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Whole genome sequencing of metastatic colorectal
cancer reveals prior treatment effects and specific
metastasis features
Pauline A. J. Mendelaar 1,11, Marcel Smid 1,11, Job van Riet 1, Lindsay Angus 1, Mariette Labots2,3,

Neeltje Steeghs3,4, Mathijs P. Hendriks 3,5, Geert A. Cirkel3,6, Johan M. van Rooijen3,7, Albert J. Ten Tije3,8,

Martijn P. Lolkema 1,3, Edwin Cuppen9,10, Stefan Sleijfer1,3, John W. M. Martens 1,3 & Saskia M. Wilting 1✉

In contrast to primary colorectal cancer (CRC) little is known about the genomic landscape of

metastasized CRC. Here we present whole genome sequencing data of metastases of 429

CRC patients participating in the pan-cancer CPCT-02 study (NCT01855477). Unsupervised

clustering using mutational signature patterns highlights three major patient groups char-

acterized by signatures known from primary CRC, signatures associated with received prior

treatments, and metastasis-specific signatures. Compared to primary CRC, we identify

additional putative (non-coding) driver genes and increased frequencies in driver gene

mutations. In addition, we identify specific genes preferentially affected by microsatellite

instability. CRC-specific 1kb-10Mb deletions, enriched for common fragile sites, and

LINC00672 mutations are associated with response to treatment in general, whereas FBXW7

mutations predict poor response specifically to EGFR-targeted treatment. In conclusion, the

genomic landscape of mCRC shows defined changes compared to primary CRC, is affected

by prior treatments and contains features with potential clinical relevance.
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Primary colorectal cancer (CRC) can be divided into a major
group of chromosomally instable tumors and a minor
group of hypermutated, chromosomally stable tumors due

to microsatellite instability (MSI) or POLE mutations1. Parallel to
the described genomic subtype division, transcriptomic analysis
was used to identify four consensus molecular subtypes (CMSs)
with distinguishing features including prognosis2.

Molecular analysis of CRC revealed specific genetic alterations
with clinical implications. Mutations in KRAS and BRAF predict
failure to treatment with EGFR-inhibitors, whereas copy number
alterations of ERBB2 or IGF2, and the occurrence of chromoso-
mal translocations leading to fusion genes such as NAV2/TCF7L1,
are potentially drug targetable1,3.

Although the molecular knowledge of primary CRC has con-
tributed to a better understanding of its pathogenesis, cancer-
related mortality usually occurs as a consequence of distant
metastases, in which ongoing mutational processes and selective
treatment pressure can result in altered molecular characteristics4.

To date, in-depth analyses of large series of colorectal cancer
metastases are limited to studies using either whole-exome
sequencing (WES) or targeted sequencing of cancer-associated
genes4–6. Although these studies yielded extensive knowledge on
the presence of specific genomic aberrations in mCRC, they do
not necessarily reflect its complete molecular landscape. For
optimal identification of mutational signatures, the power pro-
vided by whole-genome sequencing (WGS) data greatly exceeds
that of WES7. Next to this, WGS simultaneously allows for the
determination of MSI, structural rearrangements, chromothripsis,
and kataegis. In addition, clinically relevant genetic alterations
within noncoding regions were recently reported in primary
CRC8. To date, the only other study which reported in detail on
WGS data of colorectal metastases included 12 patients4.

Here, we provide a comprehensive description of the molecular
landscape of metastatic CRC (mCRC). We use WGS data
obtained from a large multicenter, prospective collection of snap-
frozen metastatic tissue biopsies from 429 patients starting a new
line of systemic treatment9. In addition, matched RNA-seq data
are available for 91 patients. The observed metastatic molecular
landscape is compared to WGS data of primary CRC cohorts
(Supplementary Table 1), associated with prior treatments as well
as treatment response, and evaluated for clinical utility.

Results
Cohort description. Clinical characteristics of our included
cohort of 429 patients are summarized in Table 1. Median tumor
purity (0.53 (IQR 0.38–0.67) was estimated on the obtained
sequencing data and was not significantly different between
biopsy sites. Based on a previously described WGS data analysis
algorithm9 14 samples (3%) were scored as microsatellite instable
(MSI), which is in concordance with the observed MSI frequency
in mCRC in literature (4%)10.

Based on the treatment data, the cohort can be divided in
patients who did (n= 284) and who did not (n= 124) receive any
systemic treatment prior to the moment the biopsy was taken.
Within the group of prior-treated patients, 13 different
combinations of treatment regimens were defined as specified
in the materials and methods and listed in Table 1.

For 91 cases RNA-seq data were available, allowing us to
determine their Consensus Molecular Subtype (CMS). Remark-
ably, using the CMS-classifier package, none of the metastatic
CRC samples were classified as CMS3, whereas 10 were classified
as CMS1, 41 as CMS2, and 14 as CMS4. The remaining
26 samples (29%) could not be classified into one of the
4 subtypes, which might be partly due to the presence of normal
cells of noncolon origin in our metastatic setting. Indeed, using

the alternative CMSCaller algorithm, which is less dependent on
signals from the tumor microenvironment, reduced the number
of unclassified samples to 14 (15%), whereas still only 3 samples
were classified as CMS311. Twenty-two samples were classified as
CMS1, 25 as CMS2, 3 as CMS3, and 27 as CMS4.

Regardless of the calling algorithm used, the estimated tumor
cell percentage was significantly lower in biopsies classified as
CMS4 than in the other subtypes (medians CMS1: 52.5 and 45%;
CMS2 61 and 61%; CMS3: none and 66% and CMS4: 34.5 and
42%; KWH; p= 0.0007 and p= 0.0156 for CMS Classifier and
CMSCaller, respectively), which is concordant with the described
high-stroma content in this subtype2.

The molecular landscape of mCRC. From the WGS data of all
429 cases, we distilled somatically acquired single nucleotide
variants (SNVs), multiple nucleotide variants (MNVs), structural
variants (SVs), insertions/deletions (InDels), and copy number
variants (CNVs). The overall tumor mutational burden (TMB)
representing the amount of SNVs, MNVs and InDels per
Megabase (Mb), ranged from 0.96 to 366.15 with a median of 7.01
(95% CI 6.62–7.47). Using GISTIC2.0, we identified 55 recurrent
CNVs (29 gains and 26 losses) within our entire cohort, con-
taining a number of already known and putative driver genes
(Supplementary Data 1). Chromothripsis was observed in 47
cases (11%), whereas kataegis was observed in 102 cases (24%),
involving just a single chromosomal region in two-third of cases,
with a maximum of 10 regions in one single case. Presence of
kataegis was associated with MSI and high TMB (≥10; test for
trend p= 0.00014). In fact, 9 out of 13 MSI cases had at least two
kataegis regions.

