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 ABSTRACT  Several approaches exist to model decision making under risk, where risk can be 

broadly defined as the effect of variability of random outcomes. One of the main approaches in 

the practice of decision making under risk uses mean-risk models; one such well-known is the 

classical Markowitz model, where variance is used as risk measure. Along this line, we consider 

a portfolio selection problem, where the asset returns have an elliptical distribution. We mainly 

focus on portfolio optimization models constructing portfolios with minimal risk, provided that 

a prescribed expected return level is attained. In particular, we model the risk by using Value-at-

Risk (VaR) and Conditional Value-at-Risk (CVaR). After reviewing the main properties of VaR  

and  CVaR,  we present short proofs to some of the well-known results. Finally, we describe a 

computationally efficient solution algorithm and present numerical results.  

Keywords: Elliptical distributions; mean-risk; value-at-risk; conditional value-at-risk; portfolio 

optimization. 



1  Introduction 

In recent years, off-balance sheet activities, such as trading financial instruments and 

generating income from loan sales, have begun to be profitable for banks in the competitive 

environment of the financial world. One of the main goals of such banks trading in these 

markets is to reduce the risk associated with their activities; however, with the taken positions 

trading may even be riskier. In particular, after the insolvency of some banks, the collapse of 

Barings in February 1995, risk management became quite significant in terms of internal control 

measures. One of these internal controls is recognition of the maximum loss that a portfolio can 

attain over a given time interval, termed Value-at-Risk (VaR). With VaR methodology, not only 

is exposed risk identified but VaR can also be used as a decision tool to take positions in the 

market so as to reduce the risk and, if possible, minimize it. The importance of VaR also stems 

from its status as universal risk measure employed in banking regulations, like Basel II, to 

evaluate capital requirements for banks' trading activities. Technically speaking, VaR at the 

confidence levelα of a portfolio is the α -quantile of the distribution function of total random 

loss associated with the portfolio at a specified probability level. A closely related recent risk 

measure, Conditional Value-at-Risk (CVaR), on the other hand, is the expectation of  loss values 

exceeding the VaR value with the corresponding probability level (Rockafellar and Uryasev, 

2000).  

Comparing random outcomes is one of the main interests of decision theory in the 

presence of uncertainty. Several decision models have been developed to formulate optimization 

problems in which uncertain quantities are represented by random variables. One method of 

comparing random variables is via the expected values. For the basic limitations of optimization 

models considering the expected value see, e.g., Shapiro and Ruszczyński (2006). In cases 

where the same decisions under similar conditions are repeatedly made, one can justify the 

optimization of the expected value by the Law of Large Numbers. However, the average of a 

few results may be misleading due to the variability of the outcomes. Therefore, sound decision 

models in the presence of uncertainty should take into account the effect of inherent variability, 

which in turn leads to the concept of risk. The preference relations among random variables can 

be specified using a risk measure. There are two main approaches for quantifying risk; it can be 

identified as a function of the deviation from an expected value or as a function of the absolute 

loss. The former approach is the main idea of the Markowitz mean-variance model. The latter 

approach involves the two recent risk measures mentioned above, Value-at-Risk (VaR) and 

Conditional Value-at-Risk (CVaR).  



 

The challenge of managing a portfolio that includes finitely many assets has been a 

mainstay in finance literature. The simplest, most widely used approach for modeling changes in 

the portfolio value is the variance-covariance method popularized by RiskMetrics (1997). Two 

main assumptions of this model are as follows (Glasserman et al., 2002): (i) The risk factors are 

conditionally multivariate normal over a specified short horizon. (ii) The change in the portfolio 

value, mainly profit-loss function, is a linear function of the changes in the risk factors. In this 

setting, the term conditionally means that conditioned on the information available at the 

beginning of the short horizon--such as the price of the instruments or the value of the portfolio-

-the changes in the risk factors become multivariate normal. The central problem is to estimate 

the profit-loss function and its relation with the underlying risk factors of a portfolio over a 

specified horizon. Since VaR deals with the extreme losses, estimating the tail of the loss 

distribution is crucial for portfolio management. For example, although two different possible 

distributions for the price changes have the same mean, the probability of facing very large 

changes maybe much greater for one than it is for the other. Starting from this model, we may 

relax either the linearity assumption or the normality assumption. Methods such as delta-

gamma, interpolation, or low variance Monte Carlo simulation relax the linearity assumption.  

Monte Carlo simulation is universally adaptable; however, since it is common in risk 

management to deal with rare-events, Monte Carlo simulation works much slower (Glasserman 

et al., 2002; Kamdem, 2005). The other option is to relax the normality assumption and use 

another family of distributions to model the returns of the underlying risk factors. The latter 

option, in fact, is the main focus of our work. 

In this paper, we analyze a general risk management model applied to portfolio problems 

with VaR and CVaR risk measures. We assume that our portfolio is linear and the risk factor 

changes have an elliptical distribution. A similar approach was initiated by Rockafellar and 

Uryasev (2000) for the special case of multivariate normally distributed returns. The class of 

elliptical distributions is a general class of distributions, which contains the normal and the 

student t -distributions. Contrary to Rockafellar and Uryasev (2000); we do not explicitly talk 

about applications of financial concepts (such as hedging), which actually lead to similar 

models. In the literature, it is observed that market returns have heavier tails compared to normal 

distributions; many studies moreover discuss the comparisons of portfolios among families of 

distributions on returns (Fama, 1965; Praetz, 1972; Blattberg and Gonedes, 1974; Embrechts et 

al., 2002). In particular Blattberg and Gonedes (1974) illustrate that the student model has 

greater descriptive validity than do the other models. Although most of the works are restricted 



to t -distribution, Kamdem generalizes VaR and Expected Shortfall to the family of elliptical 

distributions. Embrechts et al. (2002) also analyze the class of elliptical distributions within the 

context of risk management. On one hand, these papers concentrate on measuring Value-at-Risk 

and Conditional Value-at-Risk measures. On the other hand, these do not include a discussion 

on portfolio optimization. In this paper, we explicitly focus on constructing optimal portfolios.   

