
Effects of self-assessment feedback on self-assessment
and task-selection accuracy

Steven F. Raaijmakers1 & Martine Baars2 & Fred Paas2,3 &

Jeroen J. G. van Merriënboer4 & Tamara van Gog1

Received: 22 September 2017 /Accepted: 1 February 2019 /Published online: 8 March 2019
# The Author(s) 2019

Abstract
Effective self-regulated learning in settings in which students can decide what tasks to work
on, requires accurate self-assessment (i.e., a judgment of own level of performance) as well as
accurate task selection (i.e., choosing a subsequent task that fits the current level of perfor-
mance). Because self-assessment accuracy is often low, task-selection accuracy suffers as well
and, consequently, self-regulated learning can lead to suboptimal learning outcomes. Recent
studies have shown that a training with video modeling examples enhanced self-assessment
accuracy on problem-solving tasks, but the training was not equally effective for every student
and, overall, there was room for further improvement in self-assessment accuracy. Therefore,
we investigated whether training with video examples followed by feedback focused on self-
assessment accuracy would improve subsequent self-assessment and task-selection accuracy in
the absence of the feedback. Experiment 1 showed, contrary to our hypothesis, that self-
assessment feedback led to less accurate future self-assessments. In Experiment 2, we provided
students with feedback focused on self-assessment accuracy plus information on the correct
answers, or feedback focused on self-assessment accuracy, plus the correct answers and the
opportunity to contrast those with their own answers. Again, however, we found no beneficial
effect of feedback on subsequent self-assessment accuracy. In sum, we found no evidence that
feedback on self-assessment accuracy improves subsequent accuracy. Therefore, future re-
search should address other ways improving accuracy, for instance by taking into account the
cues upon which students base their self-assessments.
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Students in secondary education are increasingly required to learn how to self-regulate their
learning, because self-regulating your learning is considered imperative for learning in higher
education and workplace settings (Bransford et al. 2000). Most models assume self-regulated
learning to be a cyclical process proceeding “...from some kind of a preparatory or preliminary
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phase, through the actual performance or task completion phase, to an appraisal or adaption
phase” (Puustinen and Pulkinen 2001 p. 280). Key components of self-regulated learning are
monitoring (i.e., keeping track of your learning/performance), evaluation of performance, and
control (i.e., regulating your study behavior in response to that evaluation; e.g., Nelson and
Narens 1990; Winne and Hadwin 1998; Zimmerman 1990). For self-regulated learning to be
effective, both monitoring judgments and control decisions need to be accurate (e.g., Bjork
et al. 2013; Panadero et al. 2017). Unfortunately, students’ monitoring accuracy is often low
(Brown and Harris 2013; Winne and Jamieson-Noel 2002). Because accurate control depends
on accurate monitoring (Thiede et al. 2003), the control of study behavior can suffer as well
(e.g., Winne and Jamieson-Noel 2002), and consequently, self-regulated learning often leads to
suboptimal learning outcomes (Kornell and Bjork 2008). Hence, it is important to improve
learners’ monitoring accuracy.

Training self-regulated learning skills has been found to be effective for improving learners’
monitoring and control accuracy (e.g., Azevedo and Cromley 2004; Bol et al. 2016; Kostons
et al. 2012). For example, during a 30-min training session, Azevedo and Cromley (2004)
trained college students on how to regulate their learning in a hypermedia environment. During
the training the experimenter explained the different phases and areas of regulation with the
help of a table, described a model of self-regulated learning with a diagram, and gave a
definition of each self-regulated learning variable on a list of 17 variables. After the training the
students were allowed to learn about the human cardiovascular system using the hypermedia
environment. Students in the training condition verbalized more about monitoring and learned
more about the topic than students in the control condition. The training used by Bol et al.
(2016) consisted of self-regulated learning exercises given to community college students
during a 3-week mathematics course. Students had to perform four exercises each week and
each of these exercises corresponded to a particular self-regulated learning component. For
instance, one of the exercises was to set a weekly academic goal (corresponding with the
component ‘goal setting’). Students in the training condition reported using more
metacognitive self-regulation (actual behavior was not measured) and their achievement was
higher than that of students in the control condition.

Another type of self-regulated learning training focused on improving self-assessment
(i.e., monitoring) and task-selection (i.e., control) skills in a learning environment in
which students could choose their own problem-solving tasks. Previous research on
adaptive instructional systems has already shown that selecting students’ subsequent
tasks based on their performance, possibly combined with mental effort invested to
attain such performance, yields effective learning paths (Corbalan et al. 2008). However,
in a self-regulated learning environment tasks are not selected by the system, but by the
students themselves. Allowing students to have control over the selection of tasks makes
effective learning conditional upon the accuracy of both students’ self-assessments, as
well as their task selections. In essence, a cyclical model emerges proceeding from
performance, through self-assessment, to task selection.

Kostons et al. (2012) used video modeling examples to train self-assessment and task
selection. These video modeling examples are based on principles from both social learning
theory (Bandura 1977) and example-based learning (Renkl 2014). In a video modeling
example a model (either visible or not) demonstrates a problem-solving process or procedure
to a learner (Van Gog and Rumme 2010). Video modeling examples have proven effective for
the acquisition of various domain-specific skills (e.g., probability calculations; Hoogerheide
et al. 2016) as well as self-regulated learning skills (Kostons et al. 2012; Zimmerman and
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Kitsantas 2002). Kostons et al. (2012) used four such video modeling examples to train self-
assessment and task-selection skills. The examples consisted of screen recordings with voice
overs, showing models demonstrating how they performed a problem-solving task, rating how
much mental effort they invested, self-assessing their performance, and selecting a next task
based on a combination of self-assessed performance and invested effort (e.g., when perfor-
mance was high and effort was low, a more complex task was selected). In their first
experiment, Kostons et al. (2012) found that videos in which self-assessment was modeled
led to more accurate self-assessment and that videos in which task selection was modeled led
to more accurate task selection. In their second experiment, a pre-training with videos in which
both self-assessment and task selection were modeled led to improved performance after a self-
regulated learning phase. However, even though these results were promising, there was room
for further improvement in self-assessment accuracy. Moreover, standard deviations were
large, meaning there were substantial individual differences in the effectiveness of the training
(Kostons et al. 2012).