We further evaluated the type and size of SVs observed in our
cohort (Fig. 1). A broad range of differently sized Tandem
Duplications (TD; ~14–93 kb) with a peak at 26 kb was observed,
which was clearly distinct from the TD sizes previously observed
in other cancers (~11 kb in BRCA1-mutated, ~231 kb in CCNE1-
activated, and ~1.7 Mb TDs in CDK12-mutated cancer, respec-
tively)12. Inversions in mCRC are usually over 10Mb in size,
while deletions range from ~10 kb to 1Mb, with a distinct peak at
~128 kb. Events within this latter peak include many recurrent
deletions in known Common Fragile Site (CFS) genes: e.g., FHIT,
RBFOX1, and MACROD2. This phenomenon involving frequent
deletions of CSF genes was recently described in primary CRC as
well13.

Using the ratio of nonsynonymous to synonymous substitu-
tions caused by the somatic nucleotide mutations (SNV and
InDels; dN/dS analysis), 23 genes were identified as putative
driver genes (q < 0.05, Fig. 2, Table 2). In 99.1% of cases (425 out
of 429) at least one of these 23 putative driver genes was mutated.
Testing for mutual exclusivity only revealed already known
associations: KRAS with BRAF/NRAS/RNF43/TP53 (q= 1.06E-7,
q= 1.54E-4, q= 0.004, and q= 0.017, respectively), and APC
with RNF43/BRAF (both q= 1.54E-4; Supplementary Fig. 1). For
those genes also present in the targeted panel used by Yaeger
et al.6, comparable mutation frequencies were observed in both
cohorts (Table 2).

Similarly, for 15 noncoding genes an enriched mutation rate
was observed compared to surrounding nonannotated regions
(Table 3), suggesting these genes are relevant for the oncogenic
process. These noncoding genes include PTENP1, a known tumor
suppressor in CRC14, MALAT1, for which an increased mutation
rate was already described in a pan-cancer analysis15, and
LINC00672, described to promote chemo-sensitivity16.

To further investigate the mechanisms underlying the observed
SNVs and MNVs, we used the latest COSMIC mutational
signatures (v3) to establish the presence and contribution of these
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predefined mutational signatures in metastatic CRC17. We
identified 11 single base signatures (SBS) and 9 double base
signatures (DBS) that had a relative contribution of at least 10%
in minimally 10 cases and as such were considered dominant

signatures in mCRC; SBS1, SBS5, SBS8, SBS9, SBS17b, SBS18,
SBS35, SBS39, SBS40, SBS41, SBS44, DBS2-9, and DBS11. De
novo signature calling using the Non-negative Matrix Factoriza-
tion algorithm (NMF)18 did not identify additional signatures
besides the known COSMIC signatures in our cohort.

Effects of systemic prior treatment on the genomic landscape.
Patients receiving prior systemic treatment (n= 284) showed a
significantly higher TMB, a higher number of SVs, a higher
number of affected GISTIC CNV regions (7.58 versus 5.82; 208
versus 148; 31 versus 28, respectively; MWU p-values < 0.005),
and more frequent occurrence of chromothripsis (6.5 versus
13.4%; Fisher exact test p= 0.042) compared to patients (n=
124) without prior systemic treatment. More specifically, we
observed altered relative contributions for several mutational
signatures in defined prior-treatment groups compared to
treatment-naive patients (n= 124, Fig. 3 and Supplementary
Data 2; MWU, FDR p <=5.15E-7). Patients who were prior-
treated with a combination therapy of PLAT/PYR+ target
showed increased relative contributions of SBS8, SBS17b, SBS35,
and DBS5 compared to treatment-naive patients. These results

Fig. 1 Size distributions of the different types of structural variants.
Ridge-plot of the density of genomic sizes of structural variants in
metastatic CRC. INV inversions (blue), DUP tandem duplications (purple),
DEL deletions (orange). Source data are provided as a Source Data file.

Table 1 Cohort description.

Patient details Number of patients

Total cohort 429
Gender Female 174

Male 255
Age (median (IQR,Range)) 64 (IQR 56–72, range 25–88)
Prior-treatment details
Systemic prior treatment: yes 284

Treatment regimen Manuscript code
5-FU/capecitabine–oxaliplatin doublet (CAPOX, FOLFOX) PLAT/PYR 121
+bevacizumab PLAT/PYR+ targeted 134
5-FU—Topisomerase inhibitor doublet (Irinotecan based, FOLFIRI) TOP/PYR 26
+bevacizumab/panitumumab TOP/PYR+ targeted 9
5-FU/capecitabine monotherapy PYRmon 39
+bevacizumab PYR+ targeted 36
Topoisomerase inhibitor (Irinotecan) monotherapy TOPmono 67
+bevacizumab TOP+ targeted 7
Oxaliplatin+ bevacizumab/panitumumab PLAT+ targeted 5
Panitumumab/cetuximab/encorafenib+binimetinib/bevacizumab/regorafenib Targeted mono 35
5-FU/capecitabine–oxaliplatin–irinotecan triplet (FOLFOXIRI) CHEMCOM 2
+bevacizumab CHEMCOM+ targeted 5
Other Diverse 15
Systemic prior treatment: no 124
Systemic prior treatment: unknown 21
Radiotherapeutic prior treatment: yes 109

RT+ systemic treatment 68
Chemoradiation 33
Radiotherapy only 8
Radiotherapeutic prior treatment: no 299
Radiotherapeutic prior treatment: unknown 21

Biopsy details Number of patients
Origin

Liver 287
Soft tissue 84
Lymph node 24
Lung 21
Other 13

Technical details
Tumor purity 0.53 (IQR 0.38–0.67)
Read coverage (median) 102.6× (IQR 94.6×–112.0×)

Patient Characteristics. PLAT/PYR (5-FU/capecitabine–oxaliplatin doublet (CAPOX, FOLFOX)), PLAT/PYR+ targeted (bevacizumab added), TOP/PYR+ targeted (bevacizumab added), PYRmono (5-
FU/capecitabine monotherapy), PYR+ targeted (bevacizumab added), TOP/PYR (5-FU-Topisomerase inhibitor doublet (Irinotecan based)), TOPmono (Topoisomerase inhibitor (Irinotecan)
monotherapy), TOP+ targeted (bevacizumab added), PLAT+ targeted (Oxaliplatin+ bevacizumab/panitumumab), Targeted mono (panitumumab, cetuximab, encorafenib+ binimetinib, bevacizumab,
regorafenib), CHEMCOM (5-FU/capecitabine–oxaliplatin–irinotecan triplet (FOLFOXIRI)), CHEMCOM+ targeted (bevacizumab added), Other (diverse).
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are supported by previous studies in which DBS5 and
SBS35 signatures were linked to the effect of platinum (PLAT)
compounds, while SBS17b was detected specifically in 5-FU or
capecitabine (PYR) exposed tumors19. SBS8 was previously
indirectly associated with prior platinum treatment in metastatic
breast cancer17,20.

