Immunity in Breast Cancer

Charting T cell evasion
and exploring new targets for T cells

Dora Hammerl
The studies described in this thesis were performed at the Laboratory of Tumor Immunology in collaboration with the Laboratory of Translational Cancer Genomics, Department of Medical Oncology, Erasmus MC Cancer Institute, within the framework of the Erasmus MC Molecular Medicine graduate school. These studies were funded by the Dutch Cancer Society (Alpe d’HuZes/KWF 2014-7087)

ISBN: 9789464190779

cover design and layout: Dora Hammerl

printed by: Gildeprint (www.gildeprint.nl)
Immunity in Breast Cancer
Charting T cell evasion and exploring new targets for T cells

- Immuniteit in borst kanker
In kaart brengen van T cel evasie en verkenning van nieuwe targets voor T cellen

Thesis

to obtain the degree of Doctor from the Erasmus University Rotterdam
by command of the rector magnificus

Prof.dr. R.C.M.E. Engels

and in accordance with the decision of the Doctorate Board.
The public defence shall be held on Friday 18 December 2020 at 13.30hrs

by

Dora M. Hammerl
born in Oberwart, Austria.
Doctoral Committee:

Promotors:
Prof. dr. J.E.M.A. Debets
Prof. dr. J.W.M. Martens

Other members:
Prof. dr. P.A.E. Sillevis Smitt
Prof. dr. A.W. Langerak
Prof. R.A. Salgado Figueroa
Thesis Content

Chapter 1
Short introduction to the thesis’ research

PART 1. Charting T cell Evasion

Chapter 2
Dora Hammerl, Marcel Smid, Mieke Timmermans, Stefan Sleijfer, John Martens, Reno Debets
‘Breast cancer genomics and immuno-oncological markers to guide immune therapies’

Chapter 3
Dora Hammerl, Maarten Massink, Marcel Smid, Carolien van Deurzen, Hanne Meijers-Heijboer, Quinten Waisfisz, Reno Debets*, John Martens*; *joint senior authors
‘Differential prognostic value in breast cancer subtypes: not T cell abundance, rather T cell influx, antigen recognition and suppression’

Chapter 4
Dora Hammerl, John Martens, Mieke Timmermans, Marcel Smid, Anita Trapman-Jansen, Renée Foekens, Olga Isaeva, Leonie Voorwerk, Emrah Balcioglu, Rebecca Wijers, Iris Nederlof, Hugo Horlings, Roberto Salgado, Marleen Kok, Reno Debets
‘Spatial immunophenotypes predict response to anti-PD1 treatment in Triple Negative Breast Cancer and capture distinct paths of CD8 T cell evasion’

PART 2. Exploring New Targets for T cells

Chapter 5
Dora Hammerl, Dietmar Rieder, Marcel Smid, John Martens, Zlatko Trajanoski, Reno Debets
‘Adoptive T cell Therapy: new avenues leading to safe targets and powerful allies’
Trends in Immunology, 2018 39:921-936
Chapter 6
Dora Hammerl, Dian Kortleve, Mieke Timmermans, van Mandy Brakel, Daan van Dorst, Monique de Beijer, Jeroen Demmers, Sonja Buschow, John Martens and Reno Debets
‘PCT2 is a novel, tumor selective and highly prevalent target for T cell receptors against triple negative breast cancer’

Chapter 7
Dian Kortleve, Dora Hammerl and Reno Debets
‘Orthotopic editing of T-cell receptors’

Chapter 8
General discussion

References

Summary/Samenvatting

Acknowledgements

PhD portfolio

List of publications

About the author
Chapter 1

Short introduction to the thesis’ research
Short introduction to the thesis’ research

Research in this thesis focuses on immunity in breast cancer (BC), zooming in on 2 main aspects, namely: improved understanding of the lack of immune control, particularly lack of T cell control; and the discovery and testing of new targets for adoptive T cell therapy. These 2 aspects are covered by Parts 1 and 2 of this thesis, respectively.

BC is one of the most frequently occurring cancers worldwide. In the Netherlands 1 in 8 women develop BC during their lifetime (source: IKN). In fact, BC is a heterogeneous disease comprising of several molecular and histological characteristics that can be classified into 4 main subtypes according to the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). This subtype classification has clinical relevance since it affects prognosis and available treatment options. In example, the BC subtypes luminal-A (i.e., ER+, PR+, HER2-, low proliferation, often measured by the marker Ki67) and luminal-B (i.e., ER+, PR+, HER2 or Ki67hi) have good prognosis (overall survival (OS): 94% and 90% respectively). These 2 subtypes also have fairly good treatment options, including chemotherapy and endocrine therapy given alone or together with modern targeted therapies, such as mammalian target of rapamycin (mTOR) inhibitors and cyclin dependent kinase (CDK4/6) inhibitors. The her2 subtype (i.e., ER-, PR-, HER2+) has an OS of 83%, and is mainly treated with chemotherapy combined with HER2-blocking antibodies. Finally, triple negative breast cancer (TNBC) (i.e., ER-, PR-, HER-) has the poorest survival (OS: 77%) and unfortunately limited treatment options, such as cytotoxic agents and, for specific subgroups, since recently Poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibition (ICI).^1–3^.

It has been recognized for several years that tumor infiltrating lymphocytes (TILs) are frequently present in BC (particularly in ER- subtypes) and that their abundance correlates with survival and therapy response^4–8^. Despite variable frequencies of TILs, their prognostic value was observed in all BC subtypes^9–11^. Hence, in the recent years the development of immune therapies for BC received markedly more attention. In a general sense, immune therapies include oncolytic viruses, vaccination, ICI and adoptive T cell therapy. Treatment with oncolytic viruses is considered to specifically infect malignant cells and boost anti-tumor immune responses; cancer
vaccines make use of predefined antigens either directly administered in form of peptide vaccine or loaded onto dendritic cells that are adoptively transferred; ICI represents treatment with monoclonal antibodies that target so called immune checkpoints, which are expressed by T cells and cancer cells, and aims to (re-)activate the anti-tumor T cell response; and adoptive T cell therapy makes use of the patients own T cells which encode for a T cell receptor with pre-defined tumor reactivity. The latter two forms of immune therapy are integral components of this thesis. To date, most immune therapy trials have been performed using ICIs in BC, and these trials showed higher initial responses in TNBC when compared to other BC subtypes (see Chapter 2 for an overview). Notably, objective response (OR) rates to ICI monotherapy in metastatic TNBC (mTNBC) do not exceed 5-25%. These OR rates do increase when ICI is combined with cytotoxic agents (OR: 30-40%). As a result, anti-programmed cell death receptor ligand 1 (anti-PDL1) antibody atezolizumab combined with nab-paclitaxel, has recently been approved by the food and drug association (FDA) and European medicines agency (EMA) for PD-L1-positive mTNBC. Nevertheless, these OR rates are considered poor in comparison to other immunogenic solid tumor types, such as melanoma (OR: 43-72%), colorectal cancer (OR: 14-78%), lung cancer (OR: 19-33%). Furthermore, it is particularly hard to predict ICI-response in BC. For example, in contrast to the above mentioned tumor types, mutational burden is not predictive for ICI response in TNBC and even the currently used biomarker, PD-L1 on immune cells, does not accurately predict non-responders.

Rational and scope of Part 1

Collectively, these clinical observations urge for better understanding of the interplay between the immune system and malignant tumor cells in BC which are studied in Part 1 of this thesis. To date, there is little data regarding the shortcomings in CD8 T cell immunity (i.e., what drivers of immune responses are compromised or lacking) and consequences of effective CD8 T cell immunity (i.e., what immune evasive mechanisms come into play) in BC. In this regard, it has been recognized that not only numbers of TILs, but also their composition, spatial localization and activation state matters, urging for better understanding of spatial immune contexture in BC. Part 1 of this thesis focuses on these knowledge gaps, which is most critical to explain the variable and low responses to current immune therapies among BC subtypes (explained in detail in Chapters 2 and 3), and may contribute to the development of better predictive markers and provide a basis for the development of more effective combination treatments in TNBC according to determinants of CD8 T cell
immunity (see Chapter 4).

Study design and methodology: To this end, we utilized several public and proprietary BC cohorts, including node-negative untreated BC comprising all subtypes as well as anti-PD1 treated TNBC and studied antigen load, T cell clonality as well as gene-sets and pathways associated with T cell evasion. Furthermore, we studied the spatial immune contexture and potential drivers of different immunophenotypes using multiplexed immunofluorescent images on TNBC tissues and assessed its prognostic and predictive value. Finally, we evaluated immune evasive strategies using an integrative approach that combines clinical data, omics data and immunological data.

Rational and scope of Part 2

Part 2 of this thesis shifts focus towards the development of another immune therapy, namely adoptive T cell therapy with TCR engineered cells (AT) for the treatment of TNBC. AT has been very successful in different blood cancers (OR for CAR-T cells in B cell malignancies: 90%28) as well as solid tumors (OR TCR-T cells in synovial sarcoma: 61% and in melanoma: 50%29)(reviewed in Chapter 5), but has not yet been tested clinically for the treatment of BC. Despite proven clinical efficacy, AT in solid tumors is challenged by lack of suitable target antigens, poor and non-durable responses and sometimes even toxicities14,28,30–32. In contrast to CAR-T cells, TCR-T cells have shown superior clinical efficacy and safety in solid tumors due to recognition of a variety of target antigens (i.e. extracellular as well as intracellular proteins presented via MHC), we opted for the latter form of AT in BC (chapter 6). New technologies, including TCR editing have been described which potentially further enhance safety and efficacy profiles of engineered T cells (described in Chapter 7). In extension, efficacy is sometimes compromised by the immune-suppressive TME, which can limit influx and migration, antigen presentation or suppression of tumor specific T cells (also reviewed in Chapter 5). In this regard, T cell evasive strategies, identified in Part 1 provide rational for combination that enhance the efficacy of AT in BC (discussed in Chapter 8).

Study design and methodology: We studied gene and protein expression of target antigens for AT in TNBC and healthy tissues using large expression data sets and tissue micro arrays. We selected and applied a variety of in silico and laboratory tools that enable the identification of immunogenic epitopes including epitope predictions, immunopeptidome analysis of BC cell lines that overexpress
target antigens and in vitro binding assays. We identified TCRs using optimized protocols to enrich specific T cells from TILs or PBMC and tested their functionality and specificity in vitro.

Thesis content in a nutshell

Chapter 2 introduces Part 1 by providing a detailed overview of the composition and the prognostic value of TILs among BC subtypes, and informs on the outcome of various immune therapy trials in different BC subtypes.

In **Chapter 3** we have studied large patient cohorts of node-negative untreated BC and interrogated subtypes for the differential prognostic value of various immune parameters and the occurrence of immune evasive strategies using in silico techniques.

In **Chapter 4** we zoomed in on TNBC and have further delineated the prognostic and predictive value of spatial immune contexts (i.e., excluded, ignored and inflamed phenotypes) in untreated and anti-PD1 treated cancers. Furthermore, we performed in-depth analyses of distinct immune determinants and T cell evasive strategies among the different immunophenotypes using NGS data and multiplexed immune stainings.

An introduction to Part 2 is provided in **Chapter 5**. Here we present an overview of new technologies, including various in silico and laboratory tools, to enable on the one hand selection and validation of target antigens, epitopes, and their corresponding TCRs as well as to enable on the other hand choices of combinatorial approaches that counteract immune evasive mechanism.

In **Chapter 6**, we have applied these technologies and identified PCT2, a TNBC-specific target antigen with high and homogenous expression in tumor, but not healthy tissue. Using a variety of tools discussed in **Chapter 5**, we have identified safe and immunogenic epitopes and a corresponding TCR which may be further exploited for the development of AT for TNBC.

In **Chapter 7**, new technologies of TCR-editing that can further improve safety and efficacy of the identified TCR are discussed.

The final **Chapter 8** summarizes the main findings of both parts, and discuss how these findings affect future immune therapeutic developments to treat BC and in particular TNBC.
PART1

Charting T cell evasion
Chapter 2

Breast cancer genomics and immuno-oncological markers to guide immune therapies

Dora Hammerl, Marcel Smid, Mieke Timmermans, Stefan Sleijfer, John Martens, Reno Debets

Department of Medical Oncology, Erasmus MC – Cancer Institute, Rotterdam, the Netherlands

Seminars in Cancer Biology, doi: 10.1016/j.semcancer.2017.11.003
Abstract

There is an increasing awareness of the importance of tumor-immune cell interactions to the evolution and therapy responses of breast cancer (BC). Not surprisingly, numerous studies are currently assessing the clinical value of immune modulation for BC patients. However, till now durable clinical responses are only rarely observed. It is important to realize that BC is a heterogeneous disease comprising several histological and molecular subtypes, which cannot be expected to be equally immunogenic and therefore not equally sensitive to single immune therapies. Here we review the characteristics of infiltrating leukocytes in healthy and malignant breast tissue, the prognostic and predictive values of immune cell subsets across different BC subtypes and the various existing immune evasive mechanisms. Furthermore, we describe the presence of certain groups of antigens as putative targets for treatment, evaluate the outcomes of current clinical immunotherapy trials, and finally, we propose a strategy to better implement immuno-oncological markers to guide future immune therapies in BC.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>APOBEC</td>
<td>apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like</td>
</tr>
<tr>
<td>BRCA1/2</td>
<td>breast cancer 1/2</td>
</tr>
<tr>
<td>BCSS</td>
<td>breast cancer specific survival</td>
</tr>
<tr>
<td>CAF</td>
<td>cancer associated fibroblast</td>
</tr>
<tr>
<td>CCL</td>
<td>chemokine ligand</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T lymphocyte associated protein 4</td>
</tr>
<tr>
<td>CR</td>
<td>Complete response</td>
</tr>
<tr>
<td>CXCL</td>
<td>CXC-motif chemokine ligand</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DCIS</td>
<td>ductal carcinoma in situ</td>
</tr>
<tr>
<td>DFS</td>
<td>disease free survival</td>
</tr>
<tr>
<td>EBV</td>
<td>epstein-barr virus</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>ELF5</td>
<td>E75 like ETS transcription factor 5</td>
</tr>
<tr>
<td>EMT</td>
<td>epithelial - mesenchymal transition</td>
</tr>
<tr>
<td>GBP1</td>
<td>interferon induced guanylate binding protein 1</td>
</tr>
<tr>
<td>GRZM</td>
<td>granzyme</td>
</tr>
<tr>
<td>HER2</td>
<td>human epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>HERV-K</td>
<td>human endogenous retrovirus K</td>
</tr>
<tr>
<td>HLA</td>
<td>human leucocyte antigen</td>
</tr>
<tr>
<td>HPV</td>
<td>human papilloma virus</td>
</tr>
<tr>
<td>HR</td>
<td>hormone receptor or hazard ratio</td>
</tr>
<tr>
<td>hTERT</td>
<td>telomerase reverse transcriptase</td>
</tr>
<tr>
<td>IDC</td>
<td>invasive ductal carcinoma</td>
</tr>
<tr>
<td>IDO1</td>
<td>indoleamine-pyrorle-2,3-dioxygenase</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IGK</td>
<td>immunoglobulin kappa locus</td>
</tr>
<tr>
<td>IGLL5</td>
<td>immunoglobulin lambda like polypeptide 5</td>
</tr>
<tr>
<td>LAG3</td>
<td>lymphocyte activation gene 3</td>
</tr>
<tr>
<td>MDSC</td>
<td>myeloid derived suppressor cell</td>
</tr>
<tr>
<td>MEK</td>
<td>map kinase kinase</td>
</tr>
<tr>
<td>MFS</td>
<td>metastasis free survival</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MMTV</td>
<td>mouse mammary tumor virus</td>
</tr>
<tr>
<td>MUC1</td>
<td>mucin 1</td>
</tr>
<tr>
<td>MV</td>
<td>measles virus</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer cell</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>OCLN</td>
<td>occludin</td>
</tr>
<tr>
<td>OR</td>
<td>objective response or odds ratio</td>
</tr>
<tr>
<td>OS</td>
<td>overall survival</td>
</tr>
<tr>
<td>PC</td>
<td>plasma cell</td>
</tr>
<tr>
<td>PD1</td>
<td>programmed cell death protein 1</td>
</tr>
<tr>
<td>PDL1</td>
<td>programmed death ligand</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphoinositol 3-kinase</td>
</tr>
<tr>
<td>PR</td>
<td>progesteron receptor</td>
</tr>
<tr>
<td>RFS</td>
<td>relapse-free survival</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SD</td>
<td>stable disease</td>
</tr>
<tr>
<td>STAT1</td>
<td>signal transducer and activator of transcription 1</td>
</tr>
<tr>
<td>TAA</td>
<td>tumor associated antigen transport associated protein</td>
</tr>
<tr>
<td>TAP</td>
<td>tumor infiltrating leukocytes</td>
</tr>
<tr>
<td>TIL</td>
<td>tertiary lymphoid structures</td>
</tr>
<tr>
<td>TLS</td>
<td>transforming growth factor -beta</td>
</tr>
<tr>
<td>TNBC</td>
<td>triple negative breast cancer</td>
</tr>
<tr>
<td>TNFa</td>
<td>tumor necrosis factor -alpha</td>
</tr>
<tr>
<td>Treg</td>
<td>Regulatory T cell</td>
</tr>
<tr>
<td>Tyδ</td>
<td>gamma delta T cell</td>
</tr>
</tbody>
</table>
2.1 Introduction

Cancer immunotherapy is a rapidly emerging field, which has proven successful in the treatment of various tumor types, such as lymphoma, melanoma, renal cell carcinoma, and non-small cell lung cancer. Initially, breast cancer (BC) has been considered a poorly immunogenic tumor type and has therefore not been extensively investigated for its susceptibility to immune therapies. During the past years, however, it became evident that certain cases of BC are strongly infiltrated by immune cells and that the presence of these immune cells has significant prognostic and predictive value. Although many studies are currently examining immune therapies for BC, still only a minority of patients appear to respond, and little is known about the underlying mechanisms of treatment efficacy. Thus, there is an unmet need to get better understanding of the interaction of breast cancer and the immune system in order to identify potential immuno-oncological prognostic and predictive markers as well as novel leads for effective mono or combination immune therapies.

Genomics has improved our understanding of BC biology and revealed 4 intrinsic molecular subtypes: luminal A (resembling: ER+, PR+, HER2-, Ki67-), luminal B (resembling: ER+, PR+, HER+/-, Ki67+), HER2 (resembling: ER-, PR-, HER2+), and basal-like subtype (resembling: ER-, PR-, HER2-). The classification of BC into subtypes bears clinical relevance. For instance, in the treatment of the hormone receptor (HR) positive subtypes (those that are positive for ER and/or PR) endocrine therapy, including aromatase inhibitors or selective estrogen receptor mediators such as Tamoxifen, play an important role. HER2 over-expressing tumors are generally treated with HER2-targeting drugs such as trastuzumab and pertuzumab, whereas triple negative BC (TNBC, largely resembling the basal-like BC subtype) is mostly treated with standard cytotoxic therapies.

Notably, and the focus of the current review, these molecular subtypes also differ with respect to quantity and composition of tumor infiltrating leukocytes (TILs). In BC, an enormous number of studies have been performed in order to evaluate the prognostic and predictive values of TILs, and their specific subsets. Although mononuclear cells can easily be identified by H&E-stainings upon routine diagnostics, this technique does not allow accurate assessment of different immune subsets. Immune stainings have enabled the phenotypic distinction of various cell types, but are often limited to those markers for which well-characterized antibodies are available. Recent advances in immunogenomics have paved the way towards enhanced understanding of specific immune subsets and their interactions with tumor cells based on gene expression data. In addition, emerging DNA sequencing data has made it possible to explore mutational landscapes of BC and investigate their relation-
ship with TILs and immune pathways. Here, we discuss TIL profiles, prognosis and prediction based on TIL subsets, antigenicity, immune evasive mechanisms, and current immunotherapy trials. Finally, we propose a strategy to select and implement immune-oncological markers to improve therapy choices for BC patients.

2.2 Normal breast versus (pre)malignant breast tissues: quantity and quality of TILs

Normal breast tissue

Immune cells in the healthy mammary gland form an active and dynamic barrier against microbes in the mucosal layer \(^{38}\). In addition, immune cells take part in mammary gland remodeling and are considered to play a role in cancer immune surveillance \(^{39}\). In normal breast tissue, one generally finds low numbers of leukocytes, including T cells (typically expressing the markers CD3, CD4 or CD3, CD8), B cells (CD20), macrophages (CD68) and dendritic cells (CD11c) \(^{38}\). These immune cells are not found in interlobular stroma but are restricted to the lobules, where T cells directly associate with the epithelial layer \(^{40}\). While frequencies of macrophages and CD4 T cells are rather constant, frequencies of CD8 T cells depend on hormonal changes and peak within the luteal phase of the menstrual cycle, coinciding with epithelial cell turnover \(^{41}\).

Pre-malignant breast tissue

BC formation is a multistep process, including premalignant stages of hyperplasia and ductal carcinoma in situ (DCIS) and the malignant stage of invasive ductal carcinoma (IDC) \(^{42}\). The transition from normal breast tissue to malignancy typically goes along with an increased infiltration of leukocytes, including myeloid cells, B cells and cytotoxic CD8 T cells \(^{40}\). First, in premalignant DCIS, an increased lymphocytic infiltration is observed \(^{43}\), which is significantly higher in HER2+ and TN DCIS compared to HR+ DCIS \(^{44}\). Numbers of neutrophils are significantly increased compared to normal tissue, however activated T cells represent the dominant lymphocyte population\(^{45}\), followed by B cells and the immune suppressive regulatory T cells (Tregs: CD4, CD25, FOXP3) \(^{46}\). While in normal and premalignant BC the CD4/CD8 T cell-ratio is approximately 2, in IDC this ratio is shifted towards 0.3 \(^{47,48}\).
Malignant breast tissue

A common feature in IDC is a high overall quantity of TILs. Interestingly, high lymphocytic numbers relate to better prognosis and predict a favorable response to neo-adjuvant chemotherapy 49–51 (see also sections 2.3 and 2.4). In fact, in highly inflamed tumors, TIL frequency was found to be a superior prognostic marker in comparison to HR status and lymph node involvement in patients with primary operable BC 47. Notably, characteristics of TILs vary across molecular subtypes of BC 52,53. The frequency of TILs is usually high in the more aggressive types of BC, including the ER- subtypes (HER2 and basal) as well as the highly proliferating luminal B subtype, but are low in the less aggressive luminal A subtype 54,55 (Figure 1A). Even though, the evaluation of overall TIL frequencies, based on H&E stainings, in feasible and clinically relevant 56,57, it is noteworthy, that TILs represent a heterogeneous collection of immune cells, and not all types or subsets of immune cells are associated with a favorable clinical outcome (Figure 1B and explained in more detail in section 2.3).

2.3 Prognosis of breast cancer based on TILs

Numerous studies have investigated the prognostic values of TILs and specific subsets by means of H&E- and immune stainings, flow cytometry or analyses of gene expression. We evaluated 33 of such studies and schematically categorized different TIL subsets based on hazard ratios (HR) for ER- and ER+ BC (Figure 1B).

2.3.1 Prognostic TILs in ER- breast cancer

ER- tumors typically show higher numbers of TILs when compared to ER+ tumors. Especially numbers of T- and B cells, macrophages and myeloid derived suppressor cells (MDSC) are higher in ER- compared to ER+ BC 53.

Favorable outcome

Adaptive immune cells, including cells of T- and B cell lineages, are typically found in sites of prior, or ongoing immune reactions. High numbers of such lymphocytes are associated with a better prognosis in lymph node negative, primary BC patients including those with stages I-III 47,58–60. Moreover, numerous studies show that high frequencies of CD8 effector T cells and T helper type-1 gene signatures (Th1: IFNG, STAT1, GRZM, CXCL9) are correlated with favorable clinical outcome, particularly
in ER- tumors. In contrast, high numbers of Tregs in tumor tissue and blood are correlated with favorable outcome in ER- tumors, which may reflect the initiation of negative feedback since numbers of Tregs strongly correlate with those of CD8 T cells and are correlated with poor prognosis in the absence of CD8 T cells. B cell and plasma cell (PC: CD138) gene signatures are especially significant prognostic factors in ER- BC, but also in highly proliferating luminal B BC. Macrophages are enriched in basal-like BC and associate with survival according to immune stainings. In agreement, myeloid and macrophage/dendritic cell signatures (oa. MHCII, CD11c, CD11b) were found to have overall prognostic value in BC according to large gene-expression cohorts. Notably, higher blood lymphocyte to monocyte ratio (LMR) correlates with overall survival (OS) in 1570 BC patients (HR: 1.63, 95% CI: 1.07-2.49), in particular in TNBC patients (HR: 3.05, 95% CI: 1.08-8.61).

Unfavorable outcome

Frequencies of immature immune cells, such as MDSC (CD33) which can originate from monocytic or granulocytic lineages, are enriched in highly proliferating ER- tumors, and intra-tumoral numbers of these cells are correlated with poor survival in ER- tumors. Elevated numbers of MDSCs are also found in peripheral blood of BC patients when compared to healthy controls. Strikingly, also in the blood compartment frequencies of MDSCs are associated with later stage tumors, metastatic tumor burden, and are correlated with reduced survival. Also, numbers of intra-tumoral neutrophils (N, CD16) are associated with poor BC-specific survival, and meta-analysis revealed significant unfavorable prognosis in case of a high neutrophil to lymphocyte ratio (NLR, HR(OS): 2.03, 95% CI: 1.41-2.93). High frequencies of undifferentiated macrophages and alternatively activated, M2 macrophages (CD163) are inversely correlated with survival.

2.3.2 Prognostic TILs in ER+ BC

In comparison with ER- BC, less studies found significant correlations between immune cell subsets and clinical outcome in ER+ BC. Overall, mostly innate immune cells cluster to the ER+, luminal A tumors and correlate with good prognosis.

Favorable outcome

NK cells are shown to have anti-tumor activity in ER+ BC, yet their numbers
are decreased in later tumor stages. Signatures of B cells including plasma cells, plasmablasts and immunoglobulin not only correlate with favorable outcome in ER-, but also ER+ tumors.

Figure 1. TIL frequencies and prognosis in ER+ and ER- BC: Violin plots based on average RNA expression of TIL gene signature (>100 leukocyte related genes, manuscript in preparation) on a log scale, per patient based on ER-status. (Data from NCBI’s Gene Expression Omnibus, accessions GSE2034, GSE5327, GSE2990, GSE7390 and GSE11121.) (A). Leukocyte subsets which are significantly correlated (p<0.05) with overall survival, or metastasis free survival (*), in ER+ and ER- tumors. Hazard ratios of multivariate regression analyses are shown between brackets [HR]. Circle sizes are indicative of cohort-size (N), based on numbers of patients evaluated in one or more studies. Studies include gene expression based analysis, immunohistochemistry and/or flow cytometry (B).

Unfavorable outcome

Gamma delta T cells (Tγδ, TCRγ/δ) are more frequent in BC compared to other immunogenic tumors, such as melanoma, suggesting a unique role of these T cells in BC. Moreover, numbers of a subset of Tγδ cells, the so-called regulatory Tγδ, correlate with advanced cancer stages, lymph node involvement and numbers of FOXP3+ cells in ER+ BC, whereas numbers of this subset inversely correlate with those of CD8 T cells in these tumors. It is important to note that while Tregs are correlated with good prognosis in ER- tumors, these cells are strongly associated with adverse clinical outcome in ER+ tumors. Even though numbers of MDSC are generally lower in ER+ tumors, their presence is correlated with poor OS.
2.4 Prediction of breast cancer therapies based on TILs

Many studies show that standard neo-adjuvant therapies can recruit TILs and modify the tumor microenvironment. Vice versa, TILs, when present prior to therapy, were found to be predictive for clinical response to neo-adjuvant therapies.

