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Abstract. Endogenous population growth, i.e., making the rate of population 
growth dependent on society's opulence, causes parametric changes to have a 
larger impact and can cause multiplicity of steady states in a dynamic intertem- 
poral optimization framework. This provides a simple explanation for the 
possibility of differing growth paths between countries (using a standard produc- 
tion function) or another explanation of the 'poverty trap'. We give two examples 
('opulence sensitivity' and 'production sensitivity') that both give rise to three 
steady states in which poor (rich) countries will evolve over time to the low (high) 
income steady state. In both examples there are middle income countries that will 
choose the low (high) income steady state if they are impatient (patient), where 
patience is measured through the rate of time preference Q. Foreign aid in the form 
of a large transfer of capital from abroad enables poor and impatient middle in- 
come countries to move to the high income steady state. 

1. Introduction 

It is an obvious fact of this century that poor countries tend to have higher rates 
of population growth combined with low levels of per capita income, as em- 
phasized by Cigno (1992), see also Ehrlich (1990) and Rosenzweig (1990). 1 This 
leads to a negative relationship between per capita income and fertility. A rela- 
tionship that can be found in aggregate data, whether examined cross-sectionally 

* We would like to thank Nico Heering, Martijn Herrmann, Theo Junius, Ngo van Long, Ad Pik- 
kemaat, John Pitchford, Lakshmi Raut, Casper de Vries, an anonymous referee, participants of work- 
shops at the University of Groningen and the University of Amsterdam and especially Harry van 
Dalen for valuable comments. The article was presented at the fifth annual conference of the Euro- 
pean Society of Population Economics, Pisa 1991. The views expressed in the article are those of the 
authors and not necessarily those of the World Bank. 
l Recent microeconomic studies stress also the importance of the quality of children, see e.g. Barro 
and Becker (1939) or Raut (1991). 
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or over time. 2 We opt in this study to endogenize the growth rate of  the popula- 
tion in such a way that it stresses the empirically supported negative relation be- 
tween fertility and per capita income. Fertility declines as per capita income rises. 
There are in principal three ways to endogenize the fertility decision (see Pitchford 
1974): Arithmetical theories, theories of demographic transition and the so-called 
Ricardian approach of  population growth. 3 We embed the first approach in a 
standard Ramsey-model of  infinitely lived agents (which is equivalent to a 
dynastic overlapping generations model, with fully operative bequests). 

Recent economic growth theory, see e.g. Romer (1986a) or Lucas (1988), 
shows that growth paths between developed and less developed countries differ 
if there are externalities in production. Earlier work by Skiba (1978), arrived at 
the same conclusion by positing a convexo-concave production function. One of 
the interesting features of  our model is that we derive the same result using a stan- 
dard neoclassical production function. We arrive at this conclusion through the 
possibility of  multiple steady states (alternatingly saddlepoint stable and 
unstable), see also Nelson (1956), where the initial capital-labor ratio determines 
whether the economy will end up in a high per capita income/low fertility steady 
state or in a low per capita income/high fertility steady state. The less developed 
economy can get stuck in a variant of  the 'Malthusian trap', also called the pover- 
ty trap. The only way out of  the poverty trap is through an injection of  capital 
(a large transfer) from abroad. Our model therefore, supports Tinbergen's view 
that aid from the developed countries to the less developed countries has to be 
increased dramatically (Tinbergen wants foreign aid to be quadrupled) to over- 
come the poverty trap. 

Section 2 introduces the model, Sect. 3 analyzes the steady state(s), Sect. 4 
discusses stability, Sect. 5 gives two illuminating examples to identify the various 
causes of  multiplicity, and finally, Sect. 6 concludes. 

2. The model  

In order to explore the dynamics of  endogenous population growth, we use the 
Ramsey infinite horizon model. Output [Y(t)] in period t is produced using 
capital [K(t)] and labor [L (t)]. The concav e production function (F) exhibits con- 
stant returns to scale. Romer (1986a) argues that the economy should be charac- 
terized by an increasing returns to scale production function. However, recent em- 
pirical evidence, see Benhabib and Jovanovic (1991) and Mankiw et al. (1992), 
does not support this view. We, therefore, opt for constant returns to scale. In per 
capita form: 

