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Abstract

Global total least squares has been introduced as a

method for the identi�cation of deterministic system

behaviours. We analyse this method within a stochas-

tic framework, where the observed data are generated

by a stationary stochastic process. Conditions are for-

mulated so that the method is consistent in the sense

that, when the number of observations tends to in�n-

ity, the identi�ed deterministic behaviour converges

to the behaviour that provides an optimal appoxima-

tion of the data generating process.

Keywords: Linear systems, system behaviour, fac-

tor analysis, least squares, consistency.

1 Problem Statement

System identi�cation is concerned with the determi-

nation of su�ciently simple models that give a suf-

�ciently accurate description of the observed data.

Identi�cation methods di�er in the speci�cation of

the model class and in the way the complexity and

accuracy of models is evaluated. Within the area of

systems and control, a well-known and much used ap-

proach is that of prediction error identi�cation of lin-

ear input-output systems, see [9], or more general, the

maximum likelihood estimation of ARMAX systems,

see [3]. These methods require that several system

properties have been speci�ed prior to model estima-
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tion. This concerns in particular the decomposition

of the system variables into inputs and outputs, and

the joint correlation structure between inputs, out-

puts and disturbances.

In practice it is not always clear which variables act

as inputs and which ones as outputs, and often the

properties of the model errors are unknown. Several

approaches have been developed for a more symmet-

ric modelling of linear systems, in particular errors-in-

variables models, see [1], [2], and system behaviours,

see [13], [14], [4], [10]. Errors-in-variables models

treat the system variables in a symmetric way, but

rather strong noise assumptions are needed. The be-

havioural approach is of a completely deterministic

nature that prevents any asymmetry but also lacks

a statistical analysis of identi�cation procedures. A

synthesis of the two approaches is proposed in [8] in

terms of a new class of dynamic factor models, see

also [5] and [6]. Hereby it is assumed that the observa-

tions are generated by a stationary stochastic process,

denoted by w. A factor model is a decomposition

w = + (1)

where satis�es deterministic linear dynamic restric-

tions. This is called the factor process, and is the

corresponding error process. Factor models are eval-

uated in terms of their complexity, measured by the

number of degrees of freedom of the factor process,

and in terms of the magnitude of the error. This is

made more speci�c in the next section. Fixing the

allowed complexity, a model is called optimal if it has

minimal error under this constraint.

In this paper we consider the question of consistency.

That is, the question whether optimal models can

be identi�ed from observed data in the limit when

the length of the observation interval tends to in�n-

ity. This is investigated for the so-called global total

least squares identi�cation method, see [12] and espe-

cially [10]. This method is described in Section 3, a
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parametrization in Section 4, and consistency results

in Section 5. In Section 2 we introduce the model

class, further details of which are given in [8].

2 Factor Models

The traditional model of static factor analysis is of

the form w = Lf+, where w is a vector of observed

variables, f a lower dimensional vector of unobserved

latent variables, a vector of unobserved noise compo-

nents, and L a matrix of factor loadings. If we de�ne

the factor variables by = Lf , then these variables

satisfy deterministic linear equations as the matrix L

does not have full row rank. In analogy with this,

we de�ne a dynamic factor model for the process w

as in facmod, where the factor process satis�es deter-

ministic linear di�erence equations. That is,

R(�) = 0 (2)

where � denotes the shift operator and R is a polyno-

mial matrix in the shift. The behaviour correspond-

ing to these equations is de�ned as the set of all time

series that satisfy the equations ar. This behaviour

corresponds to a linear system, see [13], [14]. The be-

haviour of the factor model facmod is de�ned by the

maximal set of equations ar, that is, it is the small-

est linear system that contains almost all factor re-

alizations in the sense that the set f! 2 
; (!) 2g
has probability one. We will restrict the attention to

factor processes that are purley non-deterministic, in

the sense of stochastic processes. In this case the be-

haviour is controllable and corresponds to an input-

output system that can be described by a rational

transfer function matrix. This is the usual model class

in system identi�cation, but in our approach the vari-

ables are not distinguished in inputs and outputs and

the behaviour is de�ned in terms of system trajecto-

ries, not in terms of a parametric description such as

a transfer function.

