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ABSTRACT Several approaches exist to model decision making under risk, where risk can be
broadly defined as the effect of variability of random outcomes. One of the main approaches in
the practice of decision making under risk uses mean-risk models; one such well-known is the
classical Markowitz model, where variance is used as risk measure. Along this line, we consider
a portfolio selection problem, where the asset returns have an elliptical distribution. We mainly
focus on portfolio optimization models constructing portfolios with minimal risk, provided that
a prescribed expected return level is attained. In particular, we model the risk by using Value-at-
Risk (VaR) and Conditional Value-at-Risk (CVaR). After reviewing the main properties of VaR
and CVaR, we present short proofs to some of the well-known results. Finally, we describe a
computationally efficient solution algorithm and present numerical results.

Keywords: Elliptical distributions; mean-risk; value-at-risk; conditional value-at-risk; portfolio

optimization.



1 Introduction

In recent years, off-balance sheet activities, such as trading financial instruments and
generating income from loan sales, have begun to be profitable for banks in the competitive
environment of the financial world. One of the main goals of such banks trading in these
markets is to reduce the risk associated with their activities; however, with the taken positions
trading may even be riskier. In particular, after the insolvency of some banks, the collapse of
Barings in February 1995, risk management became quite significant in terms of internal control
measures. One of these internal controls is recognition of the maximum loss that a portfolio can
attain over a given time interval, termed Value-at-Risk (VaR). With VaR methodology, not only
is exposed risk identified but VaR can also be used as a decision tool to take positions in the
market so as to reduce the risk and, if possible, minimize it. The importance of VaR also stems
from its status as universal risk measure employed in banking regulations, like Basel II, to
evaluate capital requirements for banks' trading activities. Technically speaking, VaR at the
confidence level & of a portfolio is the « -quantile of the distribution function of total random
loss associated with the portfolio at a specified probability level. A closely related recent risk
measure, Conditional Value-at-Risk (CVaR), on the other hand, is the expectation of loss values
exceeding the VaR value with the corresponding probability level (Rockafellar and Uryasev,
2000).

Comparing random outcomes is one of the main interests of decision theory in the
presence of uncertainty. Several decision models have been developed to formulate optimization
problems in which uncertain quantities are represented by random variables. One method of
comparing random variables is via the expected values. For the basic limitations of optimization
models considering the expected value see, e.g., Shapiro and Ruszczynski (2006). In cases
where the same decisions under similar conditions are repeatedly made, one can justify the
optimization of the expected value by the Law of Large Numbers. However, the average of a
few results may be misleading due to the variability of the outcomes. Therefore, sound decision
models in the presence of uncertainty should take into account the effect of inherent variability,
which in turn leads to the concept of risk. The preference relations among random variables can
be specified using a risk measure. There are two main approaches for quantifying risk; it can be
identified as a function of the deviation from an expected value or as a function of the absolute
loss. The former approach is the main idea of the Markowitz mean-variance model. The latter
approach involves the two recent risk measures mentioned above, Value-at-Risk (VaR) and

Conditional Value-at-Risk (CVaR).



The challenge of managing a portfolio that includes finitely many assets has been a
mainstay in finance literature. The simplest, most widely used approach for modeling changes in
the portfolio value is the variance-covariance method popularized by RiskMetrics (1997). Two
main assumptions of this model are as follows (Glasserman et al., 2002): (i) The risk factors are
conditionally multivariate normal over a specified short horizon. (ii) The change in the portfolio
value, mainly profit-loss function, is a linear function of the changes in the risk factors. In this
setting, the term conditionally means that conditioned on the information available at the
beginning of the short horizon--such as the price of the instruments or the value of the portfolio-
-the changes in the risk factors become multivariate normal. The central problem is to estimate
the profit-loss function and its relation with the underlying risk factors of a portfolio over a
specified horizon. Since VaR deals with the extreme losses, estimating the tail of the loss
distribution is crucial for portfolio management. For example, although two different possible
distributions for the price changes have the same mean, the probability of facing very large
changes maybe much greater for one than it is for the other. Starting from this model, we may
relax either the linearity assumption or the normality assumption. Methods such as delta-
gamma, interpolation, or low variance Monte Carlo simulation relax the linearity assumption.
Monte Carlo simulation is universally adaptable; however, since it is common in risk
management to deal with rare-events, Monte Carlo simulation works much slower (Glasserman
et al., 2002; Kamdem, 2005). The other option is to relax the normality assumption and use
another family of distributions to model the returns of the underlying risk factors. The latter
option, in fact, is the main focus of our work.