We first concentrate on general risk measures and then concentrate on VaR and CVaR. 

We also briefly review the theory of coherent risk measures, thoroughly studied in Arztner et. al. 

(1999). We then discuss the behavior of VaR and CVaR in terms of coherency. By converting 

the ideas used for rewards (Ogryczak and Ruszczyński, 2002), a different definition of CVaR is 

given. Following risk measures, we define general portfolio optimization problems. 

Additionally, we draw attention to the effect of adding a riskless asset. After a condensed 

introduction on elliptical distributions, we give short proofs on properties of VaR, CVaR, and 

linear loss functions. We note that the important risk measure CVaR is also discussed by 

Embrechts et. al. (2002) under the term expected shortfall or mean excess loss together with 

properties of elliptical distributions. Using the well-known equivalence between the mean-risk 

approach employing VaR and CVaR as risk measures and the famous mean-variance approach 

of Markowitz, we adapt an algorithm for special quadratic programming problems originally 

proposed by Michelot (1986). In this algorithm, the number of steps to find the optimal 

allocation of the assets is finite and equals at most the number of the considered assets. Our 

computational results suggest that the adapted algorithm is a faster alternative to the standard 

solver used in the financial toolbox of MATLAB. We also present some numerical results to 

emphasize the fact that we can construct optimal portfolios for returns having distributions 

different than normal; in particular we provide results for multivariate t -distributions.  

 

2  Risk Measures 

Consider an optimization problem in which the decision vector x  affects an uncertain 

outcome represented by a random variable )(xZ . Thus, for a decision vector x  belonging to a 

certain feasible set X  nR⊆ , we obtain a realization of the real-valued random variable )(xZ , 

which may be interpreted as some reward or loss of the decision x . In our work )(xZ  and 

)(xZ−  represent the loss and the reward of the decision x , respectively. Therefore, smaller 

values of )(xZ  are preferred to larger ones. To find the ‘best’ values of the decision vector x , 

we need to compare the random variables )(xZ  according to a preference relation. While 

comparing random variables, sounds decision models should take into account the effect of 



inherent variability, which leads to the concept of risk. The preference relations among random 

variables can be specified using a risk measure. One of the main approaches in practice uses 

mean-risk models. In these models one uses a specified risk measure ],[: +∞−∞→Bρ , where 

ρ  is a functional and B  is a linear space of F -measurable functions on a probability space 

),,( PFΩ . Notice that for a given vector x , the argument of the function ρ  is a real-valued 

random variable denoted here by )(xZ  with the cumulative distribution function (cdf)  

 }.)({:=)()( aZPaFZ ≤xx  (1) 

 Clearly ))((=))(( 21 xx ZZ ρρ  for )( 1xZ  and )( 2xZ  having the same cdf (denoted by 

)(=)( 21 xx ZZ
d

). 

In the mean-risk approach for a given risk measure ρ  one solves the problem  

 { },))(()]([max xx
x

ZZE λρ−−
∈X

 (2) 

where 0≥λ  is the trade-off coefficient representing our desirable exchange rate of mean reward 

for risk. We say that the decision vector x  is efficient (in the mean-risk sense) if and only if for 

a given level of minimum expected reward, x  has the lowest possible risk, and, for a given level 

of risk, x  has the highest possible expected reward. In many applications, especially in portfolio 

selection problems, the mean risk efficient frontier is identified by finding the efficient solutions 

for different trade-off coefficients.  

The classical Markowitz (1952) model discussed in Steinbach (2001) uses variance as a 

risk measure. One of the problems associated with the Markowitz's mean-variance formulation, 

however, is that it penalizes over-performance (positive deviation from the mean) and under-

performance (negative deviations from the mean) equally. When typical dispersion statistics 

such as variance are used as risk measures, the mean-risk models may lead to inferior solutions. 

That is, there may exist other feasible solutions which would be preferred by any risk-averse 

decision maker to the efficient solution obtained by the mean-risk model.  

Example 2.1 Consider two decision vectors 1x  and 2x  for which the probability mass functions 

of the random outcomes (losses) are given as follows:  
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Any rational decision maker would prefer the decision vector 1x  with the random loss )( 1xZ . 

However, when a dispersion type risk measure ))(( xZρ  is used, then both decision vectors lie 



in the efficient frontier of the corresponding mean-risk model, since for each such a risk 

measure 0>))(( 1xZρ  and 0=))(( 2xZρ .  

To overcome the preceding disadvantage, alternative asymmetric risk measures, such as 

downside risk, have been proposed and significant effort has been devoted to the development 

of downside risk models (see e.g., Ogryczak and Ruszczyński, 2002). We refer to Ruszczyński 

and Shapiro (2006) as well as Rockafellar et al. (2006), and the references therein for other 

stochastic optimization models involving general risk functionals. VaR and CVaR are also 

among the popular downside risk measures. 

Definition 2.1 The first quantile function R→− (0,1] : 1)(
XF  corresponding to a random variable 

X  is the left-continuous inverse of the cumulative distribution function XF :  

 }.)( : {inf=)(1)( αηηα ≥∈−
XX FF R  

 In the finance literature, the α -quantile )(1)( α−
XF  is called the Value at Risk (VaR) at the 

confidence level α  and denoted by )(VaR Xα . Using Definition 2.1 and (1), we can state that 

the realizations of the random variable X  larger than )(VaR Xα  occur with probability less 

than α−1 . 

