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a b s t r a c t

This paper proposes an alternative estimation method for cointegration, which allows
for variation in the leads and lags in the cointegration relation. The method is more
powerful than a standard method. Illustrations to annual inflation rates for Japan and
the USA and to seasonal cointegration for quarterly consumption and income in Japan
shows its ease of use and empirical merits.
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1. Introduction

This paper introduces an alternative estimation method for cointegration. This method makes use of the fact that if
wo integrated variables yt and xt are cointegrated, that then yt and xt+1 and yt and xt−1 are also cointegrated. This fact
an be used to estimate an error correction variable yt − θxt−lagt where the variable lagt can take values −1, 0, or 1,
hroughout the sample t = 1, 2, 3 . . . , T .

Commonly applied methods to test for cointegration analyze the variables yt and xt at the same time, that is, these
methods consider yt − θxt . There seems however no a priori reason to only allow for a contemporaneous cointegration
relation. In fact, it may be restrictive to have shocks εt to hit the two variables always exactly at the same moment. Also,
it may be that sometimes yt leads and that sometimes xt leads. A visual impression of this feature is presented in Fig. 1,
which depicts annual CPI (Consumer Price Index) based inflation for Japan and the USA, for the sample 1960 to 2015. For
some years, these two series seem to move together, like around 1975 and 1980, but in other periods, the USA inflation
rates increase or decrease one year earlier than inflation in Japan does, while in other periods it is the other way around.1

The outline of this paper is as follows. Section 2 shows that cointegration is not dependent on the specific lead and lag
structure across the nonstationary variables. In fact, the same cointegration relation is found across various cases. Section 2
further provides a detailed illustration using annual CPI based inflation for Japan and the USA. Section 3 presents results
of a few simulation experiments where it is examined what happens if the Data Generating Process (DGP) includes an
error correction term like yt−1 − θxt−1−lagt , where lagt can take values −1, 0, or 1, and when the standard Engle and
Granger [1] test method is used. It is found that the standard statistical method loses power. Section 4 addresses seasonal
cointegration [2], where the new estimation method may be even more useful, because the seasonal random walk implies
that ‘‘summer can become winter’’. This feature makes it even more unlikely that exactly the same error process makes
these changes to happen at the same time. Section 5 concludes with various avenues for further research.

∗ Correspondence to: Econometric Institute, Erasmus School of Economics, POB 1738, NL-3000 DR Rotterdam, The Netherlands.
E-mail address: franses@ese.eur.nl.

1 Note that these two variables are non-stationary as the Dickey–Fuller test value for Japan is −2.567 and for USA it is −1.830, which compared
ith the 5% critical value of −2.918 (only intercept, no trend) suggests that both variables are not stationary.
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Fig. 1. Annual CPI based inflation rates for Japan and the USA.

. Cointegration and lags

This section considers an exemplary case where two variables are cointegrated and can be captured by a single equation
rror Correction Model (ECM).
Consider two variables yt and xt , for t = 1, 2, 3., . . . , T , and suppose that these two variables are connected via the

utoregressive Distributed Lag (ADL) model

yt = α1yt−1 + α2yt−2 + β0xt + β1xt−1 + εt (1)

here εt is a standard zero mean white noise process with common variance σ 2
ε . To save notation, an intercept is

xcluded.

.1. Error correction model

It is assumed that the two variables are integrated of order 1, I(1). That is, yt − yt−1 and xt − xt−1 are stationary, I(0).
t is further assumed that there is a single cointegration relationship between the two variables. In that case, ADL model
n (1) can be written as an ECM like

yt − yt−1 = (α1 + α2 − 1)
(
yt−1 −

β0 + β1

1 − α1 − α2
xt−1

)
− α2 (yt−1 − yt−2) + β0 (xt − xt−1) + εt , (2)

where the cointegration relation is

yt −
β0 + β1

1 − α1 − α2
xt

and where (α1 + α2 − 1) in (2) is the adjustment parameter.
An alternative way of writing an ECM from the ADL model in (1) is

yt − yt−1 = (α1 + α2 − 1)
(
yt−1 −

β0 + β1

1 − α1 − α2
xt

)
− α (y − y ) − β (x − x ) + ε (3)
2 t−1 t−2 1 t t−1 t
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which shows that the parameter in the cointegration relation does not change when the long-run relation holds between
yt and xt+1. A third way of writing the ADL model in (1) as an ECM is

yt − yt−1 = (α1 + α2 − 1)
(
yt−1 −

β0 + β1

1 − α1 − α2
xt−2

)
− α2 (yt−1 − yt−2) + β0 (xt − xt−1) + (β0 + β1) (xt−1 − xt−2) + εt , (4)

and this shows that the very same cointegration relation holds for yt and xt−1.