In this paper, we analyze a general risk management model applied to portfolio problems
with VaR and CVaR risk measures. We assume that our portfolio is linear and the risk factor
changes have an elliptical distribution. A similar approach was initiated by Rockafellar and
Uryasev (2000) for the special case of multivariate normally distributed returns. The class of
elliptical distributions is a general class of distributions, which contains the normal and the
student t-distributions. Contrary to Rockafellar and Uryasev (2000); we do not explicitly talk
about applications of financial concepts (such as hedging), which actually lead to similar
models. In the literature, it is observed that market returns have heavier tails compared to normal
distributions; many studies moreover discuss the comparisons of portfolios among families of
distributions on returns (Fama, 1965; Praetz, 1972; Blattberg and Gonedes, 1974; Embrechts et
al., 2002). In particular Blattberg and Gonedes (1974) illustrate that the student model has

greater descriptive validity than do the other models. Although most of the works are restricted



to t-distribution, Kamdem generalizes VaR and Expected Shortfall to the family of elliptical
distributions. Embrechts et al. (2002) also analyze the class of elliptical distributions within the
context of risk management. On one hand, these papers concentrate on measuring Value-at-Risk
and Conditional Value-at-Risk measures. On the other hand, these do not include a discussion
on portfolio optimization. In this paper, we explicitly focus on constructing optimal portfolios.
We first concentrate on general risk measures and then concentrate on VaR and CVaR.
We also briefly review the theory of coherent risk measures, thoroughly studied in Arztner et. al.
(1999). We then discuss the behavior of VaR and CVaR in terms of coherency. By converting
the ideas used for rewards (Ogryczak and Ruszczynski, 2002), a different definition of CVaR is
given. Following risk measures, we define general portfolio optimization problems.
Additionally, we draw attention to the effect of adding a riskless asset. After a condensed
introduction on elliptical distributions, we give short proofs on properties of VaR, CVaR, and
linear loss functions. We note that the important risk measure CVaR is also discussed by
Embrechts et. al. (2002) under the term expected shortfall or mean excess loss together with
properties of elliptical distributions. Using the well-known equivalence between the mean-risk
approach employing VaR and CVaR as risk measures and the famous mean-variance approach
of Markowitz, we adapt an algorithm for special quadratic programming problems originally
proposed by Michelot (1986). In this algorithm, the number of steps to find the optimal
allocation of the assets is finite and equals at most the number of the considered assets. Our
computational results suggest that the adapted algorithm is a faster alternative to the standard
solver used in the financial toolbox of MATLAB. We also present some numerical results to
emphasize the fact that we can construct optimal portfolios for returns having distributions

different than normal; in particular we provide results for multivariate t-distributions.

2 Risk Measures

Consider an optimization problem in which the decision vector x affects an uncertain
outcome represented by a random variable Z(x). Thus, for a decision vector x belonging to a
certain feasible set X < R", we obtain a realization of the real-valued random variable Z(x),
which may be interpreted as some reward or loss of the decision x. In our work Z(x) and
—Z(x) represent the loss and the reward of the decision x, respectively. Therefore, smaller
values of Z(x) are preferred to larger ones. To find the ‘best’ values of the decision vector x,
we need to compare the random variables Z(x) according to a preference relation. While

comparing random variables, sounds decision models should take into account the effect of



inherent variability, which leads to the concept of risk. The preference relations among random
variables can be specified using a risk measure. One of the main approaches in practice uses

mean-risk models. In these models one uses a specified risk measure p: B — [—o0,+0], where
p is a functional and B is a linear space of F -measurable functions on a probability space
(Q,F,P). Notice that for a given vector x, the argument of the function p is a real-valued
random variable denoted here by Z(x) with the cumulative distribution function (cdf)

Fr (@)= P{Z(x) < a}. (1)

Clearly p(Z(x,))=p(Z(x,)) for Z(x,) and Z(x,) having the same cdf (denoted by

d
Z(x1)=2(x3)).
In the mean-risk approach for a given risk measure p one solves the problem
max {E[~Z(x)]- 4p(Z(0)} @

where A > 0 is the trade-off coefficient representing our desirable exchange rate of mean reward
for risk. We say that the decision vector x is efficient (in the mean-risk sense) if and only if for
a given level of minimum expected reward, x has the lowest possible risk, and, for a given level
of risk, x has the highest possible expected reward. In many applications, especially in portfolio
selection problems, the mean risk efficient frontier is identified by finding the efficient solutions
for different trade-off coefficients.

The classical Markowitz (1952) model discussed in Steinbach (2001) uses variance as a
risk measure. One of the problems associated with the Markowitz's mean-variance formulation,
however, is that it penalizes over-performance (positive deviation from the mean) and under-
performance (negative deviations from the mean) equally. When typical dispersion statistics
such as variance are used as risk measures, the mean-risk models may lead to inferior solutions.
That is, there may exist other feasible solutions which would be preferred by any risk-averse
decision maker to the efficient solution obtained by the mean-risk model.

Example 2.1 Consider two decision vectors x, and x, for which the probability mass functions
of the random outcomes (losses) are given as follows:

12 a =2
P(Z(xy)=4a;)=11/2 a=4 and P(Z(x,)=a,) ={
0 otherwise

0 otherwise.

Any rational decision maker would prefer the decision vector x, with the random loss Z(x,) .

However, when a dispersion type risk measure p(Z(x)) is used, then both decision vectors lie



in the efficient frontier of the corresponding mean-risk model, since for each such a risk
measure p(Z(x,))>0 and p(Z(x,))=0.

To overcome the preceding disadvantage, alternative asymmetric risk measures, such as
downside risk, have been proposed and significant effort has been devoted to the development
of downside risk models (see e.g., Ogryczak and Ruszczynski, 2002). We refer to Ruszczynski
and Shapiro (2006) as well as Rockafellar et al. (2006), and the references therein for other
stochastic optimization models involving general risk functionals. VaR and CVaR are also
among the popular downside risk measures.