A closely related and recently popular risk measure is the Conditional Value-at-Risk 

(CVaR), also called Mean Excess Loss or Tail VaR. CVaR at level α  is defined as follows 

(Rockafellar and Uryasev, 2000, 2002; Pflug, 2000):  

 )(CVaR Xα [ ] .,0}{max
1

1 inf=
R ⎭

⎬
⎫

⎩
⎨
⎧ −

−
+

∈
η

α
η

η
XE  (3) 

The correspondence between the concepts of  CVaR and VaR and the fact that CVaR is also 

based on a quantile approach can be seen from the following result. Employing a similar 

argument, a closely related statement has been proven in Ogryczak and Ruszczyński (2002), 

where the random variable X  represents rewards (returns) instead of losses. As in Rockafellar 

(1972), the set )(yf∂  denotes the subgradient set of a finite convex function RR →:f  at y . 

Lemma 2.1 For any real valued random variable X  having a finite first absolute moment  

 duXX u )(VaR
1

1=)(CVaR
1
∫− αα α

 

for all 1<<0 α .   

Proof. Introducing the convex and continuous function RR →:f  given by  

 [ ],0}{max:=)( yXEyf −  (4) 

 it follows by relation (3) that  



 ),()(1=)(CVaR 1 QvX −−αα  (5) 

 where )}(){(1inf:=)( yfyQv y +−∈ αR . Since  

 ,))((1=)()(=)( dxxFxdFyxyf XyXy
−− ∫∫

∞∞
 

we obtain that ∗y  is an optimal solution of the convex optimization problem  

 )}(){(1inf yfy
y

+−
∈

α
R

 

if and only if α−1  belongs to )( ∗∂− yf . It is now easy to verify by the definition of the 

subgradient set and relation (4) that α−1  belongs to ))(( 1 α−∂− XFf . This result shows that 

)(1 α−
XF  is an optimal solution of the optimization problem )}(){(1inf yfyy +−∈ αR  and so  

 [ ].),0}({max)()(1=)( 11 ααα −− −+− XX FXEFQv  (6) 

 Since ),(= 1 UFX X

d
−  where U  is a uniform distributed random variable on (0,1) , we obtain  

[ ] [ ] )()(1)(VaR),0}()({max),0}({max 11111 αααα
α

−−−− −−=−=− ∫ XuXXX FduXFUFEFXE  

and by relations (5) and (6) the assertion holds true.  □ 

 It is easy to see that the function )(VaR Xαα a  is increasing; therefore, an immediate 

consequence of Lemma 2.1 is given by  

 ).(VaR)(CVaR XX αα ≥   

 Moreover, when XF  is continuous on ),( ∞−∞ , we know that )(VaR Xα  is not an atom of the 

distribution of X ; therefore, )}(VaR{=1 XXP αα ≥− . Then we have  

 [ ] [ ].1)1()1()(VaR )}(VaR{)}(1)(1{

1
}{

11

XX
XFUXFXUXu XEUFEUFEduX

αααα ≥−≥−
−

≥
− =⎥⎦

⎤
⎢⎣
⎡==∫  

It follows from the last equation that  

 [ ],)(VaR|=)(CVaR XXXEX αα ≥  (7) 

 which has been also shown in Rockafellar and Uryasev (2000) by using another approach. 

This definition provides a clear understanding of the concept of CVaR, i.e., the 

conditional expectation of values above the Value-at-Risk at the confidence level α . For 

example, in the portfolio optimization context, αVaR  is the α -quantile (a high quantile) of the 

distribution of losses (negative returns), which provides an upper bound for a loss that is 

exceeded only with a small probability α−1 . On the other hand, αCVaR  is a measure of 

severity of loss if we lose more than αVaR . 



An axiomatic approach to construct risk measures has been proposed by Artzner et al. 

(1999). It is now widely accepted that risk measures should satisfy the following set of 

axiomatic properties: 

    1.  Monotonicity: )()( 21 XX ρρ ≥  for any BXX ∈21 ,  such that 21 XX ≥  (where the   

         inequality 21 XX ≥  is assumed to hold almost surely).  

    2.  Subadditivity: )()()( 2121 XXXX ρρρ +≤+  for BXX ∈21 , .  

    3.  Positive homogeneity: )(=)( XX λρλρ  for any 0>λ  and BX ∈ .  

    4.  Translation invariant: aXaX ++ )(=)( ρρ  for any R∈a  and BX ∈ .  

A risk measure satisfying the above properties is called a coherent risk measure. It is  

well-known that CVaR is a coherent risk measure, but due to the lack of subadditivity, VaR fails 

to be a coherent risk measure in general (Pflug, 2000).  

Optimization models involving VaR are technically and methodologically difficult; for 

details see Rockafellar and Uryasev (2002). As also observed by Crouhy et al. (2001), using 

VaR as a risk measure has been criticized mainly for not being subadditive; hence, not being 

convex. In some applications, nonconvexity is a significant objection since it does not reward 

diversification. For example, in the portfolio selection theory, lack of conversity implies that 

portfolio diversification may increase the risk and considering the advantages of a portfolio 

diversification strategy, this objection cannot be ignored. However, as discussed by Embrechts 

et al. (2002), VaR is convex in the elliptical world (see Section 4), and so, within this framework 

VaR is a coherent risk measure. Therefore, we can use VaR  in our portfolio selection problems. 

In the next section, we present single period portfolio optimization models. 

