Propositions
accompanying the dissertation

INTEGRATING GENETICS INTO ECONOMICS

by

Eric Arsène Willem SLOB

I. Publicly available tools such as MR-Base make the execution of a Mendelian ran-
domization study too easy, as no specialist knowledge of genetics is required for
using such tools (Chapters 2 and 3).

II. Using genetic propensity scores for individual-level prediction of behavior is pre-
mature (Chapter 4).

III. The best genetic propensity scores for behavior are constructed using all available
single nucleotide polymorphisms in a data set rather than only genome-wide sig-
nificant single nucleotide polymorphisms (Chapters 4 and 5).

IV. Excise tobacco taxes are an effective policy method to reduce tobacco consumption
(Chapter 5).

V. In high-dimensional optimization problems, such as GREML, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is preferred over a Newton method: it requires
more iterations, but it is computationally less demanding (Chapter 6).

VI. The “genes first” approach in heritability studies leads to an underappreciation of
the environmental factors shaping behaviour.

VII. Testing and estimation are separate enterprises with separate goals; the two should
not be confused.

VIII. Explicit correction for multiple-hypothesis testing should become standard in so-
cial sciences to decrease the probability of reporting spurious or random results
and increase effective knowledge building and credibility in science.

IX. Often, the exact purpose of robustness checks in empirical studies is often left un-
clear to give the impression that the results are ‘robust’ to every possible alternative
explanation.

X. Publishing all research findings is more effective for the proliferation of ideas than
the current practice of selectively publishing mostly statistically significant results
only.

XI. It is crucially important to know what is unimportant.