=1 𝜑l(w1,w2) = 1. It directly follows that E[𝜏t+1|t] = 𝜏t+1.
Engle et al. (2013) use monthly industrial production growth and monthly inflation as explanatory variables, whereas
Conrad and Loch (2015) employ quarterly macroeconomic variables such as gross domestic product (GDP) growth. For
further applications of this model see Asgharian et al. (2013), Opschoor et al. (2014), and Dorion (2016). Wang and
Ghysels (2015) consider the special case that f(·) is linear, It = 1 and Xt =

∑J−1
𝑗=0 𝜀

2
t−𝑗 . That is, Xt is the realized variance

based on the last J daily returns. Note that for this specification Xt and Zt are dependent and hence Assumption 3 would
be violated.

2.2.2 MS-GARCH
In MS-GARCH the returns are given by 𝜀t = �̃�Xt ,tZt, where {Xt} is a Markov chain with finite state space S = {1, 2, … , s}
and transition matrix P with typical element pi,j = P(Xt = j|Xt−1 = i). A restricted version of the MS-GARCH model
of Haas et al. (2004) is nested in our setting with It = 1. This is best illustrated in the case of s = 2: We assume that
the conditional variances in the regimes differ in the intercepts but have the same ARCH and GARCH parameters; for
example, �̃�2

k,t = 𝜔k + 𝛼𝜀2
t−1 + 𝛽�̃�2

k,t−1, k ∈ S. Defining 𝜏 t = [(2 − Xt)𝜔1 + (Xt − 1)𝜔2]∕(1 − 𝛼 − 𝛽), we can rewrite the returns

as 𝜀t =
√

�̃�2
Xt ,t

Zt =
√

gt𝜏tZt, where gt = (1 − 𝛼 − 𝛽) + (𝛼Z2
t−1 + 𝛽)gt−1. Thus the conditional variance has a multiplicative

structure. In the following, we will refer to this model as MS-GARCH with time-varying intercept (MS-GARCH-TVI).
Stationarity conditions for MS-GARCH models can be found in Haas et al. (2004).

2.2.3 Spline-GARCH and multiplicative time-varying (MTV) GARCH
In both models it is assumed that It = 1. The spline-GARCH model specifies the long-term component as a spline function
and chooses Xt = t. Similarly, in the MTV-GARCH f(·) is specified in terms of logistic transition functions and
Xt = t∕T is the rescaled time. Thus in both models the long-term component is a deterministic function of time and hence
Assumption 3 is violated.

2.3 Properties of the M-GARCH
In the following, we derive properties of M-GARCH models for which Assumptions 1, 2, and 3 are satisfied.

2.3.1 Kurtosis and autocorrelation function
Financial returns are often found to be leptokurtic. Hence a desirable feature of a volatility model is that it generates
returns with a kurtosis that is similar to the one empirically observed for financial returns. Under Assumptions 1, 2, and
3, the kurtosis of the returns defined in Equation (1) is given by
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MG =
E
[
𝜀4

i,t

]
(

E
[
𝜀2

i,t

])2 =
E
[
𝜎4

i,t

]
(

E
[
𝜎2

i,t

])2 𝜅 > 𝜅.

Thus the kurtosis of the M-GARCH process is larger than the kurtosis of the innovation Zi,t. This is a well-known feature
of GARCH-type processes. The following proposition relates the kurtosis MG of the M-GARCH to the kurtosis GA of
the nested GARCH(1, 1).

Proposition 1. Under Assumptions 1-3, the kurtosis MG of an M-GARCH process is given by

MG =
E
[
𝜏2

t
]

E[𝜏t]2 ·GA ≥ GA,

whereGA = 𝜅 ·E[g2
i,t] is the kurtosis of the nested GARCH process and where the equality holds if and only if 𝜏 t is constant.

Hence, for nonconstant 𝜏 t, the kurtosis MG is the product of GA and the ratio E[𝜏2
t ]∕E[𝜏t]2 > 1. When 𝜏 t = 𝜔∕(1−𝛼−

𝛾∕2− 𝛽) is constant, Proposition 1 nests the kurtosis of the GJR-GARCH model. Thus, for volatile long-term components
the kurtosis of an M-GARCH process can be much larger than the kurtosis of the nested GARCH model.4 Specifically,
Proposition 1 holds for the GARCH-MIDAS and for the MS-GARCH-TVI defined in Section 2.2.

The empirical ACFs of volatility proxies such as squared returns or realized variances are known to be very persistent
(see, e.g., Andersen, Bollerslev, Diebold, & Labys, 2003; Ding, Granger, & Engle, 1993). In particular, squared returns are
often found to decay more slowly than the exponentially decaying ACF implied by the simple GARCH(1, 1) model. In the
literature on GARCH models, this is usually interpreted as either evidence for long memory (see, e.g., Baillie, Bollerslev,
& Mikkelsen, 1996), structural breaks (see, e.g., Hillebrand, 2005), or an omitted persistent covariate (see Han & Park,
2014) in the conditional variance.

The following propositions show that the theoretical ACFs of the M-GARCH process have a much slower decay than
the ACF of the nested GARCH component if the long-term component is sufficiently persistent. Hence the multiplicative
structure provides an alternative explanation for the empirical observation of highly persistent ACFs of squared returns or
realized variances. For Propositions 2 and 3, we consider the case that both components are varying at the same frequency;
that is, the length of the period t is one day (It = 1).

Proposition 2. If It = 1 and Assumptions 1-3 are satisfied, the ACF, 𝜌MG
k (𝜀2), of the squared returns from an M-GARCH

process is given by

𝜌MG
k (𝜀2) = corr(𝜀2

t , 𝜀
2
t−k) = 𝜌𝜏k

var(𝜏t)
var(𝜀2

t )
+ 𝜌GA

k

var(gtZ2
t )

var(𝜀2
t )

(
𝜌𝜏kvar(𝜏t) + E[𝜏t]2) (10)

with 𝜌𝜏k = corr(𝜏t, 𝜏t−k) and

𝜌GA
k = corr(gtZ2

t , gt−kZ2
t−k) = (𝛼 + 𝛾∕2 + 𝛽)k−1 (𝛼 + 𝛾∕2)[1 − (𝛼 + 𝛾∕2)𝛽 − 𝛽2]

1 − 2(𝛼 + 𝛾∕2)𝛽 − 𝛽2

being the ACF of the GJR-GARCH component.5

Proposition 2 shows that the ACF of the squared returns is given by the sum of two terms: the first term corresponds to
the ACF of the long-term component 𝜌𝜏k times a constant, whereas the second term equals the exponentially decaying ACF
of the nested GARCH model 𝜌GA

k times a term that depends again on 𝜌𝜏k. Hence, if 𝜏 t is sufficiently persistent, 𝜌MG
k (𝜀2) will

essentially behave as 𝜌𝜏k for k large.6 For 𝜏 t being constant, the first term in Equation (10) is equal to zero and the second

4Han (2015) obtains a similar result for the sample kurtosis of the returns from a GARCH-X model with a covariate that can either be stationary or
nonstationary.
5Note that 𝜌GA

k reduces to the ACF of a (symmetric) GARCH(1, 1) when 𝛾 = 0 (see Karanasos, 1999).
6Again, Han (2015) also obtains a bicomponent structure for the sample ACF of the squared returns from a GARCH-X model with a fractionally
integrated covariate. Similarly, Han and Kristensen (2015) show that the empirical ACF in a multiplicative model can display long-memory-type
behavior.

24



CONRAD AND KLEEN

FIGURE 1 Autocorrelation function of the volatility process in a
GARCH-MIDAS model. We depict the ACF of the volatility process
in a GARCH-MIDAS model (red, dashed) and its components: the
first (green, solid) and second term (blue, dot-dashed) in
Equation (11). The long-term component is defined as in
Equations (7) and (9) with m = −0.1, 𝜃 = 0.3, w1 = 1,w2 = 5, and
K = 264. The explanatory variable is given by
Xt = 𝜙Xt−1 + 𝜉t, 𝜉t

i.i.d.∼  (0, 𝜎2
𝜉
), where 𝜙 = 0.98 and 𝜎2

𝜉
= 0.352.

The GARCH(1, 1) parameters are 𝛼 = 0.06, 𝛽 = 0.91, and 𝛾 = 0.
Moreover, we set 𝜅 = 3. Bars in light gray display the empirical
autocorrelation of S&P 500 daily realized variances between 2000:M1
and 2018:M4 as measured by Hansen and Lunde (2014). For details
see Section 4 [Colour figure can be viewed at wileyonlinelibrary.com]

term reduces to the ACF of an asymmetric GARCH(1, 1). Also, note that the ratio var(𝜏t)∕var(𝜀2
t ) is closely related to the

variance ratio defined in Equation (8) and measures how much of the variation in the squared returns can be attributed
to the variation in the long-term component; that is, it measures the importance of the long-term component.

Haas et al. (2004, p. 503) make a similar observation for the MS-GARCH-TVI model that we discussed in Section 2.2.
For this model, they show that the autocorrelations of the squared returns decay at a rate of max{𝛼 + 𝛽,𝜛}, where 𝜛 =
p1,1+p2,2−1 is the degree of persistence due to the Markov effects.7 If𝜛 is close to one—that is, if the long-term component
is very persistent—the decay rate of this component dominates the decay of the autocorrelation function.

A standard misspecification test for GARCH models is the Ljung–Box statistic applied to the squared deGARCHed
residuals, 𝜀2

t ∕gt. The result in Proposition 2 may explain why in empirical applications the null hypothesis of this test is
often rejected. In the multiplicative model, the ACF of the squared deGARCHed residuals is given by 𝜌𝜏k ·var(𝜏t)∕(𝜅E[𝜏2

t ]−
E[𝜏t]2), which follows the rate of decay of the long-term component and hence is still persistent. Using similar arguments
to those in the proof of Proposition 2, we can derive the ACF of 𝜎2

t .

Proposition 3. If It = 1 and Assumptions 1-3 are satisfied, the ACF, 𝜌MG
k (𝜎2), of 𝜎2

t is given by

𝜌MG
k (𝜎2) = corr

(
𝜎2

t , 𝜎
2
t−k

)
= 𝜌𝜏k

var(𝜏t)
var(𝜎2

t )
+ 𝜌

g
k

var(gt)
var(𝜎2

t )
(
𝜌𝜏kvar(𝜏t) + E[𝜏t]2) (11)

with 𝜌𝜏k as before and 𝜌
g
k = corr(gt, gt−k) = (𝛼 + 𝛾∕2 + 𝛽)k being the ACF of the gt component.