Remarkably, even though TMB was increased in patients who
received prior treatment compared to treatment-naive patients,
no specific mutations (coding or noncoding) were associated with
any of the defined prior-treatment groups or with prior treatment
in general. With regard to the GISTIC-defined CNVs, we found
increased frequencies of gains at 6p22.1, 6p21.1, and 18p11.32 as
well as losses at 3p14.2 and 8p21.3 in patients who received prior
treatment (Supplementary Table 2; chi-square FDR < 0.05). More
specifically, gains of 6p22.1 and 6p21.1 were also associated with a
prior-treatment regimen containing PLAT/PYR ± target whereas
loss at 8p21.3 was only associated with PLAT/PYR+ target.

Comparing metastatic CRC to primary CRC. The above
described characteristics of our metastatic cohort were related to
previous reports on primary CRC to identify changes potentially
linked to the metastatic process (Supplementary Table 1).
Therefore, we compared the observed relative contributions of the
20 dominant mutational signatures in our cohort to primary CRC
data described by Alexandrov et al. (PCAWG cohort)17. For this
analysis only the 124 untreated metastatic CRC cases from our
cohort were included, since multiple treatments are known to
specifically affect these mutational signatures17,19,20. SBS1, 8 and
41, as well as DBS2, 4, and 6 showed a significantly increased
relative contribution in untreated metastatic cases (MWU, FDR ≤
0.01; Fig. 4), suggesting they may be associated with the

metastatic process. Etiologies for these signatures are either
unknown (SBS8/41, DBS1) or appear age-related (SBS1, DBS2/
DBS4), although DBS2 has also been linked to exposure to
tobacco smoking and other endogenous and exogenous muta-
gens. Mutation frequencies per gene were compared between
primary CRC (TCGA-DFCI cohort) and our total metastatic
cohort. For this purpose, we selected genes mutated in primary
CRC (TCGA-DFCI cohort) with >5% prevalence and com-
plemented these with here identified metastatic driver genes
regardless of their prevalence in primary CRC. Increased fre-
quencies were only observed in driver genes TP53, ZFP36L2,
KRAS, and APC (Fisher exact test, FDR ≤ 0.012). A decreased
frequency was observed for 21 non-driver genes (Supplementary
Table 3) and 1 driver gene, namely PIK3CA (Table 2). With
respect to the identified putative noncoding drivers (Table 3), all
of them were enriched in mCRC compared to primary CRC,
except for PIPSL and PTENP1 (ICGC dataset; Fisher exact test,
FDR < 5.74E-4).

Distinct mutational signature patterns in mCRC patients.
Unsupervised hierarchical clustering using the 20 dominant
mutational signatures complemented with mutational signatures
previously described in primary CRC (SBS15/17a/28/37 and
DBS10), and mutational signatures showing a dominant relative
contribution (>25%) in at least one of our samples (SBS10a/10b),
revealed three major and three minor groups of patients (Fig. 5).

The three major groups are found in cluster 1, cluster 3, and
cluster 6. Clusters 1 and 6 are labeled “prior treatment” and
“primary-like” as they are enriched for either patients with or
without prior treatment compared to all other clusters (Fisher’s
exact test: p= 4.588E-25 and p= 4.754E-15, respectively) and are

Fig. 2 Oncoplot of metastatic CRC depicting identified driver genes and somatic mutations (SNV, InDels, and MNV). Top panel: genes identified by dN/
dS as driver genes per type of mutation; purple: frameshift variant; orange: other variant; blue: stop/gain variant; green: structural variant. Bottom panel:
first track: clinical information: sex (male: orange; female: green) and second track: biopsy site. Track three (PLAT/PYR ± targeted) indicates which patients
have been treated with platinum-based therapy (PLAT; e.g., oxaliplatin) and a pyrimidine-targeting drug (PYR; e.g., 5-FU), with or without the addition of
another targeted treatment (±targeted; e.g., bevacizumab). Tracks four to six depict the distribution of the consensus molecular subtypes (CMS), tumor
mutational burden (TMB), and the number of structural variant deletions of size 10kb–1Mb (DEL_CFS), partly associated with Common Fragile Sites (CFS),
respectively. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20887-6

4 NATURE COMMUNICATIONS |          (2021) 12:574 | https://doi.org/10.1038/s41467-020-20887-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


T
ab

le
2
M
ut
at
io
n
fr
eq

ue
nc
y
dr
iv
er

ge
ne

s.

M
et
as
ta
ti
c
C
R
C

P
ri
m
ar
y
C
R
C
—
(T

C
G
A
,
co
m
bi
ne

d
st
ud

ie
s
cB

io
po

rt
al
)

M
et
as
ta
ti
c
C
R
C
—
(Y

ae
ge

r
et

al
.)

G
en

e
dN

/d
S
q-
va
lu
e

M
ut
at
io
ns

(N
)

M
ut
at
io
ns

(%
)

M
ut
at
io
ns

(N
)

M
ut
at
io
ns

(%
)

Fi
sh
er

p-
va
lu
e

FD
R
H
oc
hb

er
g

%
ch
an

ge
in

m
et
a

M
ut
at
io
ns

(N
)

M
ut
at
io
ns

(%
)