This might suggest that some students had learned more from the video modeling
examples training than others or that some found it difficult to apply the self-assessment
skills they had learned from the video modeling examples during the self-regulated
learning phase. These students might benefit from additional support after the self-
regulated learning skills training. Additional support could be provided by giving
feedback on self-assessments in a way similar to which feedback is usually given on
performance. This may allow students to adjust their self-assessments on subsequent
tasks, which is the main aim of this study (Butler and Winne 1995).

Self-assessment feedback

When asked to self-assess their performance, students have to compare their answer to an
internal standard (i.e., knowledge of what constitutes poor, average, or good perfor-
mance) unless an external standard is available (i.e., criteria are given). Butler and Winne
(1995) presented this idea in their influential model of self-regulated learning and it still
plays a key role in more recent models (for a review, see Panadero 2017). In the Butler
and Winne model, during monitoring, performance is compared to an internal standard
(i.e., internal model of what represents a correct answer). Students can decide, based on
the evaluation, if they have learned enough (to pass a test), if learning went well, or if
they have performed well. In the case of a multistep problem-solving task (which we use
in this study) a student uses standards that include knowledge of the problem-solving
procedure to assess his or her performance. If such a standard is of poor quality, self-
assessment accuracy would be negatively affected. For example, students could mistak-
enly identify incorrectly performed steps as correctly performed steps, or students could
use cues that are not necessarily predictive of their performance, such as fluency or
effort, that might bias their self-assessments (see Koriat 1997). When novices start
learning how to solve a problem, they lack proper internal standards (i.e., they have no
internal model of what constitutes a correct answer) and, consequently, cannot evaluate
their performance properly. The conjunction of both incompetence and the recognition
thereof has been called ‘the double curse of incompetence’ (Kruger and Dunning 1999).
The lack of internal standards might explain why some learners’ self-assessments are
inaccurate—even after training such as given in Kostons et a. (2012).
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Providing students with external standards through feedback in the form of correct answers
could support self-assessment. They can then contrast their own answers with the correct
answers and, hopefully, make a more accurate assessment of their learning. Indeed, when
learners are provided with correct answers when assessing their own learning, their self-
assessment accuracy has been shown to improve (Baars et al. 2014; Dunlosky et al. 2010;
Lipko et al. 2009; Rawson and Dunlosky 2007).

However, because in all of these studies the standards (correct answers) were provided
during self-assessment, we cannot know for sure whether the quality of students’ internal
standards improved, that is, whether they would be able to make more accurate self-
assessments in the absence of the standards. That would require measuring on subsequent
tasks, in the absence of the feedback, whether accuracy improved from the feedback (which is
done in the present study). Moreover, when provided with the correct answers, learners are
able to study those answers and learn from them. This could lead to higher test performance for
the learners who had access to the correct answers (cf. Rawson and Dunlosky 2007), which
may lead to two problems. First, when such (re)study opportunities lead to higher perfor-
mance, it is more difficult to conclude that self-assessment has improved independently of
performance because – as mentioned above – higher performance is associated with higher
self-assessment accuracy (Dunning et al. 2004; Kruger and Dunning 1999). Second, because
learners typically overestimate their performance, self-assessment accuracy may improve not
so much because learners became more accurate self-assessors (i.e., acquired better standards
to assess performance), but because their performance improved (i.e., if learners overestimate
their performance and do not take into account the increase in performance from learning
phase to test; cf. Kornell and Bjork 2009).

In order to avoid the issues that standards in the form of correct answers bring along, yet still
provide learners with support to better calibrate their internal standards, researchers have
suggested that feedback could be provided with a focus on the accuracy of their self-
assessments instead of their performance (self-assessment feedback; Panadero et al. 2015;Winne
and Nesbit 2009). By providing learners with the information that their self-assessment was
(in)accurate they could deduce that their internal standards need to be adjusted, without having
access to the correct answers. In a study by Nietfeld et al. (2006), participants in the treatment
group were provided with self-assessment exercises after each class. These exercises asked
students to self-rate their understanding of the day’s class, identify difficult content, write down
how they would improve their understanding, and, finally, answer review questions with
confidence judgments (i.e., 0–100%) after each question. After these exercises, the answers to
the review questions were discussed in class. Students were encouraged to compare their
confidence judgments with their performance. On each test (there were four tests in total) all
students were asked to provide confidence judgments for each item on the test. Calibration (i.e.,
the difference between confidence judgment and performance) improved over time for students
who received self-assessment exercises (Nietfeld et al. 2006). Although the feedback was still
mostly focused on performance, participants were prompted to generate self-assessment feedback
themselves by comparing their confidence rating to the performance feedback.

The current study

The aim of the study presented here was to investigate whether – after an initial self-
regulated learning training – self-assessment accuracy can further improve from
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feedback that is focused on the accuracy of self-assessments, instead of focused on
students’ problem-solving task performance. In two experiments, participants first
received self-assessment and task-selection training with video modeling examples
(cf. Kostons et al. 2012; Raaijmakers et al. 2018), then engaged in problem-solving
and self-assessment during a learning phase in which they received self-assessment
feedback, followed by problem-solving and self-assessment during a test phase in which
the feedback was no longer present. The primary outcome measures were self-assessment
accuracy during the test phase (i.e., with no feedback present), and task-selection
accuracy (because self-assessment accuracy is considered a necessary condition for
task-selection accuracy, task-selection accuracy would be expected to improve from
improved self-assessment accuracy).

In Experiment 1, we compared the effectiveness of two types of self-assessment
feedback to a no-feedback control condition (which only received the self-assessment
and task-selection training): general feedback, which indicated whether a self-assessment
was correct or incorrect and how many steps had actually been performed correctly,
versus more specific feedback, which -in addition to the general feedback- also indicated
which steps had actually been performed correctly or incorrectly (by flagging the steps as
correct/incorrect, but not providing the correct answer to the step). In a study by Miller
and Geraci (2011), when learners were given more specific performance feedback, self-
assessment accuracy improved, but not when learners were given more general feedback.
Similarly, specific self-assessment feedback would allow learners to adjust their internal
standards at the level of the problem-solving steps (e.g., “I thought I understood how to
solve step 1, 2, 3, and 4, but not step 5, but from the self-assessment feedback I learned
that I don’t understand step 4 either”). General self-assessment feedback, in contrast,
would only allow the learner to determine whether they overestimated or underestimated
their overall performance at the level of the task (e.g., “I thought I performed 3 out of the
5 steps correctly, but apparently I only performed 1 step correctly”).