 

3  A Single Period Portfolio Optimization Problem 

In this section, we consider a single period (short term) portfolio selection problem with 

a set of n  risky assets. At the beginning of the period, the length of which is specified, the 

investor decides on the amount of capital to be allocated on each available asset. At the end of 

the investment period, each asset generates a return, which is uncertain at the beginning of the 

period since the future price of an asset is unknown. We represent these uncertain returns with 

random variables and denote the vector of random returns of assets n,1,2,K  by 

),,,(= 21
T

nYYY KY . In finance, the ratio of money gained or lost on an investment relative to 

the money invested is called the rate of return or percentage return, which throughout the paper 

we just refer to as simply “return”. 



We denote the fractions of the initial capital and the amounts of the initial capital 

invested in assets nj ,1,= K  by ),,(= 1
T

nxx Kx  and )~,,~(=~
1

T
nxx Kx , respectively. Thus if 

jx~  is the amount of the capital invested in asset j  and C  is the total amount of capital to be 

invested, we have Cxx jj /~=  for nj ,1,= K . The constructed portfolio may be represented by 

either of these two decision vectors. We assume that short-selling is not allowed, which means 

that investors can not sell assets they do not own presently in the hope of repurchasing them 

later at a lower price. Therefore, the portfolio decision variables are nonnegative. If short-selling 

is allowed, however, the decision variables would be unrestricted. As mentioned in Steinbach 

(2001), the classical Markowitz model to be introduced next has in this case an analytical 

solution. Clearly, the set of possible asset allocations is:  

 X~ },,1,=0,,=~~:~{= 1 njxCxx jn
n KL ≥++∈Rx  

or equivalently,  

 X }.,1,=0,1,=:{= 1 njxxx jn
n KL ≥++∈Rx  

Then, at the end of the investment period, the total value of the portfolio is Yx T~+C ; therefore, 

the loss of the portfolio for the period under consideration is  

 .~=)~(=)~( TT YxYxx −+− CCZ  

Let ),...,(= 1
T

nμμμ , where iμ  denotes the expected return of asset i , i.e., ][= ii YEμ  for 

ni ,1,= K . Then the expected total return (reward) of the portfolio x~  is μxΤ~ . 

The problem of choosing between portfolios becomes the problem of choosing between 

random losses according to a preference relation, which is specified using a risk measure. The 

mean-risk models have been widely used for portfolio optimization under risk. In these models 

one uses two criteria: the mean representing the expected total return or loss of a portfolio, and 

the risk which is a scalar measure of the variability of the random total return or loss of the 

portfolio. Markowitz's mean-variance model (1952, 1959) which uses variance of  return as the 

risk measure, has been one of the most widely used mean-risk model for the portfolio selection 

problem. However, as mentioned in Section 2 , the model has several disadvantages such as 

equally treating over-performance as under-performance. Markowitz (1959) also recommends 

using semivariance rather than variance as risk measure, but even in this case significant 

deficiencies remain as mentioned in e.g. Ogryczak and Ruszczyński (2002). In particular, here 

we use VaR and CVaR as risk measures. 

There are alternative approaches to implement a mean-risk model. For example, one 



approach is based on the model constructing a portfolio with minimum risk, provided that a 

desired level of expected return of the portfolio is attained (by enforcing a lower bound on the 

expected total return of the portfolio). Another approach is based on the problem formulated in 

the form of (2), in which the preference relation is defined using a trade-off between the mean 

(reward) and risk, where a larger value of mean (reward) and a smaller value of risk are 

preferable. In many applications, the trade-off coefficient does not provide a clear understanding 

of the decision makers' preferences. The commonly accepted approach to implement a mean-

risk model is to minimize the risk of the random outcome while enforcing a specified lower 

bound on the total expected return (see, e.g. Mansini et al., 2003). We also prefer to use this 

widely accepted bounding approach. Thus, among alternative formulations of the mean-variance 

Markowitz model, we consider the formulation constructing a portfolio with minimal risk 

provided that a prescribed expected return level w  is attained:  

 { }.~,=~,=~:)~(min 0xμxxeYx ≥− ΤΤΤ wCρ  

Notice that )~( YxΤ−ρ  is the risk of the portfolio represented by x~ . 

With the use of the decision vector x  representing the fractions of the capital invested in 

each asset, we obtain an equivalent optimization problem:  

 }.,=1,=:)({min 1 0xμxxeYx ≥− −ΤΤΤ wCCρ  (8) 

 Suppose that CrwC )(1= ++  where r  is the desired rate of the return of the portfolio. When 

the specified risk measure is positive homogeneous, problem (8) takes the form of  

 }.,=1,=:)({min 0xμxxeYx ≥− ΤΤΤ rρ  (Q) 

If we also consider a non-risky asset characterized by a known return 0r  that usually 

reflects the interest rate on the money market, this asset would generate a return of 00 xr  at the 

end of the period, where 0x  denotes the fraction of the capital invested in the non-risky asset and 

C  the total capital available. In this case, we obtain the following optimization problem  

 0}.,,=1,=:)({min 0000 ≥≥++− ΤΤΤ xrxrx 0xμxxeYxρ  

In the above portfolio selection problems, no transaction costs are involved. Nonetheless, if the 

transaction costs are linear functions in terms of the decision vectors, we have similar 

formulations and our subsequent discussion still applies. 