2 A simple regression using United Nations data for the population growth rate y (1975-1980 aver- 
age) and World Bank data for per capita purchasing power parity income levels z (1975) leads to: 
y = 2.8896- 0.0273 z, with R 2 = 0.59 and t-values in parentheses. Countries with less than 1 million 

(20.9) (-  10.6) 
inhabitants were not included, with 20-50 million inhabitants were counted twice, with 50-150 
million inhabitants were counted three times and with more than 150 million inhabitants four times. 
The paper by Sato and Davis (1971), which is frequently referred to, postulates a positive relation be- 
tween population growth and per capita income because the death rate is lower in rich countries. The 
empirical evidence does not support their view. 
3 Our model can easily generate a theory of demographic transition as a special case, see Sect. 4. 
The Ricardian theory has been refuted by the empirical evidence as argued above. 
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y ( t )  = f [ k ( t ) ]  . (1) 

One can use output either to invest [i(t)] or to consume [c(t)]. 

y ( t )  = c( t )  + i ( t )  . (2) 

The objective of  the economy (its government, a 'omniscient central planner', etc.) 
is to maximize instantaneous per capita utility U[c(t)] over an infinite time 
horizon using the time preference rate, or the subjective discount rate, Q, which 
is assumed to be constant and strictly positive. 

max ~ exp ( - O t )  U[c( t )]d t  . (3) 
c 0 

We make the following familiar assumptions. 4 

A 1. f [ k ( t ) ]  is twice continuously differentiable with 

f k [ k ( t ) ] > O  fkk[k ( t ) ]<O 

lim fk[k ( t ) ]  = oo lim fk[k( t ) ]  = 0 
k~O k? c~ 

A 2 .  U[c(t)] is twice continuously differentiable with 

Uc[c(t)]>O Ucc[C(t)]<O lim Uc[c(t)] = oo . 
c+O 

The speed of  population growth reacts to the prosperity level. In the sequel time 
derivatives will be denoted by placing a dot over the variable. 

£ ( t ) / L ( t ) = g ( . )  . (4) 

We distinguish between two basic specifications of  the function g( .  ). The pros- 
perity level can be identified by the per capita level of  consumption, assumption 
A 3 below, which emphasizes that it is the need to consume basic goods which 
causes the fertility problems. We will refer to this assumption as 'consumption 
driven' population growth. Alternatively, it can be argued that the prosperity level 
should be identified by the per capita production level, y ( t ) ,  or the level of  the 
wage rate, w(t) .  Since in a competitive economy both the production level, 
y ( t )  = f [ k ( t ) ] ,  and the wage rate, w ( t ) = f [ k ( t ) ] - k ( t ) f k [ k ( t ) ] ,  are increasing 
functions of the capital-labor ratio these specifications would make the speed of  
population growth a function of  the capital-labor ratio, assumption A 3'  below. 
We will refer to this assumption as 'production or wage driven' population 
growth. In short 

A 3 .  g(" ) is a twice continuously differentiable function of  c( t )  with 

4 We will denote derivatives with a subindex, this means that if g(z) is a function then its first 
derivative is gz(z) and its second derivative is gzz(Z) etc. 
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l img[c( t ) ]  = 0 > 0  lim g[c(t)] = 0 
c~0 c~ oo 

gc [c(t)] < 0 gee [c(t)] > 0 

.43 ' .  g ( .  ) is a twice continuously differentiable function of  k ( t )  with 

l img[k ( t ) ]  = 0 > 0  lim g[k(t)]  = 0 
k+0 kl" oo 

gk [k(t)] < 0 gkk [k(t)] > 0 

Hence A 3 (A 3') assumes a negative relationship between population growth and 
per capita consumption (income or wage) on the aggregate level as is consistent 
with the empirical evidence. 5 For a microeconomic justification of  this relation- 
ship, based on individual decision making regarding fertility in an overlapping 
generations framework, the interested reader is referred to Raut (1991). In the se- 
quel we will restrict attention to consumption driven population growth, assump- 
tion A 3. All conclusions (with a few minor exceptions) carry over to the case of  
production or wage driven population growth, assumption A 3', see the appendix. 