We hypothesized that during the learning phase, participants in both feedback condi-
tions would be able to make more accurate task-selection decisions than participants in
the control condition (Hypothesis 1), as these could be directly based on the actual
performance indicated in the feedback. Regarding the test phase (i.e., in the absence of
the feedback), we hypothesized that participants in the feedback conditions would
demonstrate more accurate self-assessment than participants in the control condition
(Hypothesis 2a), and that the specific self-assessment feedback condition would demon-
strate more accurate self-assessment than participants in the general self-assessment
condition (Hypothesis 2b; i.e., Hypothesis 2: specific > general > `no). If hypothesis 2
would be confirmed, we would expect a similar pattern of results for task-selection
accuracy during the test phase (Hypothesis 3). Experiment 1.

Method

Participants and design A total of 204 adolescents in their third year of Dutch secondary
education participated in this study. They were in senior general secondary education (the
second highest level with a five year duration; n = 154) or pre-university education (the highest
level with a six year duration; n = 50). Three participants were excluded due to too much prior
knowledge of the learning tasks (i.e., scoring 60% or higher). Another 93 participants had to be
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excluded because they did not manage to finish the experiment within the lesson period.1 The
remaining sample of 108 participants had a mean age of 14.35 years (SD = 0.67), and
contained 49 boys and 59 girls. Participants were randomly assigned to one of the three
conditions: no feedback (n = 37), general self-assessment feedback (n = 34), or specific self-
assessment feedback (n = 37).

Materials and procedure The experiment was conducted in computer rooms at students’
schools with ca. 20–30 students per session. Sessions were restricted by the length of a lesson
period (~50 min). All materials were presented in a dedicated web-based learning environment
created for this study. Participants were provided with a personal login and password (which
handled the random assignment) and were asked to fill out some demographic information on
paper before logging in (i.e., age, gender, prior education). Before starting with the experiment,
participants were instructed to perform all the tasks by themselves and in private. Participants
first completed the pretest, then received the video-modeling examples training (~15 min),
after which they went on to the learning phase and finally, to the test phase. The pretest,
learning phase, and test phase were self-paced.

Problem-solving tasks The problem solving tasks (see Appendix 1) were in the domain of
biology (monohybrid cross problems) and the problem solving procedure consisted of five
distinct steps (cf. Corbalan et al. 2009; Kostons et al. 2012): (1) translating the information
given in the cover story into genotypes, (2) putting this information in a family tree, (3)
determining the number of required Punnett squares, (4) filling in the Punnett square(s), (5)
finding the answer(s) in the Punnett square(s). The tasks used in this experiment were selected
from a database (cf. Kostons et al. 2012) with 75 tasks at five complexity levels and three
support levels within each complexity level (Fig. 1). Tasks increased in complexity across
levels by an increase in the number of generations, an increase in the number of unknowns, the
possibility of multiple correct answers, and the type of reasoning needed to solve the problem.
Tasks with high support had 4 steps already worked-out, leaving 1 for the student to complete,
tasks with low support had 2 steps already worked-out, leaving 3 for the student to complete,
and tasks with no support required students to solve the entire problem on their own (cf.
completion problems: Paas 1992; and fading strategy: Renkl and Atkinson 2003).

Pretest The pretest was used to check students’ prior knowledge. It consisted of three
problem-solving tasks without support from the first three complexity levels (of the task
database in Fig. 1).

Self-assessment and task-selection training The self-assessment and task-selection training,
which all participants received, consisted of an introductory video, in which the main concepts
of the problem-solving tasks were explained (i.e., dominant/recessive, homozygous/heterozy-
gous), and four video modeling examples. The video modeling examples were screen record-
ings created with Camtasia Studio (cf. Kostons et al. 2012; Raaijmakers et al. 2018). The
video modeling examples showed a computer screen recording with voice over of the model

1 For this reason, additional participants were recruited as we were aiming for at least 30 participants per
condition, hence the high overall sample size. Exclusion was equal across conditions, χ2(2) = 0.281, p = .869.
Excluded participants did not perform significantly different from non-excluded participants during the learning
phase, t(187) = 1.24, p = .217, and did not self-assess significantly different, t(187) = 0.50, p = .621.
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(see Table 1) performing a problem-solving task (at the first or second level of complexity, see
Table 1) by writing out the solution to each step that s/he was able to complete. The model then
rated how much effort s/he invested in solving that problem, by circling the answer on a scale
of 1 to 9 (Paas 1992). The scale was presented horizontally, with labels at the uneven numbers:
(1) very, very little mental effort, (3) little mental effort, (5) neither little nor much mental
effort, (7) much mental effort, and (9) very, very much mental effort. The model then rated
how many steps s/he thought s/he had performed correctly (i.e., self-assessment) on a scale
ranging from (0) no steps correct to (5) all steps correct by circling the answer and selected an
appropriate subsequent task from the task database (according to the selection algorithm
shown in Fig. 2), by circling that task. For example, one model had performed a task with a
self-assessment of 3 steps formed correctly and invested very much (8) mental effort into that
performance. Combining those two numbers resulted in a task-selection advice of minus 1,
which meant going one step to the left in the task database (Fig. 1). While solving the problem,
rating effort, self-assessing, and selecting a next task, the model was thinking aloud.