 

In our work we use the class of multivariate elliptical distributions to model the random 

returns. This general class of multivariate distributions contains both (multivariate) normal and 



t -distributions. The most popular approach for modeling (short term) changes in portfolio value 

is the analytical variance-covariance approach popularized by RiskMetrics (1997). This method 

assumes that the vector of rate of returns is multivariate normal. However, there is a 

considerable amount of evidence that empirical rate of returns over a short horizon have heavier 

tails than given by the multivariate normal distribution. For example, Fama (1965) and 

Mandelbrot (1963) show through empirical studies on real stock portfolios that the distribution 

of returns can be distinguished from the normal distribution. Recent studies by Embrechts et al. 

(2002), Glasserman et al. (2002) and Huismann et al. (1998) also support this theory. Heavy 

tails imply that extreme losses are more likely to occur. Thus, if a risk measure based on the tail 

of the loss distribution, such as VaR, is used to optimize the portfolio, we underestimate the 

actual risk under a normality assumption. To overcome the problem of heavy tails, several 

alternative distributions for rates of returns are offered. One of the strongest is the multivariate 

t -distribution which belongs to the class of elliptical distributions. Empirical support on 

modeling univariate rate of returns with a t -distribution can be found in Huisman et al. (1998), 

Praetz (1972), Glasserman et al. (2002),  and Blattberg and Gonedes (1974). The multivariate t -

distribution is fully characterized by the mean μ  , the covariance matrix Σ  and an additional 

parameter called the degree of freedom ν  to control the heaviness of the tail. As ν  goes to 

infinity, the multivariate t -distribution approaches the multivariate normal distribution. 

According to Crouhy et al. (2001) and Glasserman et al. (2002), the values of parameter ν  for 

most of the rate of returns are between 3  and 8 --in fact, usually around 4 . However, a 

shortcoming of the multivariate t -distribution is that all the risk factors in the portfolio have the 

same degrees of freedom. As suggested by Glasserman et al. (2002) to overcome this 

shortcoming, copulas can be used with different ν  values for each rate of return. The other 

candidate for a multivariate distribution of the rates of returns is the family of multivariate stable 

distributions (see Feller (1971) for a discussion of univariate stable distributions). The 

comparison of stable distributions with a t -distribution and the normal distribution can be found 

in Blattberg and Gonedes (1974) and Praetz (1972). 

The class of elliptical distributions within the context of risk management has been 

studied by Embrechts et al. (2002) and Kamdem (2005). On one hand, both papers concentrate 

on measuring Value-at-Risk and Conditional Value-at-Risk measures. On the other hand, they 

do not include a discussion on portfolio optimization. In this paper, we explicitly focus on 

constructing the optimal portfolios. We next briefly discuss the properties of elliptical 

distributions. 



 

4  Elliptical World 

To analyze our general risk model for portfolio management, we first introduce the 

following class of multivariate distributions (see also Embrechts et al., 2002 and Fang, 1990). 

Recall a linear mapping U  is called orthogonal if IUUUU == ΤΤ . We also use the notation 

F:X , meaning the random vector X  has the joint distribution function F .    

Definition 4.1 A random vector Τ),,(= 1 nXX LX  has a spherical distribution if for any 

orthogonal mapping nnU RR →: , it holds that,  

 .= XX
d

U  

 It is well known that ),( IN 0X :  has a spherical distribution, where ),( ΣμN  denotes the 

multivariate normal distribution with mean μ  and covariance matrix Σ . Since IU −=  is an 

orthogonal mapping we obtain for X  having a spherical distribution that  

 XX
d
=−  (9) 

 Hence if a spherically distributed random vector X  has a finite expectation, its expected value 

equals 0 . It can be easily shown using the above definition (see Fang, 1990) that the random 

vector Τ),,(= 1 nXX LX  has a spherical distribution if and only if there exists some real-valued 

function RR →+:φ  such that the characteristic function [ ])(exp:=)( Xtt ΤiEψ  is given by  

 ).(=)( 2tt φψ  (10) 

 This representation based on the characteristic function provides us with an alternative 

definition of a spherical distributed random vector. It is easy to show (see Fang, 1990) for any 

spherically distributed random vector X  that there exists some nonnegative random variable R  

such that  

 ,= )(n
d

RUX  (11) 

 where R  is independent of the random vector )(nU  that is uniformly distributed on the unit 

sphere surface 1}=:{= xxx Τ∈ n
nS R . The alternative representation (11) will be useful for the 

computation of the covariance matrix for an elliptically distributed random variable. As 

mentioned before, an important member of the class of spherical distributions is the standard 

multivariate normal distribution )( I0,N  with mean 0  and covariance matrix .I  For this 

distribution, the generating random variable R  in (11) has a chi-distribution nχ  with n  degrees 



of freedom. Another important member is the standard multivariate t -distribution with ν  

degrees of freedom. In this case 12 −nR  has a ),( νnF -distribution with n  and ν  degrees of 

freedom. As stated by Fang (1990) an important proper subclass of the elliptical distributions is 

the so-called class of scale mixtures of multivariate normal distributions. The random vector 

associated with such a scale mixture is given by ,= VX S  where )( I0,V N:  and S  is a real-

valued random variable, which is independent of V . The already introduced standard 

multivariate t -distribution with ν  degrees of freedom belongs to this class. For this distribution, 

the random variable S2/1ν  has a chi-distribution νχ  with ν  degrees of freedom. This 

representation will be useful in our computational section. From the representation of the 

characteristic function we immediately obtain for all R∈t  and nj ≤≤1  that  

 [ ] ).(=)(exp 2titXE j φ  (12) 

 This confirms (see also relation (9)) that  

 .= 11 XX
d

−   

 Using the characteristic function representation of a spherical distribution another useful 

description can also be derived. For completeness, here a short proof is presented (see also Fang, 

1990).    