Fi
sh
er

p-
va
lu
e

FD
R
H
oc
hb

er
g

T
P5

3
0

31
7

73
.9

11
23

57
.6

2.
0
4
E-
10

4
.7
E-
0
9

16
.3

24
6

76
.6

0
.3
9
5

1
Z
FP
36

L2
0

4
2

9
.8

9
7

5.
0

3.
6
1E
-0
4

0
.0
0
8

4
.8

N
ot

pr
es
en

t
K
R
A
S

0
20

3
4
7.
3

74
4

38
.2

5.
8
8
E-
0
4

0
.0
12

9
.1

12
7

39
.6

0
.0
37

0
.4
8
7

A
PC

0
33

6
78

.3
13
72

70
.4

8
.8
6
E-
0
4

0
.0
18

7.
9

24
1

75
.1

0
.3
35

1
PI
K
3C

A
0

6
8

15
.9

4
4
5

22
.8

0
.0
0
1

0
.0
23

−
7.
0

4
9

15
.3

0
.8
4
0

1
B2

M
5.
37

E-
0
3

8
1.
9

9
1

4
.7

0
.0
0
7

0
.1
28

−
2.
8

2
0
.6

0
.2
0
2

1
SM

A
D
4

0
74

17
.2

24
3

12
.5

0
.0
10

0
.1
6
4

4
.8

4
7

14
.6

0
.3
6
7

1
A
T
M

9
.5
0
E-
0
4

33
7.
7

22
7

11
.6

0
.0
17

0
.2
6
6

−
4
.0

18
5.
6

0
.3
0
6

1
FB

X
W

7
0

51
11
.9

30
1

15
.4

0
.0
6
1

0
.9
12

−
3.
6

25
7.
8

0
.0
6
8

0
.8
14

A
M
ER

1
0

37
8
.6

20
9

10
.7

0
.2
20

0
.9
13

−
2.
1

11
3.
4

0
.0
0
4

0
.0
6
7

A
R
ID
1A

1.
13
E-
0
9

39
9
.1

20
1

10
.3

0
.4
8
0

0
.9
13

−
1.
2

15
4
.7

0
.0
22

0
.3
33

BC
L9

5.
27

E-
0
2

28
6
.5

10
7

5.
5

0
.4
19

0
.9
13

1.
0

N
ot

pr
es
en

t
BC

L9
L

2.
24

E-
0
6

27
6
.3

13
3

6
.8

0
.7
50

0
.9
13

−
0
.5

N
ot

pr
es
en

t
BR

A
F

0
56

13
.1

27
3

14
.0

0
.6
4
4

0
.9
13

−
1.
0

38
11
.8

0
.6
57

1
EL
F3

5.
37

E-
0
3

7
1.
6

51
2.
6

0
.2
9
9

0
.9
13

−
1.
0

N
ot

pr
es
en

t
LM

T
K
3

1.
33

E-
0
2

15
3.
5

56
2.
9

0
.5
30

0
.9
13

0
.6

no
t
pr
es
en

t
N
R
A
S

0
26

6
.1

12
5

6
.4

0
.9
13

0
.9
13

−
0
.4

14
4
.4

0
.3
29

1
PT

EN
4
.3
0
E-
0
8

17
4
.0

12
3

6
.3

0
.0
6
9

0
.9
13

−
2.
3

14
4
.4

0
.8
54

1
R
N
F4

3
2.
20

E-
0
2

28
6
.5

16
2

8
.3

0
.2
39

0
.9
13

−
1.
8

21
6
.5

1.
0
0
0

1
SM

A
D
3

5.
6
8
E-
0
3

11
2.
6

72
3.
7

0
.3
0
9

0
.9
13

−
1.
1

11
3.
4

0
.5
18

1
SO

X
9

0
4
1

9
.6

17
7

9
.1

0
.7
8
2

0
.9
13

0
.5

16
5.
0

0
.0
25

0
.3
52

T
C
F7
L2

1.
0
7E

-0
9

50
11
.7

17
7

9
.1

0
.1
0
3

0
.9
13

2.
6

19
5.
9

0
.0
0
7

0
.1
16

T
G
IF
1

1.
33

E-
0
2

18
4
.2

6
2

3.
2

0
.3
0
0

0
.9
13

1.
0

N
ot

pr
es
en

t

T
w
en

ty
-t
hr
ee

ge
ne

s
id
en

ti
fi
ed

as
pu

ta
tiv

e
dr
iv
er

ge
ne

s
us
in
g
th
e
ra
tio

of
no

ns
yn
on

ym
ou

s
to

sy
no

ny
m
ou

s
su
bs
tit
ut
io
ns

ca
us
ed

by
th
e
so
m
at
ic
nu

cl
eo

tid
e
m
ut
at
io
ns

(S
N
V
an
d
In
D
el
s;
dN

/d
S
an
al
ys
is
).
P-
va
lu
es

ar
e
de

ri
ve
d
fr
om

th
e
Fi
sh
er

ex
ac
t
te
st

(t
w
o-
si
de

d)
an
d
co
rr
ec
te
d
fo
r

m
ul
tip

le
te
st
in
g
us
in
g
th
e
FD

R
(H

oc
hb

er
g)

m
et
ho

d.

T
ab

le
3
M
ut
at
io
n
fr
eq

ue
nc
y
no

nc
od

in
g
ge

ne
s.

M
et
as
ta
ti
c
C
R
C

P
ri
m
ar
y
C
R
C
-
(I
C
G
C
)

EN
S
G

S
ym

bo
l

S
iz
e

C
hr

T
yp

e
M
ut
at
io
n
ra
te

FD
R
H
oc
hb

er
g

M
ut
at
io
ns

(N
)

M
ut
at
io
ns

(%
)

M
ut
at
io
ns

(N
)

M
ut
at
io
ns

(%
)