Definition 2.1 The first quantile function F{\ ™" :(0,1]— R corresponding to a random variable
X isthe left-continuous inver se of the cumulative distribution function F, :

F{V (@) =inf{n e R:Fy (1) 2 a}.
In the finance literature, the « -quantile F\ " () is called the Value at Risk (VaR) at the
confidence level o and denoted by VaR ,(X). Using Definition 2.1 and (1), we can state that

the realizations of the random variable X larger than VaR ,(X) occur with probability less

than 1-« .

A closely related and recently popular risk measure is the Conditional Value-at-Risk
(CVaR), also called Mean Excess Loss or Tail VaR. CVaR at level « is defined as follows
(Rockafellar and Uryasev, 2000, 2002; Pflug, 2000):

CVaR ,(X) = ,iféf; {77 + ﬁ E[max{X — 77,0}]}- (3)
The correspondence between the concepts of CVaR and VaR and the fact that CVaR is also
based on a quantile approach can be seen from the following result. Employing a similar
argument, a closely related statement has been proven in Ogryczak and Ruszczynski (2002),
where the random variable X represents rewards (returns) instead of losses. As in Rockafellar

(1972), the set of (y) denotes the subgradient set of a finite convex function f : R — R at y.

Lemma 2.1 For any real valued randomvariable X having a finite first absolute moment
1
CVaR ,(X) = —j VaR ,(X)du
l-aa

forall 0<a<l.
Proof. Introducing the convex and continuous function f : R — R given by
f(y) = E[max{X - y,0}] 4)
it follows by relation (3) that



CVaR ,(X) = (1-a)"v(Q), )

where V(Q) := inf yer {(1- )y + f(y)}. Since
f(y) = [ (x=y)dF(x) = [ (1= Fx (x)aix

we obtain that y” is an optimal solution of the convex optimization problem

inf {(1-a)y+ f(y)}
yeR

if and only if 1-a belongs to —of (y*). It is now easy to verify by the definition of the
subgradient set and relation (4) that 1—a belongs to —of (Fy'(«)). This result shows that

F.' () is an optimal solution of the optimization problem inf yer t(1=a)y+ f(y)} and so
V(Q) = (1- &)y () + E[max{X - Fy' (2).0}] ©6)
Since X i F.'(U), where U is a uniform distributed random variable on (0,1), we obtain
E[max{X — F; (2),0}] = E[max{F, U) - F{' (@),0}] = j;VaRU(X)du —(1-)F (@)
and by relations (5) and (6) the assertion holds true. O

It is easy to see that the function o —>VaR ,(X) is increasing; therefore, an immediate

consequence of Lemma 2.1 is given by

CVaR ,(X) 2VaR ,(X).
Moreover, when F, is continuous on (—o0,), we know that VaR ,(X) is not an atom of the

distribution of X ; therefore, 1—a = P{X >VaR ,(X)} . Then we have

l — —
LVaRu(X)du = E[Fxl(u )l{Uza}]: E|:Fxl(u)1{,:)21(U)>F>z1(a)}:| = E[Xl{XZVaRa(X)}]

It follows from the last equation that
CVaR ,(X)=E[X | X 2VaR _(X)] (7)
which has been also shown in Rockafellar and Uryasev (2000) by using another approach.
This definition provides a clear understanding of the concept of CVaR, i.e., the
conditional expectation of values above the Value-at-Risk at the confidence level « . For

example, in the portfolio optimization context, VaR , is the « -quantile (a high quantile) of the

distribution of losses (negative returns), which provides an upper bound for a loss that is

exceeded only with a small probability 1-«a . On the other hand, CVaR, is a measure of

severity of loss if we lose more than VaR,.



An axiomatic approach to construct risk measures has been proposed by Artzner et al.
(1999). It is now widely accepted that risk measures should satisfy the following set of
axiomatic properties:

1. Monotonicity: p(X,)> p(X,) forany X,, X, € B such that X, > X, (where the
inequality X, > X, is assumed to hold almost surely).

2. Subadditivity: p(X, + X,) < p(X,)+ p(X,) for X,, X, € B.

3. Positive homogeneity: p(AX)= Ap(X) forany 4 >0 and X € B.

4. Translation invariant: p(X+a)= p(X)+a forany ac R and X € B.

A risk measure satisfying the above properties is called a coherent risk measure. It is
well-known that CVaR is a coherent risk measure, but due to the lack of subadditivity, VaR fails
to be a coherent risk measure in general (Pflug, 2000).

Optimization models involving VaR are technically and methodologically difficult; for
details see Rockafellar and Uryasev (2002). As also observed by Crouhy et al. (2001), using
VaR as a risk measure has been criticized mainly for not being subadditive; hence, not being
convex. In some applications, nonconvexity is a significant objection since it does not reward
diversification. For example, in the portfolio selection theory, lack of conversity implies that
portfolio diversification may increase the risk and considering the advantages of a portfolio
diversification strategy, this objection cannot be ignored. However, as discussed by Embrechts
et al. (2002), VaR is convex in the elliptical world (see Section 4), and so, within this framework
VaR is a coherent risk measure. Therefore, we can use VaR in our portfolio selection problems.