Learning phase and self-assessment feedback The learning phase consisted of three prob-
lems without support, one from each of the first three complexity levels (of the task database in
Fig. 1). In the learning phase, participants engaged in the same activities as they had observed in
the modeling examples: they first solved a problem, then rated how much effort they invested on
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Fig. 1 Task database containing the 75 problem-solving tasks showing the different levels of complexity,
different levels of support, and the different surface features of the learning tasks

Table 1 Different features of the video modeling examples

Video modeling example Gender of
the model

Complexity level Problem-solving
performance

Invested
mental effort

Task-selection
advice

1 Female Level 1 5 steps 2 +2
2 Male Level 1 5 steps 5 +1
3 Female Level 2 4 steps 7 0
4 Male Level 2 3 steps 8 -1
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the effort rating scale of 1–9, assessed their performance on a scale ranging from 0 to 5, and then
selected an appropriate subsequent task from the database (Fig. 1) using the algorithm they had
seen the model use (note though that the information on the algorithm shown in Fig. 2 was no
longer available to participants). Participants did not actually receive the problem they selected; as
the tasks in the learning (and test phase) were fixed (participants were made aware of this).

On the learning phase problems, participants received self-assessment feedback. In the general
self-assessment feedback condition, a message appeared on the screen after a self-assessment was
made, stating whether or not the self-assessment was correct and how many steps had actually
been performed correctly (e.g., “Your self-assessment was incorrect. You performed 2 steps
correctly.”). The specific self-assessment feedback condition additionally received a list of the
five steps with information on which steps were performed correctly and which incorrectly in the
form of either a green check mark or a red cross mark (see Fig. 3). In the no feedback control
condition, participants only saw a message stating that their answer had been registered.

Test phase The three problems in the test phase were isomorphic to the learning phase
problems (i.e., same structural features but different surface features). Again, participants
engaged in problem solving, effort rating, self-assessment, and task selection (but they did
not receive the selected task). Self-assessment feedback was no longer provided on these tasks.

Performance

4-5 +2 +1 0

2-3 +1 0 -1

0-1 0 -1 -2

1-3 4-6 7-9
Effort

Fig. 2 Algorithm used for task-selection advice showing the jump size and direction for each of the combinations
of self-assessed performance and mental effort

Fig. 3 Feedback provided during the learning phase to participants in the specific self-assessment feedback condition
in Experiment 1. The general self-assessment feedback condition was only provided with the top sentence
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Data analysis Performance on the problem-solving tasks from the pre-test, learning phase,
and test phase, was scored by assigning one point for each correct step (i.e., range per problem:
0–5 points). Self-assessment accuracy was calculated by taking the absolute difference
between the self-assessed and actual performance score for each problem-solving task and
then averaging it over the problems (i.e., range: 0–5; Schraw 2009). To calculate task-selection
accuracy, first the task-selection advice was derived with the algorithm (i.e., invested effort and
actual performance on the task were combined into the task-selection advice), and then the
absolute difference was taken between the task chosen and the advised task and averaged over
the problems (i.e., range: 0–14; Kostons et al. 2012).

Results

Table 2 shows an overview of the results. Data were analyzed with (repeated measures)
ANOVAs, and the effect size reported is partial eta-squared (η2p), for which .01 is considered

a small, .06 a medium, and .14 a large effect size (Cohen 1988).

Preliminary checks Before conducting the analyses to test our hypotheses, we performed
some checks. First, we checked whether prior knowledge did not differ between conditions
(randomization check). An ANOVA on pretest performance showed no significant difference
between conditions, F(2, 105) = 0.27, p = .766, η2p = .005.

Table 2 Descriptive statistics from Experiment 1: Mean Performance during Pretest, Learning Phase, and Test
Phase (range: 0–5); Mean Mental Effort during Pretest, Learning Phase, and Test Phase (range: 1–9); Mean Self-
Assessments and the Accuracy of those Assessments during the Learning and Test phase (range: 0–5); Mean
Task Selection Level and Accuracy of Task Selection during the Learning and Test Phase (range: 0–14)

Dependent variables Condition

Control (n = 37) General self-assessment
feedback (n = 34)

Specific self-assessment
feedback (n = 37)

M SD M SD M SD

Pretest
Performance 0.53 0.47 0.62 0.48 0.55 0.59
Self-assessment 1.21 1.35 1.20 1.41 1.52 1.30
Mental effort 5.81 2.61 6.04 2.46 6.45 2.06

Learning phase
Performance 3.15 1.51 2.88 1.59 3.10 1.58
Mental effort 3.56 1.20 4.10 1.83 3.77 1.57
Self-assessment 3.79 0.98 3.30 1.23 3.72 1.26
SA accuracy a 1.40 1.16 1.68 0.74 1.31 0.99
TS level 7.02 1.55 6.17 2.53 6.28 2.65
TS accuracy a 1.28 1.19 2.17 1.72 1.85 1.65

Test phase
Performance 3.71 1.46 3.32 1.23 3.47 1.66
Mental effort 3.08 1.37 3.77 1.80 3.72 1.91
Self-assessment 3.78 1.31 3.25 1.53 3.59 1.40
SA accuracy a 0.96 0.85 1.59 0.91 1.13 1.04
TS accuracy a 2.30 2.17 2.77 2.37 2.36 1.94

a lower, better; SA, self-assessment; TS, task selection
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Second, we checked whether problem-solving performance (both actual performance and
self-assessed performance) increased over time and effort decreased over time, which is what
one would expect to occur as a result of training and practice with the problems. Repeated
measures ANOVAs with test moment (pre-test, learning phase, and test phase) as within-
subjects factor and condition as between-subjects factor were conducted. On actual perfor-
mance, this analysis showed a main effect of test moment on problem-solving performance,
F(1.92, 201.62) = 271.79, p < .001, η2p = .721.2 Repeated contrasts showed that performance

increased significantly from the pretest to the learning phase (p < .001) and from the learning
phase to the test phase (p < .001), showing that participants performance improved as a result
of training as well as from engaging in problem solving. Given that all students received the
same tasks, there was no main effect of condition, F(2, 105) = 0.34, p = .714, η2p = .006, and no

interaction effect of test moment and condition, F(3.84, 201.62) = 0.61, p = .653, η2p = .011.