Fi
sh
er

p-
va
lu
e

FD
R
H
oc
hb

er
g

EN
SG

0
0
0
0
0
27

30
0
1

A
L7
31
53

3.
2

57
7

10
ln
cR

N
A

0
.0
6
75

9
1

0
6

1.
4

0
0

0
.0
0
12
9
1

3.
8
7E

-0
3

EN
SG

0
0
0
0
0
28

0
32

5
A
C
0
74

18
3.
2

9
21

7
T
EC

0
.0
33

6
59

0
25

5.
8

a
a

EN
SG

0
0
0
0
0
26

15
8
4

A
L5
13
54

8
.1

17
23

6
ln
cR

N
A

0
.0
12
76

8
9
.9
3E

-2
4

14
3.
3

3
0
.3

3.
8
4
E-
0
5

2.
0
9
E-
0
4

EN
SG

0
0
0
0
0
25

9
8
34

A
L3
6
53

6
1.
1

34
8
0

1
ln
cR

N
A

0
.0
0
71
8
4

2.
4
8
E-
0
9

17
4
.0

0
0

5.
6
2E

-0
9

7.
30

E-
0
8

EN
SG

0
0
0
0
0
26

4
9
20

A
C
0
18
52

1.
5

4
58

3
17

ln
cR

N
A

0
.0
0
8
51

1.
0
2E

-0
8

16
3.
7

1
0
.1

2.
0
6
E-
0
7

1.
8
5E

-0
6

EN
SG

0
0
0
0
0
23

17
8
4

D
BI
L5
P

26
76

17
T
ra
ns
cr
ib
ed

_u
ni
ta
ry
_p
se
ud

og
en

e
0
.0
0
8
59

5
6
.2
6
E-
0
7

18
4
.2

1
0
.1

2.
39

E-
0
8

2.
6
3E

-0
7

EN
SG

0
0
0
0
0
27

30
33

LI
N
C
0
20

35
54

75
3

ln
cR

N
A

0
.0
0
6
75

8
9
.5
4
E-
0
6

23
5.
4

0
0
.0

6
.1
5E

-1
2

8
.6
1E
-1
1

EN
SG

0
0
0
0
0
26

6
9
79

LI
N
C
0
11
8
0

39
8
5

17
ln
cR

N
A

0
.0
0
55

21
1.
18
E-
0
5

13
3.
0

1
0
.1

5.
0
0
E-
0
6

4
.0
0
E-
0
5

EN
SG

0
0
0
0
0
27

20
70

A
C
0
0
56

18
.1

31
4
7

5
ln
cR

N
A

0
.0
0
6
9
9
1

4
.1
9
E-
0
5

18
4
.2

1
0
.1

2.
39

E-
0
8

2.
6
3E

-0
7

EN
SG

0
0
0
0
0
25

15
6
2

M
A
LA

T
1

8
8
28

11
ln
cR

N
A

0
.0
0
55

51
0
.0
0
0
28

3
30

7.
0

19
2.
2

4
.1
9
E-
0
5

2.
0
9
E-
0
4

EN
SG

0
0
0
0
0
26

10
9
4

A
C
0
0
70

6
6
.2

27
10

9
ln
cR

N
A

0
.0
0
8
11
8

0
.0
0
0
28

7
11

2.
6

2
0
.2

1.
8
6
E-
0
4

7.
4
3E

-0
4

EN
SG

0
0
0
0
0
26

38
74

LI
N
C
0
0
6
72

4
21
6

17
Pr
ot
ei
n_
co
di
ng

0
.0
0
54

55
0
.0
0
0
4
9
3

14
3.
3

2
0
.2

9
.7
0
E-
0
6

6
.7
9
E-
0
5

EN
SG

0
0
0
0
0
18
0
76

4
PI
PS

L
33

4
9

10
T
ra
ns
cr
ib
ed

_p
ro
ce
ss
ed

_p
se
ud

og
en

e
0
.0
0
6
56

9
0
.0
0
13

14
3.
3

34
3.
9

0
.6
4
0

0
.6
4
0

EN
SG

0
0
0
0
0
23

79
8
4

PT
EN

P1
39

9
5

9
T
ra
ns
cr
ib
ed

_p
ro
ce
ss
ed

_p
se
ud

og
en

e
0
.0
0
55

0
7

0
.0
0
13

15
3.
5

22
2.
5

0
.3
76

0
.6
4
0

EN
SG

0
0
0
0
0
24

0
8
59

A
C
0
9
36

27
.4

59
16

7
ln
cR

N
A

0
.0
0
6
0
8
5

0
.0
0
4
8

18
4
.2

2
0
.2

1.
6
6
E-
0
7

1.
6
6
E-
0
6

Fi
ft
ee
n
no

nc
od

in
g
ge
ne

s
w
ith

an
en

ri
ch
ed

m
ut
at
io
n
ra
te

co
m
pa
re
d
to

su
rr
ou

nd
in
g
no

na
nn

ot
at
ed

re
gi
on

s.
P-
va
lu
es

ar
e
de

ri
ve
d
fr
om

th
e
Fi
sh
er

ex
ac
t
te
st

(t
w
o-
si
de

d)
an
d
co
rr
ec
te
d
fo
r
m
ul
tip

le
te
st
in
g
us
in
g
th
e
FD

R
(H

oc
hb

er
g)

m
et
ho

d.
a E
N
SG

no
t
re
co
gn

is
ed

by
IC
G
C
da
ta

po
rt
al
.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20887-6 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:574 | https://doi.org/10.1038/s41467-020-20887-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


characterized by higher relative contributions of signatures
related to prior treatment (SBS5/8/35/17a/17b and DBS5) and
signatures known from primary CRC (SBS1/5/18/40, DBS9),
respectively. Samples from Cluster 6 are enriched (Fisher’s exact
p= 0.005) for samples with >5% contribution of the recently
described E. coli mutational signature in CRC as well21. Cluster 3
was labeled ‘mCRC-specific’ as it contains both patients with (n
= 63) and without (n= 31) prior treatment characterized by
higher relative contributions of signatures SBS9/37/39/41, which,
except for SBS37, are rarely detected in primary CRC. Etiologies
for SBS37/39/41 are unknown, whereas SBS9 mutations have
been partly associated with polymerase eta (Pol η) function
during somatic hypermutation in lymphoid cells. In vitro, Pol η
activity has been associated with anticancer drugs resistance,
specifically cisplatin and 5-FU22–24. Indeed we find that the
majority of patients (13 out of 15) in cluster 3 with a high SBS9
contribution (≥10%) had already received prior treatment,
although this did not reach statistical significance (Fisher’s exact
test p= 0.07).

The remaining minor groups are found in Clusters 2, 4, and 5.
Samples in clusters 2 and 4 are defined by a large contribution of
DBS8 and DBS2, respectively. Cluster 5, labeled ‘high TMB’,
contains 14 samples, which were all characterized by a high TMB
(defined as >10/Mb) compared to only 82 out of the 415
remaining samples (20%) in the other clusters. High contribu-
tions of DNA mismatch repair associated signatures SBS15/44
and DBS7 characterize the 13 MSI samples in this cluster,

whereas the one remaining sample showed high contributions of
SBS10a/b, associated with polymerase epsilon (POLE) mutations.

MSI-specific gene mutations. We subsequently investigated
whether specific somatic gene mutations were associated with
each of the six clusters described above and found this was true
only for the high TMB cluster (cluster 5). To correct for the
higher likelihood of finding any mutation in a high TMB sample,
we applied a permutation test25,26, which identified 28 genes as
significantly more frequently mutated in the high TMB cluster
versus all other samples (Fisher exact test, FDR and permutation
p < 0.05, see Supplementary Table 4). As these 28 genes are large
(cDNA size range 1.5–22 kb) and often contain substantial
numbers of microsatellites and mononucleotide stretches (range
4–126), we evaluated whether their observed mutation frequency
in MSI cases was significantly higher than the frequency dis-
tribution observed for all other genes with a comparable number
(±10%) of MSI-prone coding sequences. Except for TNXB, for
which we were unable to establish a reliable control distribution,
all identified genes were significantly more frequently mutated in
MSI cases compared to control genes containing similar numbers
of MSI-prone sequences (one sample sign test; all p ≤ 0.0001).
These results suggest that mutations in these genes are selected
for during the disease process in MSI tumors. The top 2 genes,
ACVR2A and UBR5, are known targets of the MSI process27.
LRP1 mutations were found to reduce its expression in CRC and
were associated with MSI status and poor outcome28. Although
the other 25 identified genes were not previously associated with
MSI status, three of these genes (KMT2C, KMT2D, and FAT1)
were present in the Yaeger dataset of mCRC samples6. Mutations
in all three overlapping genes were significantly enriched in MSI
cases (n= 16) compared to microsatellite stable (MSS) cases (n=
305) in this dataset as well (all Fisher p <=9.19E-7).

Association between molecular landscape and treatment
response. The observed molecular characteristics were associated
with response to current treatment for the 286 patients in our
cohort with recorded treatment response. These results should be
interpreted with caution due to the heterogeneity of our cohort in
terms of both treatment line and type of prior treatments
received, which may introduce bias. We studied ordinal response
(PD, SD, and PR) to any treatment as well as to specific treatment
regimens. In total, 123 items were used as input in the regression
model, consisting of five themes (full list in Supplementary
Data 3): clinical parameters (age, gender, prior treatment, and
radiotherapy), counts (TMB, kataegis, chromothripsis, total
number of SV by type and the number of 10kb–1Mb deletions),
mutational signatures (DBS/SBS), driver genes (including non-
coding genes), and GISTIC-defined CNVs. Items that reached
univariate statistical significance (p < 0.05) were used in a multi-
variable penalized ordinal regression model for treatment
response (Table 4).