.2. Two inflation series

One method to test for cointegration is the Engle and Granger [1] two-step method. The first step amounts to a
egression of yt on a constant and xt (or xt−1 or xt+1). The second step is to run a Dickey–Fuller (DF) unit root test on the
residuals. One can also look at the Durbin Watson (CRDW) test statistic as recommended in Sargan and Bhargava [3].2

The first regression for the inflation series (for the effective sample 1961–2015 for comparison purposes) corresponding
to (2) results in

Japant = −0.196 + 0.885USAt

ith a CRDW value of 0.449, and where the DF test (no lags of the first differences needed) obtains the value −2.775.
he 5% critical value for this test is −3.37, and hence the null hypothesis of a unit root is not rejected. There seems to be
o evidence of cointegration. The second regression corresponding with (3) results in

Japant = 0.306 + 0.769USAt+1

with a CRDW value of 0.716, and a DF test value equal to −3.384. This suggests the rejection of the unit root null
ypothesis at the 5% level, and hence now there is evidence for cointegration. The third regression corresponding with
4) results in

Japant = 0.775 + 0.631USAt−1

with a CRDW value equal to 0.621 and a DF test value of −3.185, which now suggests the absence of cointegration.
Clearly, in this empirical case, the results give mixed evidence for cointegration.

2.3. An alternative estimation method

An alternative estimation method resorts to a time-varying lag cointegration model, that is, to consider the cointegra-
tion relation as

yt − θxt−lagt

where lagt ∈ {−1, 0, 1}. One way to determine the lagt variable is to consider the three regressions above, compute for
each regression the residuals, compare the absolute values of these residuals, and set the lag at each time t at the value
that corresponds with the smallest absolute residual.

An application of this simple method to two inflation series, results in the lagt variable, depicted in Fig. 2. The associated
cointegration regression is

Japant = −0.915 + 1.155USAt−lagt

with a CRDW value equal to 0.804 and a DF test value of −3.739, which provides strong evidence for the presence of
cointegration amongst the two variables.3

A suitable error correction model turns out to be

Japant − Japant−1 = −0.039 − 0.371
(
Japant−1 + 0.915 − 1.155USAt−1−lagt

)
+ 0.903(USAt − USAt−1)

with estimated standard errors 0.289, 0.107 and 0.171, respectively. Comparing the parameters with their standard errors
suggests that the long-run and short-run relations between the inflation series are about equal to 1.

2 The 5% critical value is 0.7.
3 Note that the Johansen [4] test gives a significant first eigenvalue and the cointegration coefficient is calculated as 1.250, which provides

additional support for cointegration.
3
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Fig. 2. Estimated lag structure in the time-varying lag cointegration regression for annual inflation series.

3. Simulation experiments

In this section a simulation experiment is considered to examine what happens if there is a time-varying lag
cointegration structure, while one relies on the standard Engle–Granger single equation test. This latter test assumes
that cointegration occurs at time t for both variables. Assume that the Data Generating Process (DGP) is

yt − yt−1 = (ρ − 1)
(
yt−1 − xt−1−lagt

)
+ ut

xt − xt−1 = wt

with ut ∼ N(0, 1) and wt ∼ N(0, 1), y0 = 0, x0 = 0, t = 1, 2, . . . ., 120, and where

lagt ∈ {−1, 0, 1}

Per observation t, the value of the lag is drawn from a multinomial distribution with equal probabilities for the
outcomes −1, 0 and 1. Next, consider the regression

yt = α + βxt + εt

where the parameters are estimated using Ordinary least Squares (OLS). The estimated residuals are stored, and next the
test regression

ε̂t − ε̂t−1 = δε̂t−1 + ϑt

is considered. The t ratio for δ is computed and compared against the 5% critical value −3.37.
Table 1 gives the number of cases (out of 10000 replications) that the t test value indicates rejection of the null

hypothesis. The first column in Table 1 concerns the case where there is no variation in the lag, and this provides the
statistical power of the standard Engle–Granger test method. The next column gives the rejection frequencies in case the
DGP has a lag structure with lagt ∈ {−1, 0, 1}, each with probability one-third. Obviously, there is a loss of power. One
ould expect the loss of power to increase when there is more variation in the lags, like for example lagt ∈ {−1, 0, 1, 2},

each with probability one-fourth. And indeed, the final column of Table 1 indicates a further loss of power.