Lemma 4.1 The random vector Τ),,(= 1 nXX LX  has a spherical distribution if and only if 

1= X
d

aXaΤ  for all .nR∈a    

Proof. If the random vector X  has a spherical distribution, then by (10) there exists some 

function RR →+:φ  such that [ ] )(=)(exp 2aXa φΤiE  for all nR∈a . Hence for all R∈t  and 

nR∈a  it follows by (12) that  

 [ ] [ ].)(exp=)(=)(exp 1
2 XitEtitE aaXa φΤ  

By using the one to one correspondence between the characteristic function and the cumulative 

distribution function of the associated random variable (see Feller, 1971), we obtain 

1= X
d

aXaΤ . To prove the reverse implication we observe that  

[ ] [ ].)(exp=)(exp 1XiEitE aXaΤ   (13) 

 This implies for all nR∈a  that  

 [ ] [ ],)(exp=)(exp XaXa ΤΤ− iEiE  



and so the function [ ])(exp Xaa ΤiEa  is real-valued. Hence by (13), the function 

[ ])(exp 1XiE aa a  is also real-valued. Introducing RR →+:φ  given by 

[ ])(exp:=)( 1XtiEtφ  it follows again by (13) that  

 [ ] ).(=)(exp 2aXa φΤiE  

It follows from the representation (10) that X  has a spherical distribution.  □ 

 A class of distributions related to spherical distributions is given by the following 

definition (Embrechts et al., 2002; Fang, 1990).    

Definition 4.2 A random vector Τ),,(= 1 nYY LY  has an elliptical distribution if there exists an 

affine mapping μ+xx Aa  and a random vector Τ),,(= 1 nXX LX  having a spherical 

distribution such that μ+XY A= .   

For convenience, an elliptical distributed n -dimensional random vector Y  is denoted by 

),,,( XμA  where Τ),,(= 1 nXX LX . It is now possible to show the following result. 

Lemma 4.2  If the random vector Y  has an elliptical distribution with representation ),,( XμA  

then  

 μxxYx ΤΤΤ +1= XA
d

  

 for all portfolio vectors nR∈x . Moreover, the parameters of the spherical (marginal) 

distribution of the random variable 1X  are independent of x .   

Proof. Since the elliptical distributed random vector Y  has representation ),,( XμA  and X  

has a spherical distribution, it follows that  

 .= μxXxYx ΤΤΤ +A  

Applying Lemma 4.1 with xa ΤA=  yields the desired result.  □ 

To compute the covariance matrix Σ  of the random vector Y  having an elliptical distribution 

with representation ),,( XμA  we first observe that  

 .),(=),(=)(= Τ++Σ AACovAACovCov XXXXYY, μμ  

Moreover, since X  has a spherical distribution it follows by (11) that there exists some 

nonnegative random variable R  satisfying )(= n
d

RUX  and independent of )(nU . This implies 

that [ ]IXX 21=),( REnCov −  and hence with [ ] 0>=
2

n
Ec R  we obtain that  

 .= ΤΣ cAA  (14) 



 Recall that for the vector of one period (short term) returns, Y , the loss of the constructed 

portfolio is given by YxΤ−C . Therefore, we need to specify and evaluate a risk measure 

associated with this random loss. One can now show the following important result for a random 

vector Y  having an elliptical distribution.    

Lemma 4.3 If Y  has an elliptical distribution with covariance matrix Σ  and representation 

),,( XμA  and the considered risk measure ρ  is positive homogeneous, translation invariant 

and 0>)( 1Xρ , then for any two nonzero portfolio vectors 1x  and 2x  satisfying μxμx ΤΤ
21 = , we 

have 

 .)()( 221121 xxxxYxYx Σ≤Σ⇔−≤− ΤΤΤΤ ρρ  

Proof. Since ρ  is translation invariant and μxμx ΤΤ
21 =  we obtain by Lemma 4.2 that  

 ).(()()( 121121 XAXA x)xYxYx ΤΤΤΤ ≤⇔−≤− ρρρρ  (15) 

 Then by the positive homogeneity of ρ  and 0>)( 1Xρ  we have  

 .)(( 2211211211 xxxxxxx)x ΤΤΤΤΤΤΤ ≤⇔≤⇔≤ AAAAAAXAXA ρρ  (16) 

 Relations (14), (15) and (16) and [ ] 0>=
2

n
Ec R  yield the desired result.  □ 

As mentioned before, both CVaR and VaR satisfy the assumptions of Lemma 4.3. 

Therefore, for these important risk measures the portfolio optimization problem (Q) reduces to a 

mean-variance Markowitz model  

 { }.,=1,=|min TTT 0xxxexx ≥Σ rμ  (MP-Q) 

 Both problems construct the same optimal portfolio. When 
2
1>α  implying 

0>)(VaR 1Xα , it follows from Lemma 4.3 that for  the portfolio loss YxΤ−C  we obtain  

 ))(VaR||(||=))(VaR(=)(VaR 1 μααα
ΤΤΤΤ −−− xxYxYx XACCC  (17) 

 and  

 .))(CVaR||(||=)(CVaR 1 μαα
ΤΤΤ −− xxYx XACC  (18) 

 

 

 

5  Modified Michelot Algorithm. 

The algorithm introduced by Michelot (1986) finds in finite steps the projection of a 

given vector onto a special polytope. The main idea of this algorithm is to use the analytic 



solutions of a sequence of projections onto canonical simplices and elementary cones. The 

discussion in Michelot's paper is applicable when the objective function in problem (MP-Q) is 

perfect quadratic; that is, the covariance matrix Σ  is the identity matrix. Unfortunately, the 

algorithm in Michelot's paper is not clear and difficult to follow. Our next step is to follow the 

main steps in Michelot's paper and apply necessary modification to solve  

 { }.,=1,=|min TTT 0xxxexx ≥Σ rμ  (19) 