Again, Assumption 3 holds for the GARCH-MIDAS and the MS-GARCH-TVI.
The implications of Proposition 3 are depicted in Figure 1. The bars in light gray display the empirical ACF of the

daily S&P 500 realized variances for the 2000:M1 to 2018:M4 period.8 The autocorrelations were estimated using the
instrumental variables estimator suggested in Hansen and Lunde (2014). We employ their preferred specification, a
two-stage least squares estimator in which lagged realized variances of order 4–10 are used as instrumental variables
(see Hansen & Lunde, 2014, p. 82). By choosing appropriate parameter values for a GARCH-MIDAS process, we obtain
an ACF of 𝜎2

t (dashed red line), which behaves very similar to the empirical ACF of the realized volatilities. The figure
shows that the second term—that is, the ACF of gt (dot-dashed blue line)—determines the decay behavior of 𝜌k(𝜎2)MG

when k is small, whereas the first term—that is, the ACF of 𝜏 t (solid green line)—dominates when k is large. Finally, it is
important to note that although our results on the kurtosis and the ACFs are presented for a GJR-GARCH(1, 1) short-term
component, they directly extend to a covariance stationary GJR-GARCH(p, q) component.

2.3.2 Forecast evaluation with MZ regression
In empirical applications, the coefficient of determination from an MZ regression is often used as a measure of forecast
accuracy. In this section, we will argue against using this measure when comparing forecast performance across volatility
regimes. We now exclusively focus on the case of a GARCH-MIDAS. We assume that forecasts are produced on the last
day It of period t and denote the k-step-ahead volatility forecast by hk,t+1|t with k ≤ It+1. The optimal forecast from

7Haas et al. (2004) consider a symmetric GARCH. Hence the persistence in the GARCH component is 𝛼 + 𝛽.
8The underlying data will be described in detail in Section 4.1.
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the GARCH-MIDAS is hk,t+1|t = E
[
𝜎2

k,t+1|t

]
= 𝜏t+1gk,t+1|t, where gk,t+1|t = E

[
gk,t+1|t

]
= 1 + (𝛼 + 𝛾∕2 + 𝛽)k−1(g1,t+1|t −

1). When evaluating the volatility forecast, one has to deal with the problem that the true conditional variance, 𝜎2
k,t+1,

is unobservable. Patton (2011) discusses the situation in which the forecast evaluation is based on some conditionally
unbiased volatility proxy �̂�2

k,t+1 instead. He defines a loss function L
(
𝜎2

k,t+1, hk,t+1|t) as robust if the expected loss ranking
of two competing forecasts is preserved when replacing 𝜎2

k,t+1 by �̂�2
k,t+1. In the MZ regression 𝜎2

k,t+1 is often replaced by the
conditionally unbiased but noisy proxy �̂�2

k,t+1 = 𝜀2
k,t+1.9

The MZ regression for evaluating the k-step-ahead volatility forecast is given by

𝜀2
k,t+1 = 𝛿0 + 𝛿1hk,t+1|t + 𝜂k,t+1. (12)

We denote the respective coefficient of determination by R2
k. As shown in Hansen and Lunde (2006), the ranking of com-

peting one-step-ahead volatility forecasts based on the R2
1 of the MZ regression is robust to using the proxy 𝜀2

1,t+1 instead
of the latent conditional variance 𝜎2

1,t+1 as the dependent variable. For hk,t+1|t = 𝜏 t+1gk,t+1|t, the population parameters of
the MZ regression are given by 𝛿0 = 0 and 𝛿1 = 1 and hence the population R2

k can be written as

R2
k = 1 −

var(𝜂k,t+1)

var
(
𝜀2

k,t+1

) = 1 −
E
[
SE

(
𝜀2

k,t+1, hk,t+1|t)]
var

(
𝜀2

k,t

) , (13)

where we use that the variance of 𝜂k,t+1 equals the expected squared error (SE) loss of the forecast evaluated against 𝜀2
k,t+1;

that is, E
[
SE

(
𝜀2

k,t+1, hk,t+1|t)] = E
[(

𝜀2
k,t+1 − hk,t+1|t)2

]
. Using that E

[
𝜀2

k,t+1|k−1,t+1

]
= 𝜎2

k,t+1, it follows that

E
[
SE

(
𝜀2

k,t+1, hk,t+1|t)] = E
[
SE

(
𝜎2

k,t+1, hk,t+1|t)] + (𝜅 − 1)E
[
𝜎4

k,t+1

]
. (14)

That is, the expected SE based on the noisy proxy equals the expected SE based on the latent volatility plus a term that
depends on the fourth moment, 𝜅, of Zi,t and the expected value of the squared conditional variance. Hence using a noisy
proxy for forecast evaluation can lead to a substantially higher expected SE than the expected SE based on the latent
volatility. Patton, (2011, p. 248) basically makes the same point by arguing that “although the ranking obtained from a
robust loss function will be invariant to noise in the proxy, the actual level of expected loss obtained using a proxy will be
larger than that which would be obtained when using the true conditional variance.”

Using the insight from Equation (14) that the expected SE loss based on the noisy proxy is at least (𝜅 − 1)E
[
𝜎4

k,t

]
, we

obtain the following bound:

R2
k ≤ 1 −

(𝜅 − 1)E
[
𝜎4

k,t

]
𝜅E

[
𝜎4

k,t

]
−
(

E
[
𝜎2

k,t

])2 =
1 −

(
E
[
𝜎2

k,t

])2
∕E

[
𝜎4

k,t

]
𝜅 −

(
E
[
𝜎2

k,t

])2
∕E

[
𝜎4

k,t

] <
1
𝜅
. (15)

The upper bound for R2
k given by Equation (15) nicely illustrates that a low R2

k is not necessarily evidence for
model misspecification but can simply be due to using a noisy volatility proxy. This point has been made before by
Andersen and Bollerslev (1998), but for the special case of a one-step-ahead forecast from a GARCH(1, 1).10 Note that the
result in Equation (15) does not depend on the two-component structure of the model but is true for any conditionally
heteroskedastic process.

Next, we derive an explicit expression for the MZ R2
k of the GARCH-MIDAS model.

9To illustrate the severeness of the noise, consider an example with Zk,t+1 ∼  (0, 1). Then 𝜀2
k,t+1 will either over- or underestimate the true 𝜎2

k,t+1 by
more than 50% with a probability of about 74%.
10See Andersen, Bollerslev, and Meddahi (2005) for a model-free adjustment procedure for the predictive R2.
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Proposition 4. If 𝜀2
k,t+1 follows a GARCH-MIDAS process, Assumptions 1-3 are satisfied, and hk,t+1|t = 𝜏 t+1gk,t+1|t,

then the population R2
k of the MZ regression is given by

R2
k =

var(hk,t+1|t)
var

(
𝜀2

k,t+1

) =
E
[

g2
k,t+1|t

]
E
[
𝜏2

t+1
]
− E[𝜏t+1]2

E
[

g2
k,t+1

]
E
[
𝜏2

t+1
]
𝜅 − E[𝜏t+1]2

(16)

with E
[

g2
k,t+1

]
as in Equation (4) and

E
[

g2
k,t+1|t

]
= 1 + (𝛼 + 𝛾∕2 + 𝛽)2(k−1) (E

[
g2

1,t+1
]
− 1

)
. (17)

We obtain the following two properties:

1. R2
k decreases monotonically with increasing forecast horizon k and, in the limit, converges11 to R2

∞ =

var(𝜏t+1)∕var
(
𝜀2

k,t+1

)
.

2. R2
k increases monotonically in E

[
𝜏2

t+1
]
.

The first property rests on the insight that the forecast of the GARCH component converges to one (as k → ∞) and
hence the MZ regression reduces to a regression of 𝜀2

k,t+1 on a constant and 𝜏 t+1. Thus R2
∞ can be interpreted as the fraction

of the total variation in daily returns that can be attributed to the variation in the long-term component. Note that R2
∞

corresponds to the weight that is attached to the ACF of 𝜏 t in the first term in Equation (10).
Second, the result that R2

k increases when 𝜏 t+1 gets more volatile implies that for the very same model the R2
k will be

higher in high-volatility regimes (i.e., when the squared error loss is high) than in low-volatility regimes (i.e., when the
squared error loss is low). This can be misleading when calculating R2

k for different regimes. The intuition is best illustrated
when looking at one-step-ahead forecasts. Equations (13) and (14) imply

R2
1 = 1 −

E
[
SE

(
𝜀2

1,t+1, h1,t+1|t)]
var

(
𝜀2

1,t+1

) = 1 −
(𝜅 − 1)E

[
g2

1,t+1

]
E
[
𝜏2

t+1
]

E
[

g2
1,t+1

]
E
[
𝜏2

t+1
]
𝜅 − E[𝜏t+1]2

. (18)

When E[𝜏2
t+1] is increasing, the unconditional variance of returns rises at a faster rate than the expected squared error

and hence the MZ R2
1 is increasing. We can express R2

1 directly as a function of the model parameters:

Lemma 1. If 𝜀2
k,t+1 follows a GARCH-MIDAS process, Assumptions 1-3 are satisfied, and h1,t+1|t = 𝜏 t+1g1,t+1, then the

population R2
1 of the MZ regression is given by

R2
1 =

[1 − (𝛼 + 𝛾∕2 + 𝛽)2]E
[
𝜏2

t+1
]
− [1 − (𝛼 + 𝛾∕2)2𝜅 − 2(𝛼 + 𝛾∕2)𝛽 − 𝛽2]E[𝜏t+1]2

[1 − (𝛼 + 𝛾∕2 + 𝛽)2]E
[
𝜏2
𝜏+1

]
𝜅 − [1 − (𝛼 + 𝛾∕2)2𝜅 − 2(𝛼 + 𝛾∕2)𝛽 − 𝛽2]E[𝜏t+1]2

. (19)

For 𝜏 t+1 being constant and 𝛾 = 0, Equation (19) is reduced to the expression in Andersen and Bollerslev (1998, p. 892)
for the symmetric GARCH(1, 1); that is, R2

1 = 𝛼2∕(1 − 2𝛼𝛽 − 𝛽2).
The effect of an increase in E

[
𝜏2

t+1
]

on E
[
SE

(
𝜀2

1,t+1, h1,t+1|t)], var
(
𝜀2

1,t+1

)
and R2

1 is illustrated in Figure 2. We set
E[𝜏 t+1] = 1, 𝛼 = 0.05, 𝛽 = 0.92, 𝛾 = 0, and 𝜅 = 3. As expected, the left-hand panel shows that the expected squared
error increases when we move from a low-volatility regime (say E