The capital stock increases due to gross investment and decreases due to 
depreciation LuK(t)] 

k ( t )  = f [ k ( t ) ] - l ~ k ( t ) - g [ c ( t ) ]  k ( t ) - c ( t )  . (5) 

Before solving the optimality problem we specify one more (technical) assump- 
tion and define the following elasticities 6 

auc(C) =-- - [dUe(c)/dc] [c/Ue(c)] = - c U c c ( c ) / U c ( c ) > O  

• ( c ,  k )  =-- [O(Ok/Oc)/Sc] [(Ok/Oc)l = ckgcc(C)/[1 + kgc(C)] > 0 

aid(c, k )  =- - [o (ok/Oc )/Ok ] [ k/(Ok/Oc )] = - k gc(c )/[ l + k gc(c )] > 0 . 

Hence, a u  (c) equals (minus) the elasticity of  marginal utility, which is a local 
measure oCf the curvature of  the utility function, a~c(c,k) is the elasticity of  
marginal per capita investment [1 +kgc(C)] with respect to per capita consump- 
tion, which can then be seen as the curvature of  the per capita investment function 
with respect to per capita consumption. The same holds for a~k(c,k) with 
respect to per capita capital and investment. Define ~----{(k, c ) ] l  +kg~(c)>_ 0}, 
then the final assumption is 

A 4 .  ( k , c ) e ~  . 

Assumption A 4 basically implies that at high capital-labor ratios, and hence high 
levels of  per capita production, the consumption level will not be too small (see 
Figs. 3 and 4 below). It can be justified as follows: 7 g ( c ) k  is the capital per head 
needed to equip the increment in population with the same capital as the existing 

5 It might be argued that the population growth function should have a point of inflexion, i.e. gee 
is negative at first and positive for consumption above some value ~. This will be an additional source 
of  multiplicity but requires some restrictions to establish existence of a solution. For ease of exposition 
we restrict attention to the case of convex g(c). 
6 The time index will be suppressed in the sequel unless confusion may arise. 
7 We thank John Pitchford for this formulation. 
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population. Suppose c rises. If  [gc(c)k+ 1] is negative it means that a rise in con- 
sumption produces such a fall in population growth and hence reduction in 
capital needed to equip new population that the residual output f ( k ) - g ( c ) k - c  
actually rises! In practice this seems so unlikely that it can be assumed away. 

The problem can be summarized as 

Problem P 

max ~ exp ( -  ~ t) U[e(t)] dt subject to 
c 0 

k( t )  = f[k(t)]  - ~u+g [c( t )]}k( t ) -e( t )  ; k(0) given ( k , c ) e ~ .  

Proposition 1. Under assumptions A 1 - A  4 there exists a solution to problem P. 

Proof We can apply Romer's (1986b) theorem. He shows that maximization of 
~ exp (6 t) Y[k(t), k(t)] dt has a solution under two conditions. The first condi- 

tion states that f f  should be concave in k. The consumption level c from (5) can 
be written as a function of k and k (using A 4) which can then be substituted in 
the function to be maximized. Under A 1 - A  4 we get 

Yi  = - G ( c ) / [ 1  +kgc(c ) ]  < 0  

~'~k = - U~(c) [auc(c) + a ic(c, k )]/[c( l + k gc(C ) ) 21 < 0 . 

Hence the first condition is fulfilled. The second condition in Romer's theorem 
is always fulfilled as the rate of population growth (through A 3) is bounded. 

The optimal solution can be characterized using the maximum principle. 
Define the present-value Hamiltonian. 

H = [U(c)+ 2 [ f (k ) -  [p+g(c)] k - c ]  exp ( - O t )  • (6) 

Necessary conditions for an optimal trajectory of k(t) ,  c(t) and 2 (t) are [Romer 
(1986b) and Blanchard and Fisher (1989)] 

Uc(c)-  2 [kgc(c)+ l] = 0 

Jt = A [~+p+g(e) - fk (k )]  

lim k ( t )2 ( t )  exp ( - 0 t )  = 0 
l---~ oo 

(7) 

(8) 

(9) 

Naturally, (7) only holds for (k, c) e int( 9 ), otherwise, when this restriction is 
binding, c solves l+kgc(C)--0 .  Differentiate Eq. (7) with respect to time and 
eliminate 2 and 2 by using (5), (7) and (8) to get the following system of differen- 
tial equations 

= {c/[auc(C) +alc (c, k)]}[fk (k) + azk (c, k)  ( /c /k ) -  [Q + P +  g (c)]} 

k = f ( k ) - [ p + g ( c ) ] k - c  . 
0o) 
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3. Steady state values 