In the next section, we present single period portfolio optimization models.

3 A Single Period Portfolio Optimization Problem

In this section, we consider a single period (short term) portfolio selection problem with
a set of N risky assets. At the beginning of the period, the length of which is specified, the
investor decides on the amount of capital to be allocated on each available asset. At the end of
the investment period, each asset generates a return, which is uncertain at the beginning of the
period since the future price of an asset is unknown. We represent these uncertain returns with

random variables and denote the vector of random returns of assets 1,2,...,n by

Yy! = (Y,,Y,,...,Y,). In finance, the ratio of money gained or lost on an investment relative to

the money invested is called the rate of return or percentage return, which throughout the paper

we just refer to as simply “return”.



We denote the fractions of the initial capital and the amounts of the initial capital
invested in assets j=1,...,n by x' =(X,,...,X,) and X' =(X,,...,X,), respectively. Thus if

X; is the amount of the capital invested in asset | and C is the total amount of capital to be

invested, we have x; =X;/C for j=1,...,n. The constructed portfolio may be represented by

either of these two decision vectors. We assume that short-selling is not allowed, which means
that investors can not sell assets they do not own presently in the hope of repurchasing them
later at a lower price. Therefore, the portfolio decision variables are nonnegative. If short-selling
is allowed, however, the decision variables would be unrestricted. As mentioned in Steinbach
(2001), the classical Markowitz model to be introduced next has in this case an analytical

solution. Clearly, the set of possible asset allocations is:
X={KeR": X ++%,=C,x;20,j=1,...,n},
or equivalently,

xX={xeR":x ++Xx,=1,X,

| 20, j=1,...,n}.

Then, at the end of the investment period, the total value of the portfolio is C + iTY; therefore,
the loss of the portfolio for the period under consideration is

ZX)=C-(C+x'Y)=-x"Y.
Let n' =(g,.... 11,), where g denotes the expected return of asset i, i.e., u = E[Y,] for

i =1,...,n. Then the expected total return (reward) of the portfolio X is iTu.

The problem of choosing between portfolios becomes the problem of choosing between
random losses according to a preference relation, which is specified using a risk measure. The
mean-risk models have been widely used for portfolio optimization under risk. In these models
one uses two criteria: the mean representing the expected total return or loss of a portfolio, and
the risk which is a scalar measure of the variability of the random total return or loss of the
portfolio. Markowitz's mean-variance model (1952, 1959) which uses variance of return as the
risk measure, has been one of the most widely used mean-risk model for the portfolio selection

problem. However, as mentioned in Section 2 the model has several disadvantages such as

equally treating over-performance as under-performance. Markowitz (1959) also recommends
using semivariance rather than variance as risk measure, but even in this case significant
deficiencies remain as mentioned in e.g. Ogryczak and Ruszczynski (2002). In particular, here
we use VaR and CVaR as risk measures.

There are alternative approaches to implement a mean-risk model. For example, one



approach is based on the model constructing a portfolio with minimum risk, provided that a
desired level of expected return of the portfolio is attained (by enforcing a lower bound on the
expected total return of the portfolio). Another approach is based on the problem formulated in
the form of (2), in which the preference relation is defined using a trade-off between the mean
(reward) and risk, where a larger value of mean (reward) and a smaller value of risk are
preferable. In many applications, the trade-off coefficient does not provide a clear understanding
of the decision makers' preferences. The commonly accepted approach to implement a mean-
risk model is to minimize the risk of the random outcome while enforcing a specified lower
bound on the total expected return (see, e.g. Mansini et al., 2003). We also prefer to use this
widely accepted bounding approach. Thus, among alternative formulations of the mean-variance
Markowitz model, we consider the formulation constructing a portfolio with minimal risk

provided that a prescribed expected return level W is attained:
min{p(—iTY) e X=C,Xp=wx> 0}
Notice that p(—X Y) is the risk of the portfolio represented by X .

With the use of the decision vector x representing the fractions of the capital invested in

each asset, we obtain an equivalent optimization problem:
min{p(-Cx'Y):eTx=1,x"p = wC! x> 0}. (8)
Suppose that C+w=(1+r)C where r is the desired rate of the return of the portfolio. When
the specified risk measure is positive homogeneous, problem (8) takes the form of
min{p(-x'Y):e'x=1,x"p=r,x>0}. Q)
If we also consider a non-risky asset characterized by a known return r, that usually
reflects the interest rate on the money market, this asset would generate a return of r X, at the
end of the period, where X, denotes the fraction of the capital invested in the non-risky asset and
C the total capital available. In this case, we obtain the following optimization problem
min{p(—xTY) el x+ Xy = l,xTu+ fgXg =r,x=0,%, =2 0}.
In the above portfolio selection problems, no transaction costs are involved. Nonetheless, if the

transaction costs are linear functions in terms of the decision vectors, we have similar

formulations and our subsequent discussion still applies.