[
𝜏2

t+1
]
= 2) to a high-volatility regime (say E

[
𝜏2

t+1
]
=

5). However, it also shows that the variance of the returns is increasing even faster (as evident from the larger slope
coefficient). The right-hand panel of Figure 2 shows that this translates into an increase of R2

1. That is, although the
expected squared error increases, the “forecast accuracy” as measured by R2

1 increases as well. In this regard, the R2 of
an MZ regression should be interpreted as a measure of relative forecast accuracy; that is, forecast accuracy is measured

11Although by assumption k ≤ It in our setting, we can think of, for example, a semiannual period and daily volatility forecasts. In this case k can be
at most 132 (= 6 · 22). For such a large k and under reasonable assumptions on the GARCH parameters, we have E

[
g2

132,t+1|t
]
≈ 1.
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FIGURE 2 E
[
SE

(
𝜀2

1,t+1, h1,t+1|t)],

var
(
𝜀2

1,t+1

)
, and MZ R2

1 as a function of
E
[
𝜏2

t+1
]
. The left-hand panel shows

E
[
SE

(
𝜀2

1,t+1, h1,t+1|t)] (red, solid) and

var
(
𝜀2

1,t+1

)
(blue, dashed) as a function

of E
[
𝜏2

t+1
]

(see Equation (18)). The
right-hand panel depicts the
corresponding population
Mincer-Zarnowitz R2

1 as a function of
E
[
𝜏2

t+1
]
. We set E[𝜏 t+1] = 1,

𝛼 = 0.05, 𝛽 = 0.92, 𝛾 = 0, and 𝜅 = 3
[Colour figure can be viewed at
wileyonlinelibrary.com]

relative to the unconditional variance of the process. In contrast, the squared error loss is a measure of absolute forecast
accuracy. Note that for rather moderate values of E

[
𝜏2

t+1
]

the coefficient of determination is already close to its upper
bound of 1/3.

Although the previous results are derived under the assumption that squared daily returns are used as the volatility
proxy, it is true that the main insights still hold when using a better volatility proxy. For example, consider the hypothetical
case of observing 𝜎2

k,t+1 ex post. Then, for k → ∞, we obtain R2
∞ = var(𝜏t+1)∕var

(
𝜎2

k,t+1

)
< 1. Hence R2

∞ would still vary
across volatility regimes and increase in the variance of the long-term component. In the simulation in Section 3, we will
consider the case in which the realized variance is used as a proxy for 𝜎2

k,t+1.
Finally, we consider cumulative volatility forecasts. The MZ regression for evaluating the cumulative k-day-ahead

volatility forecast is given by

R̃V1∶k,t+1 = 𝛿0 + 𝛿1h1∶k,t+1|t + 𝜂1∶k,t+1,

where the latent variance is proxied by the realized variance R̃V1∶k,t+1 =
∑k

i=1 𝜀
2
i,t+1 (purely based on daily return data)

and h1∶k,t+1|t = ∑k
𝑗=1 h𝑗,t+1|t. The corresponding R2

1∶k is given by

R2
1∶k =

var(h1∶k,t+1|t)
var(R̃V1∶k,t+1)

=

E
[
𝜏2

t+1
]

E
⎡⎢⎢⎣
( k∑

i=1
gi,t+1|t

)2⎤⎥⎥⎦ − k2E[𝜏t+1]2

E
[
𝜏2

t+1
]

E
⎡⎢⎢⎣
( k∑

i=1
gi,tZ2

i,t

)2⎤⎥⎥⎦ − k2E[𝜏t+1]2

. (20)

As before, one can show that R2
1∶k increases monotonically in E

[
𝜏2

t+1
]
.

2.4 Forecasting long-term volatility
In the empirical application and in the simulation in Section 3 we also consider forecasting volatility for horizons that
are beyond one low-frequency period. The optimal forecast hk,t+s|t with s > 1 is then given by E[𝜏t+s|t]E[gk,t+s|t]. It is
straightforward to obtain gk,t+s|t = E[gk,t+s|t] = 1+(𝛼 + 𝛾∕2 + 𝛽)(It+1+…+It+s−1+k−1)(g1,t+1|t−1). Because we do not explicitly
model the dynamics of Xt, we are unable to obtain E[𝜏t+s|t]. Instead, based on the information set t, we forecast 𝜏 t+s by
𝜏 t+1. Holding the long-term component constant when forecasting is reasonable if 𝜏 t changes smoothly and the forecast
horizon is not “too large.” Otherwise, one may use predictions of Xt—for example, survey or time series forecasts—for
calculating predictions of 𝜏 t (see Conrad & Loch, 2015).
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3 SIMULATION

In this section, we mainly focus on M-GARCH models from the GARCH-MIDAS class. Since asymptotic theory for the
QMLE is available only for the special case of a GARCH-MIDAS with realized volatility as the explanatory variable
(see Wang & Ghysels, 2015), we first evaluate the finite-sample performance of the QMLE in a Monte Carlo simulation.
Second, we compare the QMLE of the correctly specified model with the QMLE of misspecified models. We consider
misspecification in terms of (i) lag length K, (ii) the explanatory variable being measured with noise, (iii) both, or (iv)
omitting the long component completely. Finally, within the Monte Carlo simulation we evaluate the OOS forecast
performance and provide empirical support for the theoretical results in Section 2.3.2. For each model specification, we
perform 2,000 Monte Carlo replications.

3.1 Data generating process
We simulate an intraday version of the two-component GARCH model as

𝜀n,i,t =
√

gi,t𝜏tZn,i,t∕
√

N, (21)

where the index n = 1, … ,N now denotes the intraday frequency. The Zn,i,t are assumed to be i.i.d. and follow either
a standard normal or a standardized Student t distribution with five degrees of freedom. We generate N = 48 intraday
returns. Hence, by aggregating returns to a daily frequency, 𝜀i,t =

∑N
n=1 𝜀n,i,t, the model in Equation (21) is consistent

with our daily model.12 Simulating intraday returns allows us to calculate the daily realized variance, RVi,t =
∑N

n=1 𝜀
2
n,i,t,

as a precise measure of the daily variance. Similarly, we obtain the realized variance over the first k days of month t as
RV1∶k,t =

∑k
i=1 RVi,t. We simulate data for a period of 40 years of intradaily returns, from which we construct 10,560 daily

return and realized variance observations. The parameters of the GARCH component, gi,t, are given by 𝛼 = 0.06, 𝛽 = 0.91,
and 𝛾 = 0. We consider two alternative specifications of the long-term component:

Monthly 𝜏 t. The first specification assumes a mixed-frequency setting with 𝜏 t fluctuating at a monthly frequency. We
assume that each month consists of It = 22 days. As in Equation (7), we choose an exponential specification for the
long-term component and specify the MIDAS weights according to the Beta weighting scheme in Equation (9) with m =
0.1, 𝜃 = 0.3, w1 = 1, w2 = 4, and K = 36. The choice of 3 years as MIDAS lag length follows Conrad and Loch (2015). Setting
w2 = 4 implies a monotonically decaying weighting scheme with weights close to zero for lags greater than two-thirds of
K. The explanatory variable Xt is assumed to follow an AR(1) process, Xt = 𝜙Xt−1 + 𝜉t, 𝜉t

i.i.d.∼ 
(

0, 𝜎2
𝜉

)
, with 𝜙 = 0.9

and 𝜎2
𝜉
= 0.32. When averaged over the 2,000 Monte Carlo simulations, these parameter values lead to an empirical VR

of 18.60%/18.09% for normally/Student t distributed innovations (recall that the VR was defined in Equation (8)).
Daily 𝜏 t. The second specification assumes that both components fluctuate at a daily frequency (i.e., It = 1). The param-

eters of the long-term component are chosen as m = −0.1, 𝜃 = 0.3, w1 = 1, w2 = 5, and K = 264. Choosing a lag length of
roughly 1 year is motivated by our empirical results in Section 4 when estimating a GARCH-MIDAS model using RVoli,t
as the explanatory variable. In addition, we choose 𝜙 = 0.98 and 𝜎2

𝜉
= 0.22. In the simulations, the former choice leads to

an average VR of 32.49%/31.66% for normally/Student t distributed innovations.

3.2 Parameter estimates
3.2.1 Correctly specified models: Bias and asymptotic standard errors
We use the first 20 years of simulated data as the “in-sample” period to obtain QML estimates of the model parameters.
Table 1 reports the average bias of the QMLE across the 2,000 Monte Carlo simulations. In panels A/B the innovations
Zn,i,t are normally/Student t distributed. First, we focus on panel A. In this case the density is correctly specified and the
QMLE is the maximum likelihood estimator. Note that for all parameters except w2 the average bias is close to zero when
the conditional variance is correctly specified (i.e., with MIDAS lag length of K = 36 (monthly) and K = 264 (daily)
respectively). For w2 we clearly observe an upward bias.13 Based on the 2,000 Monte Carlo replications, we also calculate

12Alternatively, we simulated the intraday returns using a stochastic volatility model that is consistent with our GARCH-MIDAS setting. The
corresponding results, which are very similar to those based on the specification in Equation (21), are presented in Supporting Information
Appendix E.
13Figure C.1 in the Supporting Information Appendix compares the histogram of the standardized parameter estimates over the 2,000 Monte Carlo
replications with a standard normal distribution. The figure shows that for all parameters except w2 the empirical distribution of the parameter estimates
is very well approximated by the normal distribution.
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TABLE 1 Monte Carlo parameter estimates

𝛼 𝛽 m 𝜃 w2 𝜅 − 3
Panel A: Zn,i,t normally distributed

Monthly 𝜏 t GARCH-MIDAS (36) -0.000 -0.004 -0.007 0.036 1.959 -0.010
{0.008} {0.014} {0.071} {0.145} {6.494}
(0.009) (0.015) (0.070) (0.137) (12.240)

GARCH-MIDAS (12) -0.000 -0.003 -0.006 -0.029 -0.470 -0.009
GARCH-MIDAS (36, X̃) 0.000 -0.003 -0.006 0.000 0.788 -0.009
GARCH-MIDAS (12, X̃) 0.000 -0.002 -0.005 -0.075 -0.869 -0.008
GARCH 0.000 0.003 0.009 — — 0.001

Daily 𝜏 t GARCH-MIDAS (264) -0.000 -0.003 -0.003 0.010 1.030 -0.006
{0.008} {0.014} {0.063} {0.078} {5.020}
(0.008) (0.014) (0.062) (0.075) (4.786)