The steady state values o f  system (10) are given by d = k = 0. Denote  the steady 
state by c* and k*, then 8 

f k ( k  *)--[O+ l.t+ g(c*)] = 0 

f ( k  * ) -  [I.t+g(c *)] k * - c  * = 0 . 
(1~) 

The first equat ion in system (11) extends the modif ied  neoclassical 'golden rule' 
o f  accumula t ion  by taking the dependence o f  the popula t ion  growth rate on the 
per capita level o f  consumpt ion  into consideration. The neoclassical dichotomy, 
in which the rate o f  time preference, the depreciat ion rate and  the p roduc t ion  
funct ion dictate the steady state level o f  capital independent ly  o f  the consumpt ion  
level, disappears. To examine the effect changes in the rate o f  time preference 9 
and the depreciat ion rate have on  the steady state values o f  c and k differentiate 

I f ;k  --gc ( l + k * g c ) ] I  dk*  d c * ]  I d0 + d/'t 
- = k * d g  ] 

and solve to get 

dk  */d/2 = - 1/A < 0 dk  */do = - (1 + k *gc)/A < 0 

dc*/d/~ = - - (o - - k* f kk ) /A<O dc*/do  = - o / A < O  , 

where A ~ - (1 + k *gc) (/'kk + O a l / k )  is the determinant  o f  the Jacobian.  I f  the 
equil ibrium is locally stable then A > 0 (see Sect. 4). 

To investigate the effect o f  endogenizat ion o f  the popula t ion  growth rate we 
have to look at a ' comparable '  exogenous economy. By this we mean  an economy 
such that  the exogenous growth rate o f  the populat ion,  n say, is equal to the en- 
dogenous  growth rate o f  the popula t ion  in the steady state, i.e. n = g(c *). 10 It is 
s t raightforward to derive 

dk  */dp I ex = - 1 / A '  < 0 dk  */do I ex = - 1 / A '  < 0 
dc */d/t ] ex = - ( 6 -  k * fkk) /A '  < 0 dc */d o ] ex = - o / A '  < 0 , 

where A '  = - fk~  > A. Hence we see dk/dQ < dk/dQ [ ex < 0, etc. and therefore 
arrive at Propos i t ion  2. 

Proposition 2. The introduction o f  consumption driven population growth causes 
changes in the rate o f  time preference and the depreciation rate to have a larger 
impact on the steady state levels o f  consumption and capital. 

This effect is easy to understand.  Suppose, for example, that  the rate o f  time 
preference rises. In  the exogenous case this affects the marginal  product ivi ty 

8 As will become clear in Sect. 4 at least one but possibly more steady state(s) exist(s). 
9 Not to be confused with endogenous time preference formation. 

10 Naturally, for the exogenous economy we have gc = gcc = O. 
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'golden rule' condition, the first equation of  system (11), which determines the 
new capital level. This in turn determines how much can be consumed through 
the second equation of  system (11). With endogenous population growth this 
dichotomy disappears. An increase in the rate of  time preference initially reduces 
the capital level through the marginal productivity efficiency condition. This 
reduces the consumption level, which increases the growth rate of  the population, 
which reduces the capital level through the marginal efficiency criterion, etc. 

We note, furthermore, that a change in time preference or depreciation has the 
same effect on the level of capital in the exogenous economy, i.e. dk/dQlex = 
d k / d p  [e x < 0, whereas that is not the case in the endogenous economy, where we 
have dk/dQ < dk/d/2 < 0. This is because the capital level in the exogenous case is 
purely determined by the marginal productivity condition, the first equation of  
system (11). A change in ~ or/2 identically affects this equation. An increase in 
depreciation, however, reduces the amount that can be consumed even further, see 
the second equation of system (11), as compared to an increase in time preference 
due to additional depreciation, the term/2 k * The extra decrease in consumption 
causes an extra increase in population growth and therefore an extra decrease in 
the capital stock. 