In our work we use the class of multivariate elliptical distributions to model the random

returns. This general class of multivariate distributions contains both (multivariate) normal and



t -distributions. The most popular approach for modeling (short term) changes in portfolio value
is the analytical variance-covariance approach popularized by RiskMetrics (1997). This method
assumes that the vector of rate of returns is multivariate normal. However, there is a
considerable amount of evidence that empirical rate of returns over a short horizon have heavier
tails than given by the multivariate normal distribution. For example, Fama (1965) and
Mandelbrot (1963) show through empirical studies on real stock portfolios that the distribution
of returns can be distinguished from the normal distribution. Recent studies by Embrechts et al.
(2002), Glasserman et al. (2002) and Huismann et al. (1998) also support this theory. Heavy
tails imply that extreme losses are more likely to occur. Thus, if a risk measure based on the tail
of the loss distribution, such as VaR, is used to optimize the portfolio, we underestimate the
actual risk under a normality assumption. To overcome the problem of heavy tails, several
alternative distributions for rates of returns are offered. One of the strongest is the multivariate
t -distribution which belongs to the class of elliptical distributions. Empirical support on
modeling univariate rate of returns with a t -distribution can be found in Huisman et al. (1998),
Praetz (1972), Glasserman et al. (2002), and Blattberg and Gonedes (1974). The multivariate t -

distribution is fully characterized by the mean u , the covariance matrix X and an additional

parameter called the degree of freedom v to control the heaviness of the tail. As v goes to
infinity, the multivariate {-distribution approaches the multivariate normal distribution.
According to Crouhy et al. (2001) and Glasserman et al. (2002), the values of parameter v for
most of the rate of returns are between 3 and 8--in fact, usually around 4. However, a
shortcoming of the multivariate t-distribution is that all the risk factors in the portfolio have the
same degrees of freedom. As suggested by Glasserman et al. (2002) to overcome this
shortcoming, copulas can be used with different v values for each rate of return. The other
candidate for a multivariate distribution of the rates of returns is the family of multivariate stable
distributions (see Feller (1971) for a discussion of univariate stable distributions). The
comparison of stable distributions with a t -distribution and the normal distribution can be found
in Blattberg and Gonedes (1974) and Praetz (1972).

The class of elliptical distributions within the context of risk management has been
studied by Embrechts et al. (2002) and Kamdem (2005). On one hand, both papers concentrate
on measuring Value-at-Risk and Conditional Value-at-Risk measures. On the other hand, they
do not include a discussion on portfolio optimization. In this paper, we explicitly focus on
constructing the optimal portfolios. We next briefly discuss the properties of elliptical

distributions.



4 Elliptical World
To analyze our general risk model for portfolio management, we first introduce the

following class of multivariate distributions (see also Embrechts et al., 2002 and Fang, 1990).
Recall a linear mapping U is called orthogonal if UTU =UU T = | . We also use the notation
X: F, meaning the random vector X has the joint distribution function F .

Definition 4.1 A random vector X=(X1,~',Xn)T has a spherical distribution if for any

orthogonal mapping U : R" — R", it holds that,

d
ux=Xx
It is well known that X:N(0,1) has a spherical distribution, where N(z,%) denotes the
multivariate normal distribution with mean g and covariance matrix ~. Since U =—| is an

orthogonal mapping we obtain for X having a spherical distribution that

d
X=X 9)

Hence if a spherically distributed random vector X has a finite expectation, its expected value

equals0 . It can be easily shown using the above definition (see Fang, 1990) that the random

vector X = (X;,---, Xn)T has a spherical distribution if and only if there exists some real-valued
function ¢: R, — R such that the characteristic function y(t) := E[exp(itTX)] is given by

v (©) = g(t). (10)
This representation based on the characteristic function provides us with an alternative
definition of a spherical distributed random vector. It is easy to show (see Fang, 1990) for any
spherically distributed random vector X that there exists some nonnegative random variable R

such that

d
x=RU", (11)
where R is independent of the random vector U™ that is uniformly distributed on the unit
sphere surface S, = {xe R": x'x =1}. The alternative representation (11) will be useful for the

computation of the covariance matrix for an elliptically distributed random variable. As
mentioned before, an important member of the class of spherical distributions is the standard

multivariate normal distribution N(0,I) with mean 0 and covariance matrix |. For this

distribution, the generating random variable R in (11) has a chi-distribution y, with n degrees



of freedom. Another important member is the standard multivariate t-distribution with v
degrees of freedom. In this case R°n™' has a F(n,v)-distribution with n and v degrees of

freedom. As stated by Fang (1990) an important proper subclass of the elliptical distributions is
the so-called class of scale mixtures of multivariate normal distributions. The random vector

associated with such a scale mixture is given by X=3SV, where V:N(0,I) and S is a real-

valued random variable, which is independent ofV. The already introduced standard

multivariate t -distribution with v degrees of freedom belongs to this class. For this distribution,
the random variable v'/2S has a chi-distribution x, Wwith v degrees of freedom. This

representation will be useful in our computational section. From the representation of the

characteristic function we immediately obtain for all t € R and 1< j <n that

Elexp(itX )] = ¢(t?). (12)

This confirms (see also relation (9)) that

d
_Xlle'

Using the characteristic function representation of a spherical distribution another useful

description can also be derived. For completeness, here a short proof is presented (see also Fang,

1990).