GARCH-MIDAS (66) -0.000 -0.002 -0.001 -0.053 -3.247 -0.004
GARCH-MIDAS (264, X̃) -0.000 -0.003 -0.002 0.002 0.332 -0.005
GARCH-MIDAS (66, X̃) 0.000 -0.002 0.000 -0.066 -3.414 -0.003
GARCH 0.003 0.003 0.031 — — 0.020

Panel B: Zn,i,t Student t distributed
Monthly 𝜏 t GARCH-MIDAS (36) -0.000 -0.004 -0.008 0.040 1.491 0.108

{0.008} {0.014} {0.075} {0.152} {5.983}
(0.008) (0.015) (0.071) (0.141) (11.033)

GARCH-MIDAS (12) -0.000 -0.003 -0.006 -0.030 -0.589 0.109
GARCH-MIDAS (36, X̃) -0.000 -0.003 -0.006 0.003 0.715 0.110
GARCH-MIDAS (12, X̃) -0.000 -0.002 -0.004 -0.073 -0.797 0.111
GARCH -0.000 0.003 0.011 — — 0.122

Daily 𝜏 t GARCH-MIDAS (264) -0.000 -0.003 -0.002 0.012 1.136 0.112
{0.008} {0.014} {0.065} {0.082} {5.896}
(0.008) (0.014) (0.063) (0.075) (6.039)

GARCH-MIDAS (66) 0.000 -0.002 0.000 -0.052 -2.730 0.114
GARCH-MIDAS (264, X̃) 0.000 -0.003 -0.001 0.003 0.341 0.114
GARCH-MIDAS (66, X̃) 0.000 -0.002 0.001 -0.064 -3.372 0.116
GARCH 0.003 0.003 0.034 — — 0.141

Note. The table reports the average bias of parameter estimates and the corresponding standard errors across 2,000 Monte
Carlo simulations. We provide results for both daily and monthly long-term components. In curly brackets, empirical standard
deviations of parameter estimates are reported. Entries in parentheses correspond to the square root of average Wang and Ghy-
sels (2015) asymptotic variances. The parameter estimates are based on (the first) 20 years of observations (i.e. the in-sample
period). In both long-term components (see Equations (7) and (9)), we choose 𝜃 = 0.3 and w1 = 1. We use m = 0.1 and w2 = 4
in the monthly 𝜏 t and m = −0.1 and w2 = 5 in the daily 𝜏 t. The long-term component is assumed to depend on K = 36 monthly
or K = 264 daily observations. The covariate Xt is modeled as an AR(1) process; that is, Xt = 𝜙Xt−1 + 𝜉t , 𝜉t

i.i.d.∼  (0, 𝜎2
𝜉
), with

𝜙 = 0.9, 𝜎2
𝜉
= 0.32 for a monthly, and 𝜙 = 0.98, 𝜎2

𝜉
= 0.22 for a daily 𝜏 t. The parameters of the short-term component are

in both cases given by 𝛼 = 0.06, 𝛽 = 0.91 and 𝛾 = 0. For each model that is estimated based on the true value of Xt, we also
incorporate estimations in which Xt is replaced by a noisy proxy X̃t . It is modeled as X̃t = Xt + (0, 0.2 + 0.8|Xt|) in the case
of the monthly varying 𝜏 t and X̃t = Xt + (0, 0.5 + 0.8|Xt|) in the case of a daily varying 𝜏 t. The column “𝜅 − 3” presents the
mean excess kurtosis of the standardized residuals from each model.

the empirical standard deviation of the estimated parameters. In Table 1 these figures are presented in curly brackets. The
numbers in parentheses are the average asymptotic standard errors based on the results in Wang and Ghysels (2015). A
comparison of these numbers shows that the asymptotic standard errors are close to the empirical standard deviation of
estimated parameters. The only exception is the specification with monthly 𝜏 t where the asymptotic standard errors of
w2 appear to be too big. Nevertheless, the overall performance of the asymptotic standard errors is very satisfying. That
is, the Wang and Ghysels (2015) asymptotic standard errors that were derived under the assumption that Xt =

∑J−1
𝑗=0 𝜀

2
t−𝑗

are applicable more generally.

3.2.2 Misspecified models: Bias
Next, we investigate the effect of model misspecification. First, we consider specifications with a smaller lag length than
the true one.14 Choosing a lag length that is too small (K = 12 for monthly 𝜏 t or K = 66 for daily 𝜏 t) does not lead to a

14We do not report results for K being chosen too large as the Beta weighting scheme is flexible enough to downweight uninformative lags to almost zero.
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FIGURE 3 Weighting schemes implied by mean parameter estimates. Estimated Beta weighting schemes (see Equation (9)) as implied by
the mean parameter estimates reported in Table 1. The green (solid) line corresponds to the case of a correctly specified model, whereas the
red (dot-dashed) line corresponds to a model with K being too small. With the brown (long dashed) and purple (short dashed) line, the
corresponding cases of a GARCH-MIDAS with measurement error are reported. The black line shows the true weighting scheme [Colour
figure can be viewed at wileyonlinelibrary.com]

bias in the parameter estimates—with the exception of w2. Now the QMLE of w2 is downwardly biased. As the estimated
weighting schemes in Figure 3 show, the downward bias in w2 translates into biased weighting schemes. Second, we
consider the case of observing the explanatory variable Xt with measurement error. This is a reasonable scenario because
in practice the true Xt is either unknown to or unobservable for the researcher, who will base his analysis on a reasonable
proxy. We denote the proxy by X̃t and specify it as Xt plus conditionally heteroskedastic noise. In the case of monthly 𝜏 t
the noise is given by  (0, 0.2+ 0.8|Xt|) and in the case of daily 𝜏 t by  (0, 0.5+ 0.8|Xt|). The average correlation between
Xt and X̃t is 68.79%/62.71% for monthly/daily 𝜏 t. As before, only the QML estimates of w2 appear to be biased when Xt is
replaced with X̃t. Last, we estimate a misspecified one-component GARCH model that is obtained when restricting 𝜏 t to
be constant. Despite the omitted long-term component, the parameter estimates of 𝛼 and 𝛽 are essentially unbiased.

Note that the numbers in panel B of Table 1 are very similar to those in panel A. When replacing the normally distributed
innovations with Student t distributed innovations, the density in the maximum likelihood estimation is misspecified
and the estimator is truly QMLE. Nevertheless, this change hardly affects our findings. The only notable difference can
be seen in the last column of Table 1, which shows the average excess kurtosis of the fitted standardized residuals. Those
residuals are given by 𝜀i,t∕

√
𝜏tĝi,t for the GARCH-MIDAS models and by 𝜀i,t∕

√
ĝi,t for the GARCH model. While the excess

kurtosis is essentially zero in panel A, in panel B there is still excess kurtosis, reflecting the fact that the innovations are
Student t distributed.

3.3 Forecast evaluation
Next, we evaluate the forecast performance of the different specifications. Based on the in-sample parameter estimates,
we construct OOS volatility forecasts for the remaining 20 years. Keeping the parameter estimates fixed is usually referred
to as a “fixed (forecasting) scheme.”15 The forecast performance of the different models will be evaluated over the 2,000
Monte Carlo replications.

We compare the forecast performance of the correctly specified GARCH-MIDAS with all the misspecified models
presented in Table 1. In addition, we consider the two-state MS-GARCH-TVI model that was introduced in Section 2.2.16

3.3.1 MZ regression
We first present the outcomes of MZ regressions. Figure 4 shows the R2

k of MZ regressions for volatility forecasts, hk,t+1|t,
with k = 1, … , 22 (i.e., for up to 1 month ahead). Forecast evaluation is based on the noisy proxy 𝜀2

k,t+1, whereby the
data generating process is the GARCH-MIDAS with monthly 𝜏 t and normally distributed innovations. The forecasts are
generated from the correctly specified GARCH-MIDAS model. We present the R2

k for the full OOS period as well as for

15In contrast, in the empirical forecast evaluation in Section 4.4 we apply a “rolling scheme.” As we will discuss below, this is important because it takes
into account the real-time nature of the data and allows for changes in the model parameters.
16In-sample parameter estimates for the MS-GARCH-TVI model can be found in the Supporting Information Appendix, Table B.1. The median estimates
of 𝛼 and 𝛽 are close to the true values. The estimates of 𝜔1 and 𝜔2 represent a low- and a high-volatility regime. As measured by 𝜛 = p1,1 + p2,2 − 1, the
degree of persistence in the long-term component is very high.
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FIGURE 4 MZ R2—monthly 𝜏 t—evaluation based on 𝜀2
k,t+1. The figure shows the average R2

k of MZ regressions based on the predictions
from the correctly specified GARCH-MIDAS model over all 2,000 Monte Carlo replications. The true volatility is proxied by 𝜀2

k,t+1. Besides the
full out-of-sample period, we consider low-, normal-, and high-volatility regimes. For a definition of the regimes see Section 3.3.1 [Colour
figure can be viewed at wileyonlinelibrary.com]

three different volatility regimes: low, normal, and high. Volatility regimes are defined as follows. We consider the empir-
ical distribution of daily realized variances during the OOS period. A forecast falls into the low/normal/high-volatility
regime if the level of the realized variance on the day the forecast has been issued is below the 25% quantile, between
the 25% and 75% quantile, or above the 75% quantile of the empirical distribution. In line with our theoretical result in
Proposition 4, the R2

ks for the full sample are decreasing with increasing forecast horizon. As expected, R2
1 is below the

upper bound of one-third (see Equation (15)). Among the three regimes, we observe the highest R2
ks in the high-volatility

regime. Clearly, the high R2
ks in the high-volatility regime do not reflect an improved absolute forecast performance but

rather an improved relative forecast performance. Further, note that for almost all forecast horizons the R2
ks in the full

sample are higher than in each subsample.
For empirical applications, cumulative volatility forecasts are of greater importance than k-step-ahead forecasts. Hence

in Figure 5 we present the R2
1∶k of MZ regressions for cumulative volatility forecasts, h1:k,t+1|t, with k = 1, … , 22. Note that,

by construction, the volatility forecasts are nonoverlapping. We now present forecasts from the correctly specified and the
misspecified GARCH-MIDAS models as well as from the MS-GARCH-TVI and the nested GARCH. Forecast evaluation
is based on the precise proxy RV1:k,t+1. Panels (a)/(b) show the results for monthly/daily 𝜏 t. Based on Figure 5, we are able
to rank the different models' forecast performance. While the performance of all GARCH-MIDAS models is essentially
indistinguishable, the one-component GARCH and the MS-GARCH-TVI models lead to a lower R2

1∶k. Differences between
models are most pronounced in the low and normal regime.