On self-assessed performance there was a main effect of test moment, F(1.42, 148.85) =
199.25, p < .001, η2p = .655.3 Repeated contrasts showed that self-assessments increased

significantly from the pretest to the learning phase (p < .001), but stayed at the same level
from the learning phase to the test phase (p = .428) showing that participants perceived that
their performance improved from training, but not from engaging in problem solving. There
was no main effect of condition, F(2, 105) = 1.31, p = .273, η2p = .024, and no interaction effect

of test moment and condition, F(2.84, 148.85) = 1.04, p = .374, η2p = .019.

On mental effort, there was a main effect of test moment, F(1.32, 138.71) = 103.40,
p < .001, η2p = .496.4 Repeated contrasts showed that mental effort decreased significantly

from the pretest to the learning phase (p < .001) and from the learning phase to the test phase
(p = .009). There was no main effect of condition, F(2, 105) = 1.29, p = .280, η2p = .024, and no

interaction effect of test moment and condition, F(2.64, 138.71) = 0.74, p = .513, η2p = .014.

Hypothesis 1: Task-selection accuracy during the learning phase We hypothesized that the
self-assessment feedback provided to the experimental conditions would lead to more accurate
task selections during the learning phase (where self-assessment feedback was provided). To
test this hypothesis, an ANOVAwith a planned contrast (general self-assessment condition and
specific self-assessment condition vs. control condition) on task-selection accuracy during the
learning phase was conducted, which showed that the difference between the experimental
conditions and the control condition during the learning phase was significant, t(105) = 2.34,
p = .021, d = 0.46. However, in contrast to our hypothesis, task selections were less accurate
instead of more accurate in the experimental conditions compared to the control condition (see
Table 2; higher deviation = less accurate). In order to explain these surprising findings, we
additionally investigated which percentage of the self-assessment feedback had been negative
(i.e., the self-assessment feedback indicated that the self-assessment was inaccurate). Of all
instances of feedback, 73% were negative during the learning phase. Finally, we explored if
the experimental conditions systematically chose easier tasks (after receiving self-assessment

2 Mauchly’s Test indicated that the assumption of sphericity was violated (p = .013). Because the Greenhouse-
Geisser estimate of sphericity (ε) was greater than .75 (ε = 0.926), a Huynh-Feldt correction was applied.
3 Mauchly’s Test indicated that the assumption of sphericity was violated (p < .001). Because the Greenhouse-
Geisser estimate of sphericity (ε) was less than .75 (ε = 0.709), a Greenhouse-Geisser correction was applied.
4 Mauchly’s Test indicated that the assumption of sphericity was violated (p < .001). Because the Greenhouse-
Geisser estimate of sphericity (ε) was less than .75 (ε = 0.661), a Greenhouse-Geisser correction was applied.
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feedback) than the control condition, t(105) = 1.71, p = .090, indicating a slight tendency to
choose easier tasks.

Hypothesis 2: Self-assessment accuracy during the test phase We hypothesized that in the
test phase (i.e., in the absence of feedback) participants who received self-assessment feedback
during the learning phase would demonstrate more accurate self-assessment than participants
in the control condition (Hypothesis 2a), and that the specific self-assessment feedback
condition would demonstrate more accurate self-assessment than participants in the general
self-assessment feedback condition (Hypothesis 2b). An ANOVA on self-assessment accuracy
during the test phase showed a main effect of condition, F(2, 105) = 4.29, p = .016, η2p = .076.

Tukey’s post-hoc tests showed that, in contrast to our hypotheses, the general self-assessment
feedback condition was significantly less accurate than the no feedback control condition
(p = .015). The specific self-assessment feedback condition fell in between, the means show
that it was somewhat more accurate than the general feedback condition, but not significantly
so (p = .712), and somewhat less accurate than the no feedback control condition, but not
significantly so (p = .100).

Hypothesis 3: Task-selection accuracy during the test phase Finally, we hypothesized that
the expected increase in self-assessment accuracy in the feedback conditions in the test phase
(Hypothesis 2) would also positively affect task-selection accuracy during the test phase in
those conditions. Because expected improvement in self-assessment accuracy did not occur, it
was unlikely that task-selection accuracy would be affected, and indeed, the ANOVA on task-
selection accuracy in the test phase showed no significant differences between conditions, F(2,
105) = 0.50, p = .606, η2p = .009.

Discussion

The findings from Experiment 1 showed that participants who received self-assessment
feedback did not make more accurate task selections than participants in the control condition
during the learning phase (Hypothesis 1); they actually made less accurate task selections.
Participants in the feedback conditions did not self-assess their performance more accurately
than participants in the control condition during the test phase (Hypothesis 2a) and participants
who received specific self-assessment feedback did not self-assess their performance more
accurately than participants who received general self-assessment feedback during the test
phase (Hypothesis 2b). Receiving general self-assessment feedback even seemed to result in
less accurate self-assessments than receiving no feedback. However, these differences were not
reflected in the accuracy of task selection during the test phase (Hypothesis 3).

The finding that self-assessment feedback led to lower task-selection accuracy during the
learning phase, even though participants could directly rely on the feedback (which stated how
many steps they performed correctly) to make their task-selection, suggests that receiving
feedback may have biased task selection in a systematic way. Possibly, participants have reacted
to the negative self-assessment feedback in a similar way as people commonly react to negative
performance feedback (Ilgen and Davis 2000). If people attribute the feedback to their ability,
they might select easier tasks in order to reach self-enhancement (Strube and Roemmele 1985).
The data indeed show a slight tendency for the experimental conditions (who received self-
assessment feedback) to choose easier tasks during the learning phase (see Table 2).
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One possible explanation for the lack of beneficial effects of self-assessment feedback is
that students might not have been able to adjust their internal standards adequately because
they were not provided with information on the correct answers, which would make it difficult
for them to assess performance on subsequent (test phase) tasks. That is, they would know
either that they overestimated or underestimated their overall performance or which steps they
performed correctly/incorrectly (specific feedback), but they would not know what they did
wrong exactly. Therefore, Experiment 2 investigated whether adding correct answer feedback
to the general self-assessment feedback and having students contrast their own answers with
the correct answers would improve self-assessment accuracy in the absence of feedback.