2.4.1 Prediction of neo-adjuvant therapies based on TILs

Besides surgical resection and radiotherapy (RT), primary operable BC patients are frequently treated with neo-adjuvant chemotherapy (NAC) and/or targeted therapies. It is of interest to note that numerous studies suggest that the immune system is required to boost the efficacy of NAC. Sequential treatment with anthracycline- or taxane-based drugs is a common form of NAC used to treat BC, with pathological complete responses (pCR) ranging from 10 to 30%. NAC based on anthracyclines and taxanes can directly induce immunogenic tumor cell death, resulting in increased antigen presentation. Moreover, NAC was found to induce inflammatory pathways in tumor associated fibroblasts, such as interferon, Wnt and TGFβ signaling pathways, which can enhance recruitment of TILs. Consequently, immune gene signatures have been revealed to predict the response to NAC across various studies, regardless of molecular subtypes or treatment regime. Also, high TIL frequencies (>60%), as assessed by H&E stainings were predictive for response to NAC. In fact, a 10% increase in TIL frequencies resulted in 16% increase in pCR rates in TNBC (OR: 1.16), 13% in HER2 (OR: 1.13), and 33% in ER+/ HER2-BC (OR: 1.31). In the latter subtype no survival benefit was noted, which may be attributed to differences in TIL composition (as explained in more detail in sections 2.3.1 and 2.3.2). The predictive value of TILs in the setting of NAC is mainly attributed to high numbers of CD8 T cells (odds ratio (OR) for pCR: 1.59-3.36) but also the presence of follicular T helper cells (Tfh: CD200, CXCL13), were found to have predictive value in ER- (OR(pCR): 1.34-1.85) as well as ER+ (OR(pCR): 2.52) BC patients, across different studies, using both immune stainings and genomic approaches. Vice versa, chemotherapy can change the immune cell composition in tumor tissue and blood. For example, within 2 weeks after NAC, B-, T- and NK cells were found significantly depleted from peripheral blood compared to pre-treatment levels, with numbers of B and CD4 T cells remaining low up to 9 months post chemotherapy, whereas numbers of MDSCs were increased. Numbers of intra-tumoral CD68 macrophages were found significantly decreased to NAC, while those of intra-tumoral CD8 T cells were increased compared to pre-NAC frequencies. Strikingly, high intra-tumoral numbers of CD3, CD4 and CD20 as well as high CD4/CD8 ratios prior to therapy predict clinical benefit following NAC independently.
of subtype or clinical parameters (OR(pCR): 17.8490). In ER- tumors, pre-therapy T- and B cell signatures were found to predict long-term (> 6 year) outcome to anthracycline-based chemotherapy (OR(pCR):6.3385).

Similar to NAC, RT can also induce immunogenic cell death, antigen release and local inflammation, and consequently evoke an innate and adaptive immune response directed against the tumor87. Interestingly, in an ER-, HER2+ patient, who showed a clinical complete response following neo-adjuvant (paclitaxel) and RT, the production of Th1-type cytokines by tumor-specific T cells was enhanced compared to pre-treatment88. Immune responses may also predict clinical responses to endocrine therapy89,90. In example, OS of post-menopausal women treated with aromatase inhibitors, which block the conversion of androgens into estrogens, is correlated with high numbers of TILs, in particular high numbers of Tregs91. In contrast, treatment with tamoxifen (an ER antagonist) shifts immune response from Th1- towards Th2-type T cell responses in an estrogen-independent manner, and may promote immune escape92. Treatment with trastuzumab, a humanized antibody directed towards HER2, is at least in part dependent on the immune system as this treatment induces influx of T cells, macrophages and NK cells into tumor tissue and promotes cell-mediated cytotoxicity93. Vice versa, pre-existing lymphocytic infiltrate can predict response to trastuzumab treatment94,95, although clinical studies provide somewhat contradictory data. While in certain trials higher TIL frequencies7 or high expression of TIL gene signatures96 at diagnosis were significantly associated with good response when treated with trastuzumab in combination with CT, in another large clinical trial the presence of TILs was associated with survival in patients treated with chemotherapy only, but not in patients treated with CT plus trastuzumab97. Interestingly, in the same study expression of genes related to immune function, did correlate with survival in the CT plus trastuzumab treated group98, suggesting that particular TIL subsets, rather than bulk TIL predict response. These conflicting results between different studies, may be explained by differences in treatment regime and HR status of patients99, because the latter correlates with CT response as well as TIL frequency and composition, potentially favoring that patients treated with trastuzumab should be stratified according to HR status. Further research is required to better define the predictive value of particular TIL subsets in this patient group.

Overall, the above findings suggest that standard care of treatments can modulate the tumor microenvironment and may sensitize tumors towards immune therapies. In fact, combination of RT and NAC with immune therapies has already shown promising results in mouse models of BC, and is currently investigated in a number of clinical trials (Table 1),100–102.
2.4.2 Prediction of immune therapies based on TILs

Thus far, immunotherapeutic approaches to treat BC include: peptide vaccines; autologous transfer of T cells, NK cells or DCs; and application of checkpoint inhibitors. An overview of these treatments is given in Table 1. Vaccinations in BC have been focusing mainly on targeting the over-expressed HER2/neu antigen, for which successful treatment has been achieved in DCIS, usually resulting in lesion shrinkage along with activation of HER2-specific CD8 T cells. In later stage tumors, however, at best stable disease (SD) has been achieved using similar approaches. Adoptive transfer of autologous HER2-specific T cells resulted in the killing of BC cells that were metastasized to bone marrow, but these T cells were unable to penetrate and resolve liver metastases. In contrast, adoptive transfer of allogeneic T cells or NK cells to metastatic BC patients (all subtypes) did not result in T cell persistence and frequently led to graft versus host disease. Promising clinical responses have been observed for checkpoint inhibition in the advanced metastatic BC setting. For example, blockade of CTLA-4 (Tremelimumab) has led to SD for >12 weeks in 42% of heavily pre-treated ER+ patients. Even better responses, including a few complete responses and several partial responses, were observed upon treatment with a PD-1 blocking antibody (Pembrolizumab) in TNBC patients with PD-L1-positive tumors in 2 trials (objective response (OR): 18.5%, OR: 23%, 23%). Combinations of CTLA-4 (Tremelimumab) and PD-L1 (Durvalumab) blockade even reached OR in 43% of stage IV, TNBC patients, however, no OR was observed in any of the 11 HR+ patients, which may be due to low numbers of CD8 T cells in these tumors (Figure 3). In contrast, blockade of PD-L1 (antibody not specified) in a small group of 4 stage IV BC patients (unknown HR status) did not result in any clinical response. Notably, in that study, PD-L1 expression had not been assessed prior to PD-L1 treatment, which may have contributed to these contradicting results. Another large trial with a PD-L1 blocking antibody (Avelumab), in 168 BC patients, which were not selected for BC subtype nor PD-L1 expression, resulted in a low OR of 4.8%, including 1 CR and 7 PR. When evaluating BC subtypes in that study, TNBC patients had an OR of 8.6% while HR+ patients had an OR of 2.8%. Even though >10% PD-L1 expression on immune cells in TNBC tumors correlated with response, interestingly, there was no overall association of PD-L1 expression and OR. Due to the dynamic nature of PD-L1 expression (explained in section 2.5), we propose to take caution when using this molecule to stratify BC patients for treatment with checkpoint inhibitors. The presence of TILs, in particular CD8 T cells, and (co-)expression of checkpoint molecules on these cells may serve as a more discriminatory marker than tumor cell PD-L1 expression. In fact, high stromal TIL numbers were significantly correlated with a better response to PD-1 blockade (Pembrolizumab) when administered as monotherapy in a first-line setting for meta-
static TNBC (OR: 39.1% above median stromal TIL; OR: 8.7% below median stromal TIL), while PD-L1 expression did not add to the response prediction in that cohort. Promising results have also been observed when combining checkpoint blockade with standard chemotherapies in the neo-adjuvant, as well as the advanced disease setting of TNBC: Upon combination of neo-adjuvant paclitaxel and PD-1 blockade (Pembrolizumab), an impressive OR of 71% was observed in stage II/III TNBC patients, and an OR of 28% was seen in HR+ patients, which were both significantly increased when compared to paclitaxel monotherapy (OR: 19% and 14% in both patient groups, respectively). In addition, combination of nab-paclitaxel and PD-L1 blockade (Atezolizumab) in metastatic TNBC reached comparable results (OR: 70%) independent of PDL-1 status. Notably, the OR-rates where higher in early lines of therapy in patients with a lower disease burden, reaching 11% CR and 78% PR in patients with one lesion, in contrast to 0% CD and 43% PR in patients with 3 lesions. When treating mainly HR+ metastatic BC with a combination of LAG3 Ig fusion protein (IMP321) with paclitaxel, an OR of 50% was achieved which was 25% higher compared to a historical paclitaxel treatment results. These data strongly encourage the rational of combination therapies, particularly in BC where initial TIL numbers are low (HR+) and sensitization of the tumor micro environment may be required for effective immune therapies (Figure 4).

At the moment, an increasing number of clinical studies are focusing on immune therapies for BC of various subtypes. A main category of immune treatments is represented by (combinations of) antibodies blocking the checkpoints PD-1, PD-L1, CTLA-4, and LAG-3. In addition to the checkpoint blockade studies mentioned above, another 91 trials are currently being scheduled (blockade of PDL-1: 13x; CTLA-4: 10x; PD-1: 62x; LAG3: 6x, according to clinicaltrials.gov). In addition to checkpoint blockers, vaccine studies are performed directed against over-expressed antigens other than HER2, such as hTERT, surviving and p53. And finally, adoptive transfer studies with T cells have started, either those with T cells engineered with a Chimeric Antigen Receptor (directed against: HER2 (3x), EpCAM, ROR1, MUC1 and CD133) or a T cell Receptor (directed against: survivin or Cancer Germline Antigens: Mesothelin, NY-ESO1:3x, MAGE-A4, PRAME and SSX1), (according to clinicaltrials.gov).
<table>
<thead>
<tr>
<th>Type of immune therapy</th>
<th>Target</th>
<th>Stage / type</th>
<th>Patients</th>
<th>Clinical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC vaccination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Her2 peptides (MHCI and II)</td>
<td>HER2</td>
<td>0 / HER2</td>
<td>11</td>
<td>PR: 64%</td>
</tr>
<tr>
<td>Her2 peptides (MHCI and II)</td>
<td>HER2</td>
<td>0 / HER2</td>
<td>27</td>
<td>PR:88%, CR: 40%(ER-); 5.9%(ER+)</td>
</tr>
<tr>
<td>autologous APC + Her2/neu cDNA</td>
<td>HER2</td>
<td>IV / HER2</td>
<td>18</td>
<td>PR: 5%, SD: 16%</td>
</tr>
<tr>
<td>autologous DC</td>
<td></td>
<td>II,III / ER-, PR-</td>
<td>31</td>
<td>PD: 100%</td>
</tr>
<tr>
<td>wt p53 peptide (MHC II)</td>
<td>P53</td>
<td>IV</td>
<td>26</td>
<td>SD: 30%</td>
</tr>
<tr>
<td>Vaccination (not DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mam-A cDNA</td>
<td>Mam-A</td>
<td>IV</td>
<td>7</td>
<td>NA</td>
</tr>
<tr>
<td>E75 Her2 peptide (HLA-A2/A3)</td>
<td>HER2</td>
<td>0 / HER2</td>
<td>182</td>
<td>DFS: 94.3%</td>
</tr>
<tr>
<td>MDA-MB-231 (CD80+, HLA-A2, HER2) cell line</td>
<td>HER2</td>
<td>IV</td>
<td>30</td>
<td>SD: 30%</td>
</tr>
<tr>
<td>AE37 Her2/neu peptide (MHC II)</td>
<td>HER2</td>
<td>0</td>
<td>15</td>
<td>NA</td>
</tr>
<tr>
<td>Checkpoint inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti PD-L1 (not specified)</td>
<td>PDL1</td>
<td>IV</td>
<td>4</td>
<td>PD: 100%</td>
</tr>
<tr>
<td>tremelimumab</td>
<td>CTLA4</td>
<td>IV / ER+</td>
<td>26</td>
<td>SD: 42%</td>
</tr>
<tr>
<td>pembrolizumab</td>
<td>PD1</td>
<td>IV / TNBC</td>
<td>27</td>
<td>CR: 2.7%, PR: 15%, SD: 26%</td>
</tr>
<tr>
<td>pembrolizumab</td>
<td>PD1</td>
<td>IV/TNBC</td>
<td>52</td>
<td>CR: 4% PR: 19%, SD: 17%</td>
</tr>
<tr>
<td>pvelumab</td>
<td>PDL1</td>
<td>II, IV / HER2-</td>
<td>69</td>
<td>CR: 71.4% (TNBC), CR: 28% (HR+)</td>
</tr>
<tr>
<td>pembrolizumab + paclitaxel</td>
<td>PD1</td>
<td>II, III/ Her2-</td>
<td>168</td>
<td>CR: 0.6% PR: 4.8% SD: 24%</td>
</tr>
<tr>
<td>durvalumab + tremelimumab</td>
<td>PDL1, PDL1,</td>
<td>IV/ ER+, TNBC</td>
<td>18</td>
<td>PR: 43% (TNBC), 0% ER+</td>
</tr>
<tr>
<td>atezolizumab + nab-paclitaxel</td>
<td>PDL1,</td>
<td>IV TNBC</td>
<td>32</td>
<td>CR: 4.2% PR: 66.7% SD: 20.8%</td>
</tr>
<tr>
<td>Adoptive Transfer of immune cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autologous T cells</td>
<td>HER2</td>
<td>IV / HER2</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td>allogenic T cell mix</td>
<td></td>
<td>IV</td>
<td>9</td>
<td>PR: 56%</td>
</tr>
<tr>
<td>autologous T cells + bispecific antibody</td>
<td>HER2, CD3</td>
<td>IV / HER2/+/-</td>
<td>23</td>
<td>SD: 27%</td>
</tr>
<tr>
<td>allogenic NK cells</td>
<td></td>
<td>IV</td>
<td>6</td>
<td>NA</td>
</tr>
<tr>
<td>Other therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxidized mannam MUC1</td>
<td>MUC1</td>
<td>II / MUC1+</td>
<td>31</td>
<td>NA</td>
</tr>
<tr>
<td>zoledronate (ydT cell agonist) + IL2</td>
<td>IV</td>
<td>10</td>
<td>PR: 10%, SD: 20%</td>
<td></td>
</tr>
<tr>
<td>IMP321 (LAG3lg fusion protein) + paclitaxel</td>
<td>MHCII</td>
<td>IV</td>
<td>30</td>
<td>PR: 50% SD: 40%</td>
</tr>
</tbody>
</table>

Table 1. Overview of immune therapy clinical trials in BC. NA, not assessed; PR, partial response; CR, complete response; SD, stable disease; PD, progressive disease; DFS, disease free survival; DTH, delayed type hypersensitivity; Tγδ, gamma delta T cell.
2.5 Immunogenicity of breast cancer knows several flavors

Immunogenicity of tumor tissue determines the initiation of an anti-tumor adaptive immune response, and depends on various factors, including the quantity and quality of TAA and their presentation to infiltrating immune cells. TAAs are typically categorized in different groups of antigens, including shared antigens which are generally over-expressed in tumors, but not restricted to malignant tissues (and also expressed by normal tissues). Some shared antigens, such as oncoviral antigens and Cancer Germline Antigens (CGAs), are predominantly expressed in tumors and, in case of CGAs, also in immune privileged tissues of the germline. Besides shared antigens, TAAs also include non-shared antigens, such as tumor-specific neo-antigens, which derive from mutated proteins, and are absent in normal tissues.

Most of these groups of TAAs have been exploited for their use as immunotherapeutic targets in many different tumors. In BC most experience has been gained with the targeting of over-expressed antigens. Even though over-expressed antigens are not tumor-specific, cancer vaccines directed towards such antigens, including HER2, MUC1, and hTERT, could induce partial regression and induce immune responses against these antigens in a number of BC patients without major side effects (reviewed in 130,131). Virus specific DNA can drive tumor formation and lead to expression of oncoviral antigens. Virus specific DNA (EBV, HPV and MMTV) is significantly more frequently detected in BC compared to normal breast tissues 132. For instance, expression of human retrovirus type K (HERV-K) is enriched in BC, including BC cell lines, and antibody titers are significantly increased in women with DCIS and IDC when compared to healthy controls 133. Also, Measle Virus (MV) was detected in 64% of BC including DCIS, and its expression correlated with younger age and lower grade tumors 134. Notably, human cytomegalovirus (CMV) is expressed in 100% of primary BC specimens and 95% of lymph node metastases 135, while it is generally not expressed in normal tissues 136. Although in general the presence and reported immunogenicity of viral antigens is evident, the therapeutic potential of this class of TAAs in BC is not clear, nor have these antigens yet been targeted in BC patients. CGAs have not yet been targeted frequently either, while the majority of BC express at least a single CGA 137. Although CGAs are expressed throughout all tumor stages, including DCIS and all histotypes 138, expression levels and number of expressed CGAs are significantly increased in high grade and ER- BC (highest in basal-like BC) (Figure 2A). Interestingly, especially TNBC patients and BRCA carriers often co-express multiple CGAs 139,140. Besides their high and tumor-specific expression of at least some CGAs, these antigens represent therapeutically relevant target antigens since they have been reported to elicit humoral immune response and were shown in some instances to contribute to BC development. In example, patients with
CGA+ BC have demonstrated enhanced antibody titers against these antigens, and CGAs, have been reported to be associated with increased EMT, genomic instability, angiogenesis and tissue invasion in BC. Not surprisingly, expression of these CGAs is often linked to adverse outcome. With respect to neo-antigens, expression of these antigens is governed by the mutational load of tumors. Compared to other cancer types, BC has an average mutational load of 1 somatic mutation per Mb, which ranks these tumors among the lower half of a large series of different human cancer types. A mutational load of 10 somatic mutations per Mb (= 150 non-synonymous mutations in all expressed genes) is considered sufficient to elicit a T cell response in melanoma. This suggests that the overall chance of T cells recognizing neo-antigens in BC is rather low. Within BC, however, the median mutational load increases upon higher tumor grades, and the mutational load is significantly increased in ER- subtypes (highest in Basal-like BC), compared to ER+ subtypes, regardless of BC histotypes. These findings suggest that more aggressive, ER- BC may be susceptible for the immunological targeting of neo-antigens. Besides the number of mutations, some mutational signatures were found to be more immunogenic than others. The most prevalent mutational signatures in BC are age-, APOBEC- and BRCA1/2-related signatures. APOBEC3B (A3B) expression is enhanced in ER-, HER2+ subtypes, and correlates with lymph node metastasis and poor prognosis. Interestingly, we have shown previously that APOBEC signatures may create positively charged, neo-antigens, which are associated with increased T cell infiltration in ER+ BC. A3B deletion, on the other hand, leading to hyper-mutation, correlates with IFNy/STAT1 expression and immune cell signatures. The exact mechanism and role of A3B and APOBEC mutagenesis in BC immunogenicity requires further research.

Figure 2. Antigen expression across BC subtypes. Violin plots show average CGA gene expression on a log scale, per patient, based on molecular subtypes. Differences in CGA frequency per molecular subtype are significant (p<0.0001, Kruskal Wallis test). CGA genes list was derived from CT Database and include CGA genes that were available on Affymetric U133a chip, data from GSE2034, GSE5327 (A). Violin plots show the total number of predicted neo-antigens per patient, based on molecular subtypes. Differences in neoantigen frequency per subtype are significant (p<0.0001, Kruskal Wallis test) (B).
2.6 Immune evasion of breast cancer counteracts effective therapy

High expression levels of tumor associated antigen (TAA) in late stage and HER2+, ER- BC or TNBC, and high frequencies of TILs in these subtypes do not correlate with each other, suggesting that either not all TAAs are equally immunogenic and/or that these tumors have undergone immune editing. The latter generally refers to the shaping of tumor antigenicity under the selective pressure of effector immune cells, and ultimately gives way to the establishment of immune evasive mechanisms. Such immune evasive mechanisms may include down-regulation of antigen presentation, lack of immune effector cells, enrichment of immune suppressor cells, and up-regulation of checkpoint molecules.

Antigen presentation

Critical for the recognition of tumor cells by T cells is that peptides derived from TAAs are presented on human leukocyte antigen (HLA) molecules expressed on the surface of tumor cells or antigen-presenting cells. In fact, expression of genes related to the HLA-A antigen presentation pathway correlates with expression of genes related to T cells, and was found to be most significantly associated with survival within TNBC patients. Especially higher grade BC often (30-40% of tumors) down-regulate classical HLA-A, HLA-B, HLA-C molecules, which are required for the activation of CD8 T cells, and up-regulate non-classical HLA-E, HLA-F, HLA-G molecules, which may promote immune escape. Besides HLA-A, expression of transporter-associated proteins (TAP1/TAP2), which are required for proper antigen loading, is also down-regulated in high-grade BC. TAP1/TAP2 down-regulation, however, is independent from HLA-A, B, C down-regulation, pointing to lack/absence of redundancy of various components of the HLA antigen presentation pathway with respect to immune escape. Besides downregulation of antigen presentation, mutations in antigen presentation (B2M) and IFN response genes (JAK1/2) pathways may provide yet another mechanism of immune escape. Mutations in JAK1/2 can lead to primary as well as acquired resistance to checkpoint blockade and potentially other immune therapies. While JAK1/2 mutations affect only a minority of primary BC, and only truncated mutations (1.3% of BC) are associated with poor prognosis, BC metastases were found to have acquired additional JAK/STAT driver mutations.

Immune effector and suppressor cells

The frequency of clonally expanded, activated T cell is decreased in IDC compared to DCIS, suggesting that clonal selection for less immunogenic TAAs may occur,
and/or that there is a lack of T cell recruitment or active suppression. In general, exclusion from tumor tissue or compromised activity of intra-tumoral CD8 T cells may in some cases be the direct consequence of aberrant expression of chemokines, adhesion molecules and/or extracellular matrix components (ECM), which to our knowledge has not been investigated yet in BC. There is increasing evidence that oncogenic pathway alterations may contribute to T cell exclusion or comprised activity\(^\text{152}\). PI3K pathway alterations are the most common driver mutations in BC, affecting 49% of luminal A tumors while affecting only 7% of basal like BC\(^\text{162}\). Interestingly, PTEN loss, which was found to correlate with a lack of TILs in melanoma\(^\text{163}\), frequently occurs in basal-like BC (35%)\(^\text{162}\) and may contribute to heterogeneity with respect of TILs in this BC subtype. In addition, in TNBC, a lack of T cells is associated with RAS/MAPK pathway activation\(^\text{164}\). Exclusion or compromised activity of CD8 T cells, in other cases, may also be the indirect consequence of enhanced presence of M2 macrophages, MDSC, Tregs and/or cancer associated fibroblasts (CAFs)\(^\text{31}\). CAFs can promote angiogenesis and/or endothelial to mesenchymal transition (EMT), and release suppressive cytokines, such as IL1, IL6 and TGFβ, which can drive the formation of immune suppressor cells\(^\text{165,166}\). In BC, immune suppressor cells, including MDSC and M2, can promote tumor growth and metastasis and suppress T- and NK cell function by releasing suppressive mediators, such as IL10, IDO1, reactive oxygen species (ROS) and nitric oxide (NO)\(^\text{167,168}\). Enhanced recruitment of MDSC is considered to be related to increased expression of ELF5 and CCL2 in ER- BC, and enhanced IFN-signaling was found to induce immune suppressive activities of MDSC\(^\text{169}\). Tregs are recruited by CCL5 and CCL22, which are produced by CD8 T cells and DC\(^\text{170}\). Next to inhibition of CD8 T cells, Tregs can directly promote BC metastasis in a paracrine manner\(^\text{170}\).

Checkpoint molecule

As a consequence of an ongoing adaptive immune response, CD8 T cells, but also their target cells, up-regulate the expression of a number of immune checkpoint molecules, which slow down and ultimately inhibit active tumor killing by T cells. PD-L1, for instance, is expressed in a quarter of all BCs and high expression levels correlate with poor OS across all subtypes\(^\text{171}\). PD-L1 expression is particularly high in inflammatory BC (IBC, defined by symptoms resembling an inflammation, mostly ER-), and correlates with T- and B- cell signatures, most significantly those covering cytotoxic T cells, interferon and TNFα pathways\(^\text{172}\). Early BC stages, such as DCIS do not yet express PD-L1, however, in triple negative DCIS, APCs do already show strong PD-L1 expression\(^\text{46}\). Besides acquired expression of PD-L1 by the inducers IFNα/β or IFNγ, which are well-recognized products of activated immune cells or resident stromal cells, also mutations in PTEN and PI3K which occur in 30%
and 40% of BC, respectively, were found to provide inherent expression of PD-L1. Moreover, EMT was found to induce PI3K and MEK-dependent up-regulation of PD-L1 in BC. PD-L1 expression in BC is accompanied by expression of other immune suppressive checkpoints, like IDO1 and TGFb, as well as the expression of T cell co-inhibitory receptors, such as PD-1, CTLA-4, TIM-3 and LAG-3. PD-1 expression is commonly up-regulated after T cell activation and PD-1 positive T cells can be detected in blood of early stage BC patients, while peripheral changes in the expression of other checkpoint molecules such as CTLA-4 are not observed.

Figure 3. Schematic illustration of immunity and evasive mechanisms in BC. BC subsets are categorized according to hormone receptor ER and PR (blue) or HER2 (pink) expression of tumor cells (brown). Antigenicity (ao. CGAs and neo-antigens) increases from luminal to basal type BC. Overall TIL quantity (gray background) increases from lumA to basal type BC, and its increase is related to tumor cell proliferation (Ki67). With respect to TIL quality, lumA tumors have relatively more innate immune cells, whereas the highly proliferating lumB, her2 and basal BCs are enriched for adaptive immune cells and immune suppressor cells. In particular, basal BC is enriched for exhausted CD8 T cells.

Within tumors, T cells positive for PD-1 are generally restricted to tertiary lymphoid structures (TLS), which are present in tumor stroma and composed of B- and T cells. TLS are often representative of a strong and ongoing immune response, and are present in 60% of BC, including all molecular subtypes. In TNBC, the ex-
expression of PD-1 and LAG-3 tends to be associated with good prognosis. PD-1 and LAG-3 positive TILs were found in 30% and 18% of BC, respectively, and 15% of tumors were double positive for these markers, most likely indicating the presence of exhausted T cells \(^{177}\). Checkpoint molecules are not only up-regulated on CD8 T cells as PD-1 and TIM-3 were also found to be up-regulated on CD4+ Tfh cells in BC, which was associated with both a reduced CXCL13 production and a reduced capability of stimulating B cells \(^{178}\). Interestingly, in metastatic lesions, only 5% and 3% were found positive for the PD-1 and PD-L1, respectively, arguing that other immune evasive mechanism may be more dominant in advanced diseases \(^{179}\).