4. Stability and multiplicity 

Recall Eq. (11) 

A ( k * ) -  [~+/2+g(c *)1 = o 

f ( k  * ) -  [p+g(c *)1 k *-c  * = 0 . 
(11) 

At a steady state we have k = 0 and d = O, hence we can write c, using the first 
equation of  (11), as a function of  k 

c = g-1 [ fk(k)_(9+/2)  ] - - R ( k )  . (12) 

Let q=-- fk-(Q+p),  then g q t < O  and gqql>O. Using the fact that in a steady 
state g(c) = f k - ( 6  +P), we can write the second equation of  (11) also as a func- 
tion of  k 

c = f ( k ) - k f k ( k ) +  ~ k - -  P ( k )  . (13) 

For a steady state we need P ( k )  = R(k),  which will usually not, as will become 
clear in the sequel, result in an unique steady state. Careful investigation of  the 
functions P and R give us the following information 

Pk(k)  = --kfkk + Q >O 

Pkk (k) = --fkk -- kfkkk 

P(O) >_ o 

p (  oo ) = oo 

Rk (k) = g~ ~ fkk > 0 

R k k ( k )  -1  2 -1  = g qq f~ck -[- g q f k k k  

R(~') = 0 for k = f k l ( O + o + / 2 )  

R ( £ - )  = oo f o r  ~ ' = A - i ( e + U )  . 
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Note, first of all, that R (k) is not defined for k <  k and k_> k, hence steady states 
can only be found in the region between k- and/~. Secondly, the curvature (convex- 
ity and/or  concavity) of  the functions R and P depends on the third derivative 
of  the production function, about which the neoclassical theory of  production 
tells us nothing. For the important class of  CES production functions, however, 
fkkk is positive for all k if and only if the elasticity of  substitution, a, is bigger 
than or equal to 1/2, while P(k) is concave if and only if the elasticity of  substitu- 
tion is bigger than or equal to 1. Both functions are continuous, however, and we 
can apply the mean value theorem to conclude that there exists at least one steady 
state. 

If  we linearize system (10) around the steady state and use (11) we get 

6 0 ¢o(fkk+Qalk/k) I I c - c *  
[ k l  = I_ ( l+kgc)  ~ k _ k ,  I (14) 

with oJ ~ c/[au (c) + a I (c, k)] > 0. 
The trace of  the m~trix is Q and the determinant is -a~A.  If  the model is 

locally saddle point stable one eigenvector must be positive and one negative. This 
implies that the determinant must be negative, and hence A, as defined in Sect. 3, 
must be positive. Hence a necessary and sufficient condition for a steady state to 
be saddle point stable is that -(fkk+Qaikk)(l+kgc)>O. Fill in the definition 
of  aik to get 

--[fkk +k fkkgc- -Qgc]>O 

( -- gc) [ --fkk/gc --fkk k + Q ] < 0 

( -gc)  [ P k - R k ]  < 0 .  

Which means that the R (k) curve must cut the P(k) curve from below to have 
a saddle point stable stationary state. From the properties of  the R (k) and P(k) 
curves discussed above it is clear that they intersect an odd number of  times, while 
R (k) cuts P(k) from below the first time. We therefore can state Proposition 3. 

Proposition 3. There is an odd number of steady states, alternating in local 
saddle-point stability, the first of which is locally saddle-point stable. 

The possibility of  the 'poverty trap' is then, in the presence of  three steady 
states; easily illustrated in Figs. 1 and 2, while the dynamics are illustrated in 
Figs. 3 and 4. There is a low income, high fertility steady state and a high income, 
low fertility steady state. The unstable steady state can be characterized by spirals, 
which are saddle paths leading to the low or high income steady state (see Fig. 4). 
If  k(0) is in between A and B it is not a priori clear which saddle path will be 
chosen. Because the value function is rising in k(0), however, there is a unique 
cut-off point kT(T for trap) in between A and B, such that for k(O)<k r the 
economy will move to the low income steady state, while for k(O)>-kr the 
economy will move to the high income steady state, see Brock and Malliaris (1989, 
Chap. 6), Skiba (1978) and Dechert and Nishimura (1983). If  the initial capital- 
labor ratio is 'low' (below kT) then the economy is forced to the low income, 
high fertility steady state. If the initial capital-labor ratio is 'high' (above kT), 
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then the economy will reach the high income, low fertility steady state. Thus poor 
countries will reach different steady states than rich countries even if preferences 
and production functions are identical and do not exhibit 'peculiarities'. The 
possible causes of  multiplicity will be examined in the next section. 

