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General Introduction and Aims

GENERAL INTRODUCTION

Dendritic cells: the sentinels of the immune system.

Our immune system consists of cells belonging to the innate immune system and the
adaptive immune system. Dendritic cells (DCs) are a family of antigen presenting cells
(APCs) that bridge these two systems'. They scan the internal milieu for self and foreign
antigens and present these to T cells of the adaptive immune system through a process
termed ‘antigen presentation’ (Figure 1). T cells express a T cell receptor (TCR) that can
specifically recognize a particular antigen in the form of a short peptide bound to major
histocompatibility complex (MHC) molecules on APCs. Whereas CD8" T cells recognize
antigens bound to MHC class | molecules, MHC-II is used to present antigens to CD4" T
cells (Figure 1). While exogenous antigens, in contrast to intracellular antigens, are nor-
mally presented to CD4" T cells, cross-presentation enables presentation of exogenous
antigens onto MHC-I and thereby activation of CD8" T cells® (Figure 2).

Ready, set, go: 3 signals necessary for complete T cell activation.

Antigen presentation resulting in TCR stimulation, is a first signal, but it does not auto-
matically result in activation of the receiving T cell. Three signals are necessary in total
to achieve full T cell activation®. Based on the expressed co-stimulatory molecules or
co-inhibitory molecules (Figure 3) on the surface of DCs, an activating or inhibiting
response is mediated®’, which is known as the second signal. Besides engagement of
TCR, the signal via CD28 on T cells which binds CD86 on DCs is crucial for T cells, because
without this interaction a T cell will become anergic®. Positive stimulation can further be
induced by inducible costimulator (ICOS) that binds ICOS-ligand (ICOS-L) (in Figure 3 as
‘B7¢")°. Inhibitory signals can be mediated via PD-1 and CTLA-4, which can bind PD-L1/
PD-L2 or CD80/CD86, respectively. CTLA-4 binds CD80/CD86 with greater affinity and
avidity than CD28, thus enabling it to outcompete CD28 for its ligands. Cytokines, either
produced by DCs or already available in the milieu, are the third signal, and can further
define theT cell response e.g. differentiating them into T helper cell subsets or unlocking
their full potential.

DC subsets

Four types of DCs can be distinguished: Conventional type 1 or 2 DCs (cDC1s and
cDC2s), plasmacytoid DCs (pDCs)® and inflammatory monocyte derived DCs (Mo-DCs)"".
The functions of DCs are different during steady state or during inflammation. In steady
state, cDC1s and cDC2s are primarily involved in peripheral tolerance as they can pres-
ent tissue-associated self-antigens and effectively induce regulatory T cells (Tregs) and
CD4" and CD8" T cell tolerance® ™. During activation, however, primarily (but not
exclusively) CD8' T cells are activated by cDC1s, and CD4* T cells by cDC2s"*"®. pDCs can
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also activate both T cell types, but in addition are known for their high type 1 interferon
signature'’. During inflammation, Mo-DCs arise from a monocyte precursor and their
functions overlap with dendritic cells'". The most used markers to identify DC subsets
are listed in Table 1.
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Figure 1: Antigen presentation to CD8* and CD4" T cells using MHC-l and MHC-II, respectively (a) Vi-
rus antigens or tumor antigens are primarily intracellular antigens and are commonly presented on major
histocompatibility complex (MHC) class | complex molecules. Proteasomes are large proteins that degrade
proteins, such as viral or tumor antigens into smaller peptides. Transporter associated with antigen pro-
cessing (TAP) 1 and TAP2, carry antigen peptides into the endoplasmic reticulum (ER). Here, antigens are
placed onto the presenting groove of MHC-I, which then leave the ER (and are transported via Golgi/secre-
tory vesicles; not shown in figure) to the surface of the cell to present antigen to CD8* T cells on their T cell
receptor (TCR). (b) Extracellular antigens, such as bacteria, are commonly presented on MHC-Il molecules.
The extracellular antigens are processed by endolysosomal enzymes into peptides. The presenting groove
of MHC-Il first contains Class ll-associated invariant chain peptide (CLIP), which is derived from MHC class II-
associated invariant chain (li). CLIP is displaced by the bacterial peptide and the MHC-Il molecule is brought
to the surface of the cell in order to present antigens to CD4* T cells. Adapted from Kobayashi et al’.
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Figure 2: Processing exogenous antigens onto MHC-I molecules within antigen presenting cells in
order to cross-present.