2.7 Future therapies should combine tumor sensitization and T cell treatments

Here we propose a strategy that implements immune-oncological markers to better select immune therapies in BC subtypes, and rationalize whether or not there is a requirement for sensitization for immune therapies based on our current understanding of BC’s immune evasion and immunogenicity. In Figure 4, we have distinguished ER+ and ER- BC, and described steps in selecting (combination) immune therapies:

Across BC subtypes, ER+ tumors, in particular luminal A BC, are the least immunogenic since they have the lowest number of TILs and the lowest levels of expression of CGAs and neo-antigens (Figure 3). Because of the low abundance of antigen, immune therapies targeting TAAAs in ER+ BC require extensive screening for pre-defined antigens, which is costly and time consuming. Therefore, immune therapies using checkpoint inhibition, which do not directly target TAAAs, but rather TILs, may show more potential in ER+ BC, since the presence of TILs can easily be assessed by H&E or immune stainings of routine biopsies. Thus far checkpoint blockade as monotherapy in ER+ tumors has resulted in SD at best (see section 2.4.2). In a subset of ER+ BC patients with deficiency in DNA mismatch repair (MMR) genes \(^{180}\), mutational load may represent an independent parameter for therapy selection. In general, however, we argue that the presence of TILs rather than mutational load serves as a robust marker for patient stratification in BC. Even though TILs in ER+ BC are generally scarce and composed of innate rather than adaptive immune cells, it is important to note that there exists significant heterogeneity with respect to quantity and quality of TILs (own observations; manuscript in preparation). The presence of effector CD8 T cells, and the expression of immune checkpoint molecules on these T cells are indicative of an antigen-initiated immune response, which is anticipated to robustly predict success of checkpoint blockade in patients with these tumors. Therefore, the presence of these markers, in particular CD8 T cells
(which reflects an ongoing immune response) should be assessed in the first step when designing therapies (Figure 4, step1). In case CD8 T cells are absent one could opt for combination therapies since checkpoint blockade with NAC was found to increase TIL levels \(^{181}\) and to enhance the CD8/Treg ratio (see section 2.4.1), may further enhance treatment efficacy in ER+ BC. In fact, such combinations have shown to increased pCR rates by 13-25%, when compared to NAC monotherapy (Table 1). The immunogenicity of tumors may also be increased by epigenetic drug treatment, including DNA-methyltransferase and/or histone deacetylase inhibitors, which were found to promote expressions of CGAs, MHC-I as well as co-stimulatory molecules in particular in tumor cells \(^{182,183}\). A few clinical studies are currently examining the combination of epigenetic drugs and checkpoint inhibitors in ER+ BC \(^{184}\). Even though results have not yet been published, combining cytotoxic therapies and/or epigenetic drugs with checkpoint inhibitors should be considered interesting strategies to treat ER+ BC.

In contrast to ER+ tumors, ER- tumors (HER2, TNBC) are intrinsically more immunogenic. Among all BC subtypes, TNBC bear the highest numbers of T cells, which are accompanied by the highest frequencies of neo-antigens and CGAs, and intra-tumoral CD8 T cells are often present with an exhausted T cell phenotype (Figure 3). Thus, TNBCs may represent a subtype of BC most sensitive to immune therapeutic interventions. However, antigenicity does not always predict response to checkpoint inhibition \(^{185}\). Even though clinical trials have resulted in higher response rates to checkpoint blockade in TNBC tumors when compared to ER+ tumors (Table 1), the majority of metastatic patients, however, does not show any clinical benefit to checkpoint blockade as monotherapy. This lack of response may be due to heterogeneity with respect to expression of checkpoint molecules or numbers of TILs. Indeed, high numbers of TILs and CD8 were predictive for response to checkpoint inih as first-line and second-line (following irradiation and chemotherapy) treatment for metstatic TNBC \(^{117,186}\). Therefore, also in ER- tumors, the presence of CD8 T cells should be assessed first. Most likely T cells are present. In case checkpoint molecules are present, one could again opt for therapy with checkpoint inhibitors. Multiple checkpoint molecules should be evaluated, since ER- tumors often co-express these molecules, which may prevent an effective monotherapy-approach. Indeed, the combination of durvalumab and tremelimumab resulted in an about 2-fold increased OR of 43% in TNBC patients \(^{113}\) when compared to monotherapy approaches. In case these checkpoint molecules are not expressed, but immune suppressor cells are present (assessed in step 3), inhibitors of these suppressor cells provide a therapeutic option \(^{187,188}\). In some cases CD8 T cells are absent. An underlying reason for CD8 T cell exclusion in a subset of TNBC patients, despite expression of TAAs, could
be lack of or a compromised antigen presentation by tumor cells and/or activation of oncogenic pathways. When CD8 T cells are absent, we suggest to assess MHC expression (which reflects capability of antigen presentation). In case MHC class I is expressed, then in the next steps assessments (of TAAAs and corresponding T cells) inform on the option to implement adoptive therapy of T cells. In case MHC class I is not expressed, one could opt for therapy with PI3K and MEK-inhibitors that are found to up-regulate expression of MHCI and PD-L1 in TNBC. In more general terms, epigenetic drugs, RT and/or NAC are other therapeutic options to sensitize tumors for T cell treatments, such as adoptive T cell therapy.

Figure 4. Strategy to optimally implement immuno-oncological markers to guide selection of therapies for ER+ and ER- BC patients. Thick arrows indicate the most likely path. Strategies are explained in more detail in section 2.7.

In conclusion, BC subtypes are heterogenous with respect to quantity and quality of TILs, occurrence of immune evasive mechanisms, and antigenicity. Therefore all these factors should be assessed and taken into account when designing and selecting optimal (combination-) immune therapies for a selected group of BC patients.

Conflict of interest: The authors declare that there are no conflicts of interest
Chapter 3

Differential prognostic value of CD8 T cells in breast cancer subtypes: not only T cell abundance, rather T cell clonality, antigen recognition and suppression

Dora Hammerl¹, Maarten P.G. Massink³, Marcel Smid¹, Carolien H.M. van Deurzen¹, Hanne Meijers-Heijboer², Quinten Waisfisz², Reno Debets¹*, John W.M. Martens¹*

¹Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; and ²Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; ³Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.*shared senior authors.

Abstract

Purpose: In breast cancer (BC), response rates to immune therapies are generally low and differ significantly across molecular subtypes, urging a better understanding of immunogenicity and immune evasion.

Experimental Design: We interrogated large gene-expression datasets including 867 node-negative, treatment-naive BC patients (micro-array data) and 347 BC patients (whole-genome sequence and transcriptome data) according to parameters of T cells as well as immune micro-environment in relation to patient survival.

Results: We developed a 109 immune-gene signature that captures abundance of CD8 TILs and is prognostic in basal-like, her2 and luminal-B BC, but not in luminal-A nor normal-like BC. Basal-like and her2 are characterized by highest CD8 TIL abundance, highest T cell clonality, highest frequencies of memory T cells, highest antigenicity, yet only the former shows highest expression level of immune and metabolic checkpoints and highest frequency of myeloid suppressor cells. Also, luminal-B shows a high antigenicity and T cell clonality, yet a low abundance of CD8 TILs. In contrast, luminal-A and normal-like both show a low antigenicity, and notably, a low and high abundance of CD8 TILs, respectively, which associates with T cell influx parameters, such as expression of adhesion molecules.

Conclusion: Collectively, our data argue that not only CD8 T cell presence itself, but rather T cell clonality, T cell subset distribution, co-inhibition and antigen presentation reflect occurrence of a CD8 T cell response in BC subtypes, which have been aborted by distinct T cell suppressive mechanisms, providing a rational for subtype-specific combination immune therapies.

Translational relevance:
In breast cancer (BC) current immunotherapy trials focus on checkpoint inhibition in basal-like BC, and despite high levels of CD8 TILs, clinical benefit is rarely observed. Here, we show that basal-like BC is characterized by high antigenicity and T cell clonality, prerequisites and markers of an anti-tumor CD8 T cell response, but also by enhanced expression of immune and metabolic checkpoints and the presence of myeloid-derived suppressor cells, which represent actionable targets for combination therapies. Moreover, we observed high antigenicity and T cell clonality in her2 and luminal-B subtypes, yet these subtypes show distinct T cell evasive mechanisms, indicating that at least a subgroup of her2 and luminal-B patients may benefit from biomarker guided (combination) immune therapies. Lastly, luminal A and normal-like subtypes, do not express genes related to a CD8 T cell response, which may instruct towards sensitization strategies prior to combination (immune) therapies.
3.1 Background

Numerous immunotherapy approaches are currently being exploited for a variety of human malignancies, including hematologic as well as solid tumors. These approaches generally include oncolytic viral therapy, cancer vaccines, adoptive T cell therapy and application of checkpoint inhibitors (CI). Particularly the latter two have demonstrated impressive objective response rates (OR) of up to 80%, including several complete responses in advanced disease stages 189,190.

Breast cancer (BC) has initially been considered poorly immunogenic due to its low average mutational burden when compared to other tumor types 144. More recently, it has been acknowledged that some breast tumors are extensively infiltrated by immune cells 8 and it became evident that density of tumor infiltrating lymphocytes (TIL), in particular CD8 T cells, has prognostic value and predicts response to neo-adjuvant chemotherapy as well as immune modulating therapies 5,84,191–193. Building on the revisited immunogenicity, several studies are currently exploiting cancer vaccines, adoptive T cell therapies or CI for the treatment of BC 194. Unexpectedly, ORs remain variable, and generally do not exceed 20% for CI mono-therapy 195.

BC is a heterogeneous disease comprising several histological and molecular subtypes. The most well recognized subtypes include luminal-A and normal-like (largely resembling the histological phenotype: ER+, PR+ and HER2-), luminal-B (ER+ PR+ Ki67hi and/or HER2+), her2 (ER-, PR-, HER2+), and basal-like subtype (largely resembling the triple negative (TN) phenotype: ER-, PR-, HER2-) 196,197. This subtype classification has clinical relevance with respect to prognosis and choice of targeted therapies 197. Notably, it has been observed that TN tumors respond better to CI treatment when compared to ER+ BC 113. Nevertheless, responses to immune therapies are not restricted to TNBC patients, as it has been reported that a metastatic luminal-A BC patient showed complete regression following adoptive T cell therapy 198.

Immune parameters that can be decisive towards an effective anti-tumor response, such as those reflecting immunogenicity as well as occurrence of T cell evasion, are poorly characterized in case of BC and thus critical factors determining tumor immunogenicity poorly understood. Tumor immunogenicity, which is the extent to which adaptive immune responses are triggered, depends on multiple factors including the expression, processing and presentation of tumor antigens and the presence, type and antigen specificity of TILs. Immunogenic tumor antigens can include oncoviral antigens, cancer germline antigens (CGA), and neo-antigens, which all have been reported to elicit T cell responses in cancer patients 199,200. Besides immunogenicity, immune evasive mechanisms can affect numbers and anti-tumor activity of T cells. Several evasive mechanisms have been described that limit influx and migration.
(e.g., lack or down-regulated expression of chemo-attractants and/or adhesion molecules), antigen recognition (e.g., lack or down-regulated expression of molecules involved in antigen processing and/or presentation), and/or function of CD8 T cells (e.g., presence of immune-suppressor cells, altered expression of immune or metabolic checkpoints, and/or activation of oncogenic pathways) \(^{31,201}\).

Current reports on prognostic and predictive value of TILs in BC subtypes to a certain extent refer to some of the above mechanisms yet remain inconclusive and sometimes even contradictory \(^{58,191}\). In the current study, we have comprehensively assessed immunogenicity as well as T cell evasive mechanisms in BC subtypes with respect to characteristics of TILs and the tumor micro-environment (TME). To this end, we applied a series of omics analysis tools on large publicly available datasets and demonstrated that BC molecular subtypes significantly differ with respect to extent of immunogenicity and occurrence of dominant T cell evasive mechanisms, qualities that go beyond the mere presence of TILs. These novel findings may aid future immune therapy trial design and rationalize implementation of differential combination-immune therapies for BC subtypes.

3.2 Results

TIL signature is prognostic for basal-like, her2 and luminal B, but not luminal A nor normal-like BC

We have built a 109-gene (120-probe) signature (additional file 1) that captures stromal TIL abundance, according to the guideline method from Salgado and colleagues \(^{56}\) (Figure 1A-E). Since TILs can be highly heterogeneous with respect to their composition of T cells and other immune cells, we performed immune fluorescence staining followed by digital image analysis and observed strong correlations between the TIL score and numbers of CD8 T cells \((r=0.82, p<0.0001)\) as well as CD4 T cells \((r=0.74, p<0.0001)\), but not macrophages \((r=0.031, p=0.9)\) (Supplementary figure S2). We further assessed this signature using the omics tools miXCR \(^{202}\) and CIBERSORT \(^{203}\). The first tool, which enumerates the sequence reads of T cell receptor alpha and beta chains (TCRα and β) from RNAseq data (Cohort B), revealed that the number of TCR-Vβ reads in a specimen strongly correlated with the TIL score (computed as average of all 109 genes per sample) of the same specimen \((r=0.91, p<0.0001)\), (Figure 1D). The second tool, a deconvolution algorithm that extracts relative proportions of 22 major immune cell populations from microarray data (Cohort A), revealed that proportions of CD8 T cells, activated memory CD4 T cells, naive B cells, gamma/delta T cells and M1 macrophages positively correlated with
TIL scores, whereas proportions of resting DC, Neutrophils, Monocytes, M0 Macrophages, and activated mast cells negatively correlated with these scores (Supplementary figure S3). Collectively, these findings point out that TIL-high samples (median of 35% sTIL) are enriched for activated lymphocytes and reflect frequencies of αβ T cells, and that TIL low samples (median of 5% sTIL) are enriched for immune suppressor cells.

Next, we assessed the prognostic value of our TIL signature and observed an association with distant MFS in the discovery set of 344 LNN primary BC (p=0.009, Supplementary figure S4A). To validate our findings, we performed similar analyses in a dataset of 523 primary operable, LNN BC and verified a significant association between TIL abundance and MFS (p=0.016, Supplementary figure S4B). Following this validation, and to increase statistical power for subgroup analysis, we combined the discovery and validation sets of samples (Cohort A, n=867) and explored the association between TIL scores and MFS in the different molecular BC subtypes (for hormone receptor status per molecular subtypes see supplementary figure S1). Basal-like and her2 had equally high TIL scores followed by normal-like BC, whereas luminal-A and B subtypes showed the lowest TIL scores (p<0.0001, Figure 2A). TIL scores had prognostic value in univariate cox regression only in basal-like (log-rank p=0.002), her2 (log-rank p= 0.04) and luminal-B (log-rank p=0.02) subtypes, but not in luminal-A or normal-like subtypes (Figure 3 B-F). Notably, TIL scores remained significant for basal-like (p=0.025) and luminal-B (p=0.02), but not her2 (p=0.2) in a
multivariable cox regression including tumor size and age (Table 1A). To investigate
the biological basis of differential prognostic values of TILs we subsequently evalu-
ated TIL and TME characteristics among BC subtypes.

Figure 2. TIL abundance provides differential prognostic values across BC subtype. A, Violin plots
with TIL-scores per BC subtype (molecular subtypes according to AIMS). Statistical differences were
calculated using Kruskal-Wallis test among subtypes, and Wilcoxon rank sum test for pairwise compari-
son relative to basal-like BC; p-values are indicated as: ‘***’<0.001, ‘**’<0.01, ‘*’<0.05. Figures
B-F show Kaplan Meier curves of Cohort A (867 LNN BC patients) by subtype with high versus low TIL scores.
TIL-status was assigned as explained in legend to figure 1.

Numbers of clonally expanded T cells were high in basal-like but low in luminal-A BC

Since T cell clonality can be indicative for tumor reactivity of TILs 204, we assessed
TCR-Vβ reads in TIL-high samples of different BC subtypes. Basal-like BC showed
the highest number of different T cell clones (i.e., highest TCR repertoire diversity,
average number=109), which was significantly higher than her2 (61), normal-like
(50), luminal-A (39) and luminal-B BC (35) (Figure 3A). In agreement, basal-like BC
showed the highest read-counts of the 10 most abundant clones per sample (Figure
3B). Highly expanded clones (HEC), which were defined as clones with read-counts
> 10% of total clone reads, were present in basal-like, her2 and luminal-B tumors.
Interestingly, luminal-B but not A tumors harbored HECs (Figure 3C), whereas both
tumor types had equally low TCR repertoire diversity. Notably, in all subtypes, indi-
vidual cases with expanded clones (EC, 5-10% of total clone reads) were present.
Expression of neo-antigens and CGAs is highest in basal-like and her2 BC, yet independent of TIL abundance

To evaluate antigenicity we assessed expression of two categories of recognized targets for CD8 T cells, namely neo-antigens and CGAs. We used non-synonymous mutations (cohort B, see Materials and Methods) and evaluated CGA expression (cohort B, average expression of 239 CGAs per sample). Neo-antigen expression was significantly higher in basal-like BC (average number=21.5) compared to luminal-A (7) and B (17), and normal-like BC (15), but not compared to her2 BC (17.5) (p<0.001, Figure 3D). CGA expression was again significantly higher in basal-like BC compared to luminal-A and B and normal-like BC, but not her2 BC (p<0.002, Figure 3F). When correlating antigen expression to TIL-scores, we observed a slight positive correlation with neo-antigen expression (r=0.2, p=0.0017, Figure 3E). Interestingly, CGA expression was inversely correlated to TIL-score (r=-0.21, p=0.00082, Figure 3G).

Genes related to T cell evasion are differentially expressed among BC subtypes

Besides parameters of immunogenicity, we evaluated differential expression of genes related to three main categories of T cell evasion (influx and migration of T cells; antigen processing and presentation; and function of T cells, Figure 4). With respect to influx and migration of T cells, basal-like BC showed the highest expression of chemo-attractants, which was significantly lower in other subtypes. Normal-like tumors showed the highest expression of T cell adhesion genes (followed by basal-like BC) and those related to cancer associated fibroblasts and extracellular matrix products (Figure 4A). With respect to antigen recognition by T cells, basal-like BC showed the highest expression of antigen processing and presentation (APP) genes, which was significantly lower in all other subtypes (Figure 4B). Type-I IFN gene products, which are recognized for their effects towards antigen priming, were equally high in basal-like, her2 and luminal-B, but expressed to significantly lower levels in luminal-A and normal-like subtypes. With respect to T cell function, we evaluated the expression of co-stimulatory ligands and receptors (for co-stimulatory and inhibitory receptors which are expressed by T cells, we compared TIL high samples only), immune mediators of the TME, components of oncogenic pathways (see additional file 2 for details), and frequencies of immune (-suppressor) cells (based on CIBER-SORT deconvolution). Again, basal-like tumors showed the highest expression of co-inhibitory receptors and ligands as well as co-stimulatory receptors and ligands. Expression levels of co-inhibitory/stimulatory receptors were significantly lower in all
other subtypes, while expression of corresponding ligands was equally high in her2, but not other subtypes. Expression levels of mediators such as IL10, IDO-1, VEGF, components of adenosine and glycolysis pathways, which can all limit T cell function, were also highest in basal like BC, and significantly decreased in all other subtypes. Interestingly, while M0 macrophages were significantly enriched in basal-like BC, frequencies of regulatory T cells, monocytes and M2 macrophages were highest in luminal-B tumors (Figure 4C).

Figure 3. T cell clonality and antigen expression is highest in basal, her2 and luminal B subtypes. A, Boxplots with total number of unique TCR-Vβ reads per BC subtype. B, Stacked bar charts with the average read numbers of the 10 most abundant T cell clones (according to TCR-Vβ reads) per BC subtype. C, Bar charts with proportions of BC subtypes with highly expanded clones (HEC, >10% of all clone reads), expanded clones (EC, 5-10% of all clone reads) and other clones (<5% of all clone reads). D and E show total number of neo-antigens per BC subtype and its correlation with TIL abundance on a log scale (Pearson, r=0.2, p=0.0017, CI: 0.95). F and G show CGA expression (average of all CGAs per sample) per BC subtype and its correlation with TIL abundance on a log scale (Pearson, r=-0.21, p=0.00082, CI: 0.95). Statistical differences were calculated using Kruskal-Wallis test among subtypes, and Wilcoxon rank sum test for pairwise comparison relative to basal-like BC; p-values are indicated as: ‘***’ <0.001, ‘**’<0.01, ‘*’<0.05.
When interrelating TIL score with above-mentioned gene sets in a subtype-independent manner, we observed that this score correlated significantly with co-inhibitory/stimulatory receptors and NFKB-pathway \((r>0.7) \), which may be expected because all of these gene-sets can be expressed by T cells. Weaker correlations \((r<0.6) \) were observed between the TIL score and antigen processing, and IFN signatures. For other gene-sets we observed weak (adenosine, immune mediators), no (glycolysis) or even inverse correlations (M0, WNT-pathway) with TIL-scores (see supplementary Figure S5 for details, interactions between gene-sets and TIL score and subtypes are indicated in Figure 4).

Figure 4. Immune and metabolic checkpoints as well as M0 macrophages are enriched in basal-like, T cell adhesion molecules are enriched in normal-like, and regulatory T cells and M2 are enriched in luminal-A and B BC. Violin plots with expression levels per BC subtype of Cohort A. A. Chemo-attractants, adhesion molecules, Cancer associated fibroblast and their products; B. Antigen processing and presentation, Type-II interferon genes; C. co-stimulatory receptors (TIL-high samples only), co-stimulatory ligands, co-inhibitory receptors (TIL-high samples only), co-inhibitory ligands, immune mediators, adenosine pathway as well as immune cell frequencies from CIBERSORT deconvolution, as well as glycolysis- and beta-oxidation pathway (for details of gene-sets see additional file 2). Statistical differences were calculated using Kruskal-Wallis test among subtypes, and Wilcoxon rank sum test for pairwise comparison relative to basal-like BC; p-values are indicated as: ‘***’ <0.001, ‘**’<0.01, ‘*’<0.05. * indicates a significant interaction with the TIL-score. # indicate a significant interaction with the TIL score and BC subtype.
Finally, we performed Cox regression analyses with MFS to determine the prognostic value of the above gene-sets in uni- and multivariable settings (Tables 1A and 1B; for prognostic value of single genes, see additional file 3). Besides TIL scores, we found significant associations with MFS (Hazard Ratio (HR) <1, p<0.05) for the following gene sets: Type-II IFN in BC (not differentiated per subtype), as well as her2 and luminal-B subtypes; co-inhibitory/stimulatory receptors and ligands in BC, as well as basal-like, her2 and luminal-B subtypes; antigen processing and presentation in BC, as well as basal-like and luminal-B subtypes; and NFKB pathway in BC as well as basal-like subtype. In addition, activated memory T cells were significantly associated with MFS in BC and basal-like, in the multivariable analysis. Interestingly, we found significant inverse associations with MFS (HR>1, p<0.05) for M2 macrophages in BC; M0 macrophages in normal-like subtype; glycolysis and adenosine pathway in BC; and WNT pathway in the BC, basal-like and luminal-A subtype.
<table>
<thead>
<tr>
<th>Gene-sets</th>
<th>All subtypes</th>
<th>Basal</th>
<th>Her2</th>
<th>LumA</th>
<th>LumB</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIL score</td>
<td>0.6 (0.46-0.79)</td>
<td>0.022</td>
<td>0.52 (0.32-0.85)</td>
<td>0.002</td>
<td>0.46 (0.24-0.88)</td>
<td>0.04</td>
</tr>
<tr>
<td>Plasma cells</td>
<td>0.66 (0.51-0.84)</td>
<td>0.0097</td>
<td>0.72 (0.43-1.2)</td>
<td>0.22</td>
<td>0.55 (0.29-1)</td>
<td>0.069</td>
</tr>
<tr>
<td>Adhesion molecules</td>
<td>0.68 (0.53-0.87)</td>
<td>0.022</td>
<td>0.92 (0.55-1.5)</td>
<td>0.75</td>
<td>0.69 (0.48-1.6)</td>
<td>0.7</td>
</tr>
<tr>
<td>Type-II IFN</td>
<td>0.69 (0.54-0.89)</td>
<td>0.0036</td>
<td>0.84 (0.5-1.4)</td>
<td>0.5</td>
<td>0.42 (0.22-0.8)</td>
<td>0.0082</td>
</tr>
<tr>
<td>Macrophages M2</td>
<td>1.4 (1.1-1.8)</td>
<td>0.0045</td>
<td>1.2 (0.71-2)</td>
<td>0.52</td>
<td>1.8 (0.97-3.4)</td>
<td>0.063</td>
</tr>
<tr>
<td>Co-stimulation</td>
<td>0.72 (0.56-0.92)</td>
<td>0.0081</td>
<td>0.49 (0.29-0.83)</td>
<td>0.0086</td>
<td>0.42 (0.22-0.79)</td>
<td>0.0077</td>
</tr>
<tr>
<td>Antigen processing</td>
<td>0.72 (0.56-0.92)</td>
<td>0.0085</td>
<td>0.4 (0.23-0.68)</td>
<td>0.00089</td>
<td>0.83 (0.45-1.5)</td>
<td>0.55</td>
</tr>
<tr>
<td>Monocytes</td>
<td>0.73 (0.57-0.93)</td>
<td>0.013</td>
<td>1 (0.6-1.7)</td>
<td>0.99</td>
<td>0.99 (0.53-1.8)</td>
<td>0.97</td>
</tr>
<tr>
<td>CD8 T cells</td>
<td>0.75 (0.58-0.96)</td>
<td>0.021</td>
<td>0.4 (0.23-0.69)</td>
<td>0.001</td>
<td>0.89 (0.48-1.6)</td>
<td>0.71</td>
</tr>
<tr>
<td>NFkB-PW</td>
<td>0.75 (0.59-0.97)</td>
<td>0.025</td>
<td>0.62 (0.37-1)</td>
<td>0.072</td>
<td>0.58 (0.31-1)</td>
<td>0.088</td>
</tr>
<tr>
<td>Co-inhibition</td>
<td>0.76 (0.59-0.97)</td>
<td>0.029</td>
<td>0.55 (0.32-0.93)</td>
<td>0.26</td>
<td>0.56 (0.31-1)</td>
<td>0.0574</td>
</tr>
<tr>
<td>WNT-PW</td>
<td>1.3 (0.99-1.6)</td>
<td>0.06</td>
<td>1.7 (1.2-2.9)</td>
<td>0.04</td>
<td>1.3 (0.71-2.5)</td>
<td>0.37</td>
</tr>
<tr>
<td>Type-I IFN</td>
<td>1.2 (0.97-1.6)</td>
<td>0.081</td>
<td>0.77 (0.46-1.3)</td>
<td>0.32</td>
<td>0.65 (0.35-1.2)</td>
<td>0.17</td>
</tr>
<tr>
<td>Glycolysis</td>
<td>1.2 (0.97-1.6)</td>
<td>0.082</td>
<td>0.91 (0.54-1.5)</td>
<td>0.7</td>
<td>1.4 (0.75-2.6)</td>
<td>0.29</td>
</tr>
<tr>
<td>Macrophages M0</td>
<td>1.2 (0.96-1.6)</td>
<td>0.099</td>
<td>1.3 (0.75-2.1)</td>
<td>0.39</td>
<td>0.98 (0.53-1.8)</td>
<td>0.94</td>
</tr>
<tr>
<td>Regulatory T cells</td>
<td>1.2 (0.95-1.6)</td>
<td>0.11</td>
<td>1.7 (1.2-2.8)</td>
<td>0.051</td>
<td>1.8 (0.97-3.5)</td>
<td>0.064</td>
</tr>
<tr>
<td>b-oxidation</td>
<td>0.85 (0.67-1.1)</td>
<td>0.2</td>
<td>1.4 (0.81-2.3)</td>
<td>0.25</td>
<td>0.89 (0.48-1.7)</td>
<td>0.72</td>
</tr>
<tr>
<td>Adenosine-PW</td>
<td>1.2 (0.9-1.5)</td>
<td>0.25</td>
<td>0.96 (0.57-1.6)</td>
<td>0.86</td>
<td>1.2 (0.68-2.3)</td>
<td>0.48</td>
</tr>
<tr>
<td>Immune mediators</td>
<td>0.89 (0.71-1.1)</td>
<td>0.36</td>
<td>0.98 (0.59-1.6)</td>
<td>0.94</td>
<td>0.43 (0.23-0.83)</td>
<td>0.012</td>
</tr>
<tr>
<td>Act. Memory CD4</td>
<td>1.1 (0.85-1.4)</td>
<td>0.5</td>
<td>1.5 (0.92-2.6)</td>
<td>0.098</td>
<td>1.3 (0.72-2.5)</td>
<td>0.37</td>
</tr>
<tr>
<td>PI3K neg. regulator</td>
<td>0.99 (0.77-1.3)</td>
<td>0.94</td>
<td>1.1 (0.69-1.9)</td>
<td>0.6</td>
<td>0.86 (0.47-1.6)</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Table 1B Cox regression analyses between immune gene sets and MFS across BC subtypes (multivariable model).