The only way to escape from the poverty trap is through foreign aid in the 
form of  a transfer of  capital that raises the capital-labor ratio above the level kr. 
Here it should be emphasized that 'piecemeal' aid from abroad to a poor country 
will not make it possible for that country to reach the high welfare steady state 
as long as the critical value k r  is not reached. This would then argue, in con- 
tradistinction to Dellas and De Vries (1991), for a large once and for all capital 
donation from abroad. 

5. Two examples 

To illustrate Proposition 3 we will investigate two examples. The first example 
leads to a concave P(k) function and a point of  inflexion in the R (k) function. 
The second example will have a convexo-concave P(k) function, see Brock and 
Malliaris (1989, Chap. 6), while the R(k) function will be convex. Most of  the 
literature (see e.g. Liviatan and Samuelson 1969; Skiba 1978; Dechert and 
Nishimura 1983; Dellas and De Vries 1991) views "irregularities", i.e. non-dif- 
ferentiability or convexo-concavity, in the production function as the cause of  
multiplicity. In our framework this is an overly strong condition as a perfectly 
well-behaved concave production function can still be the cause of  multiplicity as 
is illustrated in Example 2 below. In Example 1 multiplicity is caused by opulence 
sensitivity. 

R(k) 
P(k) 

k 1 k 2 k k 

Fig. 1. Multiplicity through opulence sensitivity 

k 
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Example 1. For g(c) we take a logistic type of  population growth function, first 
introduced by the Dutch mathematical-biologist Verhulst in 1837. 

g(c) = a - b Z ( c )  , where Z(c)  = a / [ (a -b )  exp ( - a c ) + b ]  . (15) 

This function will satisfy the posited properties of g(c) if ( a - b ) / b  < 1. Note that 

Lim Z ( c )  = a / b  = l im g ( c )  = 0 
¢---)0o C--~ O0 

Lim Z(c)  = 1 = lim g(c) = a - b  
c-*O c~O 

gc = - b  [ Z ( c ) ] 2 ( a - b )  exp ( - a c )  < 0 

gcc = - b  [Z(c)] 3 ( a - b )  exp ( - a c ) [ ( a - b )  exp ( - a c ) - b ]  > 0 if ( a - b ) / b  <_ 1 

g -1 (x) = ( l /a)  In [ ( a - b )  ( a - x ) / b x ]  

R (k) = (I /a)  In { ( a -b )  [a+ Q+ t . t- fk(k)]/b [ fk(k) -  6-l~ ]} • 

The production sector produces with a Cobb-Douglas technology (y = A k/~ 
with 0 < f l <  1), which leads to the following properties of P(k)  and R ( k )  

P (k )  - - - - f ( k ) - k f k ( k ) + 6 k =  A ( 1 - f l ) k ¢  + 6 k  

Pk(k ) = - k  fkk + 6 = A f l (1 -  fl) kB-! + 6 > 0  

P k k  ( k )  = - - fkk  -- k f k k k  = - A  f l  ( 1 - f l  )2 k p- 2 < 0 

R ( k )  -- g-1 [ fk(k)_(6+/ t ) ]  = g-1 [flAkP-l_(6+/2)] 

= ( l / a )  In { ( a - b )  [a+ 6 + / t - f l A  k ~- ~]/b []3A k ~- ~ - 6-lX ]} 

R~(k ) = gql  fk  k = - A  f l (1 -  fl) k~-2/gc> O 

Rkk(k) -1 2 = g q q f ~ k  +gqlfkkk 

= gqql [Aft(1 - f l ) k Z - 2 1 2 + g q l A , 6 ( l - f l ) ( 2 - f l ) k  ~-3 

Figure 1 illustrates the situation. It follows from Proposition 3 that the low per 
capita consumption steady state and the high per capita consumption steady state 
are saddlepoint stable. Clearly, the occurrence of  mukiplicity depends on the 
specific parameter setting. An example that gives rise to multiplicity, as can be 
readily checked on any personal computer, is the following: a = 2, b = 1 [hence 
( a - b ) / b  = 1], A = 1, fl = ~, 6 = 0.05 and/~ = 0.05. In this case (k~,k~,k~)~-(0.4, 
5, 24.4). 