Exogenous antigens can be placed onto MHC-I molecules via 2 pathways: the cytosolic pathway or the
vacuolar pathway. Within the cytosolic pathway (left), phagocytosed exogenous antigens are processed
in an engulfed vesicle called phagosome, then released into cytosol where they can further be degraded
by proteasomes. After this, they can be re-transported into the phagosomes, where they can be loaded on
available MHC-I molecules and expressed on the cell surface. Alternatively, anitgens can be transported
into the ER and loaded on MHC-I molecules there. The ER contains the transporter protein TAP, which is
located to phagosomes with the help of other proteins such as the SNARE protein SEC22B and Syntaxin 4.
ER-Golgi intermediate compartment (ERGIC) is where SEC22B interacts with Syntaxin 4. The vacuolar path-
way (right) allows phagosome-degraded exogenous antigens to be directly loaded on MHC-I molecules
and then go to the cell surface for antigen presentation. From Joffre et al*

Effector adaptive immune cells in autoimmunity

DCs are central orchestrators of the immune response: they activate T cells and - besides
antigen presentation and co-stimulation - produce cytokines to direct naive T cells into
a particular differentiation pathway (Figure 4). T helper subsets produce different cyto-
kines (Figure 4) and thus have different functions. For a long time, the T helper 1 cell (Th1
cell) and Th2 cell paradigm dominated our understanding of (auto)immune diseases
versus allergic diseases, respectively'®?°. The Th1 subset is important in host defenses to
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Figure 3: Co-stimulatory and co-inhibitory molecules set thresholds for T cell activation

A selection of common co-stimulatory and co-inhibitory molecules are depicted, that results in positive
(+ve) or inhibitory (-ve) effects on T cell activation. The most important co-stimulation for activation is CD28
interaction on T cells with CD80 or CD86 on APCs. Classic interactions are bold arrows, while dashed arrows
are weaker affinity connections that are known. From Gregersen et al'’.

IFN-y
IL-2

Peptide-MHC
molecule

IL-4
IL-5
IL-13

IL-10

FOXP3 ropg

TGFB and I1-6",

(IL-1and IL-23) IL-17

IL-21
RORVE |22

GM-CSF
Figure 4: Differentiation of helper T cell (Th) subsets.. Naive T cells can differentiate into various T helper
cell (Th) subsets under influence of differentiating cytokines, that are shown adjacent to the dashed arrows.
Responsible key transcription factors (green) and primary cytokines are listed per Th cell subset on the right
side. Adapted from Zou et al Nat Rev Immunol 2010%*
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Table 1. Overview of cell surface markers to identify DC subsets in mice.

cDC1 CD8a/CD103
Clec9a (DNRG1)
CD207 (Langerin)
XCR1

cDC2 CD4/CD11b
CD172a (SIRPa)

pDCs B220
Ly6C
PDCA.1
Siglec-H

moDCs FcyRI (CD64)
CD14
FceRI
CD11b
CD172 (SIRPa)
CD206

*) Based on markers listed by Gardner et al’®

intracellular bacteria and is involved in autoimmune diseases such as multiple sclerosis
and diabetes mellitus. Their development is dependent on transcription factor T-bet,
and can be induced by cytokine IL-12°'. The Th2 subset, developmentally dependent
on transcription factor GATA binding protein 3 (GATA3) and induced by cytokine IL-4,
mediates protection against helminth infection®, but also coordinates the characteristic
eosinophilic, basophilic and mast cell response in diseases such as allergic asthma®.
This Th1/Th2 model was challenged when in the early 2000’s the Th17 cell was
discovered®. The Th17 cell is involved in various autoimmune disorders, ranging from
psoriasis, inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis
(MS) to systemic lupus erythematosus (SLE)***. In order of importance, the cytokines
IL-6, IL-1B and TGF-B are relevant for differentiation of naive T cells into Th17 cells®,
and rely on transcription factor RAR-related orphan receptor gamma (RORyt) for their
development?. Expansion and survival of Th17 cells are maintained by IL-23%,
Suppression of excessive immune responses and autoimmune reactions are performed
by Tregs, that can be induced from naive T cells by TGF-$ and rely on transcription factor
Forkhead box P3 (FoxP3) for their development®. Initially, it was thought that only the
Th2 subset was important for humoral immunity, until the follicular T helper (Tfh) cell
was discovered. It is primarily the Tfh cell that support germinal center B cell responses
and plasma cell differentiation®. During certain conditions, such as helminth infections,
Tfh cells can derive from Th2 cells®’, or the other way around, as has been reported in
HDM-driven allergic airway inflammation®. This might also be cellular plasticity, which
is known to occur for multiple Th-cell subsets®®**. Plasma cells can produce autoreactive
antibodies that play a key role in humoral autoimmune diseases such as SLE®.
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Control of the immune system