<table>
<thead>
<tr>
<th>Gene-sets</th>
<th>All samples</th>
<th>Basal</th>
<th>Her2</th>
<th>LumA</th>
<th>LumB</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI for HR)</td>
<td>p-value</td>
<td>HR (95% CI for HR)</td>
<td>p-value</td>
<td>HR (95% CI for HR)</td>
<td>p-value</td>
</tr>
<tr>
<td>TIL score</td>
<td>0.6 (0.44-0.82)</td>
<td>0.002</td>
<td>0.5 (0.28-0.91)</td>
<td>0.025</td>
<td>0.74 (0.30-1.79)</td>
<td>0.2</td>
</tr>
<tr>
<td>Adhesion molecules</td>
<td>0.67 (0.51-0.89)</td>
<td>0.006</td>
<td>1.3 (0.7-2.4)</td>
<td>0.4</td>
<td>1 (0.5-2)</td>
<td>0.89</td>
</tr>
<tr>
<td>Type II IFN</td>
<td>0.64 (0.48-0.85)</td>
<td>0.002</td>
<td>0.63 (0.34-1.1)</td>
<td>0.1</td>
<td>0.41 (0.19-0.8)</td>
<td>0.02</td>
</tr>
<tr>
<td>Macrophages M2</td>
<td>1.6 (1.22-2.14)</td>
<td>0.001</td>
<td>1.5 (0.86-2.7)</td>
<td>0.14</td>
<td>2.7 (1.27-5.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Co-stimulation</td>
<td>0.69 (0.5-0.91)</td>
<td>0.01</td>
<td>0.6 (0.33-1.1)</td>
<td>0.08</td>
<td>0.55 (0.26-1.19)</td>
<td>0.13</td>
</tr>
<tr>
<td>Antigen processing</td>
<td>0.7 (0.53-0.93)</td>
<td>0.015</td>
<td>0.38 (0.2-0.7)</td>
<td>0.002</td>
<td>0.57 (0.26-1.23)</td>
<td>0.16</td>
</tr>
<tr>
<td>NFKB-PW</td>
<td>0.72 (0.54-0.95)</td>
<td>0.02</td>
<td>0.45 (0.24-0.86)</td>
<td>0.01</td>
<td>0.89 (0.37-1.75)</td>
<td>0.58</td>
</tr>
<tr>
<td>Co-inhibition</td>
<td>0.69 (0.52-0.91)</td>
<td>0.009</td>
<td>0.38 (0.19-0.72)</td>
<td>0.003</td>
<td>0.59 (0.28-1.24)</td>
<td>0.16</td>
</tr>
<tr>
<td>WNT PW</td>
<td>1.3 (0.99-1.7)</td>
<td>0.05</td>
<td>2.1 (1.25-3.8)</td>
<td>0.006</td>
<td>1 (0.45-2.52)</td>
<td>0.9</td>
</tr>
<tr>
<td>Type II IFN</td>
<td>1.14 (0.8-1.5)</td>
<td>0.355</td>
<td>0.91 (0.51-1.6)</td>
<td>0.7</td>
<td>0.73 (0.43-1.56)</td>
<td>0.41</td>
</tr>
<tr>
<td>Glycolysis</td>
<td>1.2 (0.91-1.6)</td>
<td>0.18</td>
<td>0.68 (0.35-1.3)</td>
<td>0.26</td>
<td>1.16 (0.51-2.65)</td>
<td>0.71</td>
</tr>
<tr>
<td>M0 macrophages</td>
<td>1.16 (0.89-1.5)</td>
<td>0.27</td>
<td>0.9 (0.47-1.7)</td>
<td>0.77</td>
<td>0.78 (0.36-1.65)</td>
<td>0.5</td>
</tr>
<tr>
<td>Regulatory T cells</td>
<td>1.12 (0.86-1.5)</td>
<td>0.4</td>
<td>1.6 (0.93-3)</td>
<td>0.08</td>
<td>1 (0.48-2)</td>
<td>0.99</td>
</tr>
<tr>
<td>b-oxidation</td>
<td>0.85 (0.64-1.13)</td>
<td>0.28</td>
<td>1 (0.44-2.61)</td>
<td>0.8</td>
<td>0.88 (0.4-1.9)</td>
<td>0.74</td>
</tr>
<tr>
<td>Adenosine PW</td>
<td>1.23 (0.95-1.65)</td>
<td>0.1</td>
<td>1 (0.53-1.9)</td>
<td>0.95</td>
<td>1.77 (0.83-3.9)</td>
<td>0.16</td>
</tr>
<tr>
<td>Immune mediators</td>
<td>0.9 (0.68-1.2)</td>
<td>0.47</td>
<td>1.2 (0.63-2.27)</td>
<td>0.57</td>
<td>0.54 (0.26-1.16)</td>
<td>0.12</td>
</tr>
<tr>
<td>PI3K neg. regulator</td>
<td>1.12 (0.85-1.47)</td>
<td>0.42</td>
<td>1 (0.58-1.9)</td>
<td>0.85</td>
<td>1 (0.46-2.21)</td>
<td>0.97</td>
</tr>
<tr>
<td>Act. memory CD4</td>
<td>0.72 (0.53-0.98)</td>
<td>0.04</td>
<td>0.37 (0.2-0.66)</td>
<td>0.001</td>
<td>0.63 (0.29-1.4)</td>
<td>0.25</td>
</tr>
<tr>
<td>Plasma cells</td>
<td>0.6 (0.45-0.79)</td>
<td>0.0001</td>
<td>0.56 (0.32-1)</td>
<td>0.05</td>
<td>0.53 (0.24-1.17)</td>
<td>0.12</td>
</tr>
<tr>
<td>CD8 T cells</td>
<td>0.78 (0.59-1)</td>
<td>0.07</td>
<td>0.48 (0.26-0.88)</td>
<td>0.021</td>
<td>0.8 (0.37-1.74)</td>
<td>0.59</td>
</tr>
<tr>
<td>Monocytes</td>
<td>0.75 (0.6-0.98)</td>
<td>0.04</td>
<td>1 (0.57-1.8)</td>
<td>0.9</td>
<td>0.64 (0.28-1.4)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Chapter 3
3.3 Discussion

CD8-positive TILs in BC are generally associated with a favorable clinical course, yet response to immune therapies is overall low, does not go hand-in-hand with CD8 TIL abundance, and differs significantly across subtypes. Tumor-immune interactions are not well understood and are expected to contribute to lack of response to immune therapies. In this study, we have addressed immunogenicity and T cell evasive mechanisms according to multiple parameters in a cohort of 867 LNN, untreated primary BC and a cohort of 437 primary BC with WGS data. To this end, we have built a 109-gene TIL signature that preserves differential prognostic value of TILs across molecular BC subtypes. We found that T cell clonality, antigenicity, frequency of immune suppressor cells as well as expression of genes related to influx/migration, antigen recognition or suppression of T cells provide significant determinants of individual subtypes and may explain the differential prognostic value of TILs.

The TIL signature used in this study was based on quantitative pathological assessment of TILs on HE-stained BC. TILs generally comprise a variety of different immune cell population including subsets with pro-and anti-tumor activity. Nevertheless, we found that this signature correlated very well with numbers of CD8 T cells, frequencies of activated lymphocytes (cell types associated with good prognosis) and inversely correlated with immune suppressor cells (cells associated with poor prognosis), suggesting that it may be used to assess T cell abundance when tissues are not available. Moreover, we observed a near perfect correlation between TIL score and TCR-Vβ read counts, suggesting that TCR-Vβ read counts also act as a surrogate for TIL abundance in silico (correlations between TIL density and either TIL score (r=0.82, p<0.0001) or TCR-Vβ read counts (r=0.76, p<0.0001) are comparable). TIL scores were high in basal-like, her2 and normal-like BC. T cell abundance, however, was not a prerequisite for prognosis since TIL scores were only associated with MFS in basal-like, her2 (univariate analysis only) and Luminal-B subtypes, but not in luminal-A, nor normal-like subtypes.

Assessment of immunogenicity and T cell evasive mechanisms per subtype revealed that basal-like, her2 and normal-like tumors harbor the highest TCR repertoire diversity. TCR clonality, however, was highest in basal-like, her2 and luminal-B tumors, which suggests that a tumor-specific T cell response has taken place in the latter three BC subtypes and to lesser extent in luminal-A and normal-like tumors (despite high TIL score and TCR diversity in normal-like tumors). Even though T cell clonality assessment based on bulk RNAseq analyses has several limitations and should be interpreted with caution, it is interesting that a recent study by Schepet and colleagues is in line with our findings and revealed that the tumor-re-
active capacity of TILs is highly variable in different cancers and that a proportion of TILs represents true bystander T cells, which may be the case for the majority of TILs in normal-like tumors. In line with T cell clonality, basal-like BC showed the highest expression of neo-antigens and CGAs, followed by her2 and luminal-B tumors. These observations suggest that a certain level of antigen expression, which is considered a pre-requisite for an anti-tumor T cell response, and the presence of clonally expanded T cells, which is a consequence of T cell responses, may at least in part explain the prognostic value of TILs in basal-like, her2 and luminal-B subtypes. Nevertheless, when correlating neo-antigens to TIL scores or T cell clonality we only observed a weak correlation, which did not hold true upon subtype stratification (except for luminal-B tumors, which may be due to overrepresentation of APOBEC-driven neo-antigens that are considered more immunogenic than other neo-epitopes), suggesting that, at least in other subtypes, predicted antigens are not truly immunogenic. Undoubtedly, the landscape of antigens goes beyond CGAs and classical neo-antigens (derived from non-synonymous mutations), to which end we have evaluated correlations between TILs and alternative mutations (i.e., frame-shifts, indels, drivers, passengers) which did not improve correlations with TILs (data not shown). The lack of strong correlations between antigenicity and TILs may hint to the occurrence of immune editing or other immune evasive mechanisms.

When evaluating genes related to T cell evasion, we observed that expression of chemo-attractants was highest in basal-like BC followed by her2. T cell adhesion molecules on the other hand, were highest in normal-like BC, which may explain the relatively high TIL scores as adhesion molecules may enhance T cell retention irrespective of antigen-specificity. Vice versa, low expression levels of adhesion molecules in luminal-B tumors may explain the low TIL score measured for this subtype. Looking into antigen recognition by T cells, we demonstrated that APP was lowest in luminal-A, -B and normal-like tumors. Nevertheless, we observed a significant association of the APP gene set with survival in luminal-B tumors, suggesting that APP is functional in at least a subset of these patients. Loss of function mutations in APP genes have been reported to result in immune resistance towards CI therapies in melanoma. Along this line, it is noteworthy that we found 1 or more mutations in APP genes in 10% of basal-like patients, a fraction of patients that is 2 to 5-fold higher compared to the other BC subtypes (see Supplementary figure S6). Type I interferons, such as IFNα and IFNβ, produced either by tumor cells or dendritic cells, are critical for priming of CD8 T cells and significantly impact natural as well as therapy-induced immune control of tumors. Moreover, it has been shown that mice lacking type I IFNs spontaneously develop breast tumors. Expression of type-I IFN genes were equally high in basal-like, her2 and luminal-B tumors and showed significant interaction with the TIL score, which may further support the prognostic
value of TILs in these subtypes. Interestingly, we observed that the abundance of memory CD4 T cells was associated with better survival in BC and basal-like BC, which has recently also been shown by others \(^{212}\). We found that this T cell subset was enriched in TIL-high samples of basal, her-2 and luminal-B tumors, which suggest that not only quantity but also quality of the T cell infiltrate matters.

Lastly, when analyzing modes of T cell suppression, we observed that gene-sets for both co-inhibitory/stimulatory receptors showed significant interaction with TIL scores and were associated with survival in basal, her2 and luminal-B tumors (as were TIL scores), which is in agreement with the concept that immune checkpoints become expressed following a tumor-specific T cell response, since these molecules are often expressed in response to IFNγ \(^ {213}\). M0 and M2 macrophages, cell types which have been associated with various modes of immune suppression and tumor progression in BC \(^ {214}\), were inversely correlated with MFS in BC, which is in agreement with findings by Ali and colleagues \(^ {67}\). Immune inhibitory mediators, which can be secreted by MDSC or tumor cells, were also expressed at the highest level in basal-like BC, and as a gene set demonstrated a high HR in this subtype. Next to suppressor cells, also oncogenic and metabolic pathways have been linked to T cell evasion. In example, increased glycolysis has been linked to decreased trafficking and cytotoxicity of T cells in other malignancies \(^ {215}\). Interestingly, it has been observed that glycolysis signaling can induce MDSC development, via induction of G-CSF and GM-CFS in BC \(^ {216}\). In line, we observed co-expression of MDSC and glycolysis signatures as well as inverse correlations with TIL scores. Notably, these observations could be caused by a single common process or due to the co-existence of multiple biological processes, indicating that mechanistic conclusions should be drawn with caution. Components of oncogenic pathways, such as WNT and adenosine, were expressed at the highest level in normal-like and basal-like BC, respectively, and remarkably WNT genes were associated with poor prognosis in BC, basal like BC, and luminal-A BC. WNT has been linked to decreased recruitment of T cells in melanoma and it has been shown recently, that WNT signaling can modulate PD-L1 expression in cancer stem cells of BC \(^ {217}\), suggesting that WNT plays a role in multiple modes of T cell evasion.

In Figure 5, outcomes of parameters of TILs and tumor micro-environment are summarized per BC subtype, and pointing to the differential qualities of TILs and occurrence of T cell evasive mechanisms, which may represent important biomarkers when monitoring patient responses to immune therapies. Based on our multi-parameter analyses in relation to subtypes, TIL scores and prognosis, we argue that in particular T cell clonality, expression of co-inhibitory molecules, type-I IFN, APP and frequencies of activated memory T cells better reflect the qualities of TILs.
In agreement, recent results of the TONIC trial showed that T cell clonality correlated with response to pembrolizumab, when combined with chemotherapy, in TNBC. A recent trial in which trastuzumab-resistant Her2+ patients were treated with pembrolizumab showed clinical benefit for patients whose tumors were positive for PD-L1, a marker that is frequently up-regulated following anti-tumor T cell responses. Moreover, the Impassion130 trial, in which 902 TNBC patients were treated with atezolizumab with/without nab-paclitaxel, revealed that only patients...

Figure 5. Summary of in silico analyses of TILs and tumor micro-environment per BC subtype. Heat maps with normalized expression of immune gene-sets (high expression in red, low expression in blue). Cohort A was used to calculate average gene expression per BC subtype, except for highly expanded clones (HEC), neo-antigens and CGAs for which Cohort B was used (for individual analyses, see Figures 1-4). **Abbreviations:** NFKB, nuclear factor kappa-light-chain-enhancer of activated B cells; PW, pathway; WNT, wingless-type MMTV integration site.
with PD-L1-positive immune infiltrate showed clinical benefit \(^{220}\). In line with our study, these findings argue that the mere presence of CD8 TILs is not sufficient to accurately chart immune responses, and that markers that reflect the quality of TILs should be included to monitor future trials. In extension to this concept, our findings on the quality of TILs and the immune micro-environment, in particular with regard to subtype specific differences in metabolic and oncogenic pathways as well as recruitment of different types of suppressor cells may aid the design and translational testing of subtype-specific (combination-) therapies (see examples below). Of note, despite good concordance between subtyping methods and highly similar results for immune-gene analysis in histological and corresponding molecular subtypes (supplementary Figure S7), the here presented subtypes do not fully resemble the subtypes used in daily clinical practice. Moreover, we have used gene expression data at bulk level to interrogate BC subtypes for their immunogenicity and immune evasive mechanisms, which subsequently need to be validated in future studies.

Based on this study, in basal-like BC, there is a strong rationale for testing combinations of checkpoints with inhibitors of oncogenic pathways, MDSC or immune mediators. Possible combinations include drugs targeting VEGF or adenosine receptors, which are FDA approved for other implications and showed synergistic effects with CI in pre-clinical models and early clinical studies, including TNBC \(^{221}\). Furthermore, several WNT-PW inhibitors, which are currently in clinical trials (including studies in breast cancer) or drugs depleting MDSC \(^{222}\), which are mainly in preclinical development, may increase efficacies of ICI in basal-like BC.

In Her2 BC, even though generally being immunogenic, there may be insufficient numbers of tumor reactive T cell clones when compared to basal-like BC (despite equally high TIL scores). Given the high antigenicity and relatively low frequencies of immune-suppressor cells, adoptive T cell therapy with TCR-engineered T cells may be considered to treat this tumor type. In fact, chimeric antigen receptor (CAR) T cells targeting her2 effectively kill BC in mouse models, however, in patient studies severe on-target toxicities have been observed \(^{223}\). Nevertheless, based on our data, CGAs and neo-antigens are frequently expressed in her2 BC and may represent safe targets for AT.

In luminal-B BC, at least a subset of tumors may very well be immunogenic and may benefit from immune therapies. In fact, TIL scores and expression of APP genes, although being low, were prognostic, and TIL scores correlated to the presence of neo-antigens in this tumor type. The generally low frequencies of T cells, which may be due to low expression of chemo-attractants and adhesion molecules, argues in favor of treatments that enhance accumulation of T cells (chemotherapy or epigenetic drugs), antigen presentation (CDK4/6 inhibitors) \(^{224}\) and/or adoptive T cell therapy.
In addition, Luminal-B tumors were enriched for M2 macrophages and regulatory T cells, which also represent targets in this tumor type for combinatorial treatments.\(^{225}\)

In Luminal-A BC and normal-like BC, we observed the least signs of immunogenicity and immune evasion implying that these tumor types are unlikely to respond to immune therapies. A recent case study, on the other hand, reported complete regression of a luminal-A patient following treatment with tumor reactive TILs.\(^{198}\) Importantly, however, this patient had an exceptionally high number of mutations, indicating that these results may not be generally translatable to other luminal-A tumors.

Finally, normal-like BC, demonstrated enrichment for CAF and their products as well as T cell adhesion molecules, which is suggestive for enhanced T cell retention and may explain relatively high TIL scores. This, together with the low expression of antigens and markers for ongoing immune responses, suggest that normal-like tumors are also unlikely to respond to immune therapies, but may benefit from therapies that target CAFs and/or their products.

3.4 Conclusion

Our data suggest that not frequencies of TILs per se, but rather qualities of TILs (i.e. T cell clonality, T cell subset distribution, APP, expression of type-I IFNs and immune checkpoints); and immune micro-environments (in particular oncogenic- and metabolic pathways as well as types and frequencies of suppressor cells) discriminate BC subtypes. Furthermore, our data suggest that evaluation of multiple immune parameters using NGS data enables charting of immunogenicity and immune evasive mechanisms, and provide a guide to select combinatorial approaches which may enhance the efficacy of future immune therapy trials.

3.5 Materials and Methods

Gene expression datasets

Cohort A: Gene expression data (HG-U133-A array) of lymph node–negative (LNN) BC patients (who did not receive any adjuvant systemic treatment) were retrieved through GEO Series accession numbers: GSE2034 (n=286)\(^{226}\), GSE5327 (n=58)\(^{227}\),
GSE11121 (n=200) 228, GSE2990 (n=125) 229 and GSE7390 (n=198) 230. To assess the prognostic value of TILs in different BC subtypes, GSE2034 and GSE5327 constituted a discovery cohort (n=344), whereas GSE11121, GSE2990 and GSE7390 (n=523) constituted a validation cohort. Raw cel files of all GSE-entries were downloaded and data were normalized using fRMA 231 and corrected for batch effects using ComBat 232. Subsequently, to retain significant power, the combined cohort of 867 LNN primary BC was used for in depth analyses of TILs and the TME within BC subtypes as described below.

Cohort B (BASIS): Secondly, a unique dataset was retrieved from primary BC cases with both WGS (n=560) and in depth RNA sequencing data (n=347) and which is accessible through EGAS00001001178 149,233. From cases for which both WGS and RNAseq were available (n=266), the data were used for predicting neo-antigens and from the cases which had just RNAseq data (n=347), the data were used for analysis of T cell clonality.

Ethics statement

This study has been approved by the medical ethical committee at Erasmus MC (MEC.02.953), and was performed according the Declaration of Helsinki and the “Code for Proper Secondary Use of Human Tissue in The Netherlands” (FMWV, version 2002, update 2011) of the Federation of Medical Scientific Societies in The Netherlands (http://www.federa.org/), the latter aligning with authorized use of coded spare tissue for research.

TIL signature

To assess TIL abundance, we used a previously published 206, but slightly modified TIL signature. In brief, the signature was built based on assessment of the proportion of TIL nuclei of total nuclei (including TIL, tumor and resident stromal cells) for multiple representative areas of H&E stained slides from 96 familial BC samples by an experienced pathologist (CD). Gene-expression data (Affymetrix HG-U133_plus_2.0 array) from GEO54219 234 of corresponding samples was split in two groups based on TIL abundance (high and low TIL count, median split), and tested for differential gene expression, which resulted in a 152 probe signature that highly correlates with TIL percentages in the specimen ($r=0.74$, p-value < 0.001)206. From the 152 HG-U133_plus_2.0 array immune infiltrate signature probe-sets, 120 (resembling
109 genes, see additional file 1) were found to overlap with the HG-U133_A array (Cohort A), and were used to classify samples based on TIL abundance according to average linkage hierarchical clustering (correlation as distance metric) in this study. TIL high samples contained a median stromal TIL count of 35% whereas TIL-low samples had a median stromal TIL count of 5%. The limitation to 120 probes in this study did not affect TIL scores calculated from either RNA–seq or microarray data (correlations between original and modified signatures, r=1, p-value < 0.001).

Assessment of prognostic value of the TIL signature

The prognostic value of this signature according to distant metastasis-free survival (MFS) was tested with cohort A. In the discovery set, mean age at time of surgery was 53 years (standard deviation (SD), 12); 221 patients (64%) were ER-positive; 120 patients were assigned to the TIL-high cluster (35%); 198 patients were pre-menopausal (58%). T1 tumors (<=2 cm) were present in 168 patients (49%), T2 tumors (>2–5 cm) in 163 patients (47%), T3/4 tumors (>5 cm) in 12 patients (3%), and unknown tumor stage in 1 patient. With respect to disease spread, 226 patients (66%) did not develop metastasis at a distant organ during follow-up (median follow-up time of patients still alive was 101 mo; range, 61–171 mo). In the validation set, 404 patients were ER-positive (77%); 166 patients were assigned to the TIL-high cluster (32%); and 387 patients (74%) did not have metastasis at a distant organ during follow-up (median follow-up time of 124 months). An overview of clinical characteristics per molecular subtype is given in supplementary table 1. To reduce inter-experimental variation and minimize biases, both datasets were combined by batch mean centering, and subsequently used for hierarchical clustering to divide samples in high and low TIL abundance groups using the 120 probe sets of the TIL signature.

Subtyping breast cancer

Samples were assigned to subtypes according to BC intrinsic molecular subtypes (AIMS) as described by Paquet and colleagues using the Bioconductor R package genefu. AIMS subtyping is considered the most stable subtyping based on expression data, as it is not affected by normalization or subtype frequencies in the cohort. It is noteworthy that AIMS subtyping has good concordance with PAM50 molecular subtypes as well as histological subtypes and preserves prognosis of subtypes. For a breakdown of hormone receptor status (ER, PR and Her2) per molecular subtype, see supplementary Figure S1 and for a comparison of several im-
mune-gene sets in AIMS and histological subtypes see supplementary Figure S7.

Immunogenomic tools

T cell clonality (TCR repertoire diversity and convergence): T cell receptor-β chain (TRB) reads were extracted from RNA-seq (Cohort B, n=347) using the miX-CR202 algorithm, available at https://github.com/milaboratory/mixcr. In brief, the software aligns the sequencing reads to reference V,D,J and C genes of the T-cell receptors (TCR), assembles the clonotypes and exports the clones per sample. Since total TCR-Vβ reads significantly differed among BC subtypes, we used only TIL-high samples to compare TCR clonality.

Antigen/mutational load: DNAseq and RNAseq data (Cohort B, n=266) were used to determine load of neo-antigens and expression of cancer germline antigens (CGAs). Neo-antigens and epitopes were predicted as described in149. Briefly, 17-mers of amino acids containing an amino acid arisen through a non-synonymous mutation at the center position were run through the online prediction server Net-MHC to predict EC50 values of all possible 9-mer peptides for HLA-class I molecules, and a peptide with a predicted EC50<50 nM was considered a possible neo-epitope. List of CGAs (n=239) was extracted from CT database (http://www.cta.lncc.br/), and their expression levels were determined relative to expression of all CGAs per patient.

Frequencies of immune cell populations: Microarray samples (Cohort A, n=867) were used for deconvolution of 22 immune cell populations (LM22) using CIBER-SORT (203, https://cibersort.stanford.edu/). Prognostic values of immune cell populations towards MFS were assessed by Cox regression analysis following classification into “high” and “low” groups, split by the median frequency.

Genes related to T cell evasion

Genes related to T cell evasion (n=850, see additional file 2) were selected from reports from others34,35,160 as well as the Laboratory of Tumor immunology (PI: RD), Dept Medical Oncology, Erasmus MC (reviewed in31,201). These genes represent different T cell evasive mechanisms, and can be divided into 3 main categories, namely genes related to: (1) influx and migration of T cells; (2) antigen processing and presentation; and (3) function of T cells, with each category having various sub-
categories (see additional file 2). Notably, 4/24 genes of the category immune checkpoints were also present in the TIL signature. Differential gene expression analysis was performed for Cohort A in R using Limma. Genes that were differentially expressed among BC subtypes (Benjamini-Hochberg adjusted P-value <0.05) were grouped according to above-mentioned categories of T cell evasion. Gene-sets with a clear direction (>90% up- or downregulated) were displayed using violin plots and heat maps. Heat maps were made using average expression of gene-sets per BC subtype. For comparison of gene-sets expressed by T cells, only TIL high samples were considered.

Statistical analysis
Differential gene expression was tested using Kruskal-Wallis tests, and comparisons of gene expression levels versus basal-like BC were performed with Wilcoxon tests. Distant MFS was used as endpoint for prognosis and log-rank tests were used to test survivor functions. Cox regression analyses were performed to assess prognostic value of gene-sets (and single genes, see additional file 3) in a uni- as well as multivariable (stratified for tumor size and age) model for the entire cohort A and per individual subtype. An interaction test was performed for all covariates with molecular subtypes. Kaplan-Meier curves were used to plot survival probabilities of subtypes/patients selected based on gene expression. Stata v13 (StataCorp, College Station, Texas, USA) was used to calculate differences and 2-sided p-values of < 0.05 were considered statistically significant.