Example 2. Assume for g(c) the following function 

g(c) = a - a  [exp ( - b c )  + 1]- 1 . (16) 

Hence 

g (0) = a/2 

g-1 (q) = ( l / b )  In [(a-q)/q] 

g(¢~)=0 

for q ~ (0, a/2] . 
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R(k) P(k)] 

/~(k) 
P(k) 

k3 k k 

Fig. 2. Multiplicity through production sensitivity 

77 

The product ion  technology used in this example is o f  the CES type 

f ( k )  = A [k '~ + 1] t/~ 6 e ( -  c~, 1 ]\[0} . (17) 

Which  implies for the P ( k )  funct ion 

P ( k )  = A [k '~ + 1] [(t/~)- 11 + 0 k 

Pk(k  ) = (1 -- d ) A  [k ~ + 1] t(1/~)-21 k ~- t + 0 > 0  

Pkk(k) = -- (1 -- O)A [k ~ + 1] [(1/~)-31 kO-2 [~ko + (1 - ~)] . 

Note  that  Pkk(k) < 0 if the elasticity o f  substitution, a ~ 1/(1 - fi), is bigger than 
or  equal to one, which implies that  P ( k )  is concave. Whereas P ( k )  is convexo- 
concave for a < l ,  with the inflexion point  at ~ '=  [ - ( l - d ) / d ]  t/~. The R ( k )  
funct ion can be written as 

R (k ) =  g-1  [fk(k ) _ ( ~ +  li)] 

= ( l / b )  In {a -A  [k ~ + 1] [(1/~)- l ik  ~-1 

+ Q+I~V{A [k~+ ll[(~/'~)-11k '~-1 - O-tt}] . 

For a < 1 we can then have an ou tcome as drawn in Fig. 2, where multiplicity is 
caused by product ion  sensitivity, i.e. P ( k )  is convexo-concave, whereas R ( k )  is 
convex. Again,  the occurrence o f  multiplicity depends on the specific parameter  
setting. As an example take a = 1.9, b = 3.1, A = 1, d = - 4  (hence a = 1/5), 

= 0.01 and p = 0.01. This gives rise to (k~ , k2 , k3  )=(0 .56 ,  0.87, 1.08). 
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Discussion 

A short discussion of  the dynamics in (k, c)-space of the two examples given 
above is in order (see Fig. 3). In both cases the k = 0 curve breaks up in two parts. 
The first part, with steady state k~ is very similar to the standard neoclassical 
growth model. The second part, with steady states k~' and k]', looks like an 
island and is split in two parts by the 1 +kgc(C) = 0 locus, tl At the steady states 
the d = 0 locus is locally vertical. The arrows indicating the direction of  change 
in c and k illustrate the saddle point stability of  steady states k~' and k~ and the 
instability of  k~. 

The poverty trap is clearly illustrated in Fig. 3 as there is a range of  capital- 
labor ratios such that k < 0 ,  independent of  the consumption level chosen. The 
only viable option for poor  countries is to put the economy on the saddle path 
to low income steady state k~. 

An economy starting with an initial capital-labor ratio k(0) in between points 
A and B in Fig. 4 has the option, in principle, to choose between the low income 
steady state k~ and the high income steady state k~'. One cannot conclude that 
such an economy will choose the path leading to the high income steady state 
k~'. This is illustrated in Fig. 4, see also Blomqvist and Pitchford (1977) and 
Skiba (1978). The three fat dots represent steady states at k~', k~' and k~'. The 
spirals are the saddlepaths to steady states k~' and k]' that do not violate con- 
straints on state, co-state and control variables. The relevant portions of  the 
spirals are from points A and B; otherwise it would be optimal to cycle on the 
spirals which would require jumps in c (and hence 2) which would violate the 
necessary continuity in time. 

Suppose that the initial capital-labor ratio is in between the boundaries repre- 
sented by points A and B in Fig. 4. There are two options available to the economy 
that do not violate the necessary conditions (with concomitant utility payoff 

o o  

V i = ~ exp ( - Q t )U[c i ( t ) ]  dt for i = 1, 2): 
0 

1) the economy can follow the saddle path to k~, or 
2) the economy can follow the saddlepath to k~'. 