Overall we found that, next to receiving prior treatment(s), the
number of 10kb–1Mb deletions, mutations in KRAS, APC,
PIK3CA, and LINC00672, mutational signatures SBS17b/39,
DBS2/5/11, and gains at 18p, 17q, and 20q were associated with
treatment response regardless of treatment type in mCRC
patients. For SBS17b this effect was more pronounced when
specifically investigating patients treated with platinum as
described before17. CNVs were predominantly associated with
response to PLAT/PYR or PYRmono treatment, whereas
mutations in FBXW7 were associated with poor response to
targeted treatment. FBXW7 mutations were detected in 51
patients from our cohort, including 21 KRAS wild-type patients.
Of these 21 patients, five were treated with panitumumab

Fig. 3 Mutational signatures in prior-treated cases compared to
untreated cases. Relative contribution (%) of several single and double
base mutational signatures (SBS/DBS) in patients receiving prior treatment
with platinum, pyrimidine antagonist, and targeted anti-EGFR treatment
(PLAT/PYR+ target; orange, n= 134) compared to untreated patients
(blue, n= 124). Horizontal lines indicate the median. P-values are derived
from the MWU test (two-sided) and corrected for multiple testing using
the FDR (Hochberg) method. Source data are provided as a Source
Data file.

Fig. 4 Mutational signatures in primary CRC and untreated metastatic
CRC. Relative contribution (%) of several single and double base mutational
signatures (SBS/DBS) in primary CRC tumors (purple, n= 73)17, compared
to untreated metastatic CRC tumors (green, n= 124). Horizontal lines
indicate the median. P-values are derived from the MWU test (two-sided)
and corrected for multiple testing using the FDR (Hochberg) method. Source
data are provided as a Source Data file.
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monotherapy, all of whom had PD as best response. This suggests
that, next to somatic KRAS mutations, somatic FBXW7 muta-
tions may provide an additional negative selection marker for
anti-EGFR treatment. This finding is in concordance with
previous reports on FBXW7 mutation prevalence in nonrespond-
ing patients on anti-EGFR treatment29,30.

Potential clinical implications. WGS data of our cohort of 429
patients with metastatic CRC revealed several potential molecular
features that might be associated with sensitivity to particular
anticancer agents. A high TMB (here defined as >10 mutations
per Mb) has been suggested as a potential selection tool for
tumors that may respond to immunotherapy31. In our cohort, 96
(22%) samples showed a TMB > 10, of which 13 were MSI. A
gradual increase in TMB was observed with the number of prior
treatments (test for trend, p= 4.39E-13). For the subset of sam-
ples of which we also had RNA-seq data available, we calculated
the Tumor Infiltrating Leukocyte (TIL) score as a proxy for the
immunogenicity of the tumor32. Interestingly, we did not observe
a significantly higher TIL score in the TMB-high samples (n=
21) compared to the other samples (n= 63; MWU; p= 0.39),
whereas the average TIL score in MSI samples is significantly
higher compared to both MSS samples with a high TMB and with
a low TMB (Kruskal–Wallis test (p= 0.037) followed by Dunn’s
pairwise comparison (Benjamini–Hochberg corrected p= 0.012
and p= 0.021 for MSI compared to MSS with high and low TMB,
respectively (See Supplementary Fig. 2). Although far from defi-
nite, these results support the on-label use of immunotherapy in
MSI tumors and suggest that merely using TMB may not be
sufficient to identify the tumors with immunogenic potential in
the metastatic setting.

Other on-label markers found in our cohort include a
targetable BRAF V600E mutation in 40 patients, as well as 130
RAS/RAF wild-type patients that did not receive targeted anti-

EGFR treatment yet. However, our data suggest that mutations in
FBXW7, observed in 21 out of these 130 RAS/RAF wild-type
patients, should be considered as a contra-indication for the use
of anti-EGFR treatment. Molecular biomarkers for potential off-
label use that were found in our cohort include amplifications of
ERBB2 (HER2), MET and CDK4, loss of BRCA1 and BRCA2
through deletion or high impact mutations, loss of TSC1 and
TSC2 through high impact mutations, and possible fusions of
PDGFRB. In addition, 23 patients in our cohort carried a KRAS
G12C mutation, for which an inhibitor may become available in
the near future33.
In summary, for 55% of our patients one or more targeted

treatments are potentially available based on the molecular profile
of their cancer (Fig. 6).

Discussion
This study encompasses a WGS-based, comprehensive descrip-
tion of the molecular landscape of metastatic CRC and aims to
put this landscape into perspective by associating it with prior
systemic treatments, comparing it to primary CRC and relating it
to treatment response.

In general, the genomic landscape of CRC remains relatively
stable in metastatic disease. However, compared to primary CRC,
our metastatic CRC cohort showed significant enrichment for
mutations in 4 out of 23 coding and 12 out of 15 noncoding
(putative) driver genes. From the identified putative drivers, only
mutations in PIK3CA were significantly decreased in mCRC. Six
of our identified coding driver genes are not present in the cur-
rent CRC-specific MSK-IMPACT panel, namely ZFP36L2, BCL,
BCL9L, ELF3, LMTK3, and TGIF1.

Within the mCRC cohort we observed clear effects of received
prior treatments on the total numbers of aberrations, CNVs, and
mutational signatures, with the latter sufficiently dominant to
show up as a separate group after hierarchical clustering.

Fig. 5 Unsupervised hierarchical clustering of metastatic CRC using relative contribution of preselected mutational signatures. Heatmap representing
the median-centered relative contribution of mutational signatures between samples. Values were scaled from red (relative contribution above median) to
yellow (relative contribution below median). Included single and doublet base signatures (SBS/DBS) are indicated at the right to which etiologies are added
when known. Grouping of samples is shown by the dendrogram at the top. Source data are provided as a Source Data file.
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Remarkably, we also observed an mCRC-specific cluster char-
acterized by signatures which are rarely found in primary CRC
and are not associated with any treatment (SBS9/39/41). SBS9 is
associated with Pol η activity, an error-prone polymerase encoded
by the POLH gene, which mediates translesion synthesis and is
induced by replication stress34. Interestingly, high levels of Pol η
have been associated with cancer therapy resistance in vitro22–24.
We did observe that the majority of patients with a high relative
SBS9 contribution had already received prior treatment; however,
unfortunately, sample numbers were too low to directly associate
SBS9 contribution with POLH expression in our dataset. Another
predominant cluster group consisted of metastatic MSI samples.
In these samples we observed a significant enrichment of muta-
tions in a specific set of genes compared to other similarly MSI-
prone genes, suggesting these genes are preferentially affected or
selected for during disease progression.

The varying number and types of received prior treatments
within our cohort hampered the search for prognostic and pre-
dictive biomarkers. However, we found that, next to already
known events, the number of LINC00672 mutations and
10kb–1Mb deletions were associated with treatment response
irrespective of the type of treatment. Strikingly, many of these
recurrent deletions occur in known Common Fragile Site (CFS)
genes, as described in primary CRC as well13, implicating repli-
cation stress as one of driving mechanisms35. In addition, FBXW7
mutations were predictive for poor response to EGFR-targeted
treatments in our prospective cohort. This is in line with previous
observations showing that FBXW7 mutations were enriched in
unresponsive patients compared to patients responding well to
EGFR-targeted treatments29,30.