3.3.2 Model confidence sets
Next, we formally test for superior predictive ability. We base our analysis on the MCS approach introduced by Hansen
et al. (2011). Following the arguments in Patton (2011), we use the QLIKE loss as the evaluation criterion. For a
k-step-ahead volatility forecast, the QLIKE is defined as

QLIKE
(
𝜎2

k,t+1, hk,t+1|t) = 𝜎2
k,t+1∕hk,t+1|t − ln

(
𝜎2

k,t+1∕hk,t+1|t) − 1. (22)

The QLIKE is the only robust loss function that depends solely on the standardized forecast error, 𝜎2
k,t+1∕hk,t+1|t. As

discussed in Patton (2011), the QLIKE is less sensitive with respect to extreme observations than the squared error loss.
Further, it can be shown that the moment conditions required for Diebold and Mariano (1995) or Giacomini and White
(2006) type tests are weaker under QLIKE than under squared error loss (see Patton, 2006).

We consider the following forecasting schemes. Based on the information available at the last day of the current month,
cumulative volatility forecasts are computed for horizons of 1 day (1d), 2 weeks (2w), and 1 month (1m), as well as fore-
casts of volatility in 2 months (2m) and 3 months (3m). Whenever the forecast horizon is longer than the frequency of
the long-term component, the optimal forecast requires predicting the long-term component. Instead, we simply fix the
long-term component at its current level (see Section 2.4). Forecast evaluation is now based on the precise proxy RV1:k,t+1.
Next, we explain how the MCS is obtained. Denote by  the set of all competing models. We define
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FIGURE 5 MZ R2
1∶k—monthly and daily 𝜏 t—evaluation based on RV1:k,t+1: (a) monthly 𝜏 t; (b) daily 𝜏 t . For each model the figure shows

the average R2
1∶k of the MZ regressions over the 2,000 Monte Carlo replications. The true volatility is proxied by RV1:k,t+1. The upper/lower

panels display the case of monthly/daily long-term components. Besides the full out-of-sample period, we consider low-, normal-, and
high-volatility regimes. For a definition of the regimes see Section 3.3.1 [Colour figure can be viewed at wileyonlinelibrary.com]

di,𝑗(s, k) = QLIKE
(

RV1∶k,t+s, ĥ(i)
1∶k,t+s|t

)
− QLIKE

(
RV1∶k,t+s, ĥ(𝑗)

1∶k,t+s|t
)

as the difference in the QLIKE loss of models i and j. For example, when s = 1 and k ∈ {1, 5, 22} the forecast ĥ(i)
1∶k,t+s|t

denotes the cumulative forecast for the first (1d), the first 5 (1w), or all 22 (1m) days in the following month while for
s ∈ 2, 3 and k = 22 we obtain the forecast for 2 (2m) and 3 (3m) months in the future. We compute the average loss
difference, d̄i,𝑗 , and calculate the test statistic:

ti𝑗 = d̄i,𝑗∕
√

̂var
(

d̄i,𝑗
)

for all i, 𝑗 ∈ . (23)

The MCS test statistic is then given by T = max
i,𝑗∈

|ti,𝑗| and has the null hypothesis that all models have the same

expected loss. Under the alternative, there is some model i that has an expected loss greater than the expected loss of all
other models 𝑗 ∈ ∖i. If the null hypothesis is rejected, the worst-performing model is eliminated. The test is performed
iteratively, until no further model can be eliminated. We denote the final set of surviving models by MCS. This final set
contains the best forecasting model with confidence level 1 − 𝜈. We set 𝜈 = 0.1. This choice is common practice in the
literature. See, for example, Laurent, Rombouts, and Violante (2013) and Liu, Patton, and Sheppard (2015).
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TABLE 2 Model confidence set inclusion rates

1d 2w 1m 2m 3m
Panel A: Zn,i,t normally distributed
Monthly 𝜏 t GARCH-MIDAS (36) 0.850 0.758 0.770 0.795 0.792

GARCH-MIDAS (12) 0.852 0.745 0.762 0.818 0.827
GARCH-MIDAS (36, X̃) 0.723 0.559 0.589 0.650 0.661
GARCH-MIDAS (12, X̃) 0.696 0.539 0.560 0.648 0.684
MS-GARCH-TVI 0.765 0.560 0.603 0.664 0.673
GARCH 0.477 0.221 0.216 0.260 0.310

Daily 𝜏 t GARCH-MIDAS (264) 0.946 0.893 0.861 0.784 0.743
GARCH-MIDAS (66) 0.850 0.796 0.836 0.890 0.878
GARCH-MIDAS (264, X̃) 0.843 0.672 0.646 0.663 0.688
GARCH-MIDAS (66, X̃) 0.763 0.614 0.664 0.778 0.831
MS-GARCH-TVI 0.376 0.100 0.138 0.467 0.765
GARCH 0.257 0.043 0.050 0.244 0.493

Panel B: Zn,i,t Student t distributed
Monthly 𝜏 t GARCH-MIDAS (36) 0.912 0.790 0.772 0.761 0.764

GARCH-MIDAS (12) 0.922 0.808 0.785 0.812 0.818
GARCH-MIDAS (36, X̃) 0.842 0.656 0.640 0.652 0.650
GARCH-MIDAS (12, X̃) 0.841 0.636 0.622 0.668 0.683
MS-GARCH-TVI 0.875 0.666 0.654 0.675 0.664
GARCH 0.734 0.331 0.267 0.280 0.309

Daily 𝜏 t GARCH-MIDAS (264) 0.968 0.912 0.866 0.792 0.742
GARCH-MIDAS (66) 0.918 0.839 0.862 0.885 0.854
GARCH-MIDAS (264, X̃) 0.927 0.769 0.712 0.694 0.685
GARCH-MIDAS (66, X̃) 0.877 0.726 0.731 0.812 0.822
MS-GARCH-TVI 0.690 0.222 0.206 0.501 0.758
GARCH 0.602 0.112 0.093 0.276 0.485

Note. The numbers are the empirical frequencies of a model being included in the 90% model confidence set at different
forecast horizons: 1 day (1d), 2 weeks (2w), 1 month (1m), 2 months (2m), and 3 months (3m). Panel A corresponds to the
simulation with normally distributed intraday returns and Panel B to standardized Student t distributed intraday returns with
five degrees of freedom. The averages are taken across 2,000 Monte Carlo replications.

Since the asymptotic distribution of the test statistic T is nonstandard, we approximate it by block-bootstrapping as
proposed by Hansen et al. (2011), where the block length is determined by fitting an AR(p) process to the series of loss
differences. In our analysis, 8,000 bootstrap replications at each stage were sufficient in order to obtain stable results.17

Table 2 reports how often a certain model is included in the MCS across the 2,000 replications. Panel A provides
results for normally distributed innovations and panel B for Student t distributed innovations. For example, for normally
distributed innovations, monthly 𝜏 t, and a forecast horizon of 1 day, the correctly specified GARCH-MIDAS (36) is
included in the MCS in 85% of the replications. The table clearly shows that the misspecified one-component GARCH
model is included less often in the MCS than the GARCH-MIDAS models. In particular, this is the case for daily 𝜏 t.
Further, for daily 𝜏 t and forecast horizons of up to 2 months the MS-GARCH-TVI is less often part of the MCS than all
GARCH-MIDAS models. Additionally, among the GARCH-MIDAS models the correctly specified one has the highest
inclusion rates in the MCS when the forecast horizon is up to 1 month. At least for monthly 𝜏 t, it appears that a
misspecification of the lag length is less severe than observing the explanatory variable with measurement error. Finally,
at the longest forecast horizon (3m) all forecasts suffer from a misspecified forecast of the long-term component and hence
it becomes increasingly difficult to distinguish between models.

In summary, independently of whether the long-term component is specified at a daily or monthly frequency, the
correctly specified GARCH-MIDAS model as well as the GARCH-MIDAS with misspecified lag length clearly outperform
the one-component GARCH as well as the MS-GARCH-TVI in terms of forecast performance. For models with daily
long-term components this result also holds when the explanatory variable is observed with measurement error. Only for
monthly long-term components and measurement error in Xt, we find that the MS-GARCH-TVI performs slightly better.

17For implementing the MCS procedure, we use the R package rugarch (Ghalanos, 2018), which includes the implementation used in the MFE Matlab
Toolbox by Kevin Sheppard. See https://www.kevinsheppard.com/MFE_Toolbox.
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Remark 2. As discussed in Section 2.1, Assumption 3 is likely to hold for explanatory variables that are
observed at a lower frequency than the daily returns. For certain daily explanatory variables (e.g., the VIX index)
Assumption 3 might be violated. However, under reasonable assumptions the correlation between the innovations
to the daily returns and Xt itself can be expected to be small. The correlation with future 𝜏 t will be even smaller.
For a more detailed discussion see Supporting Information Appendix D, which also provides additional simulations.
The simulations show that even if Assumption 3 is mildly violated all the previous findings still hold.

4 EMPIRICAL ANALYSIS

Last, we turn to an empirical application of the GARCH-MIDAS models to S&P 500 return data. In Section 4.1 we
introduce our data set. Full sample estimation results for various GARCH-MIDAS models are reported in Section 4.2.
Thereafter, in Section 4.3 we explain how real-time volatility forecasts can be constructed when taking into account the
release schedule of macroeconomic variables. The forecast comparison is carried out in Section 4.4, where we evaluate
the GARCH-MIDAS volatility forecasts against forecasts from eight competitor models.

4.1 Data
4.1.1 Stock market data
We consider daily log-returns on the S&P 500, calculated as ri,t = 100 · (ln(pi,t) − ln(pi−1,t)), for the 1971:M1 to 2018:M4
period. For evaluating the volatility forecasts, we employ daily realized variances, RVi,t, defined as the sum of the squared
5-minute intraday log-returns on day t plus the squared overnight log-return. The latter is defined as the log of the open
price on day t minus the log of the close price on day t − 1. This approach follows Bollerslev, Hood, Huss, and Pedersen
(2018), among others. The data for constructing RVi,t were obtained from the Realized Library of the Oxford-Man Institute
of Quantitative Finance and are available from the year 2000 onwards (see Heber, Lunde, Shephard, & Sheppard, 2009).