Homeostasis of the immune system is of crucial importance. During times of foreign
pathogens, rapid activation of the immune system is necessary for the extermination of
antigens. However, immune cell activation is strictly kept in check, as exaggerated in-
nate and adaptive immune responses can tip the immune system towards autoimmune
diseases. The nuclear factor-kB (NF-kB) signaling pathway is a well-studied molecular
pathway that promotes cellular activation. The end products of the NF-kB pathway
result in a pro-inflammatory milieu, differentiation and cell survival”. It also results
in transcription of a key regulatory zinc finger (de)ubiquitinating enzyme A20/tumor
necrosis factor a-induced protein 3 (TNFAIP3), that is known to contribute largely to the
inhibition of NF-kB signaling®, thereby bringing a balanced halt to inflammation.

A20/TNFAIP3: ubiquitin-modifying enzyme

A20/Tnfaip3 is a ring finger ubiquitin-modifying enzyme, with a dual function being
ubiquitination and de-ubiquitination®. In the TNFa signaling pathway both functions
are utilized to inhibit NF-kB signaling. Briefly, A20/TNFAIP3 removes an activating type
of polyubiquitin, (K63-polyubiquitin) from accessory proteins such as RIP1 and NEMO,
thereby inhibiting signals to downstream proteins®. Furthermore, A20/TNFAIP3 adds an
inhibitory type of polyubiquitin (K48-polyubiquitin), to these accessory proteins includ-
ing RIP1, thereby targeting them for degradation by proteasomes?®.

A20/TNFAIP3 in humans

TNFAIP3 is one of the few genes that has been linked by genome-wide association stud-
ies (GWAS) to multiple immune diseases® *. Single nucleotide polymorphisms (SNPs) in
the vicinity of the TNFAIP3 gene are associated to characteristic autoimmune diseases
such as SLE, RA and psoriasis*. Over the years, the list of TNFAIP3 gene SNP-associated
clinical diseases keeps expanding, with recent additions of autoimmune hepatitis (AIH),

41-43

Primary Biliary Cirrhosis (PBC) and colitis ulcerosa (CU)

A20/Tnfaip3 in mouse models

The identification of various associations of the A20/Tnfaip3 gene with diseases has
spiked interest of immunologists to study the importance of this gene in cell lines
and mouse models. A20/Tnfaip3 " mice develop severe multiorgan inflammation and
cachexia, resulting in early death*’. Cre-LoxP recombination bioengineering made it
possible to study cell-specific effects of A20/Tnfaip3 gene deletion®. As an example,
A20/Tnfaip3 deletion in myeloid cells, using LysM-cre, resulted in a spontaneous auto-
inflammatory disease, characterized by paw inflammation*. Furthermore, A20/Tnfaip3
deletion in B cells using a CD19-cre resulted in a model that resembles SLEY.
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Another key publication in the field was by Kool et al, who utilized a DC-specific cre
(CD11c-cre) to ablate A20/Tnfaip3*. Aged Tnfaip3<°"'“*° mice had activated DCs and de-
veloped systemic T and B cell activation. In addition, germinal center B cells, plasma cells
and autoantibodies were produced, resulting in an autoimmune phenotype resembling
human SLE. Another laboratory used a similar DC-specific A20/Tnfaip3 deletion strategy,
but this resulted in an IBD resembling phenotype®, indicating that most likely the local
microbiome may influence the phenotype.

AIMS AND OUTLINE OF THIS THESIS

The paper by Kool et al.* has been the starting point for several chapters in this thesis,
which we will touch upon later in our aims. In chapter 2 we summarize the latest knowl-
edge on A20 as a protein, its molecular function, SNPs associated to human disease, as
well as all immune cell-specific conditional deletions of A20/Tnfaip3 known to date.