The current study gives a detailed description of the genomic
landscape of metastatic CRC. More specifically, our study iden-
tifies treatment-induced changes, metastasis-specific alterations,
and associations between molecular traits and response to treat-
ment. In addition, we provide prospective validation for FBXW7
mutations as a predictive biomarker for poor response to EGFR-
targeted treatment. Combined with future studies, this catalogue
of molecular alterations will speed up the identification of resis-
tance mechanisms, the determination of metastasis-driving pro-
cesses, and, ultimately, the improvement of metastatic CRC
patient care.

Methods
Patient cohort and study procedures. Colorectal cancer patients included in this
study were selected from the previously described cohort of the Center for Per-
sonalized Cancer Treatment (CPCT) consortium (CPCT-02 Biopsy Protocol,

Table 4 Multivariate LASSO analysis.

Type Item All treatments Oxaliplatin
containing

PLAT/PYR Target-mono TOP/PYR

Clinical Prior treatment 0.57
Gender 0.55

Counts number of tandem duplications 0.39
Mutational
signatures

DBS2 −0.02
DBS5 0.13
DBS11 −0.03
SBS17b 0.07 0.13
SBS39 0.04

Driver genes APC 0.23
KRAS 0.78
PIK3CA 0.22
FBXW7 4.36

GISTIC regions Gain 17q12 (ERBB2a) 0.44
Gain 18p11.32 (CETN1a) 0.59
Gain 20q11.1 (BCL2L1a) 0.12
Gain 8p11.21 (KAT6A) −0.52 −0.11
Gain 7p21.3 (VWDE) 1.36
Gain 7q31.2 (METa) 0.20
Gain 7q34 (no genes in peak) 1.05
Gain 14q23.1 (no genes in peak) 0.51
Loss 18q12.2 (hsa-mir-924a) −1.18 −1.26
Loss 6q26 (PARK2) −0.14
Loss 9p21.3 (CDKN2Aa) −0.46
Loss 16q23.1 (WWOX) −0.34
Loss 4q35.1 (IRF2) 1.84
Loss 18q21.2 (SMAD4) 2.96
Loss Xp22.31 (STSa) −1.03
Loss 14q23.3 (GPHN) −0.39

Items that reached univariate statistical significance (p < 0.05) were used in a multivariable penalized ordinal regression model for treatment response. Univariate regression was performed for genomic
features (Supplementary Data 3) using the ‘polr’ function from the MASS R package (v7.3–51.4) and subsequently those with a univariate two-sided p-value < 0.05 were selected for multivariable
ordered LASSO regression using the ordinalNet R package (v2.7). Bold indicates known Fragile Site region.
aMultiple genes present in region.

Fig. 6 Actionable genes. Data from OncoKB were matched to affected genes
observed in our mCRC cohort. Numbers indicate the number (and percentage)
of affected patients. Source data are provided as a Source Data file.
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ClinicalTrial.gov no. NCT01855477), which was approved by the medical ethics
committee of the University Medical Center Utrecht, the Netherlands9. All patients
have given explicit consent for whole-genome sequencing and data sharing for
cancer research purposes. Upon our data request for all CRC patients thus far, we
were provided with the data of all patients registered as metastatic CRC patients
included between April 2016 and January 2019 (n= 487). Patients who received
systemic treatment which is not normally given to colorectal cancer patients (e.g.,
carboplatin, paclitaxel, sunitinib, and etoposide) were excluded to avoid erroneous
inclusion of patients suffering from another type of cancer (n= 28). When multiple
biopsies were included for one patient (n= 29), only the first biopsy was included in
our analyses. In total, we included 429 distinct CRC patients in our analyses. Based
on the provided information regarding all forms of systemic treatment patients
received before the study biopsy took place (further referred to as “prior treat-
ment”), we coded the (groups of) active agents using the following abbreviations:
PLAT (oxaliplatin), PYR (fluoropyrimidines), TOP (topoisomerase inhibitor; Iri-
notecan), +targeted (when bevacizumab or panitumumab was added), CHEMCOM
(triplet combination therapy). Prior-treatment regimens were grouped based on
their working mechanism to enable the analysis of their effect on the genomic
landscape. Treatment related analyses were performed using combinations of the
abbreviations mentioned above. For detailed information see Table 1.

Whole-genome sequencing; identification of somatic changes. Whole-genome
sequencing of paired tumor/normal was performed in all cases. In short, raw
sequencing data were processed using bcl2fastq (versions 2.17 to 2.20), mapped to
the human reference genome GRCh37 using BWA-mem v0.7.Sa and GATK BQSR
and Haplotype Caller v3.4.46 were used to call somatic mutations. Within our
cohort, 98% of the biopsies of metastatic lesions showed a coverage of at least 30×
(95% with >60× coverage), whereas for the normal blood 98% had >10× coverage
and 94% >20× coverage. The identification of copy number changes was performed
using GISTIC v2.0.2336 with the following parameters: genegistic 1; gcm extreme;
maxseg 4000; broad 1; brlen 0.98; conf 0.95; rx 0; cap 3; saveseg 0; armpeel 1;
smallmem 0; res 0.01; ta 0.1; td 0.1; savedata 0; savegene 1; and qvt 0.19,20.

RNA sequencing and CMS calling. Matched RNA was isolated from the same
frozen tissue for 91 CRC patients on an automated setup (QiaSymphony)
according to supplier’s protocols (Qiagen) using the QIAsymphony RNA Kit for
tissue and quantified by Qubit. A total of 50–100 ng of RNA was used as input for
library preparation using the KAPA RNA HyperPrep Kit with RiboErase (Human/
Mouse/Rat) (Roche). Barcoded libraries were equimolarly pooled and sequenced
using standard settings (Illumina) on either a NextSeq 500 (V2.5 reagents) gen-
erating 2 × 75 read pairs or a NovaSeq 6000 generating 2 × 150 read pairs. BCL
output was converted to FASTQ using bcl2fastq (versions 2.17–2.20) using default
parameters and sequence reads were trimmed for adapter sequences using fastp
(v0.20.0). The resulting FASTQ files were mapped to GRCh38 using STAR
(v2.6.1d)37. Sambamba (v0.7.0)38 was used to mark duplicates and index the
resulting BAM files. Gene annotation was derived from GENCODE Release 30
(https://www.gencodegenes.org/), raw read counts were obtained with feature-
Counts (v1.6.3)39 and normalized using GeTMM40. Normalized data were used to
(1) determine CMS with both the single-sample prediction parameter from the
“CMSclassifier” package (v1.0.0) (https://github.com/Sage-Bionetworks/
CMSclassifier)2 and CMSCaller v(0.99.1)11, and (2) calculate the Tumor Infiltrating
Lymphocytes (TIL) score by averaging the expression of TIL-genes32