Conflict of interest: Authors declare no conflict of interest.
3.6 Supplementary Data

Figure S1. Hormone receptor status per BC molecular subtype. Stacked bar-plots show percentage or estrogen receptor (ER, left), progesterone receptor (PR, middle) and human-epidermal growth factor receptor (Her2, right) as assessed by immune histochemistry of the same patients, per BC subtype.

Figure S2. Scatterplots with pearson correlations (blue lines) between immune cell densities (cells/μm²) of A, CD8 T cells (identified as CD3+ CD8+); B, CD4 T cells (CD3+ CD8-) or C, macrophages (CD68+) and TIL scores in 30 BC patients.
Figure S3. Correlations between proportions of immune cell populations and TIL score in BC. Scatter plots with correlations (blue lines) between fractions of immune cell subsets and TIL-scores (only displayed when pearson-correlation was significant, p<0.05).
Figure S4. Prognostic value of TIL signature in LNN BC. A, Kaplan-Meier curves of estimated MFS for patients in Cohort A, discovery set (n=344, p=0.009). B, Kaplan-Meier curves of estimated MFS for patients in Cohort A, validation set (n=523, p=0.016).

Figure S5. Correlation matrix of gene-sets related to T cell evasion. Numbers represent correlation coefficients (r-values). Negative correlations are shown in blue; positive correlations are visualized in red.
Figure S6. Mutations or down-regulated expression of antigen processing and presentation genes in BC subtypes. A, Expression of genes related to APP. B, Proportion of BC patients with one or more mutations in APP genes. Statistical differences were calculated using Kruskal-Wallis test among subtypes, and Wilcoxon rank sum test for pairwise comparison relative to basal-like BC; p-values are indicated as: ‘***’<0.001, ‘**’<0.01, ‘*’<0.05.

Figure S7. Sets of immune genes show similar levels of expression between molecular (AIMS) and histological subtypes (hormone receptors). A, selected gene-sets associated with immune response. B, selected gene-sets associated with immune suppression (n=247, cohort A).
Supplementary Table 1. Clinical characteristics of Cohort A per molecular subtype.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Basal samples</th>
<th>HER2 samples</th>
<th>LumA samples</th>
<th>LumB samples</th>
<th>Normal samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>ER-</td>
<td>138</td>
<td>50</td>
<td>9</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>ER+</td>
<td>23</td>
<td>33</td>
<td>166</td>
<td>101</td>
<td>105</td>
</tr>
<tr>
<td>n.d.(ER)</td>
<td>9</td>
<td>29</td>
<td>52</td>
<td>36</td>
<td>57</td>
</tr>
<tr>
<td>PR-</td>
<td>73</td>
<td>31</td>
<td>14</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>PR+</td>
<td>16</td>
<td>15</td>
<td>74</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>n.d.(PR)</td>
<td>104</td>
<td>66</td>
<td>139</td>
<td>90</td>
<td>134</td>
</tr>
<tr>
<td>HER2-</td>
<td>71</td>
<td>18</td>
<td>63</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>HER2+</td>
<td>1</td>
<td>22</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>n.d.(HER2)</td>
<td>121</td>
<td>72</td>
<td>164</td>
<td>107</td>
<td>156</td>
</tr>
<tr>
<td>T1</td>
<td>75</td>
<td>53</td>
<td>137</td>
<td>68</td>
<td>123</td>
</tr>
<tr>
<td>T2</td>
<td>116</td>
<td>56</td>
<td>82</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>T4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G1*</td>
<td>1</td>
<td>3</td>
<td>27</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>G2*</td>
<td>9</td>
<td>10</td>
<td>32</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>G3*</td>
<td>64</td>
<td>27</td>
<td>8</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>G1#</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>G2#</td>
<td>28</td>
<td>28</td>
<td>82</td>
<td>54</td>
<td>75</td>
</tr>
<tr>
<td>G3#</td>
<td>68</td>
<td>102</td>
<td>12</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>

Abbreviations: ER: estrogen receptor; Her2: human epidermal growth-factor receptor 2; G: clinical grade; n.d.: not determined; PR: progesterone receptor; T: tumor size.

*clinical grade determined by Bloom-Richardson grading

#clinical grade obtained via public repository (unspecified GSE11121, Elston and Ellis method for GSE7390 and GSE2990)
PART 2

Exploring new Targets for T cells
Adoptive T Cell Therapy: New Avenues Leading to Safe Targets and Powerful Allies

Dora Hammerl¹, Dietmar Rieder³, John W. M. Martens², Zlatko Trajanoski³, and Reno Debets¹

¹Laboratory of Tumor Immunology, ²Department of Medical Oncology, Erasmus MC-Cancer Institute, Rotterdam, the Netherlands; and ³Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria.

Trends in Immunology, 2018, DOI: 10.1016/j.it.2018.09.004
Abstract

Adoptive transfer of TCR-engineered T cells is a potent therapy, able to induce clinical responses in different human malignancies. Nevertheless, treatment toxicities may occur and, in particular for solid tumors, responses may be variable and often not durable. To address these challenges, it is imperative to carefully select target antigens and to immunologically interrogate the corresponding tumors when designing optimal T cell therapies. Here, we review recent advances, covering both omics- and laboratory tools that can enable the selection of optimal T cell epitopes and TCRs as well as the identification of dominant immune evasive mechanisms within tumor tissues. Furthermore, we discuss how these techniques may aid in a rational design of effective combinatorial adoptive T cell therapies.

Highlights

1) Novel algorithms that surpass the mere binding to HLA-I and integrate multiple immune parameters, including immunopeptidomes and TCR:peptide binding modes, are expected to accelerate the selection of valid target epitopes and corresponding TCRs for AT.

2) Immunophenotyping combining laboratory and in silico tools is required to assess and understand local T cell immunity, and where the tumor evades T cell control, and provide a rationale for combination AT.

3) In silico tools guide qualitative assessment T cell infiltration, antigen recognition and T cell function.

4) Advanced imaging techniques enable simultaneous acquisition on the spatial distribution of hundreds of (immune) markers and provide a detailed view of the tumor micro-environment.
5.1 Successes and Challenges of TCR-engineered T Cells

Adoptive T cell therapy (AT) refers to the infusion of tumor-reactive T cells that can recognize and kill malignant cells. AT requires T cells to be isolated from a patient, expanded and activated ex vivo, and re-infused back into the patient. This therapy, when using T cells with introduced genes encoding T cell receptors (TCRs), has already resulted in impressive clinical responses in a number of human malignancies, such as metastatic synovial sarcoma, melanoma and multiple myeloma. Besides clear objective responses (OR: 55-80%), these studies demonstrated durable complete regressions (CR: 2-20%).

While TCRs targeting the tumor antigen new york esophageal squamous cell carcinoma-1 (NY-ESO-1) have been proven successful without treatment toxicities, targeting melanoma antigen recognized by T cells 1 (MART-1) or melanoma-associated antigen 3 (MAGE-A3) has led to severe toxicities caused by recognition of cognate antigens (see Glossary) or highly similar antigens outside tumor tissues.

In addition to side-effects, multiple clinical trials demonstrated variable therapeutic efficacy (OR and CR as low as 12% and 0%, respectively), which in case of solid tumors has been largely attributed to the suppressive nature of the tumor micro-environment (TME).

In recent years, next-generation sequencing (NGS) techniques as well as those to detect and localize markers in tissues, have developed tremendously fast and yielded an overflow of valuable immune-genomic and proteomic data. These data, when analyzed with the appropriate and latest tools, enable researchers to address the above challenges of AT with TCR-engineered T cells. Here, we provide an overview of novel omics and laboratory tools, and discuss how to implement these tools to select truly tumor-specific epitopes and TCRs, as well as to detect tissue profiles and identify immune evasive mechanisms. Furthermore, we present a new strategy to define patient subgroups according to target epitopes, TCRs and immune evasive mechanisms to maximally sensitize the TME for T cells, while minimizing treatment-related toxicities and therapy resistance.

5.2 Avenues to Selecting Target Epitopes and TCRs

Target Antigens for AT: Not a Blind Choice

T cell target antigens should ideally be selected according to the following features: the ability to elicit a cytotoxic CD8 T cell (CTL) response; a high and homogeneous expression in the tumor but not in healthy tissues; and preferably shared by many patients. Numerous tumor antigens have already been tested in AT (incorporating...
ing those listed above), and despite being generally immunogenic and shared by many patients, only a small fraction of these antigens is truly tumor-selective (absent in healthy tissue) \(^{286}\). Among various tumor antigens, one can broadly distinguish between antigens that are shared and non-shared among patients. Shared antigens, such as those that are over-expressed, as well as differentiation antigens, are also expressed in healthy tissues, and targeting such antigens can result in severe on-target toxicities \(^{287}\). Cancer Germline Antigens (CGAs), even though generally considered to be tumor-selective, CGAs are not in all cases completely absent from healthy tissues \(^{288}\). In fact, only 60 of the 276 known CGAs are transcriptionally silent in normal human, non-germline tissues \(^{152}\). Non-shared neo-antigens, as well as a number of shared CGAs and oncoviral antigens, are tumor-selective (see for details \(^{287}\)). In this review, we focus on these last three classes of antigens as targets for TCR-engineered T cells. An overview of reported immune as well as clinical features of these classes of human antigens is given in Table 1.

Workflow for Target Antigen and Epitope Selection

Recent technical advances in NGS and ‘omics’ tools have facilitated selections of target antigens. In a first step, DNA and RNA sequencing of tumors and healthy tissues can enable the identification as well as expression analysis of antigens. Identification of potential neo-antigens requires comparison of DNA changes identified in tumor- with matched normal samples. Identification of oncoviral antigens requires mapping of DNA against the gene information broker for viruses (GIB-V) database \(^{289}\). Besides the use of NGS data, CGA expression in tumors and healthy tissues can also be analyzed by the use of gene expression platforms or public databases, such as the Cancer Genome Atlas (TCGA) \(^{279}\) or the Expression Atlas \(^{290}\). In extension to NGS and gene expression data, we recommend verifying antigen expression in tumors as well as absence in healthy tissues by quantitative PCRs and, whenever possible, via immunohistochemistry.

In a second step, candidate epitopes (from the selected target antigens) can be predicted in silico. In general, human leukocyte antigen (HLA) class I epitopes are 8-11 amino acids long, and their immunogenicity depends on the level of expression as well as efficiency of processing and presentation, while the latter events in turn, can depend on: proteasomal cleavage; post-proteasomal trimming; binding affinity for transport associated proteins (TAP, required for epitope loading onto HLA); and binding affinity for HLA \(^{291}\). In silico prediction requires the integration of various computational tasks and the proposed workflow for selecting tumor-specific epitopes is illustrated in Figure 1A. This workflow starts with typing of restrictive HLA elements;
at the moment, there are 22 different algorithms for HLA-typing which can be used for mapping sequencing reads against the ImMunoGeneTics (IMGT-HLA) database (https://omictools.com/hla-typing-category). For instance, HLA-miner, POLYSOLVER, seq2HLA, and OptiType can be used for NGS-data, whole exome sequencing (WES) data as well as RNA sequencing (RNAseq) data. Next, the prediction of antigen-processing and presentation is covered by numerous algorithms that assess different parameters of epitopes, including the occurrence of proteasomal cleavage sites (NetChop), the binding affinity for HLA-I (MSIntrinsicMC, NetMHC, SYFPEITHI, RANKPEP), and the binding affinity for TCR (Repitope). Finally, prediction of HLA affinities of identical and highly similar epitopes (e.g. using Expitope 2.0 and the SysteMHC Atlas) should be performed to limit risks of toxicities.

Most of the above epitope selection algorithms capture binding to common HLA alleles quite accurately, yet have been less trained for antigen processing and presentation of native epitopes (see Table 2 for a comprehensive list of algorithms). In fact, the presence and immunogenicity of only a minority of predicted epitopes has been validated in vivo, which may, in addition to suboptimal epitope prediction or lack of high-throughput methods to detect low frequencies of epitope-specific T cells, be due to immune editing. Of note, currently available tools cannot yet predict faithfully HLA-II-restricted epitopes due to the lack of training data.

Recently, a number of NGS-based pipelines for in silico prediction of neo-epitopes with different degrees of functionality have been developed. These include newer and potentially improved algorithms that incorporate additional parameters, such as: RNA expression levels; TCR-peptide interaction; and the modelling of immunological fitness of tumor antigens. In addition to these in silico developments, progress in the fields of immunopeptidomics and TCR structure might further enhance predictions of peptide presentation and recognition. For example, mass spectrometry (MS)-based methods can nowadays deliver and identify sequences of a significant part of the entire proteome within a few days, which allows high throughput measurements of natively presented peptides. Upon immune precipitation of HLA molecules and subsequent sequencing of eluted peptides, one can measure the immunopeptidome of tumors or antigen presenting cells (APCs). At present, the large number of cells required for MS methods still presents a limitation. Moreover, studies of TCR structure, currently covering 345 crystal structures of human TCRαβ’s (www.rcsb.org/pdb) and increasing numbers of molecular-dynamics simulations, have increased our knowledge of TCR-peptide binding modes and common structural motifs. These binding modes and structural motifs may aid the future creation of homology models of newly sequenced TCRs and the prediction of peptide specificity based on molecular docking rules.
Workflow for TCR Selection

Once epitopes have been selected, the next step is to obtain corresponding TCRs. One can obtain TCRs either from autologous patients’ tumor infiltrating lymphocytes (TILs) or from naïve T cells derived from HLA-matched healthy donor peripheral blood mononuclear cells (PBMCs). The latter represents a viable source of T cells that have been observed to recognize more predicted epitopes compared to autologous TILs, possibly as a result of a less skewed TCR repertoire. Various in vitro protocols to acquire epitope-specific T cells have been established and generally include several rounds of stimulation with autologous- or artificial APCs that are loaded with an epitope or transfected with a minigene (harboring epitopes), followed by fluorescence-activated cell sorting of T cells binding to epitope-MHC multimers. Recent advances in single cell RNA sequencing (scRNA-seq) as well as numerous algorithms for read-mapping (scTCRseq, TRAPeS) have enabled the identification of neo-antigens.
of reproductive TCRαβ sequences, i.e., TCR sequences harboring complete V(D)J rearrangements, from single cells. Such methods are not only fast but can also inform on the correct pairing of TCRα and β chains. The capture of single cells and reading depths of 500k, which are required for full recovery of reproductive TCR sequences, however, may pose a financial burden. Subsequently to the acquisition of TCR sequences, these are cloned and inserted into donor T cells. For this purpose, retro- and lentiviral vectors have already proven useful and safe tools with clinical precedence.

Figure 1. Selection of Target Epitopes and Corresponding T Cell Receptors. A. Workflow for epitope selection: Identification of immunogenic epitopes (yellow peptides) is accomplished using either in silico tools (left path, example tools in italic) for the prediction of HLA alleles, antigen processing and presentation, and cross-reactivity, or laboratory tools, such as mass spectrometry for the collection and analysis of HLA-presented epitopes (right path). B. Workflow for the identification and testing of TCRs: includes enrichment of epitope-specific T cells using epitope-loaded APCs, followed by FACSort of TCR positive cells (with epitope-MHC-multimers) and subsequent sequencing of TCR genes. TCR genes can then be cloned into donor T cells and tested for their specificity, affinity (e.g. alanine scan) and recognition of endogenously processed and presented epitopes. Abbreviations: APC: antigen presenting cell, FACS: fluorescence-activated cell sorting, IFNγ: interferon gamma, GRZB: granzyme B, MHC-I: major histocompatibility complex-I, PBMC: peripheral blood mononuclear cells, TCR: T cell receptor, TRA: T cell receptor alpha gene, TRB: T cell receptor beta gene.

In addition, TALEN or CRISPR-mediated gene editing may enable the replacement of endogenous TCRs by transgenes. Such gene replacement can result in increased and more homogenous surface expression of TCR transgenes, while reducing mispairing with endogenous TCRs, thereby inducing a potent anti-tumor
Table 2. Examples of Algorithms for Epitope Prediction. Abbreviations: HLA: Human leukocyte antigen; MHC: major histocompatibility complex; MS: Mass spectrometry, TCR: T cell receptor.

<table>
<thead>
<tr>
<th>Tool</th>
<th>parameter(s) tested</th>
<th>output</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetChop 378</td>
<td>occurrence of c-terminal proteasomal cleavage sites</td>
<td>cleavage sites in FASTA sequence including probability score</td>
<td>http://www.cbs.dtu.dk/services/NetChop/</td>
</tr>
<tr>
<td>NetMHC 291</td>
<td>binding affinity for common HLA alleles</td>
<td>nanomolar affinity score for HLA allele</td>
<td>http://www.cbs.dtu.dk/services/NetMHC/</td>
</tr>
<tr>
<td>SYFPEITHI 377</td>
<td>-epitopes and anchor residues for common HLA alleles</td>
<td>ranked binding score</td>
<td>http://www.syfpeithi.de/</td>
</tr>
<tr>
<td>RANKPEP 378</td>
<td>-binding affinity for common HLA alleles</td>
<td>integrated score and molecular weight</td>
<td>http://imed.med.ucm.es/Tools/rankpep.html</td>
</tr>
<tr>
<td>p-Vac-seq 379</td>
<td>-MHC affinity of wild type and mutant epitopes</td>
<td>neo-epitopes</td>
<td>Script available https://github.com/griffithlab/pVAC-Seq.</td>
</tr>
<tr>
<td>MuPeXi 380</td>
<td>-Identification of mutated peptides</td>
<td>Ranked neo-epitopes with annotation, HLA-affinity score and similarity to wild type epitope</td>
<td>http://www.cbs.dtu.dk/services/MuPeXI/</td>
</tr>
<tr>
<td>Timiner 381</td>
<td>-expression of neoantigens</td>
<td>neo-epitopes</td>
<td>Script available http://www.compbio.at/software/timiner/doc/</td>
</tr>
<tr>
<td>Fitness model 300</td>
<td>-neoantigen expression</td>
<td>neo-antigen fitness score</td>
<td>script available https://github.com/andre-wrech/antigen_garnish/tree/master/inst</td>
</tr>
<tr>
<td>Expitope 292</td>
<td>-gene expression of antigen in healthy tissue</td>
<td>expression levels in healthy tissues and nanomolar affinity score for HLA allele of similar epitopes</td>
<td>http://webclu.bio.wzw.tum.de/expitope2/</td>
</tr>
<tr>
<td>MSIntrinsic-sicEC 297</td>
<td>-gene expression of antigen from HLA alleles</td>
<td>native presentation score</td>
<td>currently not publicly or commercially available</td>
</tr>
</tbody>
</table>
response and limiting potential off-target toxicities without the need of viral vectors. Finally, once the T cell product has been generated, we recommend a series of in vitro assays to assess efficacy and safety of the TCR T cell product prior to clinical implementation. Such assays, can include: an amino acid scan to determine the TCR’s recognition motif; screens against allo-alleles and peptides eluted from the corresponding HLA allele to exclude cross-reactivity; titrations of cognate peptide to determine the TCR T cell’s avidity; and T cell assays using tumor and healthy cells to validate recognition of endogenously presented peptides. The workflow for selecting epitope-specific TCRs is illustrated in Figure 1B.

5.3 Patient Stratification According to Local T Cell Immunity

Antagonizing Immune Suppressive TMEs: Not a Blind Choice Either

Solid tumors are not only heterogeneous with respect to antigen expression but also with respect to numbers, location and activation state of intra-tumoral T cells. Local T cell immunity is determined by multiple parameters and may provide predictive value of responsiveness to AT, that goes beyond markers of mere tumor antigenicity or mutational load. Parameters capturing local T cell immunity may include: influx and migration of T cells; antigen recognition by T cells; and/or function of T cells. These three categories may be defined by unique immune markers, and recent advances in in silico- and microscopy tools are expected to significantly boost immunophenotyping of tumors, and enable rational selections for co-treatments aiming to enhance efficacy of AT.

Influx and Migration of T Cells: The presence and intra-tumoral location of CD8 T cells can be considered as measurement of general immunogenicity of tumors as well as the ability of these cells to infiltrate the tumor. Vice versa, absence of CD8 T cells may either indicate a lack of immunogenicity or the presence of barriers that could hinder the infiltration of (adoptively transferred) T cells. Important for the recruitment of T cells are inflammatory chemokines, and while many chemokines may be present in the TME, the interferon (IFN)-inducible and epigenetically regulated C-X-C motif chemokines CXCL9 and CXCL10, which recruit CXCR3-positive CD8 T cells, may be of particular relevance to the AT setting. Notably, in a mouse model for spontaneous melanoma, basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent dendritic cells (DCs) were a major source of CXCL9 and CXCL10 and BATF3 gene knock-out abolished recruitment of adoptively transferred T cells. In addition, the density of specialized vessels, such as high endothelial
venules (HEV), was found to correlate with numbers of TILs in human breast cancer 318, and these HEVs, which are equipped with adhesion molecules such as vascular cell adhesion molecule 1 (VCAM1), P-Selectin and E-Selectin 319, contribute to trans-endothelial migration of T cells into tumors. Of note, tumor endothelial cells with down-regulated surface expression of adhesion molecules, mediated for instance via vascular endothelial growth factor (VEGF), can inhibit trans-endothelial migration of T cells, whereas up-regulated surface expression of FAS ligand (FASL) on tumor endothelial cells (via anti-inflammatory mediators, such as interleukin (IL)-10) can lead to killing of FAS-expressing effector T cells ex vivo 320. Moreover, infiltration and migration of T cells can be compromised by the collagen-density and structure of the extracellular matrix (ECM), which can provide a physical barrier to T cells, as evidenced by real time imaging of human T cells in lung and ovarian cancer 321. ECM-mediated T cell exclusion has been attributed, at least in part, to an increased activity of cancer-associated fibroblasts (CAFs) and their production of cytokines, such as transforming growth factor beta (TGFβ) and IL6, since levels of which inversely correlated to the presence of TILs in urothelial cancer patients treated with anti-PDL1 antibody 277 and a mouse model of colon cancer, respectively.

Antigen Recognition by T Cells: A crucial factor contributing to efficient tumor clearance by CD8 T cells is antigen expression, processing and presentation. Down-regulation or loss of function (LOF) mutations in components of the antigen presentation pathway have been shown to be a major resistance mechanism to immune therapies, including AT in various human malignancie. LOF mutations frequently occur in (but are not limited to) B2M, TAP1 or HLA genes. In fact, a CRISPR-Cas 9 genome-wide screen in human melanoma cells pointed to antigen presentation and IFNγ-signaling being critical for effector functions of TCR-engineered T cells in vitro 324. Interestingly, another study also demonstrated that LOF mutations in the novel marker APLNR (a G-protein coupled apelin receptor involved in JAK/STAT signaling) were present in human melanoma, which were refractory to immune therapies, and that knocking out the APLNR gene in mice resulted in enhanced melanoma tumor growth following AT with TCR-engineered T cells 325. Besides gene mutations, epigenetic alterations represent another cause of limited type-I and type-II IFN signaling and decreased tumor immunogenicity, a notion that is supported by the observation that ablation of the histone demethylase LSD1 in mouse melanoma resulted in enhanced IFN signaling and CD8 T cell infiltration, and that expression of LSD1 in various human malignancies is inversely correlated with presence of CD8 TILs 326. Yet another way to escape from antigen recognition by T cells is immune editing, where tumor relapse following AT is characterized by outgrowth of antigen-negative tumor
cell clones (for references, see Table 1).

Function of T Cells: The TME is often nutrient-deprived and hypoxic which can adversely modulate T cell development and function. For example, hypoxia and its downstream metabolites can reduce T cell proliferation and effector functions while increasing the expression of co-inhibitory receptors on T cells. Moreover, hypoxia can induce the accumulation of extracellular adenosine, which in turn can promote tumor cell proliferation and metastasis, and inhibit the function of immune effector cells, including CD8 T cells. Furthermore, increased glycolysis in tumor cells, as a result of the metabolic switch that can occur under hypoxic environments, or as a consequence of mutations in the phosphatase PTEN (pathway recognized for its contribution to cellular metabolism), has been found to limit the cytolytic capacities of T cells in vitro and to correlate with resistance to AT with TILs in melanoma and non-small cell lung cancer patients. In extension, immune-compromised mice transplanted with human melanoma cells that lack PTEN, and show enhanced PI3K/AKT activation, revealed decreased T cell trafficking into tumors and resistance to CTL-induced apoptosis of tumor cells following AT with TCR engineered T cells. Furthermore, increased WNT/β-catenin signaling adversely affects numbers of TILs in melanoma patients, with the underlying mechanism being studied in mouse models of spontaneous melanoma and attributed to decreased CCL4 expression by tumor cells, impaired DC recruitment, and T cell priming. From another angle, DCs expressing co-stimulatory ligands, such as, CD80, CD86, CD275 and CD252 can activate CD8 T cells in tumors. In particular, a study with mouse breast cancer-derived BATF3 DCs demonstrated that these cells efficiently cross-present antigen and provide co-stimulation when compared to conventional DC in vitro, and a study with a mouse melanoma model demonstrated that BATF3 DCs are crucial contributors to T cell priming and anti-tumor T cell activity in vivo. Moreover, DCs producing pro-inflammatory mediators such as nitric oxide have been found to accumulate in murine melanoma following AT, cross-present tumor antigens and activate CD8 T cells via CD40-CD40L interactions. In fact, NOS2 and CD40LG gene expression correlated with survival in colorectal cancer patients. By contrast, tumor cells, CAFs, M2 macrophages or myeloid-derived suppressor cells (MDSCs), have been reported to downregulate co-stimulatory ligands and upregulate co-inhibitory ligands such as programmed death-ligand 1 (PDL1), herpesvirus entry mediator (HVEM), and CD155, often leading to T cell dysfunction, which has generally been assessed in ex vivo co-cultures of mentioned cell types and T cells, or in situ stainings of different human malignancies. In addition, soluble factors released by tumor cells and immune suppressor cells, such as TGFβ and indoleamine 2,3-dioxygenase-1.
(IDO1), can also inhibit T cell proliferation and activation or lead to T cell apoptosis, respectively (reviewed in 335).

Although there is still a vast amount of mechanistic understanding to be gained from immunophenotypes of various malignancies, particularly in terms of tissue-, tumor- and species-specific contexts, there is a strong rationale for evaluating markers related to influx and migration, antigen recognition and function of T cells. Such an evaluation potentially enables the stratification of patients, and tailoring of single or combination AT. Timely examples of markers and tools to assess these three categories of local T cell immunity are illustrated in Figure 2.
In Silico Tools for Immunophenotyping

Gene expression platforms and NGS technologies help determining the abundance of immune gene expression signatures, and, together with mutational and pathway analyses, are recommendable tools for a first screen of immune markers. Available databases and tools for functional annotation and pathway analyses include ConsensusPathDB, Reactome, DAVID or IPA®. In addition, numerous in silico tools support dissection of the TME, such as those that characterize the cellular composition of immune cells or diversity of TCR sequences. An overview of in silico tools is given in Table 3.

For instance, the presence of effector T cells and immune suppressor cells can be extracted from microarray expression- or RNA-seq data of bulk-tumor tissues using computational approaches that take into account sets of immune-specific marker genes or expression signatures. The most widely used approach is gene set enrichment analysis (GSEA). A limitation of GSEA-based methods is that they report enrichment scores that do neither reflect nor translate into proportions of the analyzed cell types. Single sample GSEA (xCell) can address this shortcoming by calculating the abundance scores of immune cell types and calibrating these scores to resemble proportions. Unlike GSEA, deconvolution methods such as CIBERSORT, EPIC or quanTIseq convert gene expression data into relative fractions of cell types according to cell type-specific expression profiles. Of note, quanTIseq combines deconvolution with image analyses of hematoxilin&eosin-stained samples thereby enabling “in silico multiplex staining” and prediction of immune cell densities. Next to immune cell composition, algorithms such as MiXCR, IMSeq, and RTCR assess T cell clonality, which may serve as a marker for antigen recognition by CD8 T cells and tumor responsiveness towards immune therapies (reviewed in 208).