Experiment 2

In Experiment 2, we investigated the combination of general self-assessment feedback and
correct answer feedback. As mentioned in the introduction, being presented with the correct
answers during self-assessment is known to improve accuracy (Baars et al. 2014; Baker et al.
2010; Dunlosky et al. 2010; Dunlosky and Rawson 2012; Lipko et al. 2009; Rawson and
Dunlosky 2007; Rawson et al. 2011), but it is unclear whether participants would still show
better accuracy in the absence of the answers. Therefore, Experiment 2 used a similar design as
Experiment 1, distinguishing a learning phase (with feedback) and test phase (without
feedback), to shed light on this issue. To control for the possibility that students would learn
from studying the correct answers, thereby improving their performance (which could in turn
lead to improved self-assessment accuracy; Dunning et al. 2003; Kruger and Dunning 1999),
we added a condition in which students could study the correct answers, but could not compare
them to their own answers. This enabled us to isolate the added effect of contrasting your own
answers to correct answers. If restudy of the correct answers would lead to an increase of
performance (and improved self-assessment accuracy), this could be detected in the difference
between the correct answer condition and the control condition.

We hypothesized that during the learning phase, participants in both feedback conditions
would be able to make more accurate task-selection decisions than participants in the control
condition (Hypothesis 4), as these could be directly based on the actual performance indicated
in the feedback. Regarding the test phase (i.e., in the absence of the feedback), we hypothe-
sized that participants in the feedback conditions would demonstrate more accurate self-
assessment than participants in the control condition (Hypothesis 5a), and that the self-
assessment feedback + contrasting own answers with correct answers condition would dem-
onstrate more accurate self-assessment than participants in the self-assessment feedback +
correct answers condition (Hypothesis 5b; i.e., Hypothesis 5: contrast > correct > no). If
Hypothesis 5 would be confirmed, we would expect a similar pattern of results for task-
selection accuracy during the test phase (Hypothesis 6).

Method

Participants and design A total of 136 Dutch students in their second year of secondary
education (second highest and highest level of secondary education) participated in this study.
Five of those participants possessed too much prior knowledge (i.e., scoring 60% or higher on
the pretest) and had to be excluded. Another 15 participants were excluded because they did
not manage to finish the experiment within the class period. Six participants had to be removed
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due to missing data on outcome variables.5 The remaining sample of 110 participants had a
mean age of 13.72 (SD = 0.54), and contained 54 boys and 56 girls. Participants were
randomly assigned to one of the three conditions: (1) no feedback (n = 36), (2) self-
assessment feedback + correct answers (n = 38), or (3) self-assessment feedback + contrasting
own and correct answers (n = 36).

Materials, procedure and data analysis The materials, procedure and data analysis were
identical to Experiment 1 except for the feedback intervention during the learning phase.
In the self-assessment feedback + correct answers condition, a message appeared on the
screen after a self-assessment was made, stating whether or not the self-assessment was
correct and how many steps had actually been performed correctly (cf. the general self-
assessment feedback in Experiment 1, e.g., “Your self-assessment was incorrect. You
performed 2 steps correctly.”), and what the correct answers were (see Fig. 4). The self-
assessment feedback + contrasting condition additionally saw their own answers next to
the correct answers and were instructed to compare and contrast their answers with the
correct answers. In the no feedback condition, participants only saw a message stating
that their answer had been registered (cf. Experiment 1).

Results

Table 3 shows an overview of the results.

Preliminary checks Before conducting the analyses that test our hypotheses, we checked
whether the data met the following demands: prior knowledge should not differ between
conditions (check on success of randomization procedure), problem-solving performance
(both absolute and self-assessed) should increase over time and effort should decrease over
time (check that learning occurred). An ANOVA on pretest performance showed no significant
difference between conditions, F(2, 107) = 0.42, p = .658, η2p = .008.

A repeated measures ANOVAwith test moment (pretest, learning phase, and test phase) as
within-subjects factor and condition as between-subjects factor, showed a main effect of test
moment on problem-solving performance, F(2, 214) = 510.64, p < .001, η2p = .827. Repeated

contrasts showed that performance increased significantly from the pretest to the learning
phase (p < .001) and from the learning phase to the test phase (p < .001). Although students in
the experimental condition had the opportunity to study the correct answers, there was no main
effect of condition, F(2, 107) = 0.22, p = .801, η2p = .004, and no interaction effect of test

moment and condition, F(4, 214) = 0.76, p = .554, η2p = .014.

A similar repeated measures ANOVA on self-assessments of performance showed a main
effect of test moment, F(1.44, 153.79) = 449.75, p < .001, η2p = .808.6 Repeated contrasts

showed that self-assessed performance increased significantly from the pretest to the learning
phase (p < .001), but stayed at the same level from the learning phase to the test phase

5 Exclusion was equal across conditions, χ2(2) = 0.141, p = .932. Excluded participants did not perform worse
than non-excluded participants during the learning phase, t(128) = 1.727, p = .087, but did assess their
performance more accurately, t(128) = 2.00, p = .048.
6 Mauchly’s Test indicated that the assumption of sphericity was violated (p < .001). Because the Greenhouse-
Geisser estimate of sphericity (ε) was less than .75 (ε = 0.719), a Greenhouse-Geisser correction was applied.
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(p = .798). There was no main effect of condition, F(2, 107) = 0.33, p = .722, η2p = .006, and no

interaction effect of test moment and condition, F(2.88, 153.79) = 0.64, p = .585, η2p = .012.

A third repeated measures ANOVA on mental effort showed a main effect of test
moment, F(1.30, 138.65) = 95.99, p < .001, η2p = .473.7 Repeated contrasts showed that

mental effort decreased significantly from the pretest to the learning phase (p < .001) and
from the learning phase to the test phase (p = .043). Similar to Experiment 1, there was
no main effect of condition, F(2, 107) = 1.14, p = .323, η2p = .021. However, there was an

interaction effect of test moment and condition, F(2.59, 138.65) = 3.60, p = .020, η2p =

.063, indicating that the decrease of mental effort over time differed between the
conditions with the self-assessment feedback + contrast condition showing an increase
in mental effort from the learning phase to the test phase, while the mental effort in other
conditions decreased from learning phase to test phase.