Lemma 4.1 The random vector X = (X,,---,X,)" has a spherical digtribution if and only if
d
a'X=[ja|X, forall ae R".
Proof. If the random vector X has a spherical distribution, then by (10) there exists some

function ¢: R, — R such that E[exp(iaTX)]= ¢(||a||2) forall ac R". Hence for all te R and
a e R" it follows by (12) that

Elexp(ita™)]= g(ltal) = Efexpitfa|,)]
By using the one to one correspondence between the characteristic function and the cumulative

distribution function of the associated random variable (see Feller, 1971), we obtain
d
a'X =||a||X , - To prove the reverse implication we observe that
Elexp(ita™X)|= Elexp(ifa|X,)] (13)

This implies for all ae R" that

E exp(—iaTX)] =E exp(iaTX)l



and so the function ar> Eexp(iaTX)J is real-valued. Hence by (13), the function

a E[exp(i"a"Xl)] is also real-valued. Introducing ¢:R, >R  given by
o) =E exp(iﬁXl)J it follows again by (13) that

, 2
Elexp(ia"™X)] = ¢(a[?).
It follows from the representation (10) that X has a spherical distribution. O
A class of distributions related to spherical distributions is given by the following

definition (Embrechts et al., 2002; Fang, 1990).

Definition 4.2 A random vector Y = (Y,,---,Y,)" has an elliptical distribution if there exists an
affine mapping x> Ax+x and a random vector X=(X,,---,X,)" having a spherical
distribution such that Y = AX+ .

For convenience, an elliptical distributed N-dimensional random vector Y is denoted by
(A 1,X), where X=(X,, -+, X,)". It is now possible to show the following result.

Lemma 4.2 |f the random vector Y has an elliptical distribution with representation (A, 1, X)

then
d
x'Y IHATXHX1 +x'p
for all portfolio vectors x e R". Moreover, the parameters of the spherical (marginal)
distribution of the random variable X, are independent of x .

Proof. Since the elliptical distributed random vector Y has representation (A «,X) and X
has a spherical distribution, it follows that
X'Y=x"AX+x"p.
Applying Lemma 4.1 with a= A'x yields the desired result. m

To compute the covariance matrix X of the random vector Y having an elliptical distribution

with representation (A x, X) we first observe that
T =Cov(Y,Y) = Cov(AX + z, AX + 1) = ACov(X,X)A".

Moreover, since X has a spherical distribution it follows by (11) that there exists some

d
nonnegative random variable R satisfying X=RU™ and independent of U™ . This implies
2
that Cov(X,X)=n"" E[Rz]l and hence with ¢ = ﬂR—] > (0 we obtain that
n

T =CcAA". (14)



Recall that for the vector of one period (short term) returns, Y, the loss of the constructed

portfolio is given by —Cx'Y. Therefore, we need to specify and evaluate a risk measure
associated with this random loss. One can now show the following important result for a random

vector Y having an elliptical distribution.
Lemma 4.3 If Y has an dliptical distribution with covariance matrix ¥ and representation

(A 1,X) and the considered risk measure p is positive homogeneous, trandation invariant

and p(X,)> 0, then for any two nonzero portfolio vectors x, and x, satisfying x, p=x,p, we

have
P(—x]Y) < p(-x1Y) < x| 2x, < X1 2X,.
Proof. Since p is translation invariant and x;p = x,p we obtain by Lemma 4.2 that
p(-x1Y) < p(-x1Y) & p(|ATx,[ X)) < p(|ATx, |X)). (15)

Then by the positive homogeneity of p and p(X,) > 0 we have

p(A % [X)) < p(|ATx X)) & [ATx | < |ATx, | < x| AATY, < x, AATX,. (16)
Relations (14), (15) and (16) and c= ﬂ?—z] > ( yield the desired result. O

As mentioned before, both CVaR and VaR satisfy the assumptions of Lemma 4.3.
Therefore, for these important risk measures the portfolio optimization problem (Q) reduces to a

mean-variance Markowitz model

min{xTZx|eTx=1,,uTx= r,xZO}. (MP-Q)
1
Both problems construct the same optimal portfolio. When o> 5 implying

VaR ,(X,)> 0, it follows from Lemma 4.3 that for the portfolio loss —Cx"Y we obtain
VaR ,(-Cx'Y) =C(VaR ,(—x"Y)) = C(|| A"x || VaR , (X,) —x" x) (17)
and

CVaR ,(-Cx"Y)=C(|| A'x || CVaR (X,) - x" ). (18)

5 Modified Michelot Algorithm.
The algorithm introduced by Michelot (1986) finds in finite steps the projection of a

given vector onto a special polytope. The main idea of this algorithm is to use the analytic



solutions of a sequence of projections onto canonical simplices and elementary cones. The
discussion in Michelot's paper is applicable when the objective function in problem (MP-Q) is
perfect quadratic; that is, the covariance matrix X is the identity matrix. Unfortunately, the
algorithm in Michelot's paper is not clear and difficult to follow. Our next step is to follow the
main steps in Michelot's paper and apply necessary modification to solve
min{xTZx|eTx=l,,uTx= r,xZO}. (19)