4.1.2 Explanatory variables
As explanatory variables we use daily measures of financial risk, a weekly measure of financial conditions and monthly
macroeconomic variables. We employ backward- and forward-looking measures of daily volatility. The former is proxied
by a rolling window of the average realized volatility (based on squared daily returns) over the previous 22 days,
RVol(22)i,t =

√
1∕22

∑21
𝑗=0 r2

i−𝑗,t, and the latter by the VIX index (converted to a daily level by dividing it by
√

252). In

addition, we consider the difference between the VIX (divided by
√

252) and RVol(22) as a proxy for the (square root of
the) variance risk premium (VRP).18

We use the weekly National Financial Conditions Index (NFCI) as a measure for the tightness of financial conditions in
the USA. The NFCI is a weighted average of 105 standardized financial indicators of risk, credit and leverage derived by
dynamic factor analysis. Monthly macroeconomic conditions are measured by the Chicago Fed National Activity Index
(NAI) and growth rates of industrial production (IP) and housing starts, both calculated as ΔXt = 100 · (ln(Xt) − ln(Xt−1)).
While the macroeconomic variables are included from 1971 onwards, the NFCI series begins in 1973 and the VIX is
available from 1990 onwards.19

Before we estimate GARCH-MIDAS models, we employ the Conrad and Schienle (2018) Lagrange multiplier (LM)
test for an omitted multiplicative component in one-component GARCH models. This test checks whether a simple
GJR-GARCH(1, 1) is misspecified in the sense of neglecting a second component that is driven by an explanatory variable
X. Since the test is of the LM type, it requires estimation of the model under the null hypothesis only. Assuming that under
the alternative there is a second component which is driven by K lags of the variable X, the test statistic can be shown to
be 𝜒2 with K degrees of freedom. An appealing property of the test is that it can be applied in settings where X is observed
at the same frequency as the returns but also when X is observed at a lower frequency. Intuitively, the test checks whether

18Note that the conventional definition of the variance risk premium is the squared VIX minus realized variance. We are interested in expressing the
quantity in volatility units. Because the realized VRP takes positive as well as negative values, we take the square root of both quantities before we take
the difference.
19Table B.2 in the Supporting Information Appendix provides summary statistics for the stock returns and the seven explanatory variables. Figure C.2 in
the Supporting Information Appendix shows the evolution of the corresponding time series. Further details on the data set are provided in Supporting
Information Appendix F.
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TABLE 3 LM test for misspecification of GJR-GARCH(1, 1) Xt VIX RVol NFCI NAI Δ IP Δ Hous
K = 1 76.28

[<0.01]
14.38
[<0.01]

22.54
[<0.01]

15.25
[<0.01]

7.99
[<0.01]

0.18
[0.67]

K = 2 84.05
[<0.01]

19.03
[<0.01]

24.05
[<0.01]

17.34
[<0.01]

10.22
[<0.01]

0.18
[0.91]

Note. The table reports the test statistics and corresponding p-values of the Conrad
and Schienle (2018) misspecification test for one-component GJR-GARCH(1, 1)
models. The test is implemented using either one (K = 1) or two (K = 2) lags of the
explanatory variable Xt. For VIX and RVol(22) the test is based on daily data from
1990 onwards; for the NFCI, NAI, Δ IP, and Δ Housing starts the test is based on
weekly/monthly data from 1974 onwards.

the squared standardized residuals from the GJR-GARCH are predictable using (functions of) past values of X. Table 3
shows the outcome of the test when applied to each of our explanatory variables. When choosing either K = 1 or K = 2,
the test clearly rejects the null hypothesis that a GJR-GARCH is correctly specified for all variables except housing starts.
Thus the LM test results suggest using GARCH-MIDAS models instead. The estimates for a GARCH-MIDAS model based
on housing starts in Section 4.2.1 will show that housing starts are a leading indicator with respect to financial volatility.
This implies that the choice of K = 1 or K = 2 is too small. When redoing the LM test for a lag length of up to K = 12 the
LM test indeed rejects the null hypothesis also for housing starts.

We can also apply the LM test jointly to several variables at the same time. However, all variables need to be observed
at the same frequency. When including the NAI, industrial production and housing starts and selecting an appropriate
lag length, the NAI and housing starts are individually significant, whereas industrial production is not. This suggests
that among the macroeconomic variables the NAI and housing starts are most informative. We also aggregated the VIX
and the NFCI to a monthly frequency and performed the LM test jointly for all variables. While the overall LM statistic is
highly significant, the VIX, the NFCI and housing starts are the only variables that are individually significant.

4.2 Full-sample parameter estimates
4.2.1 One explanatory variable
We first estimate a GARCH-MIDAS model for each explanatory variable for the full sample. We include a constant in the
mean equation; that is, returns are modeled as ri,t = 𝜇 + 𝜀i,t. After visual inspection of the estimated weighting schemes
for alternative choices of K, we select a lag length that is rather too large than too small. As discussed in Section 3, the data
will identify the optimal weighting scheme as long as K is chosen large enough. We choose K = 264 for RVol(22), K = 3
for the VIX/VRP and K = 52 for the NFCI.20 Thus, for the forward-looking VIX/VRP, only the most recent information
appears to drive long-term volatility, while the backward-looking RVol(22) is smoothed over many lags. As in Conrad
and Loch (2015), we choose K = 36 for the monthly macroeconomic variables. The estimates for the parameters in the
conditional variance are reported in Table 4. For all variables except housing starts, we find that a restricted Beta weighting
scheme with w1 = 1 is the best choice; that is, the optimal weights are declining from the beginning. For housing starts,
an unrestricted scheme that allows for “hump-shaped” weights is required. This confirms the finding in Conrad and Loch
(2015) that housing starts are leading with respect to long-term volatility.21 Note that the GARCH-MIDAS models based
on the NFCI and the three macroeconomic variables employ return data for the 1974:M1 to 2018:M4 period, while the
models with daily 𝜏 t employ data from 1990:M1 onwards. Hence models based on daily 𝜏 t cannot be compared to models
based on weekly/monthly 𝜏 t in terms of log-likelihood or Bayesian information criterion (BIC).

Concerning the parameter estimates, it is interesting to observe that the GARCH-MIDAS models with daily 𝜏 t lead to
lower estimates of 𝛽 than models with weekly or monthly 𝜏 t. While for the models with daily 𝜏 t the estimates of 𝛼 are
close to zero, there is strong evidence for asymmetry (as indicated by the highly significant 𝛾 parameter). These parame-
ter estimates imply that the deviations of the short-term component from the long-term component are more short lived
for GARCH-MIDAS models with daily 𝜏 t.22 The signs of the estimated 𝜃s for realized volatility, the VIX, and the macroe-
conomic variables are in line with findings in the previous literature. Higher levels of financial volatility tend to increase

20For all variables, Figure C.3 in the Supporting Information Appendix shows the estimated weighting schemes for selected choices of K. The figure
illustrates that the estimated weighting schemes no longer change once the selected lag length is sufficiently large. In all cases, our choice of the lag
length is rather conservative.
21Figure C.4 in the Supporting Information Appendix shows the estimated weighting schemes.
22This behavior is also evident from Figure C.5 in the Supporting Information Appendix, which shows the evolution of the annualized long-term
components and the conditional volatilities.
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TABLE 4 Full-sample estimation results: GARCH-MIDAS with one explanatory variable

𝛼 𝛽 𝛾 m 𝜃 w1 w2 K LLH BIC VR(X)
Daily 𝜏 t

RVol(22) 0.000 0.843*** 0.192*** -1.261*** 1.177*** 1 3.049*** 264 −9,201 18,465 42.78
(0.008) (0.012) (0.015) (0.112) (0.096) (0.675)

VIX 0.000 0.853*** 0.095*** -2.129*** 1.524*** 1 3.470** 3 −9,138 18,339 76.14
(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)

VRP 0.017** 0.902*** 0.128*** -0.384*** 1.084*** 1 5.571** 3 −9,174 18,410 10.92
(0.007) (0.007) (0.011) (0.137) (0.096) (2.591)

Weekly 𝜏 t

NFCI 0.017*** 0.902*** 0.115*** -0.101 0.252*** 1 2.892 52 −15,103 30,271 11.42
(0.006) (0.005) (0.007) (0.073) (0.048) (2.314)

Monthly 𝜏 t

NAI 0.019*** 0.900*** 0.116*** -0.058 -0.359*** 1 9.066*** 36 −14,569 29,202 14.14
(0.006) (0.005) (0.007) (0.079) (0.073) (3.312)

Δ IP 0.019*** 0.903*** 0.113*** 0.074 -0.650*** 1 5.271*** 36 −14,573 29,211 10.63
(0.006) (0.005) (0.007) (0.089) (0.161) (1.782)

Δ Housing 0.019*** 0.897*** 0.119*** -0.079 -0.237*** 1.695*** 2.586*** 36 −14,559 29,192 19.63
(0.005) (0.005) (0.007) (0.076) (0.034) (0.383) (0.770)

GARCH 0.021*** 0.911*** 0.103*** -0.073 — — — — −15,355 30,757 —
(0.005) (0.005) (0.007) (0.098)

Note. Estimation results for GARCH-MIDAS models are reported for seven explanatory variables. Estimation using the NFCI, NAI, IP, and
housing starts begins in 1974:M1 based on low-frequency observations reaching as far as 1971:M1 in line with the lag length K. Estimation of the
GARCH-MIDAS models using RVol(22) and VIX as an explanatory variable employs daily return data starting in 1990:M1. For all explanatory vari-
ables except housing starts a restricted weighting scheme is chosen (w1 = 1). Bollerslev–Wooldridge standard errors are reported in parentheses,
where asterisks indicate significance at the ***1%, **5%, and *10% level. LLF is the value of the maximized log-likelihood function and BIC is the
Bayesian information criterion. The variance ratio VR(X) = var

(
log

(
𝜏X

M
))

∕var
(
log

(
𝜎X

M
))

is calculated on monthly aggregates. Estimates for 𝜇
are omitted.

long-term volatility, whereas an improvement in macroeconomic conditions decreases long-term volatility. The finding
that a higher variance risk premium and tighter financial conditions (i.e., an increase in the NFCI) predict higher volatility
is new. While the positive relation between realized/expected measures of volatility and long-term volatility might be
viewed as “mechanical,” the NFCI as well as the macroeconomic variables can be considered fundamental drivers of
financial volatility.