Hypothesis 4: Task-selection accuracy during the learning phase We hypothesized that the
self-assessment feedback provided to the experimental conditions would lead to more accurate
task-selection decisions during the learning phase (where self-assessment feedback was
provided). To test this hypothesis, an ANOVA with a planned contrast (self-assessment
feedback + correct answers condition and self-assessment feedback + contrast condition vs.

7 Mauchly’s Test indicated that the assumption of sphericity was violated (p < .001). Because the Greenhouse-
Geisser estimate of sphericity (ε) was less than .75 (ε = 0.648), a Greenhouse-Geisser correction was applied.

Fig. 4 Feedback provided during the learning phase to participants in the self-assessment feedback + contrast
condition in Experiment 2. The self-assessment feedback + answers condition was only provided with the top
sentence and the correct answers (the right part)
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control condition) on task-selection accuracy during the learning phase was conducted, which
showed that the difference between the experimental conditions and the control condition
during the learning phase was not significant, t(107) = 0.29, p = .773, d = 0.06. Similar to
Experiment 1, we investigated the percentage of negative self-assessment feedback. During the
learning phase 75% of the feedback messages were negative. Finally, we explored if the
experimental conditions systematically chose easier tasks (after receiving self-assessment
feedback) than the control condition. This was not the case, t(107) = −0.14, p = .890.

Hypothesis 5: Self-assessment accuracy during the test phase We hypothesized that in the
test phase (i.e., in absence of feedback) participants who received self-assessment feedback
during the learning phase would demonstrate more accurate self-assessment than participants
in the control condition (Hypothesis 5a), and that the self-assessment feedback + contrast
condition would demonstrate more accurate self-assessment than participants in the self-
assessment + correct answers condition (Hypothesis 5b). An ANOVA on self-assessment
accuracy during the test phase showed no significant differences between conditions, F(2,
107) = 1.18, p = .310, η2p = .022.

Hypothesis 6: Task-selection accuracy during the test phase Finally, if the participants in
the self-assessment feedback conditions indeed improved on self-assessment accuracy during
the test phase, then this could be expected to result in more accurate task-selection decisions
during the test phase (Hypothesis 5). Because we did not see the expected improvement in self-

Table 3 Descriptive statistics from Experiment 2: Mean Performance during Pretest, Learning Phase, and Test
Phase (range: 0–5); Mean Mental Effort during Pretest, Learning Phase and Test Phase (range: 1–9); Mean Self-
Assessments and the Accuracy of those Assessments during Learning and Test Phase (range: 0–5); Mean Task
Selection Level and Accuracy of Task Selection during the Learning and Test Phase (range: 0–14)

Dependent variables Condition

Control (n =
36)

Self-assessment feedback + answer
(n = 38)

Self-assessment feedback + contrast
(n = 36)

M SD M SD M SD

Pretest
Performance 0.89 0.80 0.98 0.89 0.81 0.65
Self-assessment 1.01 1.21 1.08 1.04 1.04 1.34
Mental effort 6.72 2.13 5.92 2.24 5.19 2.45

Learning phase
Performance 3.31 1.06 3.46 1.23 3.50 1.08
Self-assessment 4.07 0.88 4.05 0.93 3.90 0.86
Mental effort 3.69 1.63 3.50 1.57 3.38 1.44
SA accuracy* 1.19 0.78 1.21 0.85 1.18 0.78
TS level 6.77 1.97 6.71 1.54 6.73 1.50
TS accuracy* 1.43 1.29 1.20 1.70 1.23 1.12

Test phase
Performance 3.94 0.89 3.93 1.09 4.01 0.91
Self-assessment 4.20 1.01 3.91 1.29 3.99 1.22
Mental effort 3.16 1.69 3.17 1.88 3.30 1.69
SA accuracy* 0.87 0.60 0.75 0.64 0.88 0.79
TS accuracy* 1.64 1.66 1.42 1.54 1.63 1.74

*lower, better; SA, self-assessment; TS, task selection
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assessment accuracy during the test phase though, it was unlikely that task-selection accuracy
would be affected, and, indeed, the ANOVA on task-selection accuracy in the test phase
showed no significant differences between conditions, F(2, 107) = 0.54, p = .586, η2p = .010.

Discussion

Participants who received self-assessment feedback did not makemore accurate task selections than
participants in the control condition during the learning phase (Hypothesis 4). Participants in the
self-assessment feedback + contrast condition did not make more accurate self-assessments during
the test phase than participants in the self-assessment feedback + correct answers condition, who did
not make more accurate self-assessments during the test phase than participants in the control
condition (Hypothesis 5a and 5b). Not surprisingly, therefore, participants who received self-
assessment feedback did not show more accurate task selections in the test phase (Hypothesis 6).

Contrary to our findings, previous studies using correct answers to improve self-assessment
accuracy did find beneficial effects on self-assessment accuracy (Baars et al. 2014; Dunlosky
et al. 2010; Lipko et al. 2009; Rawson and Dunlosky 2007). However, the methods used in
those studies differ critically from the methods used in the present study. While in the previous
studies the correct answers were provided during self-assessment (or monitoring) of perfor-
mance (i.e., students could base their self-assessment on the comparison of their answer to the
correct answer), in the present study the correct answer feedback was provided after self-
assessment. We expected that this would allow participants to refine their internal standards
based on the feedback, as a consequence of which subsequent self-assessments without
feedback should have been more accurate. However, we did not find any indications that
self-assessment accuracy improved from self-assessment feedback.

General discussion

The main objective of the current study was to investigate whether – after an initial self-
regulated learning training – the accuracy of self-assessments would improve from feedback
focused on self-assessment accuracy (i.e., self-assessment feedback). Based on the SRL model
of Butler andWinne (1995) we predicted that the self-assessment feedback received during the
learning phase, would allow learners to refine their internal standards, leading to higher self-
assessment accuracy during the test phase, in the absence of this feedback. In Experiment 1 we
investigated the potential benefit of more specific self-assessment feedback (i.e., feedback
information on the level of distinct problem-solving steps) instead of more general self-
assessment feedback (i.e., feedback information on the level of the task). In Experiment 2
we investigated the effects of adding correct answers to the self-assessment feedback and
having learners contrast those with their own answers (with an extra condition to check if
learning from the correct answers could lead to improved self-assessment accuracy). In both
experiments, self-assessment feedback failed to improve self-assessment accuracy.