<table>
<thead>
<tr>
<th>Tool</th>
<th>performance</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSEAPreranked*</td>
<td>GSEA of 28 immune gene sets</td>
<td>ranked list of gene expression</td>
<td>enrichment scores for individual gene sets</td>
</tr>
<tr>
<td>xCell 341</td>
<td>GSEA of single samples</td>
<td>genome wide expression, RNAseq</td>
<td>relative abundance of 64 immune- and ECM cell subsets</td>
</tr>
<tr>
<td>CIBERSORT 203</td>
<td>deconvolution</td>
<td>genome wide expression</td>
<td>relative abundance and absolute (beta version) numbers of 22 immune cell subsets</td>
</tr>
<tr>
<td>EPIC 342</td>
<td>deconvolution</td>
<td>genome wide expression</td>
<td>relative abundance and absolute (beta version) numbers of 22 immune cell subsets</td>
</tr>
</tbody>
</table>
Laboratory Tools for Immunophenotyping

New imaging techniques can enable quantitative and spatial assessment of multiple immune markers related to AT, which may be particularly important for the evaluation of the ability of CD8 T cells to infiltrate the tumor. Moreover, the activation state of TILs or cell to cell interactions can be assessed, which may provide insight into antigen recognition and T cell function. Multiplexed methods are either based on sequential imaging of single markers or simultaneous imaging of multiple markers. The former is time consuming, relies on image alignment, but does not require specialized equipment, whereas the latter has a higher degree of accuracy but does require sophisticated equipment and reagents (see Table 4). Sequential staining and imaging can be performed with IHC or IF protocols, such as cyclic immunofluorescence (CycIF) and MxIF, which both use chemical inactivation and removal of fluorochromes, or multi-epitope ligand cartography (MELC), which uses photo-bleaching and has been reported to image up to 100 markers in a single sample. More recently developed methods enable simultaneous staining of a high number of markers followed by a single image acquisition. For instance, Vectra®-based multiplexed IF (up to 8 markers) relies on consecutive steps of staining and stripping of antibodies (leaving behind immobilized fluorophores) (reviewed in Chapter 5).

Table 3. Examples of Omics Tools for Immunophenotyping

<table>
<thead>
<tr>
<th>Tool</th>
<th>performance</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuanTIseq 343</td>
<td>deconvolution</td>
<td>RNAseq</td>
<td>relative abundance of 8 immune cell subsets, fibroblasts, and endothelial cells</td>
</tr>
<tr>
<td>Consensus-pathDB338, DAVID340, Reactome339, IPA®</td>
<td>Functional annotation of genes and pathways</td>
<td>List of differentially expressed genes</td>
<td>Up- and down regulated genes and pathways, interaction maps, identified regulators</td>
</tr>
<tr>
<td>QuantumClone 382</td>
<td>Variant clustering based on frequency and tumor purity</td>
<td>DNAseq (>50x coverage)</td>
<td>Clonality, functional variants</td>
</tr>
<tr>
<td>CloneHD 383</td>
<td>Reconstruction of subclonal structure from short sequencing reads</td>
<td>DNAseq</td>
<td></td>
</tr>
<tr>
<td>MiXCR, IMseq, RTCR, Vidjil 208</td>
<td>assignment of V(D)J genes and mapping on IMGT database</td>
<td>RNAseq (>150bp paired end reads)</td>
<td>V(D)J gene usage and number of CDR3 reads</td>
</tr>
</tbody>
</table>

*Abbreviations: ECM: extracellular matrix; GSEA: gene set enrichment analysis; IMGT: Immunogenetics, IPA: ingenuity pathway analyses.

Laboratory Tools for Immunophenotyping

New imaging techniques can enable quantitative and spatial assessment of multiple immune markers related to AT, which may be particularly important for the evaluation of the ability of CD8 T cells to infiltrate the tumor. Moreover, the activation state of TILs or cell to cell interactions can be assessed, which may provide insight into antigen recognition and T cell function. Multiplexed methods are either based on sequential imaging of single markers or simultaneous imaging of multiple markers. The former is time consuming, relies on image alignment, but does not require specialized equipment, whereas the latter has a higher degree of accuracy but does require sophisticated equipment and reagents (see Table 4). Sequential staining and imaging can be performed with IHC or IF protocols, such as cyclic immunofluorescence (CycIF) and MxIF, which both use chemical inactivation and removal of fluorochromes, or multi-epitope ligand cartography (MELC), which uses photo-bleaching and has been reported to image up to 100 markers in a single sample. More recently developed methods enable simultaneous staining of a high number of markers followed by a single image acquisition. For instance, Vectra®-based multiplexed IF (up to 8 markers) relies on consecutive steps of staining and stripping of antibodies (leaving behind immobilized fluorophores) (reviewed in Chapter 5). Digital spa-
tial profiling (DSP) enables quantitation of up to 800 markers targeting DNAs, RNAs and proteins simultaneously with a near single cell resolution (1-4 cells) \[^{348}\]. DSP uses the nCounter® barcoding technology (nucleic acids or antibodies labeled with an optical code) which relies on photo-cleavable tags that are digitally mapped back onto the tissue \[^{348}\]. Finally, imaging CyTOF/ mass cytometry (IMC) \[^{349}\] can provide unprecedented and detailed views of tissue heterogeneity. IMC combines CyTOF, in which cellular targets are labeled with metal-tagged antibodies and quantified by time-of-flight mass spectrometry, with IHC and high-resolution tissue laser ablation to image dozens (50+) of proteins at sub-cellular resolution (<1µm) \[^{349}\]. Significant advantages of IMC in comparison to the above-mentioned methods are the absence of sample autofluorescence and a wide dynamic range, which makes this method highly versatile and quantitative \[^{349}\]. Highly multiplexed imaging methods, whatever the choice of method, generate complex multilevel data. Only with appropriate tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>performance(s)</th>
<th>required equipment</th>
<th>multiplex capacity</th>
<th>analysis software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplex IHC [^{344}]</td>
<td>sequential staining with enzyme-labeled reagents, imaging of whole slide, stripping of antibody and chromogen</td>
<td>conventional digital image scanner</td>
<td>12+</td>
<td>Cell Profiler, ImageJ, other</td>
</tr>
<tr>
<td>Cyclic IF [^{385}]</td>
<td>sequential staining with fluorescently-labeled reagents, imaging of whole slide, chemical inactivation of fluorochromes</td>
<td>conventional epifluorescence microscope</td>
<td>30</td>
<td>ImageJ, Matlab, other</td>
</tr>
<tr>
<td>MxIF [^{345}]</td>
<td>sequential staining with fluorescently-labeled reagents</td>
<td>conventional epifluorescence microscope</td>
<td>60</td>
<td>Axio Vision Mark & Find, ImageJ, other</td>
</tr>
<tr>
<td>MELC [^{346}]</td>
<td>automated sequential staining with fluorescently-labeled reagents, imaging of whole slide, photo bleaching of fluorochrome</td>
<td>fluorescence microscope with robotic device</td>
<td>100</td>
<td>Matlab, Motiffinder, Motifanalyzer, IXCOSM, IMARIS for 3D images, other</td>
</tr>
<tr>
<td>Multiplex IF [^{347}]</td>
<td>consecutive staining with fluorescently-labeled reagents, tyramide signal amplification (following each staining), stripping leaving fluorophores (following each staining)</td>
<td>Automated Quantitative Pathology Imaging System (Mantra, Vectra, Vectra Polaris)</td>
<td>8</td>
<td>InForm, TIBCO Spotfire, other</td>
</tr>
<tr>
<td>Imaging Mass Cytometry [^{349}]</td>
<td>simultaneous staining with antibodies labeled with rare earth metal isotopes</td>
<td>Imaging mass cytometer (Hyperion)</td>
<td>52</td>
<td>Maxpar, Definiens, Cell Profiler, miCAT, histoCAT, other</td>
</tr>
<tr>
<td>Digital Spatial Profiling [^{348}]</td>
<td>simultaneous staining with nucleic acids or antibodies tagged with optical barcode</td>
<td>NanoString high-plex digital IHC microscope</td>
<td>800</td>
<td>nCounter Analysis system, other</td>
</tr>
</tbody>
</table>

Table 4. Examples of Laboratory Tools for Immunophenotyping. Abbreviations: IF: immunofluorescence; IHC: immunohistochemistry.
and analysis software (summarized in Table 4) one can accurately and fully extract cellular phenotypes and spatial information such as cell-cell interaction networks, which together can be used to define clinically relevant features.

5.4 Adoptive T cell Therapy: Assessing TCRs and Designing Co-Treatments

Step-wise approaches for selecting safe target antigens and corresponding TCRs as well as co-treatments may further optimize AT. Once a target antigen, epitopes and corresponding TCRs have been identified and validated (as described above), patients can be screened for (single or combination) AT treatment. To this end, tumor biopsies (and patient’s blood for matched normal DNA to identify mutated epitopes) are used to assess: first, the status of target antigens and HLA alleles that present epitopes and second, the status of local CD8 T cell immunity. In a third step, information of these two steps is used to design a combination AT treatment. These three steps can provide specific treatments for a patient (-subgroup) as illustrated in Figure 3 and examples based on the three immunophenotypic categories (with respect to

![Figure 3. Patient Stratification According to TCRs and Co-Treatments. Proposed Workflow to stratify patients for combined AT (left). The color of patients represents the selected target antigen (shared: CGA or oncoviral antigens, patient specific: neo-antigens). Colored circles represent shortcomings in T cell immunity with respect to influx and migration (blue), antigen recognition (grey) and T cell function (green). Examples for co-treatments to counteract one or more (overlapping circles) immune evasive mechanisms are exemplified (right). Abbreviations: HLA: human leukocyte antigen; IFNs: interferons; TCR: T cell receptor; TK: tyrosine-kinase ; WNT: wingless-type MMTV integration site family.

![Figure 3 Diagram]
to local CD8 T cell immunity) are provided below. In case neo-antigens are targeted with AT, this treatment will be personalized regardless of the co-treatments.

Targeting oncoviral antigens or CGAs, however, warrants identification of groups of patients according to antigen and HLA expression. In general, antigens are measured by NGS or quantitative PCR, or in situ staining, when antibodies are available and staining protocols are operational. HLA alleles are mostly determined by genetic typing using PBMC-derived DNA. In the event no suitable antigen is expressed, a given patient may not be eligible for AT.

When intra-tumoral T cells are absent, one potential explanation may be the lack of chemokines or adhesion molecules due to endothelial quiescence (see previous section for references). In such a case, infusion of very high numbers of CD8 T cells may already be sufficient to induce endothelial cell activation (via complement activation), release of chemokines and subsequent homing of adoptively transferred T cells. Other approaches for the normalization of the tumor vasculature include administration of VEGF-inhibitors, other tyrosine kinase inhibitors (TKI)* or epigenetic drugs*. The latter drugs, when exposed to ex vivo cultures of human ovarian cancer, have been reported to induce IFN-response genes and again trigger the release of chemokines, and, when administered to NSG mice transplanted with human ovarian cancer, and co-treated with TILs, resulted in improved survival. In addition, combinations of TCR-engineered T cells with VEGF-inhibitors have resulted in increased numbers of intra-tumoral T cells in murine melanoma. When the lack of intra-tumoral T cells is attributed to an enhanced ECM barrier, combinations that include matrix degrading enzymes may be considered, exemplified by enhanced CAR T cell infiltration ex vivo, and clearance of human neuroblastoma in mouse model by CAR T cells that are engineered to express heperanase.

When antigen expression or presentation is low, there is generally a rationale for combining AT with cytotoxic therapies (chemotherapy or radiation)* or epigenetic modifier treatment* (e.g. histone de-acetylating agents or DNA de-methylating agents). Cytotoxic therapies increase immunogenic cell death and act synergistically with AT, and certain epigenetic drugs such as azacytidine or entinonstad have been found to enhance the expression of some tumor antigens, such as CGAs. If antigen expression is heterogeneous, or there is evidence for immune editing, one could opt to target multiple antigens simultaneously, each adhering to the criteria set out above. Lack of antigen recognition by T cells due to deficiencies in antigen processing and presentation downstream of genomic alterations, may imply that patients with such alterations are not eligible for AT. In case antigen processing and presentation is compromised due to epigenetic or transcriptional alterations,
one may opt for co-treatment with IFNs, TLR agonists (types: 2, 4, 7, 8 and 9), cytotoxic therapies, TKI, or epigenetic modifiers, as these have been reported to increase the expression of MHC- and/or co-stimulatory molecules in different human malignancies (reviewed in 356).

Finally, when T cells are dysfunctional due to the accumulation of immune suppressor cells in tumor tissues, there may be a rationale for using drugs that could lead to macrophage depletion or re-polarization (CSF1R inhibitor and TNFα treatment, respectively) 225; and/or depletion or blocking the recruitment of regulatory T cells (via CD25 and CCR4*, respectively) 357. When immunophenotyping reveals that the activation state of intra-tumoral T cells is compromised, one may consider treatment with agonists for co-stimulatory receptors (CD137, OX40, ICOS). For instance, CD137 antibodies combined with AT resulted in increased T cell infiltration and better killing of murine melanoma, which was evidenced by intravital microscopy 358. Alternative approaches include combinations with inhibitors of immune checkpoints (PD1*, CTLA4*), metabolic checkpoints (IDO1, adenosine1) or T cell inhibitory pathways (PI3K*, MAPK*, TGFβ*) 353. Indeed, combinations of AT and PD1- and/or A2AR- inhibitors* resulted in increased CAR T cell efficacy in mouse models of breast cancer 359. Along this line combinations with a BRAF-inhibitor1 have resulted in increased survival and in vivo cytolytic activity of TCR engineered T cells in murine melanoma models 360. Yet another approach to overcome T cell dysfunction may be to execute ex vivo activation of T cells under hypoxic conditions, as hypoxic versus normoxic T cells demonstrate better proliferation, expression of granzyme-B and anti-tumor activity in murine melanoma models 361. (*FDA approval for various malignancie).

Besides combining AT with other therapies, one might also include additional gene-engineering to generate T cells that exhibit enhanced resistance to immune escape mechanisms. This approach has already been clinically exploited for CARs, which often harbor intracellular co-signaling domains, have knocked out checkpoint molecules or are engineered to produce chemokines or matrix degrading enzymes upon antigen engagement. For a more complete overview of gene-engineering to enable T cells to enhance numbers and activity in an immune tolerant environment, see 362.

It is important to note that many of these approaches and combination regimens still require validation, and the assessment of toxicities and potential off-target effects. Consequent, extensive and robust testing is required to investigate these approaches, mechanisms of action and putative combination regimens.
5.6 Concluding Remarks

Major advances in NGS- and laboratory technologies are paving the way towards improved AT in immuno-oncology. It is remarkable that personalized AT targeting of neo-antigens in combination with checkpoint inhibition has not only been feasible for certain malignancies (e.g. solid tumors), but has also resulted in a complete durable response in a chemo-refractory, metastatic breast cancer patient188. These results indicate that patient-specific or patient group-specific AT might broaden the scope of responding tumor types, including those with low mutational burden, which are generally considered unresponsive to checkpoint blockade. Taken together, advanced immunophenotyping, which integrates NGS technologies, omics- and laboratory tools, is critically needed to provide a detailed characterization of T cell immunity in a patient’s tumor and antitumor response. This, together with the selection of safe and effective epitopes and corresponding TCRs might provide optimal combination AT treatments with safe and effective clinical profiles. Although many questions remain (see Outstanding Questions), it will be quite exciting to follow how these technological advances contribute to catalyzing the future of personalized or group-specific AT with TCR-engineered T cells.

5.7 Acknowledgements

DM is supported by a grant from the Dutch Cancer Society (KWF); DR and ZT are supported by the Innsbruck Medical University and European Community (EU FP7 grant); JWMM and RD are supported by the Erasmus MC, and grants from Dutch Cancer Society (KWF), Dutch Scientific Council (NWO), and World Cancer Research (WCR).

5.8 Glossary

\textbf{allo-alleles}: non self-allele which can be recognized by TCRs independent of the bound peptide

\textbf{algorithm}: a sequence of operations in computer science, such as calculating, data processing and automated reasoning.

\textbf{avidity}: binding strength based on multiple receptor target interactions (for instance, T cell avidity includes combination of TCR-peptide:MHC and CD8).

\textbf{Cancer Germline Antigens (CGAs)}: class of tumor antigens with expression re-
stricted to immune privileged tissues (germline) and tumors.

CAR T cells: T cells engineered to express a chimeric antigen receptor consisting of an extracellular antibody-domain, an intracellular TCR domain, and often a co-stimulatory domain.

cognate T cell epitope: A defined stretch of amino acids (9-11 amino acids) that is derived from intracellular proteins which is specifically recognized by a TCR. After processing by the (immune-) proteasome, peptides are presented by MHC molecules on the cell surface of target cells to the TCR on the cell surface of T cells.

cross-reactivity: T cell reactivity against an epitope other than the cognate epitope (often highly similar to cognate epitope and recognized with lower TCR affinity).

complement activation: chain reaction of protein cleavage that can result in the activation of immune cells.

differentiation antigens: class of tumor antigens that are expressed at different stages of tissue development or cell activation.

endothelial quiescence: inactive state of endothelial cells, generally with limited expression of chemokines, adhesion molecules, and co-stimulatory ligands, and consequently not favoring tissue entry of T cells.

immune suppressor cells: cells, including immune cells but also stromal cells, such as CAF, that can limit T cell function.

immune checkpoints: receptors and ligands that upon ligation result in limiting activation of immune cells (i.e., putting immune cells in check).

immune editing: interplay between tumors and immune system resulting in loss of antigen-positive tumor cells upon selective pressure by T cells.

immunopeptidome: collection of all presented peptides by MHC molecules of a target cell(s) or tissue.

immunophenotyping: assessment of immunogenicity and immune evasive mechanisms by omics and/or laboratory tools.

M2 macrophages: innate immune cells that normally are specialized in engulfing aberrant cells and presenting antigens, but due to polarization, which may be a consequence of the tumor micro-environment, become immune suppressor cells.

neo-antigens: class of tumor antigens that are derived from mutated proteins.
next-generation sequencing: high throughput sequencing method of nucleic acids.

whole-exome sequencing: sequencing of all protein-coding genes of the genome.

omics: collection of sciences and necessary tools that focus on the structure and function, and related aspects, of defined groups of molecules (genomics: DNA; transcriptomics: RNA; proteomics: proteins; metabolomics: metabolites; immunomics: immune markers etc).

oncoviral antigens: class of tumor antigens which are derived from viral genes that had been integrated into the DNA of (pre-)malignant cells.

on-target toxicity: toxicity due to T cells targeting their cognate epitope outside tumor tissue.

off-target toxicity: toxicity due to cross-reactive T cells recognizing an epitope very similar to the cognate epitope outside tumor tissue.

read-mapping: locating of experimental sequences (called reads), through alignment with a set of reference sequences.

reading depths: number of sequences (called reads) that include a nucleotide of a reconstructed sequence, also referred to as coverage.

TALEN or CRISPR-mediated gene editing: technologies that enable targeted genome editing through different principles (TALEN (transcription activator-like effector nucleases) relies on modified restriction enzymes to cut out specific sequences from DNA; whereas CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) relies on guide RNA and a DNA endonuclease activity to remove specific sequences from DNA).

TCR repertoire: diversity and abundance of TCR genes (often represented by β chain) used as a measure of T cell clonality; the more skewed a TCR repertoire, the more clonal the T cell response has been.

time-of-flight mass spectrometry: method to determine an ion’s mass-to-charge ratio via acceleration in a known electric field, by time measurement.

TLR-agonists: natural or synthetic molecules that ligate to and stimulate Toll-Like Receptors (TLR), the latter being evolutionary conserved receptors generally expressed on innate immune cells and taking part in the recognition of pathogen-associated molecular patterns.

Tumor infiltrating lymphocytes: immune cells that are present in neoplastic tissue.
tumor selectivity: expression of tumor antigens by cancerous tissue but not healthy tissue (immune privileged tissues represent an exception in case of CGAs)

5.9 Outstanding Questions

1) What are the exact underlying biochemical rules that determine the immunogenicity of tumor antigens? What kind of data is required in order to improve epitope prediction algorithms for HLA-I, and ultimately also for HLA-II?

2) Are there categories of resistance to AT that are not captured by deviations in influx and migration-, antigen recognition and dysfunction of T cells? Are there subgroups of patients with certain genetic or environmental states (SNPs or composition of gut microbiota) that despite combination treatment do not respond to AT?

3) With respect to an effective anti-tumor response, is there a hierarchy of certain immune markers? And would this hierarchy of markers (when existing, this would greatly enhance our understanding of tumor immunity and facilitate charting immune evasion) hold true in a pan-cancer setting, or be it specific per tumor subtype or even patient?

4) Can acquired resistance or compensatory immune evasive mechanisms be fully prevented when targeting one category of T cell control? Should one opt to target multiple events within one or multiple categories, so for instance antagonize multiple types of suppressor cells instead of a single type of suppressor cell to limit renewed T cell evasion through compensatory mechanisms?

5) Since tumor-immune interactions are heterogeneous, not only across different tumor types, and within tumor subtypes, but also across different metastatic lesions within the same patients, would it be necessary to take biopsies from multiple sites prior to selecting co-treatments?
Chapter 7

Orthotopic T-cell engineering via CRISPR

Dian Kortleve, Dora Hammerl and Reno Debets

Laboratory of Tumor Immunology, Erasmus MC-Cancer Institute, Rotterdam, the Netherlands

Nature Biomedical Engineering, 2019, DOI: 10.1038/s41551-019-0490-4
The simultaneous removal of an endogenous T-cell receptor chain and the orthotopic placement of an exogenous receptor in human T cells via CRISPR gene editing prevents the mispairing between endogenous and transgenic receptors while preserving the cells’ function.

Modifying human T cells for therapeutic purposes involves the ex vivo modification of a patient’s T cells to make them express selected T-cell receptors (TCRs) specific for viral or tumour antigens, and the reinfusion of the modified cells back into the patient. The injected cells then mount an immune response to the specific pathogens or cancer cells\(^{31}\). Clinical trials for testing TCR-engineered T cells have shown promising results against various tumour types (in particular, melanoma, synovial sarcoma and multiple myeloma)\(^{282,283}\), with objective response rates of 55–80% and complete response rates of 2–20% (ref.\(^{31}\)). Because T cells express endogenous TCR αβ-chains, typical approaches for inserting exogenous TCRs in T cells may result in unwanted TCR combinations. In particular, TCR chain mispairing can occur when therapeutic TCR α-chains dimerize with endogenous TCR β-chains (or when therapeutic β-chains dimerize with endogenous α-chains), leading to mispaired heterodimers\(^{411}\) with new (and often unknown) antigen specificities. Such TCR heterodimers may trigger autoimmune reactions or graft-versus-host disease\(^{412}\). Also, the introduced TCR chains can compete with endogenous chains for the limited pool of adapter CD3 molecules, which may result in reduced surface expression and function of the therapeutic TCR (ref.\(^{413}\)). Moreover, the expression of the therapeutic TCR is often placed under the control of viral promotors, with loss of physiological regulation of TCR dynamics (including internalization and degradation of the TCR chains on antigen exposure\(^{414}\)), which can result in tonic signalling of the therapeutic TCR, in decreased specificity, and in accelerated differentiation and exhaustion of the TCR-engineered T cells. Furthermore, the use of viral vectors to generate clinical T-cell products involves time-consuming production pipelines and high costs, and can cause the uncontrolled integration of the therapeutic TCR in the genome (with potential effects on the expression and function of other genes\(^{415}\)). Reporting in Nature Biomedical Engineering, Dirk Busch and colleagues now show that the use of CRISPR-Cas9 gene editing to orthotopically insert a therapeutic TCR into the endogenous TCR α-chain (TRAC) locus of human T cells and the simultaneous deletion of the endogenous TCR β-chain locus (TRBC) abrogates the mispairing of TCR chains and preserves the physiological regulation of the inserted TCR (ref.\(^{416}\)).

To study the assembly of individual TCR chains, Busch and colleagues used non-viral and viral gene-delivery methods to insert a fully human cytomegalovirus (CMV)-specific TCR, either via retroviral transduction (with or without knockout of TRAC)
or via CRISPR–Cas9-mediated knock-in into the endogenous TRAC locus. The engineered cells showed similar levels of cytokine production and peptide sensitivity regardless of the protocol used, raising the possibility that TCR mispairing still occurs in T cells expressing the endogenous TCR β-chain. Subsequent experiments for the identification of heterodimers of the inserted and endogenous TCR chains (in which the human therapeutic constant region of the TCR was replaced with a murine counterpart) showed no evidence of endogenous TCR expression (or of mispairing) when TRAC and TRBC were simultaneously targeted with CRISPR–Cas9 in human T cells. Notably, similarly to unmodified T cells, on antigen stimulation the engineered T cells produced cytokines and dynamically regulated the expression of TCR transgenes. Hence, appropriately paired TCRs with physiological dynamics, and better safety and functionality than virally transduced non-edited T cells, can be generated by shutting down the expression of both endogenous TCR chains and by inserting the therapeutic TCR orthotopically into the TRAC locus.

There are alternative strategies that diminish receptor mispairing and that enhance surface expression of the therapeutic TCR: in particular, TCR murinization, cysteine modification, the use of co-stimulatory domains, and the elimination of the endogenous TCR loci via microRNAs, zinc-finger nucleases, transcription activator-like effector nucleases or CRISPR–Cas9. For instance, TRAC knockout via CRISPR–Cas9 and the viral introduction of template DNA encoding a CD19-specific chimeric antigen receptor into the same locus led to the regulation of the expression of the receptor by the endogenous TCR promoter (rather than by an exogenous viral promotor). Endowing an inserted TCR with an endogenous genetic regulatory domain led to the delaying of T-cell exhaustion and to enhanced performance of the engineered T cells for effective clearance of the target tumour in vivo. Others performed TRBC knockout with CRISPR–Cas9, and lentivirally introduced a therapeutic TCR targeting the tumour-associated antigen NY-ESO-1; in this context the knockout T cells also showed increased expression and functionality of the therapeutic TCR when compared with T cells with intact endogenous TCR chains. It is also possible to simultaneously perform non-viral TRAC knockout and TRAC knock-in of the TCR αβ-chains with CRISPR–Cas9 to generate TCR-modified T cells that target tumours expressing NY-ESO-1 (ref.). Electroporation has also been used to knockout both TCR loci and to knock-in the TCR αβ-chains in the TRAC locus. Because TCRα and TCRβ chains may be regulated differently, it would be worthwhile to test the surplus value of knocking in an engineered TCR into both the TRAC and TRBC loci.

Busch and co-authors do not report the percentage of TRBC-knockout T cells when simultaneously editing the TRAC and TRBC loci. Yet they did not detect TCR mispairing, which is indicative of a high level of double-gene knockout. Although
knockout efficiencies of 50–90% are possible\cite{31,42}, it may be challenging to routinely achieve such high efficiencies in large-scale clinical settings without the need for additional screening, sorting, and method optimization. In addition, the evidence of homology-independent integration of the edited TRBC locus provided by the authors, together with the idea that the detection of random integration on a whole-genome level has low sensitivity, suggests that the system can still be optimized. Therapeutic T-cell engineering up to ~400 million TRAC knock-in cells can be generated after 10 days of in vitro expansion\cite{16}; non-viral transfer of CRISPR–Cas9 and double-stranded DNA template may thus also be feasible in the clinical setting\cite{422}.