We gauge the importance of the variation in the long-term component for the overall expected variation in return
volatility by the variance ratio introduced in Equation (8). To facilitate comparison across models, we focus on the monthly
variation of volatility. That is, for all models we denote the monthly aggregate volatility by 𝜎X

M . For models with monthly
long-term components, we have that 𝜏X

M = 𝜏X
t . For models with daily or weekly long-term components, 𝜏X

M refers to
monthly aggregates of the daily/weekly long-term component. We then calculate VR(X) = var

(
log

(
𝜏X

M
))

∕var
(
log

(
𝜎X

M
))

,
where X indicates that the variance ratio is based on a specific explanatory variable. As Table 4 shows, the models with
daily 𝜏 t achieve much higher variance ratios than the models with a weekly/monthly long-term component. Among the
models with daily long-term components, the variance ratio of 76.14% for the VIX-based model is by far the highest and
implies that three quarters of the expected variation in return volatility can be traced back to variation in the VIX. In
Section 4.4 we will investigate whether a high variance ratio necessarily translates into good OOS predictive performance.

4.2.2 Two explanatory variables
The GARCH-MIDAS setting allows us to include two or more explanatory variables in the long-term component. Based
on the results in the previous section, the VIX appears to be better suited to capture daily movements in the long-term
component than RVol(22) or the VRP. Since the NFCI and, in particular, the macroeconomic variables capture lower
frequency movements, it is natural to estimate GARCH-MIDAS models with the VIX and one of those variables jointly
in the long-term component. This allows us to formally check whether the NFCI and the three macroeconomic variables
contain information that is complementary to the VIX. The long-term component for those models is given by

log 𝜏i,t = m + 𝜃VIX
KVIX∑
l=1

𝜑l
(
1,wVIX

2
)

VIXi−l,t + 𝜃X
KX∑
l=1

𝜑l
(

wX
1 ,wX

2
)

Xt−l. (24)
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TABLE 5 Full-sample estimation results: VIX combined with second explanatory variable

𝛼 𝛽 𝛾 m 𝜃X wX
1 wX

2 𝜃VIX wVIX
2 KX LLH BIC VR(VIX,X)

Daily 𝜏 t

VIX 0.000 0.853*** 0.095*** -2.129*** — — — 1.524*** 3.470** 3 −9,138 18,339 76.14
(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)

Weekly 𝜏 t

NFCI 0.000 0.852*** 0.099*** -1.993*** 0.118 1 2.252 1.451*** 3.617** 52 −9,110 18,300 75.84
(0.010) (0.020) (0.016) (0.143) (0.085) (4.152) (0.093) (1.518)

Monthly 𝜏 t

NAI 0.000 0.870*** 0.092*** -2.032*** -0.108** 1 119.372 1.431*** 3.775** 36 −9,133 18,346 75.06
(0.009) (0.018) (0.015) (0.100) (0.046) (326.330) (0.079) (1.594)

Δ IP 0.000 0.876*** 0.084*** -2.133*** -0.043 1 8.960 1.528*** 3.806** 36 −9,139 18,357 75.91
(0.009) (0.018) (0.014) (0.096) (0.089) (34.803) (0.072) (1.520)

Δ Housing 0.000 0.863*** 0.097*** -2.035*** -0.061** 1.001 2.139 1.446*** 3.605** 36 −9,135 18,359 74.99
(0.009) (0.019) (0.015) (0.094) (0.024) (0.743) (2.462) (0.074) (1.503)

Note. Estimation results for GARCH-MIDAS models are reported, in which the daily VIX is combined with the low-frequency variables reported in
Table 4—that is, the NFCI, NAI, and changes in industrial production and housing starts. The estimates are based on daily return data from 1990:M1
to 2018:M4. For comparison, the estimation results using only the VIX as a covariate from Table 4 are included in the first row. All parameters with
a superscript X relate to the second explanatory variable. KVIX is always equal to 3. Bollerslev–Wooldridge standard errors are reported in parentheses,
where asterisks indicate significance at the ***1%, **5%, and *10% level. LLF is the value of the maximized log-likelihood function and BIC is the Bayesian
information criterion. The variance ratio VR(VIX, X) = var

(
log

(
𝜏VIX , X

M
))

∕var
(
log

(
𝜎VIX , X

M
))

is calculated on monthly aggregates. Estimates for 𝜇 are
omitted.

Estimation results are presented in Table 5. Note that KVIX and KX are chosen as in Table 4. For all models the estima-
tion period is now determined by the availability of the VIX. When controlling for the VIX, the 𝜃X parameter turns out to
be significant for the NAI and housing starts. Thus macroeconomic variables appear to contain information that is com-
plementary to the one included in the VIX. However, none of the models that include two variables achieves a higher VR
than the model based on the VIX alone.

4.2.3 More than two explanatory variables
As an extension to Section 4.2.2, one could employ more than two covariates. We experimented with combining three vari-
ables in the long-term component but found no further improvements in terms of model fit. Moreover, GARCH-MIDAS
models including more than two variables in the long-term component are difficult to estimate because the likelihood
is relatively insensitive with respect to changes in the weighting parameters. Instead, in Section 4.4 on OOS forecast-
ing, we will aggregate the information in the different variables by simply calculating the average forecast across all
GARCH-MIDAS models with one explanatory variable.

4.3 Real-time estimates
In the following, we make use of vintage data. This allows for a realistic evaluation of the GARCH-MIDAS models' ability
to describe the behavior of long-term financial volatility in real time.23 In order to compare full-sample estimates of the
long-term component with corresponding real-time estimates, we reestimate all GARCH-MIDAS models from Table 4 on
a daily basis. Estimation is performed on a rolling window. For each explanatory variable, the window size is determined
by the length of the first estimation period ending in 2009:M12. The period 2010:M1 to 2018:M4 will be used as the OOS
period for the forecast evaluation in Section 4.4. In order to ensure that our estimates of the long-term component are
feasible in real time, we employ vintage data that are available for the NFCI, the NAI, IP, and housing starts from the
ALFRED database hosted by the St. Louis Fed.24 When using real-time data, the long-term component no longer changes
its value at the beginning of a week/month but whenever a new data release becomes available.

Figure 6 shows the estimated long-term components based on the full-sample estimates (as reported in Table 4, dotted
lines) and based on the rolling window real-time estimates (solid lines). For RVol(22), VIX, and VRP the long-term com-
ponent estimates in the full sample might differ from the rolling window estimates, because they are based on distinct
sample periods (rolling window vs. full sample). For the NFCI, NAI, IP, and housing starts, the two long-term components

23To the best of our knowledge, Lindblad (2017) appears to be the only other paper that makes use of real-time data when estimating GARCH-MIDAS
models.
24For more details on real-time data availability see Supporting Information Appendix F.
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FIGURE 6 Comparison of rolling window and full-sample long-term components. For each explanatory variable, the monthly averaged
long-term volatility components,

√
𝜏t, are depicted for the period 2010:M1 to the end of 2018:M1, the last month of issuing forecasts and

hence real-time estimation. The long-term component obtained from the full-sample estimates is given in green (dotted). Real-time estimates
of the most recently fitted

√
𝜏t are depicted in red (solid). Volatilities are presented on an annualized scale [Colour figure can be viewed at

wileyonlinelibrary.com]

are not only based on distinct sample periods but also on different data vintages (real-time vs. final). Figure 6 shows that
for RVol(22), VIX, and VRP the rolling window estimate of the long-term component is often somewhat higher than the
full-sample estimate. For the macroeconomic variables the real-time estimates of the long-term component are occasion-
ally below or above the full-sample estimates. However, the average absolute differences are quite sizable. For example,
the average absolute difference between the full-sample and real-time estimates based on industrial production is 6.80%.
To put this into context, for industrial production the mean absolute revision from the initial release to the latest available
data was 2.18% during the 1965:Q3 to 2006:Q4 period (see Croushore, 2011). Among the variables considered in Croushore
(2011), this is the highest value (even higher than for GDP). Similar numbers in terms of changes in the long-term compo-
nent are obtained for the other variables: 9.35% for housing starts, 4.78% for the NAI, and 2.68% for the NFCI. In summary,
these figures highlight the importance of using real-time instead of final data releases for the macroeconomic variables
for a realistic forecast evaluation.

4.4 Forecast evaluation
Finally, we evaluate the predictive performance of the GARCH-MIDAS models in the 2010:M1 to 2018:M4 OOS period.
As before, we consider cumulative volatility forecasts for horizons up to 3 months. When computing the forecasts, we
keep the long-term component fixed at its current level. Volatility forecasts are based on the real-time rolling window
parameter estimates as obtained in Section 4.3 (i.e., we apply a “rolling (forecasting) scheme”).

4.4.1 Competitor models
For forecast comparison, we use an extensive range of competitor models which are either extensions of the simple
GARCH specification or which model the realized variance directly.

First, we consider the simple one-component GARCH(1, 1) model and a no-change (or random-walk) forecast, which
simply scales the realized variance on the last day of period t to the appropriate horizon: h1:k,t+s|t = k · RVn,t. Second, we
use the MS-GARCH-TVI model that we employed in Section 3.3. The only difference is that we now use a GJR-GARCH
specification in both regimes. In addition, we use an MS-GARCH model that consists of two GARCH equations with indi-
vidual intercepts and individual ARCH and GARCH parameters. We incorporate asymmetric effects in the low-volatility
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TABLE 6 QLIKE losses and model confidence sets:
full out-of-sample period

1d 2w 1m 2m 3m
GARCH-MIDAS

RVol(22) 0.306 0.246 0.271 0.387 0.428
VIX 0.275 0.215 0.240 0.359 0.414
VRP 0.291 0.227 0.260 0.384 0.430
NFCI 0.324 0.248 0.264 0.363 0.393
NAI 0.343 0.266 0.283 0.391 0.424
Δ IP 0.345 0.267 0.285 0.395 0.438
Δ Housing 0.328 0.252 0.264 0.347 0.380
VIX and NFCI 0.274 0.213 0.236 0.349 0.399
VIX and NAI 0.275 0.215 0.241 0.358 0.409
VIX and Δ IP 0.274 0.214 0.239 0.355 0.409
VIX and Δ Housing 0.275 0.218 0.243 0.351 0.405
Avg. 0.317 0.246 0.264 0.364 0.400

Competitor models
GARCH 0.342 0.263 0.282 0.395 0.434
MS-GARCH-TVI 0.362 0.292 0.315 0.426 0.488
MS-GARCH-TVC 0.355 0.271 0.283 0.387 0.421
Real GARCH 0.260 0.206 0.233 0.356 0.390
HEAVY 0.277 0.238 0.299 0.539 0.662
HAR 0.254 0.210 0.243 0.368 0.419
HAR (lev.) 0.238 0.207 0.245 0.371 0.419
No-change 0.358 0.498 0.636 1.157 1.292

Note. Numbers reported are the average out-of-sample QLIKE losses for each model for
1-day- (1d), 2-week- (2w), 1-month- (1m), 2-month- (2m), and 3-month-ahead (3m) vari-
ance forecasts. Bold entries indicate the model with the lowest average QLIKE loss per
horizon. Shaded entries indicate that the respective model is included in the 90% model
confidence set. The average forecast (avg.) is the mean forecast across all GARCH-MIDAS
models employing one explanatory variable. The out-of-sample evaluation period spreads
from 2010:M1 to 2018:M4.

regime only.25 We refer to this model as MS-GARCH with time-varying coefficients (MS-GARCH-TVC). Further, we use
the HEAVY model by Shephard and Sheppard (2010) and the realized GARCH model by Hansen et al. (2012). The speci-
fications of the HEAVY and realized GARCH models employ a measure of pure intraday realized variance, RVint

i,t (defined
as the sum of squared intraday returns). Third, we consider two specifications that directly model the realized variance,
RVi,t, (including squared overnight returns) and allow us to compute direct (as compared to iterated) volatility forecasts.
We employ the HAR model of Corsi (2009) and the HAR model with leverage effect proposed in Corsi and Reno (2012).