We will now discuss possible explanations for our null findings, provided by our data, the
limitations of our study, or other possible (speculative) mechanisms. As for our data, we could
investigate the possibility that the self-assessment feedback could (inadvertently) have caused
learners to simply correct their self-assessments downwards without considering their actual
performance (cf. Roelle et al. 2017). That is, the self-assessment feedback that the learners
received indicated that their self-assessment was incorrect most of the time, and thus had
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mostly a negative connotation. Consequently, learners might have adjusted their self-
assessments downwards, and we have found some evidence that this was the case. Self-
assessments were lower in the general self-assessment feedback condition compared to the
other conditions in Experiment 1 (although not significantly; see Table 2). If learners simply
gave themselves lower self-assessment ratings without considering their actual performance,
they would not take into account the fact that their performance would improve from the
learning phase to the test phase due to practice, and thus, their self-assessments would remain
inaccurate. Indeed, the analysis of self-assessed performance across the different phases
suggests that learners perceived that their performance improved as a consequence of training
(i.e., from pretest to learning phase), but not from engaging in problem solving (i.e., from the
learning to the test phase) even though their actual performance continued to improve (see
Table 2). These explanations are not mutually exclusive and, interestingly, both involve a
mechanism in which the learner directs less rather than more attention to monitoring.

A potential reason (similar to the explanation for the lower self-assessment accuracy in
Experiment 1) for the lack of support for our hypotheses regarding task-selection accuracy
could also be explored using our data. That is, participants may have interpreted the self-
assessment feedback negatively and might have chosen easier tasks (which learners are likely
to do after negative feedback, see Ilgen and Davis 2000). This might be mediated through self-
efficacy, as a recent meta-analysis showed a relationship between self-assessment interventions
and self-efficacy (Panadero et al. 2017). Indeed, our data show that learners in the experimental
conditions chose slightly easier tasks during the learning phase (see Table 2), but this was not
the case in Experiment 2 (see Table 3). Given that the feedback in Experiment 1 did not
provide the correct answer, but feedback in Experiment 2 did, it is possible that this effect is
mediated by attributions (i.e., how students explain their successes or failures; cf. Weiner
1986). For instance, when students attribute the (negative) self-assessment feedback to ability,
their self-efficacy might go down and they might reflexively adjust their self-assessments
downwards (“I must not be very good at solving these problems”) and, consequently, would be
more inclined to select easy tasks after feedback. The reason this did not occur in Experiment
2, might be because the knowledge of the correct answers helped them interpret the assessment
feedback in a different manner that did not lower self-efficacy, or because it lead to an
expectation that they would be able to solve similar problems in the future (cf. hindsight
bias; Kornell 2015). However, this is highly speculative, as we did not assess students’
considerations for self-assessments.

This study also had some limitations that need to be considered as potential explanations for
our findings. As all experiments in this study were performed in the classroom (in order to
increase the ecological validity) there was limited time available for the intervention. As the
length of an intervention is often related to the effect of the intervention (e.g., Bangert-Drowns
et al. 2004), this might have had a diminishing effect on our intervention. Future studies might
include interventions extended over multiple lessons. This could also provide the opportunity
to investigate student motivation, which could provide insight into the students’ motivational
explanations concerning task selection. Another limitation of this study concerns the size,
rather than the length, of the interventions. The experiments in this study use small interven-
tions that are easily implemented into electronic learning environments. However, using small
interventions could have decreased the power to detect differences between the conditions,
which might be an additional explanation for the null findings. Lastly, we do not know if these
results would be the same using different tasks, different age groups, or other domains. Future
research could explore such generalization of the results.
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Finally, we could speculate about possible mechanisms that might explain our results. We
do not know precisely on which cues students base their self-assessments (see De Bruin and
Van Merriënboer 2017; Koriat 1997). An endeavor to uncover which cues are used, would
require process measures such as interviews, think-aloud protocols, et cetera (Azevedo 2009;
De Bruin and Van Gog 2012). However, we could speculate that attributions might eventually
trigger self-protective strategies (i.e., choosing easier tasks) if self-assessment feedback is
attributed to ability. In such cases self-enhancement is more important than accurate self-
assessment (Strube and Roemmele 1985). In this case, it might be more effective if the
intervention would redirect students’ attention from the invalid cues they used (i.e., cues that
are not predictive of their actual performance) towards more valid (i.e., predictive) cues, which
might better enable students to adjust their internal standards (i.e., what constitutes good
performance; Winne and Hadwin 1998), resulting in more accurate self-assessments in the
absence of feedback. This would, ultimately, allow learners to more accurately control their
learning process and improve their learning outcomes.

Another possible mechanism is that participants might have started to expect similar
feedback on subsequent tasks and might, consequently, have payed less attention to their
subsequent performance (i.e., monitoring during problem solving) and self-assessments
(Salmoni et al. 1984). Thus, counterintuitively, the self-assessment feedback might have led
to paying less, instead of more, attention to self-assessment (Shute 2008). The field of self-
assessment research might benefit from future research into which specific types of self-
assessment feedback produce higher learning gains.
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Appendix 1

Example of problem-solving task used in pretest and posttest (first level of complexity)

Fur color

A guinea pig’s fur color is determined by a gene, which expresses itself as black in its dominant
form (F) and white in its recessive form (f). Two guinea pigs, who are both black and
homozygote for that trait, produce offspring. What are the possible genotypes for this offspring?
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Step 1. Translate information from text into genotypes.

– Both guinea pigs are homozygote for the dominant allele, so both genotypes are FF.

Step 2. Fill in a family tree.

Step 3. Determine number of Punnett squares by deciding if problem is to be solved
deductively or inductively.

– Both parents are given, so we can solve the problem deductively. Solving problems
deductively only requires one Punnett square.

Step 4. Step 4. Fill in the Punnett square.

F F
F FF FF
F FF FF

Step 5. Find the answer in the Punnett square.

– The only possible genotype for the offspring is FF.
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