Deletion of the A20/Tnfaip3 gene in all DCs resulted in an SLE* or IBD phenotype®, but
it remained unknown which of the DC subsets is mainly responsible for the autoimmune
phenotype. To address this issue, we investigated the phenotypic outcome of targeted
deletion of A20/Tnfaip3 in more specific DC subsets. Study of DC ontogeny has revealed
several specific markers, such as DNGR1/Clec9a, which are primarily present on cDC1s*.
In chapter 3, we studied the effect of loss of A20/Tnfaip3 on the activation status of cDCs
and moDCs in a Tnfaip3°"*""*° mouse model, in which the Tnfaip3 was mainly deleted in
cDC1s. We further analyzed the systemic effects on T cells and B cells that were associ-
ated with the activation of these cDCs/moDCs, and explored their immunohistopathol-
ogy at the age of 31 weeks. Interestingly, while cDC1s were primarily targeted by A20/
Tnfaip3 deletion, cytotoxic CD8" T cell activation was hardly altered and, unexpectedly,
mostly CD4" T cells and B cells were activated.

The myeloid cell-specific, LysM-cre-driven model of A20/Tnfaip3 deletion is known to
result in an autoinflammatory phenotype with paw inflammation in aged mice**'. In
chapter 4 we took a step outside of the field of autoimmunity and studied a house-
dust mite (HDM)-driven airway inflammation model in Tnfaip3”***° mice. These mice
are known to develop a Th17-associated neutrophilic airway inflammation, rather than
a Th2-associated eosinophilic airway inflammation®. Since neutrophilic recruitment is
largely induced by IL-17%, we wondered whether IL-17RA-signaling was essential for
neutrophilic airway inflammation. To determine this, we crossed Tnfaip3“***° mice onto
an IL-17RA-signaling knockout background and stimulated the airways with HDM and
assessed the responses.

3CD1 1c-KO

It occurred to us during the study of aged Tnfaip mice, that develop an SLE

phenotype, that the numbers of B cells were vastly reduced in spleens, pointing to
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the possibility that a B cell lineage defect occurred in the bone marrow, resulting in
disrupted generation of immature and mature B cell populations. In chapter 5, we

therefore examined B cell development in the bone marrow of both young 6-week-old

mice and 24-week-old Tnfaip3®"'<*°

3CD1 1c-KO

mice. We further aimed to investigate whether
in Tnfaip mice mature B cells that were released into the periphery were more
responsive and thus more prone to B cell activation orimmunoglobulin production than
those in wild-type control mice.

B cell activation that is associated with germinal center reactions and plasma cell
formation is dependent on help from T cells. In the case of autoimmunity, activated DCs
might overly activate T cells, which can positively select autoreactive B cells in patho-
genic germinal center reactions®. Activated T cells express CD40L which binds CD40
on B cells and thereby provides proliferation and survival signals besides those initiated
by B cell receptor (BCR) engagement®. Apart from this T cell-dependent response, a T
cell-independent activation of B cells by APCs is also known®®*’. A20/Tnfaip3-deficient
DCs were known to activate B cells independently of T cell help in vitro®. In chapter 6
we addressed the question whether A20/Tnfaip3-deficient DCs also had the capacity to
directly activate B cells in vivo and thereby engaged these cells in autoimmune pathol-

ogy. To this end, we crossed Tnfaip3<°"'<*°

mice onto a CD40Ig deficient background,
thereby abrogating T-B cell communication. We also examined whether autoreactive
immunoglobulins and kidney remodeling were altered.

It has been demonstrated that stimulated A20/Tnfaip3-deficient DCs in vitro have the
capacity of highly inducing IL-17 in T cell co-cultures, likely due to elevated production
of IL-6 and IL-23"%, both of which are beneficial for their survival. Given the importance
of Th17 cells in autoimmune diseases including SLE®, in chapter 7 we examined
whether IL-23 was dispensable for Th17 homeostasis in vivo and cytokine production
in the Tnfaip3<°"'“*° SLE mouse model. To achieve this, we crossed Thfaip3®"'“*° mice
to mice lacking IL-23. Since Th17 cells can stimulate B cells towards class-switched
immunoglobulin-producing plasma cells®, we further examined autoantibody produc-
tion and kidney remodeling at the age of 24-weeks.

Finally, implications of our work and potential future directions in the field of A20/
Tnfaip3 and (auto)immunity are described in chapter 8.
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