To modify Michelot's algorithm according to our problem, we need to introduce several

sets. Let
Y ={xeRn|eTx=1,,uTx=r}, Xlz{xeRn | X =0,i e[}, and ¥V, =V N X,,
where I c{l,2,---,n} denotes an index set. Algorithm 1 gives the steps of the Modified
Michelot Algorithm. The algorithm starts with obtaining the optimal solution of the following
quadratic programming problem
P, := argmin{ x'Ix:x e} (20)

Naturally, some of the components X may be negative; otherwise, the solution is optimal. After
identifying the most negative component and initializing the index set I, the algorithm iterates
between projections of the incumbent solution X onto subspace X, , and then onto subspace ¥/,
until none of the components are negative; i.e., the solution is optimal. The first projection is
denoted by

P, (%) = argmin{(Xx~ %)  ZX-%):x € X, | 21)
Similarly, the second projection is given by

P“/I (x):= argmin{(i -x) I(X-x):x € v, } (22)
At every iteration one index is added to set 7. Since we have a finite number of assets, the
modified algorithm terminates within at most N iterations (see also Michelot, 1986).

Notice that all three problems, (20), (21) and (22), are equality constrained quadratic
programming (QP) problems. Therefore, we consider a general equality constrained QP problem
given by

min{(X-x)' Z(X-x):Tx = b},
where T is an mxn matrix and b € R™. It is easy to show (Bertsekas, 1999) that this general

problem has the optimal solution

-2 T (=TT (X - b). (23)



Algorithm 1: Modified Michelot Algorithm
. Input 2, u,r, 1=4J.
22 Set X<« Py.

3:  if X>0 then

4: Stop; X is optimal.

5. else

6 Select i with most negative X .
: Set 7 «1i.

8: while X <0 do

9: Set X < PXI (x).

10: Set X < P(VI (x).

11: if X>0 then

12: Stop; X is optimal.

13: else

14: Select i with most negative X .
15: Set I «— 1 UI.

16:  Output: X

The matrix inversions in (23) constitute the main computational burden of Algorithm 1,

since these inversions are required at every iteration. In line 2 of Algorithm 1, we need to find
P,. To use relation (23), we set T=[e u]" andb=[1 r]". These relations imply that we
should compute the inverse of Nx N matrix X as well as the inverse of 2x2 symmetric matrix
[ ]
MXe uXop
Luckily, the blockwise inverse method (Lancaster, 1885) allows us to complete Algorithm 1 by
only these two matrix inversions because at every subsequent iteration, only one index is added
to set 7. For example, if we denote the i" unit vector by u,, the first time the algorithm reaches
line 10, we set T=[e u w;]' and b=[1 r 0]" in relation (23). Therefore, we need to

compute the inverse of a 3x3 symmetric matrix given by

K v e'zle e'Z7u eTZ*lui
= yTZ_le yTZ‘ly yTZ_lui
v Co eTZ_lui ,uTZ_lui uiTZ_lui

Using now the blockwise inverse method yields



K vI' K +eK WK —cK™v

v’ C, —cv'K™ c
where ¢, :=1/(c, - v'K™'v). Since we already computed K", the new inverse can be obtained

without any matrix inversion. Moreover, the vector v and the scalar ¢, can be computed fast

without any matrix multiplications, since the unit vector u; is involved in their computations

(for example, ¢, is simply the i"™ diagonal component of ™). One can derive similar results for

the projection in line 9 of Algorithm 1, since T grows again by one unit vector at each iteration

and b is simply the zero vector.

6 Computational Results
To analyze the performance of Algorithm 1, MATLAB has been as our testing

environment. All the computational experiments are conducted on a Intel(R) Core(TM) 2 2.00
GHz personal computer running Windows. First, we have randomly generated a set of test
problems for different numbers of assets (N ) as follows:

« The components of NxN matrix X" are sampled uniformly from interval (=2.5,5).

* The components of vector x are sampled uniformly from interval (0.01,0.50) , and

the first two components are sorted in ascending order; i.e., x4, < u, .
* To ensure feasibility, the value r is then sampled uniformly from interval (z,, 4, ) .

* For each value ofn, 10 replications are generated.

Clearly, Problem (MP-Q) can be solved by any quadratic programming solver. In
MATLAB, the procedure that solves these types of problems is called quadpr og, which is also
used in the financial toolbox. Therefore, to compare the proposed algorithm, we also solved the
set of problems with quadpr og. Table 1 shows the statistics of the computation times out of
10 replications. The second and third columns in Table 1 indicate averages and standard
deviations of the computation times obtained by Algorithm 1, respectively. Similarly, columns
four and five give the average and the standard deviation of the computation times found by

quadpr og, respectively.



Algorithm 1 quadprog

n Average Std. Dev. Average Std. Dev.
25 0.0030 0.0063 0.0173 0.0048
50 0.0111 0.0077 0.0451 0.0139
100 0.0548 0.0341 0.2783 0.0829
200 0.5672 0.4480 2.0345 0.5530
400 7.7626 6.4093 32.6268 10.6788
500 19.4047 10.3963 87.0015 23.8663
750 126.8378 92.6268 353.1186 71.8344
1000 378.5811 319.0916 1129.4000 251.4301

Table 1: Computation time statistics of quadprog and Algorithm 1 in seconds.