To modify Michelot's algorithm according to our problem, we need to introduce several 

sets. Let  

V  ,}=1,= | {= rTTn xxex μR∈     IX {  nR∈= x },,0| I∈= ixi    and II XV=V ∩ , 

where },{1,2, nL⊆I  denotes an index set. Algorithm 1 gives the steps of the Modified 

Michelot Algorithm. The algorithm starts with obtaining the optimal solution of the following 

quadratic programming problem  

 }. : {argmin:= VV ∈Σ xxxTP  (20) 

Naturally, some of the components ix  may be negative; otherwise, the solution is optimal. After 

identifying the most negative component and initializing the index set I , the algorithm iterates 

between projections of the incumbent solution x  onto subspace IX , and then onto subspace IV  

until none of the components are negative; i.e., the solution is optimal. The first projection is 

denoted by  

 { }. : )()(argmin:=)( IIX
X∈−Σ− xxxxxx TP  (21) 

 Similarly, the second projection is given by  

 { }. : )()(argmin:=)( IIV
V∈−Σ− xxxxxx TP  (22) 

 At every iteration one index is added to set I . Since we have a finite number of assets, the 

modified algorithm terminates within at most n  iterations (see also Michelot, 1986). 

Notice that all three problems, (20), (21) and (22), are equality constrained quadratic 

programming (QP) problems. Therefore, we consider a general equality constrained QP problem 

given by  

 },= : )()({min T bxxxxx T−Σ−  

where T  is an nm×  matrix and mR∈b . It is easy to show (Bertsekas, 1999) that this general 

problem has the optimal solution  

 ( ) ).(
1T1T1 bTTTT −ΣΣ−

−−− xx  (23) 

 



Algorithm 1: Modified Michelot Algorithm 
1:    Input  Σ , μ , r , ∅=I . 
2:    Set VP←x . 
3:    if 0x ≥  then 
4:         Stop; x  is optimal.     
5:    else 
6:         Select i  with most negative ix .   
7:         Set i←I .   
8:         while 0<x  do 
9:              Set )(xx

IX
P← .   

10:            Set )(xx
IV

P← .   
11:            if 0x ≥  then 
12:                  Stop; x  is optimal. 
13:            else 
14:                  Select i  with most negative ix .   
15:                  Set i∪← II . 
16:   Output: x  

 

The matrix inversions in (23) constitute the main computational burden of Algorithm 1, 

since these inversions are required at every iteration. In line 2 of Algorithm 1, we need to find 

VP . To use relation (23), we set T][= μeT  and T][1= rb . These relations imply that we 

should compute the inverse of nn×  matrix Σ  as well as the inverse of 22×  symmetric matrix  

 .:= 1T1T

1T1T

⎥
⎦

⎤
⎢
⎣

⎡

ΣΣ
ΣΣ

−−

−−

μμμ
μ

e
eeeK  

Luckily, the blockwise inverse method (Lancaster, 1885) allows us to complete Algorithm 1 by 

only these two matrix inversions because at every subsequent iteration, only one index is added 

to set I . For example, if we denote the thi  unit vector by iu , the first time the algorithm reaches 

line 10, we set T][= ieT uμ  and T0][1= rb  in relation (23). Therefore, we need to 

compute the inverse of a 33×  symmetric matrix given by  
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Using now the blockwise inverse method yields  
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where )1/(:= 1T
01 vv −− Kcc . Since we already computed 1−K , the new inverse can be obtained 

without any matrix inversion. Moreover, the vector v  and the scalar 0c  can be computed fast 

without any matrix multiplications, since the unit vector iu  is involved in their computations 

(for example, 0c  is simply the thi  diagonal component of 1−Σ ). One can derive similar results for 

the projection in line 9 of Algorithm 1, since T  grows again by one unit vector at each iteration 

and b  is simply the zero vector. 

 

6  Computational Results 

To analyze the performance of Algorithm 1, MATLAB has been as our testing 

environment. All the computational experiments are conducted on a Intel(R) Core(TM) 2 2.00 

GHz personal computer running Windows. First, we have randomly generated a set of test 

problems for different numbers of assets ( n ) as follows:     

    • The components of nn×  matrix 1/2−Σ  are sampled uniformly from interval 2.5,5)(− .  

    • The components of vector μ  are sampled uniformly from interval )(0.01,0.50 , and  

       the first two components are sorted in ascending order; i.e., 21 μμ ≤ .  

    • To ensure feasibility, the value r  is then sampled uniformly from interval ),( 21 μμ .  

    • For each value of n , 10 replications are generated.   

Clearly, Problem (MP-Q) can be solved by any quadratic programming solver. In 

MATLAB, the procedure that solves these types of problems is called quadprog, which is also 

used in the financial toolbox. Therefore, to compare the proposed algorithm, we also solved the 

set of problems with quadprog. Table 1 shows the statistics of the computation times out of 

10 replications. The second and third columns in Table 1 indicate averages and standard 

deviations of the computation times obtained by Algorithm 1, respectively. Similarly, columns 

four and five give the average and the standard deviation of the computation times found by 

quadprog, respectively.  

 

 

 



 Algorithm 1 quadprog 
n  Average Std. Dev. Average Std. Dev. 
25  0.0030   0.0063   0.0173   0.0048  
50  0.0111   0.0077   0.0451   0.0139  
100  0.0548   0.0341   0.2783   0.0829  
200  0.5672   0.4480   2.0345   0.5530  
400  7.7626   6.4093   32.6268   10.6788  
500  19.4047   10.3963   87.0015   23.8663  
750  126.8378   92.6268   353.1186   71.8344  

1000  378.5811   319.0916   1129.4000   251.4301  

Table  1: Computation time statistics of quadprog and Algorithm 1 in seconds. 