Identification of mutational signatures and driver genes. Mutational signatures
(COSMIC v3)17 were called using R package MutationalPatterns v1.10.018,
focusing on single and double base signatures. This package was also used to
perform de novo signature calling using the Non-negative Matrix Factorization
(NMF) method. Detection of kataegis and chromothripsis was performed as pre-
viously described41. In short, to call kataegis only SNVs were considered to
establish segments based on the intermutational distance. Segments were deter-
mined using a piecewise constant fitting model and were called as kataegis when at
least five SNVs were present showing an intermutational distance of ≤2 kb.
Chromothripsis-like events were called using the Shatterseek R package (v0.4).
Driver genes, i.e., genes under selective pressure, were identified by the dN/dS
model using R package dndscv (v0.0.1.0)42. A global q ≤ 0.05 was used to select
statistically significant driver genes. The R package discover v0.9.243 was used to
test for mutual exclusivity. To identify noncoding genes with an enriched mutation
rate, we first established a baseline mutation rate based on all identified SNVs,
MNVs and Indels found in nonannotated regions, as we assume these regions are
not under any selective pressure. Nonannotated regions were based on GENCODE
annotation (version33) and for each of these regions we calculated a mutation rate
(number of mutations/size of region). Next, a mutation rate (number of mutations/
size of noncoding gene) was calculated for all somatic mutations annotated as
‘noncoding transcript variant’. The signed-rank test with Hochberg’s multiple
testing correction was used to determine whether the mutation rate of a recurrent
noncoding gene (mutated in at least 5% of the cohort) exceeded the baseline
mutation rate. Per noncoding gene a specific baseline was determined using only
nonannotated regions (>1 kb) in an area of 2 Mb surrounding the respective
noncoding gene.

Verification in publicly available datasets. To compare mutational signatures,
publicly available WGS data from 73 primary colorectal cases were used17. We
downloaded the matrix of counts for single and double base substitutions of pri-
mary cases and analyzed these in the same manner as the metastatic CRC cases to
call mutational signatures. Observed frequencies of mutated genes in metastatic
CRC were verified and compared in two publicly available datasets. Dataset 1, the
Yaeger dataset, contained 321 unique metastatic CRC patients that were profiled
for mutations by targeted sequencing6. Dataset 2, the TCGA-DFCI dataset, con-
tained 1949 unique primary CRC patients that were profiled for mutations in
coding regions (accessed via cBioPortal January 21, 2020). Prior to analysis,
synonymous mutations were removed and multiple mutations within the same
gene were aggregated per patient. Dataset 3, the ICGC dataset, was used to com-
pare mutation frequencies of noncoding genes and contained 866 unique primary
CRC patients with available mutation data (accessed via the ICGC data portal,
release 28). The used cohorts are summarized in Supplementary Table 1.

Estimating MSI-prone sequences. To evaluate preferentially mutated genes in MSI
cases, the number of MSI-prone sequences in a gene are of interest. Data of the
Microsatellite Database (MSDB, https://data.ccmb.res.in/msdb/, June 2, 2020) were
filtered for repeats annotated to human exons44. For each gene, the number of repeats
was summed. In addition, a custom Perl script was used to count mononucleotide
stretches of lengths between 6 and 13 (the latter is the minimum length used in
MSDB) as we noticed many InDels in our data in mononucleotide stretches less than
13 bases long. Exon sequences of the Consensus CDS database (https://www.ncbi.nlm.
nih.gov/CCDS/) were used to count the number of mononucleotide stretches per gene.

Associations with response to treatment. Treatment response was evaluated
according to RECIST (v.1.1) every 8 to 12 weeks depending on the treatment
regimen and was defined as response (partial or complete), stable disease, or
progressive disease45. For regression analyses, the best overall response was used as
outcome measure. Genomic features (at least 5 events per group) were associated
with response to treatment in a 2-step procedure using ordinal LASSO (least
absolute shrinkage and selection operator) regression, which is suited for datasets
with a relatively high number of predictors in comparison to cases and protects
against overfitting. First, univariate regression was performed for genomic features
(Supplementary Data 3) using the ‘polr’ function from the MASS R package
(v7.3–51.4) and subsequently those with a univariate p-value <0.05 were selected
for multivariable ordered LASSO regression using the ordinalNet R package (v2.7).

Identification of potentially actionable events. OncoKB (accessed on March 31,
2020) was used to identify clinically actionable genes from the list of mutated genes
in our cohort, using only genes with level 1 and 2 evidence46. In case OncoKB listed
a specific gene alteration as actionable genomic aberration, we only counted
patients that harbored that specific mutation or CNV. For genes for which only
‘Oncogenic mutations’ were listed by OncoKB, we only included patients if the
gene had a mutation with ‘High impact’ consequence (i.e., a nonsense or frameshift
mutation). To evaluate patients eligible for an anti-EGFR therapy, we included only
patients that were triple wild-type for KRAS, NRAS, and BRAF, and excluded those
patients that had already received anti-EGFR therapy prior to biopsy.

Statistics. In general, a Pearson’s Chi-squared test or Fisher’s exact test (in case of
too few expected events) was used to evaluate the categorical data while continuous
variables were evaluated using either a Mann–Whitney U test (MWU) or a
Kruskal–Wallis H (KWH) test depending on the number of categories. All sta-
tistical tests were two-sided and considered statistically significant when P < 0.05.
Stata 13.0 (StataCorp) and R (v3.6.0) were used for the statistical analyses. Multiple
testing using the Hochberg procedure to correct P values was applied when
necessary. The statistical test used is specified throughout the results section.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WGS, RNA-seq, and corresponding clinical data used in this study was made
available by the Hartwig Medical Foundation (Dutch nonprofit biobank organization)
after signing a license agreement stating data cannot be made publicly available via third
party organizations. Therefore, the data are available under restricted access and can be
requested upon by contacting the Hartwig Medical Foundation (https://www.
hartwigmedicalfoundation.nl/applying-for-data/) under the accession code DR-058.
Publicly available datasets that were used in this study are listed in Supplementary
Table 1. The Yaeger data used in this study are available in the cBioPortal for Cancer
Genomics (http://www.cbioportal.org/study?id=crc_msk_2017). The TCGA-DFCI data
used in this study have been deposited in the cBioPortal for Cancer Genomics which we
accessed on January 21, 2020 (https://www.cbioportal.org/study/summary?
id=coadread_tcga; https://www.cbioportal.org/study/summary?id=coadread_tcga_pub;
https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018;
https://www.cbioportal.org/study/summary?id=coadread_dfci_2016). The ICGC data
used in this study have been deposited in the ICGC data portal (release 28) (https://dcc.
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icgc.org/projects/COAD-US; https://dcc.icgc.org/projects/COCA-CN; https://dcc.icgc.
org/projects/READ-US). The remaining data are available within the Article,
Supplementary Information or available from the authors upon request. Source data are
provided with this paper.

Code availability
The bioinformatical code used for data processing is available at https://github.com/
hartwigmedical/pipeline5.
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