4. Seasonal cointegration

When analyzing quarterly nonstationary data, each of which obeys a seasonal random walk, that is, yt − yt−4 and
t − xt−4 are stationary, one may want to examine whether there is cointegration across yt + yt−1 + yt−2 + yt−3 and
t + xt−1 + xt−2 + xt−3, see Engle et al. [2] and Hylleberg et al. [5]. As a seasonal random walk implies that seasons may
witch places, that is ‘‘summer can become winter’’, it may even be more unlikely in practice that exactly

y + y + y + y − θ (x + x + x + x )
t t−1 t−2 t−3 t t−1 t−2 t−3

4
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Table 1
The DGP is yt − yt−1 = (ρ − 1)

(
yt−1 − xt−1−lagt

)
+ ut and xt − xt−1 = wt with ut ∼ N (0, 1) and wt ∼ N (0, 1),

y0 = 0, x0 = 0, t = 1, 2, . . . ., 120. The simulations are based on 10000 replications of the Engle–Granger
two-step method.
ρ lagt = 0 lagt ∈ {−1, 0, 1} lagt ∈ {−1, 0, 1, 2}

0.50 10000 10000 10000
0.55 10000 10000 9997
0.60 10000 9995 9989
0.65 9991 9978 9906
0.70 9913 9783 9512
0.75 9331 8941 8279
0.80 7430 6767 5925
0.85 4412 3975 3445
0.90 1817 1682 1388
0.95 670 659 617

Fig. 3. Quarterly consumption and income in Japan, 1980Q1 to 2001Q2.

is stationary. An alternative cointegration relation can now be

yt + yt−1 + yt−2 + yt−3 − θ (xt−lagt + xt−1−lagt + xt−2−lagt + xt−3−lagt )

where lagt ∈ {−3, −2, −1, 0, 1, 2, 3}. The same method as above can now be considered, where various auxiliary
regressions are run, and the size of the absolute residuals can be compared across the regression model, to select the
lag variables.

4.1. Consumption and income in Japan

To illustrate the usefulness of time-varying lag cointegration, consider the quarterly data for consumption and income
in Japan, for 1980Q1 to 2001Q2 in Fig. 3. A trend and a seasonal pattern are clearly visible for both series. The data are
analyzed after taking natural logs, and yt is the log of consumption and xt is the log of income.

An Engle–Granger type regression assuming a contemporaneous cointegration relation results in

yt + yt−1 + yt−2 + yt−3 = −0.937 + 0.968(xt + xt−1 + xt−2 + xt−3)

The CRDW value is 0.060, which indicates the absence of cointegration. This is confirmed by an Augmented Dickey–
Fuller test (one additional lag of the first differences) on the residuals of the test regression, which obtains the value
−2.571. This is not significant according to the critical values reported in Engle et al. [2].

When a time-varying lead and lag structure is allowed, the obtained time-varying lag structure is depicted in Fig. 4.
This lag structure shows much variation. The alternating lag regression now gives

y + y + y + y = −0.240 + 0.953(x + x + x + x )
t t−1 t−2 t−3 t−lagt t−1−lagt t−2−lagt t−3−lagt

5
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Fig. 4. Estimated lag structure in the time-varying lag seasonal cointegration regression.

ith a CRDW value of 0.616, and a Augmented Dickey–Fuller test value of −3.815. Hence, now there is evidence of
ointegration.
A suitable error correction model4 for these two series turns out to be

yt − yt−4 = 0.040 + 0.628 (yt−1 − yt−5) + 1.088 (xt − xt−4) − 0.879 (xt−1 − xt−5)

− 0.043(yt−1 + yt−2 + yt−3 + yt−4 − 0.930)((xt−1−lagt + xt−2−lagt + xt−3−lagt + xt−4−lagt ))

here the parameters are estimated using Nonlinear Least Squares, and the associated standard errors are 0.065, 0.078,
.081, 0.105, 0.013 and 0.033, respectively. The t test value on the adjustment parameter −0.043 is −3.443, which is
ignificant at the 5% level.

. Conclusion

This paper has proposed an alternative estimation method for cointegration, which allows for variation in the leads
nd lags in the cointegration relation. The method is more powerful than a standard method. Illustrations to cointegration
mongst annual inflation rates for Japan and the USA and to seasonal cointegration for quarterly consumption and income
n Japan shows its ease of use and empirical merits. It is also demonstrated that the standard test method for cointegration
oes not find evidence of cointegration in both cases.
Various extensions of the new estimation method seem obvious. One could want to allow for more than two

ariables and consider the application of the Johansen [4] method. Further, one can consider nonlinear and time-varying
ointegration. Also, one may want to allow for structural breaks and shifts in trend, which may not need to happen at
he same moment in time for each series.
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