   

The average computational times in Table 1 demonstrate that Modified Michelot 

Algorithm is several times faster than is the MATLAB procedure quadprog. However, it is 

important to note that the MATLAB procedure quadprog involves many error checks that may 

also be the cause of higher computation times. The standard deviation figures in Table 1 do not 

yield a clear conclusion when we compare Algorithm 1 and quadprog. Nevertheless, 

Algorithm 1 still performs better than does quadprog in most of the problems. Overall, these 

results allow us to claim that Modified Michelot Algorithm is a fast and finite step alternative 

for solving (MP-Q). 

As we presented in Section 5, the Modified Michelot Algorithm takes at most n  steps. In 

Table 2, we report some summary statistics regarding the number of iterations required to solve 

the problem instances. These figures show that the number of iterations to solve a problem 

takes, on average, half of the problem dimension ( n ).  

 

n  Average Std. Dev. 
25  12.1000   3.1429  
50  24.0000   8.4853  
100  47.4400   17.1995  
200  95.4000   39.5058  
400  189.5000   65.8707  
500  247.8000   63.6375  
750  413.1000   159.4926  

1000  534.4000   236.9844  

Table  2: Number of iterations statistics of quadprog and Algorithm 1. 

 

An illustrative example explains the intuitive idea behind the optimal objective function 

values (17) and (18). We use the same portfolio optimization example given in Rockafellar and 



Uryasev (2000) that involves three instruments. The rates of returns on these instruments have 

multivariate normal distribution, which simplifies the procedure to calculate the optimal 

objective function values. The mean return vector (in percentage terms) and the covariance 

matrix are given as  

 8)2,0.0137050,0.004353(0.0100111=Tμ  

and  

 ,
0.007640970.000192470.00420395
0.000192470.000499370.00022983
0.004203950.000229830.00324625

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Σ  

respectively. The expected return r  is equal to 0.011 . Assume that our budget C  is 1000  at the 

beginning of the investment period. We first solve the portfolio problem (19) with Algorithm 1. 

We then use equations (17) and (18) to obtain the optimal VaR and CVaR values, respectively. 

Figure (1) shows these values against varyingα . As expected, CVaR values are always greater 

VaR values. 

 
Figure  1:  VaR  and  CVaR  values for the elementary example. 

 

As mentioned in Section 4 the standard multivariate t -distribution with ν  degrees of freedom 

(d.f.) belongs to the class of spherical distributions. Therefore, a random vector X  having a 

standard multivariate t -distribution with ν  degrees can be represented by ,= VX S  where 

)( I0,V N:  and S  is a real-valued random variable, independent of V . For standard multivariate 

t -distribution with ν  degrees of freedom, the random variable S2/1ν  has a chi-distribution νχ  

with ν  degrees of freedom. According to Definition 4.2, we can obtain a (elliptically 

distributed) random vector Y  with a (nonstandard) multivariate t -distribution by applying an 



affine mapping μ+xx Aa  on the (spherically distributed) random vector X  with the standard 

multivariate t -distribution. Recall (17) and (18), where in our setup the random variable 1X  has 

a univariate t -distribution with ν  degrees of freedom. We have used the MATLAB function 

tinv to calculate )(VaR 1Xα . Using (7) and the probability density function of 1X  we obtain  
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We also consider the same example given in Rockafellar and Uryasev (2000) and provide the 

optimal VaR and CVaR values of the total portfolio loss for a normal distribution and t -

distributions with different degrees of freedom parameters. As mentioned at the end of Section 

3, the widely accepted values of degrees of freedom parameter ν  according to the literature are 

between 3  and8 . 

 

  
 a. VaR values  b. CVaR values 

Figure  2:  Risk values for returns having normal distribution and t -distribution with different 

degrees of freedom. 

 



 
Figure  3: Comparison of VaR and CVaR values for different distributions. 

 

  Figure 2 shows VaR and CVaR values for different distributions. Clearly, as the 

degress of freedom parameter ν  increases, the tail of t -distribution becomes less heavy and 

hence, approaches to the normal distribution. Therefore, we observe that the differences in VaR 

(Figure 2.a) and CVaR (Figure 2.b) values between t  and the normal distributions diminish.   

Figure 3 illustrates the difference between VaR and CVaR values for a normal 

distribution and a particular t -distribution ( 4=ν ). As it can be seen from the figure, VaR and 

CVaR values are closer to each other for the normal distribution than the t -distribution. This is 

an expected observation, since a t -distribution has a heavier tail than a normal distribution. 

 

7  Conclusion 

In this paper we first discuss general risk measures and then concentrate on two recent 

ones, VaR and CVaR. Then we shift our focus to efficiently construct optimal portfolios, where 

the returns have elliptical distributions and either VaR or CVaR can be used as the risk measure. 

It is well-known that optimization problems, which are in the form of (Q) with VaR or CVaR as 

the risk measure, are equivalent to the mean-variance Markowitz model in the form of (MP-Q). 

In fact we discuss this equivalence holds for a larger class of positive homogeneous and 

translation invariant risk measures. To solve the resulting special quadratic programming 

problem, we modify a finite step algorithm from the literature and provide some computational 

results. To the best of our knowledge, portfolio management literature lacks numerical examples 

where the returns have distributions other than the normal distribution. Therefore, in addition to 

the numerical results for normal returns, we also provide results for returns that have 

multivariate t -distributions.  
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