It is clear that the saddle path leading to steady state k ~ allows the economy to 
'eat' some of  its capital and therefore enables larger consumption levels initially. 
The saddle path leading to k~', on the other hand, requires positive investments, 
hence forces the economy to consume less initially, for which it will be rewarded 
later on because it can ultimately reach higher consumption levels. Whether the 
economy prefers the saddle path to k~ to the saddle path to k~', then, depends 
on its impatience, measured by the rate of  time preference O. The larger 0, the 
more impatient the agents are, the more important the initially high level of  con- 
sumption of  the saddle path to k~ becomes, ceteris paribus, 12 hence the higher 
the value of  V 1 - V  2. Crudely speaking, therefore, for initial capital-labor ratios 
in between A and B ('middle income countries'), impatient countries will choose 

11 This gives another justification for restricting attention to (k, c) e 9, because for the same value 
of k and k (illustrated for k = 0 in Fig. 3) the economy will always choose the highest level of c. 
12 The ceteris paribus clause must be made here as changes in Q will affect both the steady states 
and the paths to these steady states. 
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the path to the low income steady state k~, while patient countries will choose 
the path to the high income steady state k~. Given the rate of time preference 6, 
however, there is a unique cut-off point k r in between points A and B, as men- 
tioned in Sect. 4, such that for all k(O)<kr the optimal trajectory is the one 
leading to the low income steady state, while for all k(0) exceeding this 'trap' level 
the optimal trajectory is the one leading to the high income steady state. 

6. Conclusions 

Endogenous population growth, i.e. making the rate of population growth depen- 
dent on society's opulence (measured by consumption, production or the wage 
rate), causes parametric changes, such as changes in the rate of time preference 
or the depreciation rate, to have a larger impact on the steady state lavels of per 
capita consumption and capital. The modified neoclassical 'golden rule' of ac- 
cumulation must be extended to take the dependence of the population growth 
rate on the per capita level of consumption into consideration. The neoclassical 
dichotomy, in which the rate of time preference, the depreciation rate and the pro- 
duction function dictate the steady state level of capital independently of the con- 
sumption level, then disappears. 

More importantly, however, is the possible occurrence of multiple steady states, 
without resorting to irregularities or externalities in the production function. The 
steady states alternate in saddle point stability and make the 'poverty trap' a reality. 
The two main causes of multiplicity dubbed 'opulence sensitivity' and 'production 
sensitivity', are identified and illustrated by means of an example. Poor countries 
have initial levels of production and capital so low that they are forced to the low 
income steady state. Only a large injection of capital from abroad in the form of 
foreign aid might enable a poor country to reach the high income steady state. 

C=O 

-1 
J 

k=O 

~=o 

_t 

~=o 

-i I_ i F i÷k~(o)=o 

1% k* z k 3 k 

Fig. 3. Dynamics in (k,c)-space 
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Fig. 4. Saddle path trajectories to k~ and k~ 

Appendix 

k 3 k 

C. van Marrewijk and J. Verbeek 

This appendix shortly states the main results for production or wage driven popu- 
lation growth. The assumptions are A 1, A 2, A Y  and, instead of  A 4, 

A 4 '  lim - k g k ( k ) <  p . 
k--* oo 

The problem becomes 

Problem P '  

max ~ exp ( -  Q t)  U[c(t)] dt  subject to 
c 0 

k ( t )  = f [ k ( t ) ]  - {p+g [ k ( t ) ] } k ( t ) -  c ( t )  =- q [k(t)] - c( t )  

k(0) given. 

Proposit ion 1'. Under assumpt ions  A 1, A 2, A 3' and A 4' there exists a solution 
to prob lem P. 

P r o o f  The only change in the proof  of Proposition 1 is: 

J k  = - U c ( c ) < 0  J-kk = - U c A c ) < 0 .  

Necessary conditions for optimality, derived from the Hamiltonian, are 

U A c ) -  ~ = o 

f. = ). [O--qk(k)] 

lim k ( t ) A ( t )  exp ( - O t )  = 0 . 
t--~ oo 
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Rewriting in terms of  c and k gives 

6 = [C/auc(c) l  [qk(k)- Q] 

k = q ( k ) - c  . 

Steady state values c* and k* are given by 

q k ( k  * ) -  ~ = 0 

q ( k * ) - c *  = 0 . 

The assumptions guarantee that there is at least one steady state. Multiplicity is 
possible because qtck(k) can change sign. It is straightforward to show that these 
steady states alternate in local saddlepoint stability. The 6 = 0 loci are given by 
vertical straight lines, while the shape of the k = 0 locus wiZ1 depend on the 
specific properties of  the q ( k )  function. 
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