The average computational times in Table 1 demonstrate that Modified Michelot
Algorithm is several times faster than is the MATLAB procedure quadpr og. However, it is
important to note that the MATLAB procedure quadpr og involves many error checks that may
also be the cause of higher computation times. The standard deviation figures in Table 1 do not
yield a clear conclusion when we compare Algorithm 1 and quadpr og. Nevertheless,
Algorithm 1 still performs better than does quadpr og in most of the problems. Overall, these
results allow us to claim that Modified Michelot Algorithm is a fast and finite step alternative
for solving (MP-Q).

As we presented in Section 5, the Modified Michelot Algorithm takes at most n steps. In
Table 2, we report some summary statistics regarding the number of iterations required to solve
the problem instances. These figures show that the number of iterations to solve a problem

takes, on average, half of the problem dimension (Nn).

n Average Std. Dev.
25 12.1000 3.1429
50 24.0000 8.4853
100 47.4400 17.1995
200 95.4000 39.5058
400 189.5000 65.8707
500 247.8000 63.6375
750 413.1000 159.4926
1000 534.4000 236.9844

Table 2: Number of iterations statistics of quadprog and Algorithm 1.

An illustrative example explains the intuitive idea behind the optimal objective function

values (17) and (18). We use the same portfolio optimization example given in Rockafellar and



Uryasev (2000) that involves three instruments. The rates of returns on these instruments have
multivariate normal distribution, which simplifies the procedure to calculate the optimal
objective function values. The mean return vector (in percentage terms) and the covariance
matrix are given as

4" =(0.01001110,0.0043532,0.0137058)

and
0.00324625 0.00022983 0.00420395
¥ =10.00022983 0.00049937 0.00019247 |,
0.00420395 0.00019247 0.00764097
respectively. The expected return r is equal to 0.011. Assume that our budget C is 1000 at the
beginning of the investment period. We first solve the portfolio problem (19) with Algorithm 1.
We then use equations (17) and (18) to obtain the optimal VaR and CVaR values, respectively.

Figure (1) shows these values against varying« . As expected, CVaR values are always greater

VaR values.
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Figure 1: VaR and CVaR values for the elementary example.

As mentioned in Section 4 the standard multivariate t-distribution with v degrees of freedom
(d.f.) belongs to the class of spherical distributions. Therefore, a random vector X having a

standard multivariate t-distribution with v degrees can be represented by X =SV, where
V:N(0,I) and S is a real-valued random variable, independent of V . For standard multivariate
t -distribution with v degrees of freedom, the random variable v'/2S has a chi-distribution y,

with v degrees of freedom. According to Definition 4.2, we can obtain a (elliptically

distributed) random vector Y with a (nonstandard) multivariate t-distribution by applying an



affine mapping X — Ax+ u on the (spherically distributed) random vector X with the standard
multivariate t-distribution. Recall (17) and (18), where in our setup the random variable X, has
a univariate t-distribution with v degrees of freedom. We have used the MATLAB function

ti nv to calculate VaR , (X,). Using (7) and the probability density function of X, we obtain

v+l -

2] v _(1+VaRa(X,)2j2.

n
CVaR(X,) =

l-«a Mr(;jl—v

|4

We also consider the same example given in Rockafellar and Uryasev (2000) and provide the
optimal VaR and CVaR values of the total portfolio loss for a normal distribution and t-
distributions with different degrees of freedom parameters. As mentioned at the end of Section

3, the widely accepted values of degrees of freedom parameter v according to the literature are

between 3 andS.
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Figure 2: Risk values for returns having normal distribution and t -distribution with different

degrees of freedom.



For returns having normal and t distributions
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Figure 3: Comparison of VaR and CVaR values for different distributions.

Figure 2 shows VaR and CVaR values for different distributions. Clearly, as the
degress of freedom parameter v increases, the tail of t-distribution becomes less heavy and
hence, approaches to the normal distribution. Therefore, we observe that the differences in VaR
(Figure 2.a) and CVaR (Figure 2.b) values between t and the normal distributions diminish.

Figure 3 illustrates the difference between VaR and CVaR values for a normal
distribution and a particular t-distribution (v =4). As it can be seen from the figure, VaR and
CVaR values are closer to each other for the normal distribution than the t-distribution. This is

an expected observation, since a t -distribution has a heavier tail than a normal distribution.

7 Conclusion

In this paper we first discuss general risk measures and then concentrate on two recent
ones, VaR and CVaR. Then we shift our focus to efficiently construct optimal portfolios, where
the returns have elliptical distributions and either VaR or CVaR can be used as the risk measure.
It is well-known that optimization problems, which are in the form of (Q) with VaR or CVaR as
the risk measure, are equivalent to the mean-variance Markowitz model in the form of (MP-Q).
In fact we discuss this equivalence holds for a larger class of positive homogeneous and
translation invariant risk measures. To solve the resulting special quadratic programming
problem, we modify a finite step algorithm from the literature and provide some computational
results. To the best of our knowledge, portfolio management literature lacks numerical examples
where the returns have distributions other than the normal distribution. Therefore, in addition to
the numerical results for normal returns, we also provide results for returns that have

multivariate t-distributions.
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