For more details on the specification of the competitor models, their estimation, and volatility forecasting see Supporting
Information Appendix G.26 For the OOS forecast evaluation all competitor models are reestimated on a rolling window
basis.

4.4.2 Forecast error statistics and model confidence set
As in Section 3.3.2, we base the comparison of the forecast performance of the different models on the QLIKE loss. Table 6
reports the average QLIKE loss for each model and forecast horizons of 1 day (1d), 2 weeks (2w), 1 month (1m), 2 months
(2m), and 3 months (3m). We use the MCS approach to test whether there are one or several models that significantly
outperform the others. As in Section 3.3.2, we rely on 90% model confidence sets.27

MCS for full OOS period. Shaded areas in Table 6 indicate that for the corresponding forecast horizon the respective
model is included in the final set, MCS. For example, for a forecast horizon of 1 day the only model that is included in

25Initially, we estimated a GJR-GARCH specification in both regimes. However, it turned out that the asymmetry term was only significant in the
component that represents the low-volatility regime. In addition, we select this specification because it is much more stable in the rolling window
estimation than the one with two GJR-GARCH regimes.
26Table B.3 in the Supporting Information Appendix shows the full-sample parameter estimates for the competitor models.
27As a robustness check, we present the corresponding results for a 95% MCS in Supporting Information Appendix H. Essentially all findings remain
unaffected.
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the final MCS is the HAR model with leverage. Thus, at the very short horizon of 1 day, the HAR with leverage domi-
nates all other models. At forecast horizons of 2 weeks the MCS includes both HAR models, the realized GARCH, and
GARCH-MIDAS specifications that either include the VIX alone or in combination with the NFCI/NAI/IP. At the 1-month
horizon only the realized GARCH and the GARCH-MIDAS that combines the VIX and the NFCI are included. The pic-
ture changes at horizons of 2 and 3 months. At these horizons GARCH-MIDAS models that either combine the VIX with
the NFCI/housing starts or models based on housing starts alone are included in the MCS. These results illustrate that the
performance of a GARCH-MIDAS model strongly depends on choosing the best horizon-specific explanatory variable.
In summary, the HAR model with leverage and the realized GARCH achieve the lowest QLIKE at forecast horizons of 1
day and 2 weeks/1 month, respectively. In contrast, the GARCH-MIDAS model based on housing starts performs best at
horizons of 2 and 3 months ahead (see the bold entries).

MCS for volatility regimes. In addition to the results for the full OOS period, we also provide MCS for subsamples of
low, normal, and high volatility. We define these regimes in the same way as outlined in Section 3.3. Quantiles are now
computed based on the empirical distribution of full-sample realized variances. In total, we have 764 observations in the
low, 961 in the normal, and 304 in the high regime. Table 7 presents the regime-specific analysis.

Interestingly, in the low-volatility regime the realized GARCH and the two HAR models are the only models in the MCS
for short horizons of 1 day and 2 weeks. For a forecast horizon of 1 month, various GARCH-MIDAS models are included in
the MCS. For 3 months ahead, two GARCH-MIDAS specifications based on the VIX are the only models in the MCS. The
results for the normal-volatility regime are even more in favor of the GARCH-MIDAS models. At essentially all horizons
GARCH-MIDAS models based on the VIX are included in the MCS. As for the full OOS period, GARCH-MIDAS based on
housing starts is the only model in the 3-month MCS. Finally, in the high-volatility regime and for horizons of 2 weeks and
1 month, essentially all models are included in the MCS. This result may be driven by the fact that the intermediate-term

TABLE 8 Mincer–Zarnowitz R2

Panel A: Full out-of-sample period Panel B: Volatility regimes
Low Normal High

1d 2w 1m 2m 3m 1m 1m 1m
GARCH-MIDAS

RVol(22) 0.312 0.367 0.340 0.086 0.008 0.037 0.061 0.314
VIX 0.347 0.346 0.321 0.145 0.047 0.071 0.099 0.297
VRP 0.343 0.404 0.354 0.128 0.030 0.041 0.083 0.324
NFCI 0.295 0.375 0.354 0.146 0.062 0.030 0.073 0.341
NAI 0.294 0.373 0.352 0.143 0.062 0.025 0.071 0.339
Δ IP 0.296 0.374 0.348 0.124 0.029 0.017 0.065 0.341
Δ Housing 0.293 0.372 0.355 0.168 0.102 0.031 0.077 0.334
VIX and NFCI 0.353 0.359 0.333 0.147 0.050 0.072 0.100 0.302
VIX and NAI 0.348 0.349 0.323 0.146 0.048 0.067 0.099 0.297
VIX and Δ IP 0.348 0.347 0.321 0.145 0.047 0.070 0.099 0.296
VIX and Δ Housing 0.347 0.346 0.321 0.153 0.056 0.064 0.099 0.295
Avg. 0.322 0.380 0.357 0.149 0.057 0.036 0.078 0.341

Competitor models
GARCH 0.288 0.373 0.353 0.138 0.051 0.027 0.068 0.343
MS-GARCH-TVI 0.316 0.357 0.288 0.118 0.016 0.005 0.015 0.339
MS-GARCH-TVC 0.311 0.390 0.368 0.142 0.052 0.030 0.066 0.374
Real GARCH 0.318 0.394 0.377 0.146 0.070 0.076 0.112 0.303
HEAVY 0.297 0.322 0.272 0.061 0.004 0.028 0.084 0.173
HAR 0.312 0.394 0.374 0.125 0.052 0.058 0.087 0.315
HAR (lev.) 0.342 0.392 0.366 0.122 0.053 0.056 0.088 0.303
No-change 0.254 0.227 0.189 0.060 0.020 0.046 0.044 0.088

Note. We report coefficients of determination derived from MZ regressions. Bold entries indicate the models with the highest R2

for a specific forecast horizon. The last three columns correspond to the forecast evaluation divided into three volatility regimes;
forecasts are issued at a day for which the daily realized volatility is below the empirical 25% quantile (low regime), between the
25% and 75% quantile (normal regime), or above the 75% quantile (high regime). The out-of-sample evaluation period spreads
from 2010:M1 to 2018:M4.

42



CONRAD AND KLEEN

forecast performance of all models substantially deteriorates during the high-volatility regime and, therefore, it becomes
increasingly difficult to distinguish between models. Nevertheless, even in the high-volatility regime the GARCH-MIDAS
models are very competitive for longer forecast horizons. Specifically, GARCH-MIDAS models based on the NFCI and
housing starts are included in the MCS.

In summary, we find that the informative content of the explanatory variables depends on the volatility regime. While
in low- and normal-volatility regimes GARCH-MIDAS models based on the VIX or VIX combined with another variable
perform well, in high-volatility regimes models purely based on macroeconomic variables are very competitive. Because
recessions typically coincide with regimes of high volatility, our results are consistent with the finding from the previous
literature that macroeconomic variables are particularly useful to predict financial volatility during the onset of recessions
(see, e.g., Paye, 2012). At the longest forecast horizons, housing starts and the NFCI become increasingly important.
Among the competitor models it is again the realized GARCH which performs very well across volatility regimes.

4.4.3 MZ regressions
Lastly, we consider the outcome of MZ regressions. As Table 8 shows, for forecast horizons of 1 day and 2 weeks the
highest R2 is achieved by GARCH-MIDAS-type models. This is in sharp contrast to the results from the previous section.
However, for longer forecast horizons (1m–3m) the winning models according to the R2 are exactly the same as when
using the MCS approach. Thus, at forecast horizons at which the correct modeling of the long-term component pays off,
the R2 selects the same model as the MCS. Again, the last three columns of Table 8 show that the highest R2s are obtained
in the high-volatility regime.28

5 CONCLUSION

We introduce and discuss the properties of a class of multiplicative volatility models. This class of models includes the
GARCH-MIDAS but also a variant of the MS-GARCH. We show that multiplicative volatility models can generate an
autocorrelation structure in the conditional variance that mimics the long-memory-type behavior that is often observed
for realized variances. We also argue that the R2 of an MZ regression can be a misleading measure of forecast accuracy
across volatility regimes because the R2 will be highest in the regime with the highest squared error loss. In a Monte Carlo
simulation, we investigate the properties of the QMLE of the GARCH-MIDAS model and show that the estimator is unbi-
ased and that the Wang and Ghysels (2015) asymptotic standard errors are valid in the presence of exogenous explanatory
variables. We also reveal that forecast performance is relatively insensitive with respect to moderate misspecification of
the explanatory variable and the true lag length.

In an empirical application to S&P 500 stock returns, we compare the forecast performance of the GARCH-MIDAS
model with a wide range of competitor models. As expected, relative forecast performance depends on the forecast hori-
zon. Among all models, the HAR with leverage performs best at a one-day horizon. For longer forecast horizons the
realized GARCH is very competitive and performs best at forecast horizons of 2 weeks and 1 month. The performance
of GARCH-MIDAS models depends on the choice of explanatory variable. The best GARCH-MIDAS specifications gen-
erate volatility forecasts that are comparable to or improve upon the forecasts from the realized GARCH. Specifically,
GARCH-MIDAS specifications that combine the VIX with the NFCI are included in the MCS for forecast horizons of
2 weeks up to 2 months. Most importantly, the GARCH-MIDAS based on housing starts achieves the lowest QLIKE at
forecast horizons of 2 and 3 months ahead. Thus our results are useful for selecting the appropriate horizon-specific
explanatory variable and suggest that models based on low-frequency information can be more useful than models that
exploit high-frequency intraday data.
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