Fig. 1 | T-cell engineering for the generation of therapeutic T cells. The insertion of therapeutic T-cell receptors (TCRs) into human T cells can be done via viral and non-viral techniques (including the use of CRISPR-Cas9 gene editing with electroporation). Each approach has favourable and unfavourable outcomes, with simultaneous non-viral knock-in of the TCR alpha chain locus (TRAC-KI) and non-viral knockout of the TCR beta-chain locus (TRBC-KO) having particular advantages (although they will require optimization steps before they can be clinically implemented).

A drawback of non-viral delivery is its typically low gene-transfer efficiency; yet previous studies have shown that electroporated T cells are mostly viable and can be easily sorted prior to expansion. Although some of the procedures (CRISPR–Cas9 editing, cell sorting, and in vitro expansion of T cells) have been clinically applied,
cell manipulations may negatively affect cell viability and the sustained function of the engineered T cells. Studies of the long-term functionality of engineered T cells in preclinical models are limited because T-cell engineering methods have not been optimized for murine T cells, and new immune-competent models would need to be developed. Yet further insights may also come from clinical studies: for example, a phase-I trial (NCT03399448) in which virally delivered CRISPR–Cas9 is used for a triple knockout of the endogenous TRAC and TRBC loci and of the immune checkpoint factor programmed cell death-1, as well as of TRAC knock-in of NY-ESO1 TCR αβ-chains, is expected to shed light on the in-patient performance of the edited T cells. The next step would be non-viral editing and orthotopic delivery of TCR genes in a clinical setting. The optimization of technologies for the manufacturing of such T cells under requirements for advanced therapeutic medicinal products, the choice of safe antigen targets, and strategies to maximally sensitize tumours for T cells, provide a promising springboard for the clinical testing of improved engineered T cells.
Chapter 8

General Discussion
Chapter 8. General discussion

The major aims of this thesis were trying to close the knowledge-gap regarding T cell evasive mechanisms in breast cancer (BC, Part 1) and to identify new target antigens for adoptive T cell therapy to treat triple negative BC (TNBC, Part 2). This final chapter briefly summarizes and discusses the main outcomes, and puts them in perspective of future pre-clinical as well as clinical studies.

8.1 Outcomes Part 1: Charting T cell evasion

- Aspects of CD8 T cell immunity, such as antigen processing and presentation, co-signaling, clonality and subset distribution, and not mere numbers of CD8 T cells, determine patient survival of BC subtypes
- A gene classifier accurately assigns spatial immunophenotypes, is prognostic in TNBC, and various other cancers and predicts anti-PD1 response in metastatic TNBC
- Next to TNBC, also HER-2 and luminal-B subtypes show markers that reflect anti-tumor T cell responses which suggest that at least a subset of these BC subtypes can benefit from (combination) immune therapies
- Spatial immunophenotypes in TNBC are characterized by distinct T cell evasive pathways that advocate immune therapy in combination with drugs that provide phenotype-specific sensitization

Box 1. Major findings

Stratifying BC patients for immune therapies

As discussed in Chapter 2 and based on the outcome of studies in Chapter 3, it is concluded that BC subtypes are not equally immunogenic, which is reflected by differential antigen load as well as differential prognostic values of tumor infiltrating lymphocytes (TIL). Antigenicity (i.e., expression of antigens, such as cancer germ-line antigens (CGAs) and neoantigens) and numbers of TILs are generally higher in the more aggressive ER-negative subtypes, especially in TNBC. Taken the differences in antigenicity into account, it is not surprising that initial ICI trials showed the best responses in ER- disease, whereas ER+ (luminal) BC is generally considered unresponsive to ICI. In contrast to other tumor types, antigenicity turns out not to be a predictor of ICI response in TNBC19–21. Interestingly, mutations in the DNA-damage repair genes BRCA1 or BRCA2, which have been linked to high frequencies of
neoantigens424 and release of pro-inflammatory cytokines425, however, were not predictive for ICI response in TNBC218. In fact, we showed in Chapter 3 and in Chapter 4 that neoantigens, irrespective of their type, only weakly correlate with numbers of TILs, and that BRCA status is not associated with a CD8 T cell inflamed phenotype. Notably, using node-negative, not systemically treated BC we observed that not TIL frequency per se, but rather markers reflecting an anti-tumor CD8 T cell response significantly impact prognosis in BC subtypes. Such markers include: (1) T cell subset distribution; (2) TCR clonality; (3) gene-expression of molecules that contribute to T cell co-inhibition and (4) antigen processing and presentation. Since the above markers are all measures of the effectiveness of an anti-tumor CD8 T cell response, we argue that these markers may serve well as predictive markers for ICI response in BC. In fact, TCR clonality has already been associated with anti-PD1 response in TNBC, and several studies have shown that PD-L1 expression (an immune checkpoint ligand that shows up-regulated expression following IFNγ exposure) is correlated with response to ICI in TNBC and other BC subtypes. Furthermore, expression of the above-mentioned markers indicates that next to TNBC, at least a subset of HER2 and luminal-B subtypes may very well be immunogenic and responsive to immune therapies. Along this line, recent studies have shown that PD-L1+ HER2 subtypes as well as ER+ BC patients benefit from ICI: ORs in metastatic PD-L1+ HER2+ and PDL-1+ ER+ patients were 15% and 12%, respectively219,426. More trials are underway427, and it is exciting to see how this type of therapy will further develop for different BC subtypes.

In a pan-cancer setting, it has become more and more evident that next to numbers and activation status of TILs, also their spatial localization matters with respect to survival and therapy responsiveness27,244,246,249,251. With this in mind, we have studied the spatial immune contexture in relation to clinical outcome in treatment-naïve TNBC and anti-PD1-treated metastatic TNBC (Chapter 4). In these studies, we have identified 3 dominant spatial immunophenotypes (covering nearly 100% of all tested cases), namely: the excluded immunophenotype, which was characterized by tumor margin-restricted localization of CD8 T cells; the ignored immunophenotype, which was characterized by absence of CD8 T cells; and the inflamed immunophenotype, which was characterized by the presence of intra-tumoral CD8 T cells that are evenly distributed among tumor margin and center. These spatial immunophenotypes could be captured by a gene-classifier, and had differential prognostic value in TNBC (i.e., the inflamed phenotype had the best survival, the ignored phenotype had the worst survival). Moreover, this gene-classifier also had prognostic value in cervical cancer, head and neck cancer, kidney cancer, bladder cancer and melanoma. We observed that the inflamed phenotype was enriched in those cancer types that generally respond well to ICI while the excluded and ignored phenotypes were
enriched in those cancer types that generally respond poorly to ICI. Importantly, the gene-classifier predicted response to anti-PD1 treatment in mTNBC with a negative predictive value of 0.9. In comparison, in the same dataset, PD-L1 expressed by immune cells, a currently and routinely used marker, had a negative predictive value of 0.4. Furthermore, we observed that assignment of different metastatic lesions from anti-PD1-treated TNBC resulted in a lower frequency of inflamed phenotypes, which is in line with recent reports428,429. This, together with the observation that assignment of these immunophenotypes did not depend on lesion site, argues that our gene-classifier may represent a viable and simple alternative to whole tissue stainings. In fact, the assignment of spatial phenotypes is based on the expression of 42 genes, which may be easily determined via standard molecular-based techniques and developed into a diagnostic tool. Collectively, these findings indicate that spatial immunophenotypes may improve patient stratification for ICI treatment and should be validated in other cohorts to test its value for incorporation into clinical practice.

Charting immune evasive mechanisms in BC

Despite the high number of studies on the prognostic and predictive value of TILs, up to now little emphasis has been given to immune evasive mechanisms in BC. In general terms, tumors may evade T cell control by: limiting T cell influx (i.e., down-regulation of expression of chemo-attractants or T cell adhesion molecules); halting the antigen processing and presentation machinery (i.e., selection for loss of function mutation); and lastly, suppressing T cell function (i.e., recruitment of suppressor cells, up-regulation of expression of co-inhibitory molecules and suppressive cytokines). New technologies, such as next-generation sequencing (NGS) and multiplexed imaging enable charting and identification of T cell evasive mechanisms (reviewed in Chapter 5). Along this line, we have studied the differential occurrence of T cell evasive pathways among BC subtypes using omics tools in Chapter 3 and performed in-depth and integrated analysis of NGS and multiplexed images from primary TNBC in Chapter 4. These chapters pinpointed towards different T cell evasive strategies in BC subtypes, which are shortly discussed below, including possible consequences for treatment choices, and illustrated in Figure 1.

Multi-parameter omics analysis suggests that luminal-B BC is characterized by low numbers of TILs, which may be caused by decreased retention of T cells from the blood in line with our observation of low expression of T cell adhesion molecules. In this regard, luminal-B BC may benefit from therapies that facilitate T cell infiltration, such as the CDK4/6 inhibitors abemaciclib, ribociclib, or palbociclib. These agents have significantly improved standard-of-care treatment of hormone receptor-positive
BC. Their mechanisms of action are considered to be modulation of the immune micro-environment via up-regulated expression of type-I IFN response genes, and antigen processing and presentation genes. Notably, these agents were shown to be able to reverse a gene program in BC cell lines, which is associated with CD8 T cell exclusion in melanoma251,430. These preclinical results are encouraging, and suggest that ER+ BC may be primed for ICI when pre-treated with CDK4/6 inhibitors. In fact, a combination of abemaciclib and pembrolizumab induced OR in 14% of unselected, metastatic HR+ HER2- BC patients430,431. Furthermore, in Lumi-B BC we have observed high frequencies of M2 macrophages and regulatory T cells which may represent additional targets for combination therapies. Besides potentially enhancing clinical benefit of ICIs, inhibition of M2 macrophage may also improve standard therapies for ER+ BC as preclinical models have revealed that M2 macrophages facilitate endocrine resistance in BC432. Nevertheless, M2 inhibition has not yet been assessed clinically in BC, a path that certainly warrants future testing.

Similarly, luminal-A BC is characterized by low numbers of TIL, and presence of M2 macrophages and regulatory T cells but in contrast to luminal-B BC, also low antigen load. This together with lack of prognostic value of immune parameters imply that this type of BC is unlikely to respond to immune therapies. Nevertheless, suppressor cells may represent actionable targets for combination therapies.

HER2+ BC showed high numbers of TILs yet relatively few signs of anti-tumor T cell reactivity (i.e., few expanded TCR clones, low expression of co-signaling genes, and low frequencies of immune-suppressor cells). This type of BC is standardly treated with HER2-blocking antibodies, such as trastuzumab, and their modes of action have at least in part been related to antibody-dependent cellular toxicity and reported to provide synergistic effects when combined with ICI in preclinical models16. Given the low numbers of tumor-specific CD8 T cells and a relatively high antigen load, we argue that HER2+ BC is amenable to adoptive T cell therapy targeting other antigens than HER2. Future studies may utilize the strategy we applied in Part 2, to identify safe and effective T cell targets in BC subtypes other than TNBC (see section 8.2).

When compared to other BC subtypes, TNBC showed the highest number of clonally expanded TCRs and also the highest expression of genes that represent immune-suppressive mediators, myeloid-derived suppressor cells and oncogenic and T cell evasive pathways. When zooming in on the 3 spatial immunophenotypes as introduced above, we have identified unique determinants and evasive pathways that would warrant immunophenotype-specific combination therapies to treat TNBC. In brief, the excluded phenotype, which was associated with resistance to anti-PD1, demonstrated: deposits of collagen-10 that likely provide a physical barrier to CD8 T cells; highest expression of genes related to glycolysis that may provide an un-
favorable environment for T cells; and highest gene-expression of serine protease inhibitors (SPI) that may limit T cell-mediated killing of tumor cells. All T cell evasive paths that occurred in the excluded phenotype were inversely correlated to the presence of CD8 T cells and associated with the activation of TGFβ/VEGF pathways. We argue that antagonizing TGFβ/VEGF pathways may limit T cell exclusion. In this regard, several inhibitors of the TGFβ/VEGF pathways are in clinical developments but have not yet been tested in combination with ICI in BC. Also, SPI represent interesting drug-targets as some members of this protein family (i.e., SERPINB3, SERPINB4 and SERPINB9) have been related to ICI resistance in melanoma, and certain SPI can inhibit granzymes and/or caspases and could thereby promote tumor survival. Nevertheless, their exact role in T cell evasion remains elusive and requires further research. The ignored phenotype was also associated with resistance to anti-PD1 and demonstrated either high density of immune-suppressive M2 macrophages, which have been reported to suppress CD8 T cells, or activation of WNT/PPARγ pathways, which was inversely correlated to numbers of CD8 T cells and CLEC9A+ dendritic cells (DC). These observations suggest that antagonizing M2 macrophages or WNT/PPARγ pathways may promote CD8 T cell infiltration into ignored tumors and thereby sensitize them for immune therapies. In fact, a combination of WNT inhibition and ICI is currently being assessed in clinical trials including TNBC, albeit not stratified for presence of CD8 T cells. Finally, the inflamed phenotype, which was associated with response to anti-PD1, demonstrated signs of necrosis and a high density of CLEC9A+ DC that may trigger recruitment of CD8 T cells into the tumor. Also, the inflamed phenotypes showed a high TCR clonality that was independent of the quantity of neo-antigens. Notably, this phenotype showed signs of adaptive T cell evasion, such as enhanced expression of T-cell co-inhibitory receptors, high densities of M2 macrophages, and decreased expression of MHC molecules by tumor cells. Although the inflamed phenotype is generally most responsive to ICI, inflamed tumors may benefit from drugs that inhibit M2 macrophages or drugs that enhance antigen presentation, such as epigenetic drugs.

8.2 Outcomes Part 2: Exploring new targets for T cells

| - | Sequential use of new in silico as well as laboratory tools enable selection of potentially safe and effective target antigens, epitopes and TCRs |
| - | PCT2 represents a highly and homogeneously expressed target antigen for adoptive T cell therapy in TNBC with little predicted risk for on-target toxicity |

Box 2. Major findings Part 2
Figure 1. Charting T cell evasion in BC subtypes. Luminal-A, Luminal-B and HER2 BC were studied using multi-parameter omics analysis and TNBC were studied using omics tools and multiplexed imaging techniques, resulting in subdivision into 3 spatial immunophenotypes (TNBC-excluded, TNBC-ignored and TNBC-inflamed). Top panel shows most prominent differences in immune contextures per BC subtype; arrows in second panel show the relative frequency of cancer germline antigens (CGA) and neo-antigens (neo); arrows in third panel indicate a relative increase or decrease of different paths of T cell evasion; lowest panel lists possible combinations to sensitize tumors for immune therapies. * immune contexture of Luminal-A, Luminal-B and HER2 BC was studied based on transcriptome data only.

Is BC amenable for adoptive T cell therapy?

To date, only a hand full of studies were aimed to treat BC with adoptive T cell therapy. These studies mainly used CAR-T cells that target overexpressed antigens, such as HER2, mucin1 (MUC1), mesothelin and more recently the receptor tyrosine kinase-like orphan receptor 1 (ROR1). Notwithstanding promising preclinical results398,435–437, the above treatments in humans were challenged by low objective response rates and treatment-related toxicities438. A disadvantage of CAR-T cells may be the limited pool of target antigens that are expressed on the tumor’s cell surface, which compromises the selection of truly tumor-selective targets. In contrast, TCR-T cells are able to recognize extracellular as well as intracellular targets upon presentation via MHC-I or II, which maximizes the selection of target antigens. In this regard, CGAs, oncoviral or other tumor-selective intracellular targets may represent
interesting target candidates for TCR-T cell therapy. CGAs for example, are generally present in nucleus or intracellularly, some of which having potential roles in oncogenesis, and the thus far tested CGAs have shown clinical efficacy. In some cases, where CGAs were targeted with affinity-enhanced TCRs, overt toxicities were noted, whereas in other cases, where CGAs were targeted with natural TCRs against for example NY-ESO1, no toxicities were observed (see Chapter 5 for details). This class of antigens is predominantly expressed in immune privileged tissues of the germline and often highly expressed in various malignancies. Interestingly, we observed that CGAs are frequently expressed in BC, particularly in TNBC (Chapter 2 and Chapter 3), which potentially provides novel treatment options for this hard to treat BC subtype. Besides CGAs and other tumor-selective intracellular targets, the vast majority of TNBC also express at least 1 neoantigen (i.e., non-self-antigens that are derived from nonsynonymous mutations), which can be recognized by T cells. Nevertheless, neoantigens are rarely shared among patients and require personalized identification and selection of tumor-reactive TCRs. CGAs and onco-viral targets, however, are shared by a variety of patients and targeting this class of antigens enables stringent selection and testing of TCRs prior to patient inclusion, which in turn can be used as an “off-the shelf” cellular therapy.

Safety first!

In most cases, targets for TCRs are selected based on high expression in a given malignancy, whereas (limited) expression in healthy tissues is either accepted or neglected. T cells, however, are able to potently kill target antigens that express even very minute quantities of antigen, which, when targeting a self-antigen, have resulted in several clinical examples of severe on-target toxicities (a TCR’s cognate target that is expressed and recognized outside the tumor). In example, CAR-T cells targeting the overexpressed antigens CAIX and HER2 or TCR-T cells targeting MART1, gp100 or CEA have all resulted in severe on-target toxicities, which in some cases even resulted in fatalities (reviewed in 14,31,190). To mitigate risks for on-target toxicities, we utilized a stringent selection process in Chapter 6 which starts from absent expression of potential target antigens in healthy tissues (Figure 2). In case of intracellular targets, and using large public databases, we observed that PCT2 shows tumor-restricted expression, which many intracellular targets did not, arguing that TCR-targets should not be blindly chosen. Furthermore, we validated absent expression of PCT2 in healthy tissues using qPCR and immune stainings. In fact, we showed that PCT2 was expressed by 85% of TNBC patients and showed homogeneous expression in the majority of cases. The latter finding may potentially prevent immune editing (i.e., relapse of tumors following an initial response due to outgrowth
of antigen-negative clones). Our data so far suggest that PCT2 represents a safe and effective target antigen for AT in TNBC, which provided sufficient basis to continue our efforts to develop a PCT2-specific TCR.

Another safety concern of TCR engineering is off-target toxicity (a TCR’s target that is highly similar yet not identical to cognate target, and expressed and recognized outside tumor). In order to mitigate the risk for off-target toxicity, we only consider protein-derived epitopes that were <80% identical with any other sequence in the human proteome. Furthermore, TCRs should not be affinity-enhanced and should be vigorously tested according to in vitro safety experiments as proposed in ref287. Such experiments have been performed for the PCT2 TCR as described in Chapter 6.

Figure 2. Risk reduction for AT-related toxicity through sequential in silico and in vitro assessment of antigens, epitopes and TCRs. Funnels illustrate filtering of target antigens (left), epitopes (middle) and TCRs (right) and include individual selection steps that are described in detail in Chapter 6.

In Chapter 7 we have discussed recent developments regarding TCR editing technologies that potentially further minimize the risk for off-target toxicities. These developments include non-viral gene editing tools, such as CRISPR/CAS9, that enable insertion of TCR transgenes under the endogenous promoter while simultaneously knocking out the endogenous TCR loci416. Such TCR-edited cells have been shown to provide physiological regulation of TCR expression and at the same time prevent mispairing between exogenous TCR chains and endogenous TCR chains312,416. A recent study has shown that CRISPR-edited NY-ESO1 TCR T cells with simultaneous knock-out of endogenous TCR-α, TCR-β as well as PDCD1 genes were safely administered to 3 refractory cancer patients and resulted in long-term T cell engraftment, indicating that gene-editing is feasible in a clinical setting442. Clinical response has not been observed yet in this study, indicating that there are still challenges to address. Furthermore, the latter study used a viral delivery system, which, although
generally being more efficient, is considered less safe and has a higher regulatory
burden for in-patient testing compared to non-viral delivery. Likely, some further op-
timizations are needed to efficiently produce edited T cells using non-viral editing
techniques on a large scale under ATMP conditions. Taken together, this approach
seems promising because it further improves safety of the T cell product and enables
additional editing that potentially can enhance T cell fitness inside solid tumors.

Efficacy second!

Efficacy of AT does not only depend on the pharmacokinetics of the interaction be-
tween epitope and TCR, but also on the tumor micro-environment. Lack of efficacy
of AT in solid tumors has been largely attributed to compromised T cell trafficking
towards the tumor, reduced T cell persistence and reduced T cell activity due to
the immune-suppressive microenvironment\(^3\)\(^1\),\(^2\)\(^5\),\(^4\)\(^4\)\(^3\). Similar to ICI in TNBC, AT is ex-
pected to require sensitization of tumors prior to infusion of T cells. To date, several
trials investigate combinations of AT with chemotherapy, radiation, supplementation
of cytokines or combination with ICI, but trials have not yet investigated combination
treatments that are rationally selected based on their ability to counteract specific T
cell evasive mechanisms. In particular, TNBC with an excluded or ignored immuno-
phenotype may require combinations (as proposed in **Figure 1**) that facilitate infiltra-
tion of adoptively transferred T cells. TNBC tumors with an inflamed phenotype are
likely to allow infiltration of T cells but once inside the tumor, adoptively transferred T
cells may become functionally inhibited by M2 macrophages, which could represent
a target of choice to sensitize inflamed tumors for AT.

**8.3 Future perspective: the next steps towards effective immune
therapies for breast cancer**

Outstanding work

Part 1: It remains elusive whether spatial immunophenotypes can evolve and change
over time due to immune-editing or upon selected treatments. In line, it is of interest
whether different metastatic lesions can show different spatial phenotypes, as has
been observed in ovarian cancer\(^4\)\(^4\)\(^4\)\(^5\), which would challenge patient stratification
and selection of optimal treatments based on spatial phenotype of a single biop-
psy. Finally, the above described evasive mechanisms, though generally recognized,
should be functionally validated and phenotype-specific combinations with immune
therapies should be evaluated in clinical trials.
Part2: In order to develop an optimal form of AT, more TCRs need be obtained and tested for their efficacy and safety using pre-clinical models. With respect to combinatorial approaches it is of interest whether the in Part 1 identified prognostic and predictive markers also apply for AT and whether spatial immunophenotypes turn out to be stable or evolve into another phenotype upon adoptive transfer of TCR-T cells. In case spatial phenotypes are stable, in particular excluded and ignored phenotypes likely require combinatorial approaches that enable effective T cell influx of TCR engineered cells.

Based on the outstanding work, future research should include a series of ex vivo and in vivo studies as illustrated in Figure 3 and briefly exemplified and described below. The clinical value of spatial immunophenotypes, and its relation to T cell evasion and immune-editing, is inherently linked to the question whether intra-patient heterogeneity with respect to spatial immunophenotypes exists. To this end, it is recommended to study spatial phenotypes in different metastatic lesions and monitor such phenotypes over time. In this regard, our spatial phenotype gene-classifier represents a fast and simple way to assign spatial immunophenotypes based on (serial-) biopsies from different lesions. CD8 immune stainings on the other hand yield more confident assignments, yet the latter method depends on the availability of whole tissue sections. Next, the proposed combinatorial approaches to counteract T cell evasion and to modulate spatial immunophenotypes require functional validation. To this end, short term ex-vivo studies in which tumor pieces (from a tumor with known spatial immunophenotype/T cell evasive mechanism) may be cultured together with autologous TIL or PBMC. Exposure of such a culture to the above proposed drugs may reveal whether the spatial architecture of the TME can be remodelled or not. Direct administration of immune modulators into tumor lesions via microinjections, may represent another approach to study modulation of immunophenotypes in patients. This approach requires sequential biopsies and assignment of spatial immunophenotypes pre- and post-injection.

With respect to AT, in addition to experiments performed in Chapter 6, future studies should include TCR-editing of cells as well as in vitro assays to ensure safety (screen for recognition of peptide libraries and panels of healthy cell lines) and potency of TCR T cells (recognition of BC cell lines, circulating tumor cells and organoids). Safe and effective TCRs should then further advance into murine studies in order to test their efficacy in a patient-derived xenograft (PDX) model. Furthermore, PDX mouse models will also shed light on the modulation of spatial immunophenotypes upon administration of tumor-specific T cells. Finally, the most safe and effective TCR should be tested in combination with the most effective immune modulator (which may be different per spatial immunophenotype).
Once optimal TCRs and drugs have been selected and validated, different immunophenotype-specific combinatorial approaches should advance into clinical trials. In the clinical setting (exemplified in Figure 4), a patients’ biopsy can be transcriptome profiled in order to assign the spatial immunophenotype using the gene-classifier, the HLA-status with in silico typing algoritms (see also Chapter 5) and to assess expression of TCR target antigens. In case the patient expresses HLA-A2 as well as the target antigen, she could advance to AT combined with immunophenotype-specific modulators. In case the patient is not eligible for AT, she could advance to ICI in combination with immunophenotype-specific modulators.

Figure 3. Future studies to select immune modulators and TCRs. Individual boxes visualize approaches to pursue the outstanding work based on research from Part 1 (left) and Part 2 (right) of this thesis. Arrows and numbers illustrate sequence of events.

Figure 4. Patient and treatment selections into clinical practice. Flow-chart shows proposed individual steps for selection of (combination) immune therapies to treat BC.
References
References

References

References

67. Ali HR, Chlon L, Pharoah PDP, Markowetz F, Caldas C. Patterns of Immune

The

Replication

89. Zheng LH, Zhao YH, Feng HL, Liu YJ. Endocrine resistance in breast can-

Conflict

100. Gingras I, Azim HA, Ignatiadis M, C. Sotiriou. Immunology and breast cancer: Toward a new way of understanding breast cancer and de-

110. Vonderheide RH, Lorusso PM, Khalil M, et al. Tremelimumab in combina-

121. Park JW, Melisko ME, Esserman LJ, Jones LA, Wollan JB, Sims R. Treat-
ment with autologous antigen-presenting cells activated with the HER-2
-based antigen lapuleucel-T: Results of a phase I study in immunologic

122. Qi CJ, Ning YL, Han YS, et al. Autologous dendritic cell vaccine for estro-
011-1192-2

123. Svane IM, Pedersen AE, Nikolajsen K, Zocca MB. Alterations in p53-spe-
cific T cells and other lymphocyte subsets in breast cancer patients during
vaccination with p53-peptide loaded dendritic cells and low-dose interleu-

124. Tiriveedhi V, Fleming TP, Goedegebuure PS, et al. Mammaglobin-A cDNA Vaccination of Breast Cancer Patients Induces Antigen-Specific Cytoto-

125. Mittendorf EA, Clifton GT, Holmes JP, et al. Clinical Trial Results of the HER-2/neu (E75) Vaccine to Prevent Breast Cancer Recurrence in High-

127. Gates JD, Clifton GT, Benavides LC, et al. Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vacci-

128. Vassilaros S, Tsibanis A, Tsikkinis A, Pietersz G a, McKenzie IFC, Apostolo-
opulos V. Up to 15-year clinical follow-up of a pilot Phase III immunother-

cells with zoledronate and low-dose interleukin-2 for immunotherapy of

nonc.2014.111

References

References

References

249. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor
References

References

343. Finotello F, Mayer C, Plattner C, et al. We introduce quanTIseq, a method to quantify the tumor immune contexture, determined by the type and density of tumor-infiltrating immune cells. quanTIseq is based on a novel deconvolution algorithm for RNA sequencing data that was validated with independ. 2017.

351. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. *Cancer*

399. Martínez M, Moon EK. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. *Front Immun-

146. Miles KM, Miles JJ, Madura F, Sewell AK, Cole DK. Real time detection of peptide-MHC dissociation reveals that improvement of primary MHC-binding residues can have a minimal, or no, effect on stability. Mol Immunol. 2011;48(4):728-732. doi:10.1016/j.molimm.2010.11.004

149. Straetemans T, ... MVB-C and, 2012 undefined. TCR gene transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 epitopes as melanoma-specific immune targets. downloads.hindawi.com

150. Lamers CHJ, Willemsen R a, van Elzakker P, van Krimpen B a, Gratama JW, Debets R. Phoenix-ampho outperforms PG13 as retroviral packaging cells to transduce human T cells with tumor-specific receptors: impli-

Jiménez-Sánchez A, Memon D, Pourpe S, et al. Heterogeneous Tumor-Im-

Summary

Cancer immunotherapy represents a collection of effective new treatment options for a number of tumor types. Nevertheless, not all tumor types respond equally well to current immune therapies. Zooming in on breast cancer, this type of tumor is currently confronted by a number of gaps in its treatment portfolio, namely: low response rates and lack of predictive markers for immune therapies; lack of druggable targets that counteract T cell evasion; and lack of safe and effective target antigens for adoptive T cell therapies.

Chapter 1 provides a short introduction to the thesis’ research which includes a brief overview of standard treatment as well as immunotherapeutic approaches and their current challenges in breast cancer. According to these challenges, this thesis followed 2 main research lines:

- **Charting T cell evasion**: In Part 1 of this thesis (Chapter 2-4) we focused on the knowledge gap regarding T cell evasive mechanisms, which, provides a basis for patient stratification and selection of combination therapies.

- **Exploring new targets for T cells**: In Part 2 of this thesis (Chapter 5-7) we focused on the identification and selection of safe and effective target antigens and corresponding TCRs for adoptive T cell therapy for TNBC (one of the subtypes of breast cancer).

In **Chapter 2** we reviewed recent literature regarding the composition of TILs, their prognostic and predictive value, and the antigenicity of breast cancer subtypes (Luminal-A, Luminal-B, HER2 and TNBC), which suggest that BC subtypes are not equally immunogenic and do not equally respond to immune therapies. Furthermore, we provided an overview of recent immune therapy trials in BC and propose a strategy to select ER+ and ER- patients for (combination-) immune therapies.

In **Chapter 3** we studied large cohorts of breast cancer subtypes for the differential prognostic value of various immune parameter and the occurrence of immune evasive strategies in silico. Our data suggest that not merely CD8 T cell presence itself, but rather clonality, subset distribution, and co-inhibition of T cells as well as antigen presentation reflect the occurrence of a CD8 T cell response in BC subtypes. According to our data, such CD8 T cell responses have been aborted by distinct T cell suppressive mechanisms, such as alteration in metabolic pathways, decreased expression of T cell adhesion molecules, enhanced expression of immunosuppressive mediators, or recruitment of different types of suppressor cells. Furthermore,
our data indicates that next to TNBC also HER2 and a subset of luminal B patients may benefit from immune therapies with subtype-specific combinations.

In Chapter 4 we zoomed in on TNBC and studied the prognostic and predictive value of spatial immune contexts in untreated and anti-PD1 treated TNBC. We identified 3 immunophenotypes based on the spatial localization of CD8 T cells: excluded (T cells restricted to the invasive margin), ignored (no T cells present) and inflamed (T cells present in tumor center). We were able to capture these immunophenotypes by a gene classifier that predicts survival in untreated TNBC and various other cancers as well as anti-PD1 response of metastatic TNBC and melanoma. Importantly, our in-depth analyses revealed distinct T cell evasive pathways that advocate spatial immunophenotype-specific combinations, such as blockade of TGFβ- or VEGF-pathways in case of the excluded phenotype, or blockade of M2 macrophages or WNT-pathway in case of the ignored phenotype to boost the efficacy of ICI in TNBC.

In Chapter 5, we reviewed in silico as well as laboratory tools and strategies to select target antigens, epitopes and TCRs for adoptive T cell therapy as well as tools that enable charting of T cell evasive mechanisms which can be used to select combination therapies.

In Chapter 6, we applied these technologies to large proprietary and public databases covering transcriptome data from tumor and healthy tissues and identified PCT2, as a TNBC-selective intracellular target antigen. We verified absent expression in healthy tissue and high- and homogenous expression in TNBC using qPCR and immune stainings. Furthermore, we selected unique and immunogenic target epitopes using a series of in silico predictions, HLA-peptidome analysis and in vitro binding assays. Finally, we identified a PCT2-specific TCR which can be further exploited for the development of adoptive T cell therapy for TNBC.

In Chapter 7 we listed and described recent developments with respect to TCR-editing technologies that enable insertion of TCR transgenes into the endogenous TCR loci thereby facilitating endogenous regulation of TCR transgenes. Furthermore, these technologies enable simultaneous knock out of endogenous TCRα and TCRβ which reduces mispairing of TCR chains, which in turn limits toxicity risks of TCR engineered cells.

In Chapter 8, the main findings of Parts 1 and 2 were discussed in a broader context. Outstanding questions were formulated, and according to these questions, future research developments were proposed.
Samenvatting

Immunotherapie is een effectieve nieuwe behandelingsoptie voor kanker. In de regel houdt deze therapie in dat je tumorkernen niet direct behandeld, maar indirect door de immuun cellen van de patiënt te activeren, waardoor deze cellen, met name T cellen, de tumor aanvallen. Echter, niet alle tumortypen reageren even goed op deze therapieën. Zo reageert bij borstkanker slechts een relatief kleine fractie van de patiënten op immunotherapie, en dit varieert sterk afhankelijk van het borstkanker subtype. Het gebrek aan kennis hoe we het beste immunotherapie in borstkanker kunnen ondersteunen, dwz onderzoek naar de onderliggende reden waarom T cellen hun taak niet uitvoeren, en hoe we dit kunnen verbeteren, is het onderwerp van dit proefschrift.

Hoofdstuk 1 leidt het onderzoek in, en geeft een kort overzicht van zowel standaardbehandelingen als immunotherapiën bij borstkanker. Ondanks vooruitgang in klinische effecten door immunotherapie, is er duidelijk ruimte voor verbetering. Hier- toe is in dit proefschrift onderzoek gedaan volgens 2 hoofdlijnen:

- **In kaart brengen van redenen waarom T cellen hun taak niet uitvoeren:** In deel 1 van dit proefschrift (hoofdstuk 2-4) hebben we ons gericht op mechanismen van borstkanker die T cellen om de tuin leiden, en welke een basis kunnen bieden voor de ontwikkeling van factoren welke voorspellen of een patiënt wel/niet gaat reageren, en hoe het beste combinatietherapieën te kiezen.

- **Verkenning van nieuwe targets voor T-cellen:** In deel 2 van dit proefschrift (hoofdstuk 5-7) hebben we ons gericht op de identificatie en selectie van veilige en effectieve doelwit-antigenen en bijbehorende T cel receptoren (TCRs; receptoren waarmee T cellen antigenen op tumorcellen herkennen) voor adoptieve T-celtherapie bij TNBC.

In Hoofdstuk 2 hebben we recente literatuur samengevat en besproken met betrekking tot de samenstelling van tumor-infiltrerende immuuncellen, hun voorspellende waarde wat betreft patiënt overlevering, en immunogeniciteit van borstkanker subtypen. Verder hebben we een overzicht gegeven van recente klinische studies die gericht zijn op immunotherapie in borstkanker, en een strategie voorgesteld om zogenaamde oestrogeen receptor-positieve en negatieve patiënten te selecteren voor (combinatie-) immunotherapieën.

In Hoofdstuk 3 hebben we grote patiëntcohorten van verschillende borstkanker
Samenvatting

subtypen bestudeerd wat betreft verschillende immuun parameters en het optreden van T cel ontwikkende mechanismen. Onze gegevens suggereren dat niet alleen de aanwezigheid van CD8 T-cellen, maar eerder functionele karakteristieken bepalend zijn voor het optreden van een effectieve anti-tumor T-cel respons. Interessant is dat in de verschillende subtypen, functionele T cel responsen op verschillende wijzen ontwikkelen lijken te worden. Bovendien geven onze gegevens aan dat naast het TNBC subtype ook HER2 en een subset van luminale B-patiënten baat kunnen hebben bij immunotherapieën die ondersteund worden met subtype-specifieke behandeling.

In Hoofdstuk 4 hebben we TNBC uitgelicht, en hebben we de ruimtelijke verdeling van immuun cellen in onbehandelde en anti-PD1 behandelde patiënten bestudeerd. We identificeerden 3 fenotypen op basis van de ruimtelijke lokalisatie van CD8 T-cellen. Naast immuun kleuringen konden we deze fenotypen vaststellen met een serie genen (een zogenaamde classifier) die de overleving in TNBC voorspelt, evenals de anti-PD1-respons van uitgezaaid TNBC. Belangrijk is dat onze diepgaande analyses verschillende T-cell ontwikkende routes aan het licht brachten welke pleiten voor het belang van ruimtelijke informatie wat betreft CD8 T cellen om juiste behandel keuzes te maken voor TNBC.

In Hoofdstuk 5 hebben we computer en laboratoriumtechnieken besproken om doelwit-antigenen, epitopen en TCRs te selecteren voor adoptieve T-celtherapie, evenals up-to-date technieken om T-cell ontwijking in kaart te brengen. Slimme keuzes van dergelijke technieken maakt het mogelijk op rationele wijze combinatietherapieën te selecteren.

In Hoofdstuk 6 hebben we deze technologieën toegepast op grote databases die transcriptoom data van tumor en gezonde weefsels bevatten en op deze wijze PCT2 geïdentificeerd als een TNBC-selectief doelwit-antigeen. We verifieerden afwezige expressie van dit antigeen in gezond weefsel en toonden hoge en homogene expressie in TNBC. Verder selecteerden we unieke en immunogene epitopen, en tot slot hebben we een PCT2 specifieke TCR geïdentificeerd die verder kan worden getest voor de ontwikkeling van adoptieve T-celtherapie.

In Hoofdstuk 7 hebben we recente technische noviteit besproken die endogene regulering toelaat van TCR-transgenen, zogenaamde TCR-gene editing. Deze technologie zorgt verder voor uit-knocking van endogene TCR genen waardoor risico’s van toxiciteit sterk verminderd.

In Hoofdstuk 8 werden de belangrijkste bevindingen van deel 1 en 2 bediscussieert. Openstaande onderzoeksvragen zijn geformuleerd, en aan de hand van deze vragen is toekomstige onderzoek is voorgesteld.
Acknowledgements
Acknowledgements

Despite that this thesis displays a single name on its cover, it would not have been possible to create it without the help of many people:

To my promotors, prof. Reno Debets and prof. John W. M. Martens:

Dear Reno, I’d like to express my gratitude for all your trust and support over the past years. You really did a great job in guiding my scientific path towards obtaining my PhD degree. I’d like to thank you for all the good scientific discussions that pushed the work in this thesis; the time and effort you took to answer every email (even in the middle of the night, or during your vacation ;-)) and of course the laughs and positivity during work meetings and lab-outings. I truly admire your dedication to science, everything you do for the team and that your family and even Frodo always come first! Thanks for everything and I’m looking forward to more exciting science and PCT adventures.

Dear John, thank you so much for being a great co-promotor. I always appreciated your direct and honest view during work discussions. Even tough immunology was not your primary expertise, you had great suggestions and your out-of-the-box thinking was always very much appreciated. I admire, the way you run your lab, collaborate with many people, always push science while maintain scientific integrity. Thanks for all your input, help and support, random jokes and I hope we can continue working together on many projects.

To prof. Stefan Sleijfer: Dear Stefan, you were my promoter during the first year and I would like to thank you for not only the scientific input and for trying to maintain timelines but also for asking me about my career goals. While at that time I did not know where I saw myself in 10 years, it made me think and realize that I do really want to pursue a career in academia. I’d also like to thank you and the scout and behoud commissie for your trust and the opportunity to pursue this ambition.

To the reading committee: prof. Peter Sillevis-Smitt, prof. Roberto Salgado and prof. Ton Langerak thank you for thoroughly reading and assessing my thesis.

To the remaining members: dr. Caroline van Deurzen; dr. Sonja Buschow; dr.
Martijn Lolkema; prof. Guido Jenster, prof. Stefan Sleijfer, prof. Georges Coukos, thank you for taking part in the committee.

To the lab-members: Rebecca, thanks for all your help and the fun hours petting mice and watching beautiful pictures on the Vectra. I truly admire your organization skills, leakless memory and directness. You are a great colleague, on a scientific as well as personal level! Mandy, the first memory of you was a huge belly and a huge smile! You are not only a great role model in the lab but also as a working mom. Thanks for all your help with in vitro experiments and of course the chats that always made we forget with what question I came to your office. Cor B, we did not really collaborate on a project, but I really enjoyed having you around doing your own thing (starting from different kind of music to sometimes doing experiments somewhat different than you first had in mind). I always enjoyed talking about sports, culture, or life in general. Astrid, we did not work much together either, but I really appreciate your support with the FACS and for always being super helpful. You are a great addition to our lab as well as lab-outings! Emrah, thanks for your help with VECTRA and image analysis and for always promoting lab outings and of course for feeding us! Also you are a great addition to the lab, scientifically as well as personally. Cor L, thanks for your help with METC related questions, your awesome dance moves that made every conference party more fun. You are being missed in the lab. Pim, please come by more often!

Mieke, thank you for always making time for me, prioritizing our project when it was needed, and for being nice and caring in general. I really enjoyed working together including spending hours watching tissues and scoring slides and of course our chats. Thanks a lot, and I am really happy that you are my paraminf. Anita and Renée, thank you for all your help with stainings etc. I admire your dedication and scientific accuracy. I really appreciate that, and always enjoyed working together. Marcel, thank you for all your help and answering all my bioinformatics questions. I really appreciate your help, input and jokes and am impressed how you always manage to keep your promise regarding timelines. I’ve heard the following a lot and could not agree more: we all need more Marcels (and then I mean clones, not just people called the same name ;-)).

To all other lab members and colleagues in the JNI, thanks for your help and collaboration and for creating such a great work atmosphere that made coming to work just a little bit nicer!
Acknowledgements

To my fellow (ex-) PhD students: Yarne and André, you gave me a warm welcome when I started my PhD. I love thinking back to the time in the cave (except for the view and the smell, obviously). It was our safe room and we shared all of our excitement as well as setbacks. You are both super smart and fun but also very different. André, thanks for always being there and pushing me (indirectly) to remember other peoples birthday and be more kind in general. Yarne, thanks for your help with R, the loughs and for pushing me physically into walls and for pushing Cor Bs’ buttons during the breaks.

Maud and Priscilla, with you the cave slowly turned into a warm nest (including slightly better smells -thanks!) and I had so much fun talking girls stuff and even doing shopping nights after work. We were all in a similar stage in our PhD and life in general and it was awesome to come into such a warm nest every morning. Dian, you came here as my student and you became a colleague and even my paranimf. Thanks for always being yourself and making our lab a better place with your smile, enthusiasm and by just being you! Please never change that! Of course, I also would like to thank you for your help in the lab and I really enjoy working together. Shweta, you always make me smile when you come into the room with a waaay to happy “good morning”. Besides all the effort and hard work, you inspire me to be a better person with your view on life and your goals for later in life. Chumut, even though we were colleagues for a while we only got to know each other a little better when you moved to our office. Also you make me smile when you come in and I appreciate your kindness and great attitude.

To my master students: Daan and Alex, I enjoyed sharing my knowledge and lab skills with you. Thanks for all your enthusiasm and help!

To our collaborators: Sonja, Monique, Morten, Mikkel, Zlatko, Dietmar, Marleen, Leonie, Iris, Hugo, Roberto, Carolien, Maxine, Guido, Harmen and Job, I would like to thank you for your help, useful discussions and/or critical review. I enjoyed collaborating on different projects and papers and very much hope that it will continue this way.

To my family and friends: Richard and Silla, thanks for raising me in a way that made me believe that I can achieve and do anything in life, and for being great parents and role models in many ways. To you and the rest of our crazy patchwork
family, I’d like to thank you for all the love and support throughout the years.

Gerle, we spent the past 9 years together and lately much of my time and energy went into my PhD. I really appreciate your support, for moving to Leiden, to the US and for accepting a little less attention when I was working in the weekends or at night. I also would like to thank you for being my rock (and sometimes water) and for making me laugh and feeling loved when I needed it. A big thank you also the rest of the Ykema-family for all your love, support and for making me truly feel at home in the Netherlands.

To all my friends, in Austria, the US and the Netherlands, many thank for being a great distraction from the PhD stress, for always being there for me and for all the fun during (video-) calls, on the sand, in the water and of course while traveling.
PhD portfolio

General information:
- **Name:** Dora Hammerl
- **Research school:** Molecular Medicine
- **Period:** 01-01-2016 until 01-07-2020
- **Promotor 1:** prof. Reno Debets
- **Promotor 2:** prof. John Martens

<table>
<thead>
<tr>
<th>1. PhD training</th>
<th>Year</th>
<th>Time</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 General academic skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Research skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 In-depth courses (e.g. Research school, medical training)</td>
<td>2016</td>
<td>8d</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>3wk</td>
<td>4.2</td>
</tr>
<tr>
<td>1.4.1 Poster Presentations</td>
<td>2016</td>
<td>14h</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>14h</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>14h</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>14h</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>14h</td>
<td>0.5</td>
</tr>
</tbody>
</table>
1.4.2 Oral Presentations

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Duration</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Immunology Platform (TIP) Erasmus MC bi-annual</td>
<td>2016</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>Keystone Symposium, January 24-28, Vancouver, Canada</td>
<td>2016</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>JNI scientific research meeting, October 17, Erasmus MC</td>
<td>2016</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>TCC meeting, January 12, Erasmus MC</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>CGC meeting, January 13, Utrecht, the Netherlands</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>Wetenschapsmiddag, June 16, Erasmus MC</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>DTIM, June 22, Breukelen, the Netherlands</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>Talk/chairing MORM meeting, June 8, Erasmus MC</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>NVVI, December 2017, Noordwijkerhout, the Netherlands</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>EMCCCR day, October 29, Erasmus MC</td>
<td>2017</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>Talk/chairing MORM meeting, Sept 5, Erasmus MC</td>
<td>2018</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>JNI scientific research meeting, June 19, Erasmus MC</td>
<td>2018</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>Healthy Ideas Healthy Returns, May 8, Ghent, Belgium</td>
<td>2018</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>ACE Tumor Immunology meeting, June 25, Erasmus MC</td>
<td>2019</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>TCC meeting, November 28, Erasmus MC</td>
<td>2019</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>NVVI December 10-11, Noordwijkerhout</td>
<td>2020</td>
<td>28h</td>
<td>1</td>
</tr>
<tr>
<td>ACE Breast Cancer, June 29, Erasmus MC</td>
<td>2020</td>
<td>28h</td>
<td>1</td>
</tr>
</tbody>
</table>

1.5 International conferences

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Duration</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystone Symposium, January 24-28, Vancouver, Canada</td>
<td>2016</td>
<td>1wk</td>
<td>1,4</td>
</tr>
<tr>
<td>VIB Cell Symposium, December 11-13, Ghent, Belgium</td>
<td>2016</td>
<td>3d</td>
<td>1</td>
</tr>
<tr>
<td>AACR-CIMT-meeting, September 6-9, Mainz, Germany</td>
<td>2017</td>
<td>4d</td>
<td>1</td>
</tr>
<tr>
<td>SABCS, 4-8 December, San Antonio, USA</td>
<td>2018</td>
<td>1wk</td>
<td>1</td>
</tr>
<tr>
<td>Keystone Symposium, March10-14, Whistler, Canada</td>
<td>2019</td>
<td>1wk</td>
<td>1</td>
</tr>
</tbody>
</table>
1.6 Seminars and workshops

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course: R, Erasmus MC</td>
<td>2016</td>
<td>4d</td>
<td>1</td>
</tr>
<tr>
<td>Course: Gene expression analysis in R, Erasmus MC</td>
<td>2016</td>
<td>1wk</td>
<td>1.4</td>
</tr>
<tr>
<td>Workshop in Pathology and Digital quantification, Erasmus MC</td>
<td>2016</td>
<td>4h</td>
<td>0.15</td>
</tr>
<tr>
<td>Course: IPA pathway analysis, Erasmus MC</td>
<td>2016</td>
<td>8h</td>
<td>0.3</td>
</tr>
<tr>
<td>Scientific integrity, Erasmus MC</td>
<td>2017</td>
<td>8h</td>
<td>0.3</td>
</tr>
<tr>
<td>Personal Grant Charities</td>
<td>2019</td>
<td>8h</td>
<td>0.3</td>
</tr>
<tr>
<td>NWO VENI workshop</td>
<td>2020</td>
<td>8h</td>
<td>0.3</td>
</tr>
</tbody>
</table>

1.7 Didactic skills

1.8 Other 2016-2020

<table>
<thead>
<tr>
<th>Event</th>
<th>Frequency</th>
<th>Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cell consortium (TCC) meetings (~6x yearly), Erasmus MC</td>
<td>4 years</td>
<td>6h</td>
<td>0.8</td>
</tr>
<tr>
<td>JNI scientific research meetings (~36x yearly), Erasmus MC</td>
<td>4 years</td>
<td>36h</td>
<td>6</td>
</tr>
<tr>
<td>Tumor Immunology Platform (TIP) meetings (~36x yearly), Erasmus MC, an interdepartmental journal club and project meeting on tumor immunology, Rotterdam</td>
<td>4 years</td>
<td>36h</td>
<td>6</td>
</tr>
<tr>
<td>Medical Oncology Research Meeting (MORM) (~6x yearly), Erasmus MC</td>
<td>4 years</td>
<td>12h</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Teaching activities

2.1 Lecturing

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Year</th>
<th>Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molmed Lecture on Immunotherapy for solid tumors</td>
<td>2017</td>
<td>12h</td>
<td>0.5</td>
</tr>
<tr>
<td>Molmed Lecture on Immunotherapy for solid tumors</td>
<td>2018</td>
<td>12h</td>
<td>0.5</td>
</tr>
<tr>
<td>Nanobiology Course on Tumor Immunology</td>
<td>2019</td>
<td>12h</td>
<td>0.5</td>
</tr>
<tr>
<td>Nanobiology Course on Tumor Immunology</td>
<td>2020</td>
<td>12</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2.2 Supervising practical’s and excursions

<table>
<thead>
<tr>
<th>Student</th>
<th>Year</th>
<th>Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis Eikenboom, Research Minor, 4wk</td>
<td>2016</td>
<td>36h</td>
<td>1.5</td>
</tr>
<tr>
<td>Daan van Dorst, Research Master, 6 months</td>
<td>2017</td>
<td>108h</td>
<td>3</td>
</tr>
<tr>
<td>Dian Kortleve, Research Master, 9 months</td>
<td>2018</td>
<td>108h</td>
<td>3</td>
</tr>
<tr>
<td>Alexandre Marraffa, Research Master, 9 months</td>
<td>2019</td>
<td>108h</td>
<td>3</td>
</tr>
</tbody>
</table>
2.3 Supervising theses

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Moonen, BSc, 6months</td>
<td>2016</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Anniek Meesters, BSc, 6months</td>
<td>2017</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Daan van Dorst, MSc, 6months</td>
<td>2017</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Dian Kortleve, MSc, 9months</td>
<td>2018</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Alexandre Marraffa, MSc, 9month</td>
<td>2020</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

2.4 Other

Subtotal: 66.15 ECTS

(28 hours workload = 1 ECTS) Total ECTS: ECTS
List of Publications
List of publications

Hammerl D, Smid M, Timmermans M, Sleijfer S, Martens J, Debets R

Hammerl D, Massink M, Smid M, van Deurzen CMH, Meijers-Heijboer H, Waisfisz Q, Debets R*, Martens JWM*; *joint senior authors
‘Differential prognostic value in breast cancer subtypes: not T cell abundance, rather T cell influx, antigen recognition and suppression’
Clinical Cancer Research, 2020 Jan 15;26(2):505-517

Hammerl D, Rieder D, Smid M, Martens JWM, Trajanoski Z, Debets R
‘Adoptive T cell Therapy: new avenues leading to safe targets and powerful allies’
Trends in Immunology, Nov;39(11):921-936

Kortleve D, Hammerl D and Debets R
‘Orthotopic editing of T-cell receptors’
Nature Biomedical Engineering, 2019 Dec;3(12):949-950.

Agahozo MC, Hammerl D, Debets R, Kok M, van Deurzen CHM
‘The role of the immune system during ductal carcinoma in situ of the breast’. Modern Pathology, 2018 Jul;31(7):1012-1025
Uhr K, Sieuwerts AM, de Weerd V, Smid M, Hammerl D, Foekens JA, and Martens JWM

Submitted manuscripts

‘Spatial immunophenotypes predict response to anti-PD1 in Triple Negative Breast Cancer capture distinct paths of CD8 T cell evasion’
Nature Communication, in revision.

Manuscripts in preparation

Hammerl D, Kortleve D, Timmermans A, van Brakel M, van Dorst D, Martens JWM and Debets R
‘PCT2 is a novel, tumor selective and highly prevalent target for T cell receptors against triple negative breast cancer’ Manuscript in preparation

van Riet J, Hammerl D, van Gelder M, van de Werken HJG, Jenster G and Debets R
‘An exploratory study into the immunogenetics and immunotherapy potential in prostate-cancer’ Manuscript in preparation.

‘Defining the immune microenvironment of desmoid-type fibromatosis’ Manuscript in preparation.

Additional dutch publications

Wilting S, van Deurzen CHM, Meijer TG, Hammerl D, Martens JWM, Bos M
“Moleculaire diagnostiek van het mammacarcinoom ten behoeve van de praktijk”. Pfiijzer Oncologie Special 2019, PP-ONC-NLD-0583
About the author
About the author

Dora was born in 1989 and grew up in a small town called Oberwart in south-east Austria. Despite, having a passion for art and sports she graduated high school with majors in English, biology, physics and psychology. Dora was curious about nature and a series of fatal illnesses of friends and family, sparked her interest to learn more about cancer. In 2008 Dora moved to Vienna to pursue her studies in molecular biology at the University of Vienna. After receiving her BSc degree in 2012, she moved to the Netherlands where she obtained a MSc Diploma (cum laude) in biopharmaceutical sciences at Leiden University. Dora always dreamed about living in a tropical place, and didn’t think twice when she got the opportunity in 2015 to work at La Jolla Institute located in San Diego. After moving to the US, she studied ways to activate the immune system against cancer by targeting adenosine receptors (PI: prof. Joel Linden). Regardless of countless joyful hours working at a cutting-edge research institute, endless sunset surfing sessions and good memories, she felt the need to move on and obtain a doctorate degree. Dora found a vacancy to obtain a PhD in the field of tumor immunology at one of the leading research university medical centres in Europe, the Erasmus MC Cancer Institute. In 2016 she moved back to the Netherlands and started a PhD position at the laboratory of Tumor Immunology (PI: prof. Reno Debets in collaboration with prof. John Martens) and put all her energy into understanding the interplay between cancer cells and immune cells, and finding new targets in order to boost T cell immunity in breast cancer. From July 2020 onwards, she continued to work at the laboratory of Tumor Immunology as a postdoctoral fellow, in order to work towards clinical translation of the research presented in this thesis.