The complexity of a factor model facmod is de�ned

in terms of its behaviour. Let this correspond to a

system with m inputs and n states, then the com-

plexity is de�ned as the pair (m;n). If q denotes the

total number of variables in the system, then a fac-

tor model of complexity (m;n) can be described by

equations ar, where (q � m) is the number of inde-

pendent equations and n the (smallest) sum of the

orders of each of the individual equations correspond-

ing to the rows of R. A behaviour is less complex the

smaller m and n are, that is, the less (unrestricted)

inputs and initial conditions it allows. Stated oth-

erwise, simple factor models are restricted by many

equations of short lag.

In the sequel let the observed process w be �xed. Im-

posing more restrictions on the factor process will in

general result in a larger error . This is measured by

the mean squared error, that is, fEk(t)k2g1=2 where

k � k denotes the Euclidean norm in q-dimensional

space. The error of a behaviour with respect to the

process w is de�ned as the smallest achievable error

by factor models with behaviour . The correspond-

ing factor model is given by = Pw and = (I � P )w,

where P is the operator of orthogonal projection onto

, see [8]. If the process w has spectrum x that is

bounded on the unit circle, then the error is given by

e() =

"Z
jzj=1

trf(I � P (z))x(z)gdz
#1=2

(3)

where tr denotes the trace of a matrix. For �xed

complexity (m;n), a behaviour is called optimal if

it minimizes the error erbehav under this complex-

ity constraint. The problem of determining optimal

models for given spectrum x and complexity (m;n)

has been solved in [8], see also [5]. This basically

involves the l2-approximation of a spectral factor of

x. For l2-approximation algorithms we refer to [11]

and [12].

3 Global Total Least

Squares

We now consider the situation where the process w is

unknown, and the available information consists of an

observed time series generated by the process. That

is, the data wN = w(!)j[1;N ] consists of a realization

w(!) of the process observed on a time interval of

length N . We de�ne the error of a behaviour with

respect to these data as the global total least squares

(GTLS) distance. That is,

eN() = min f 1p
N
kwN � wa

Nkg (4)

with wa
N 2j[1;N ] and with k � k the Euclidean norm

in (qN)-dimensional space. This distance involves

the total squares, in the sense that approximations

in all the variables are allowed. It is also global in

the sense that the approximation wa
N should not only

locally satisfy the equations ar, as in prediction ori-

ented criteria, but also globally, as the full trajectory
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wa
N should satisfy the laws of the behaviour . For

further motivation and for algorithms we refer to [12]

and, in particular, to [10].

For �xed complexity (m;n), a behaviour is called op-

timal for the observed data if it minimizes the er-

ror GTLS under this complexity constraint. It can be

shown that, with the exclusion of exceptional cases,

this optimal behaviour exists and is unique, and we

denote it by N (m;n). This behaviour is a random

set as it depends on the realization of the observed

process, that is, on ! 2 
. Let (m;n) be the opti-

mal model in the sense of minimizing erbehav under

the complexity constraint, that is, giving the mini-

mal achievable error if the data generating process is

known. The basic question of this paper is in which

sense and under which conditions it holds true that,

for almost all ! 2 
,

limN!1N (m;n) = (m;n): (5)

In this case the global total least squares method is

consistent.

4 Parametrization

The foregoing exposition was focused on behavioural

system properties. The complexity and accuracy of

behaviours is expressed in terms of set theoretic prop-

erties of the system. For computational purposes it is

of course essential to use parametric representations,

and these can now be chosen as it suits.

For the GTLS error GTLS the following represen-

tation of behaviours has proved convenient, see [11]

and [12]. An alternative to the polynomial represen-

tation ar is given in terms of state variables x and

driving variables v by means of the equations

x(t+ 1) = Ax(t) +Bv(t) (6)

w(t) = Cx(t) +Dv(t): (7)

This can be interpreted as a dynamic factor model,

where the observed variables w are generated by the

factors x that evolve over time and with unobserved

driving forces v. A behaviour of complexity (m;n)

can be represented by m driving variables and n state

variables, and not by a smaller number of these latent

variables. Such representations are called minimal.

The minimal representation of a behaviour is highly

non-unique. In particular one can choose a so-called

minimal isometric representation, so that the (n+q)�
(n+m) matrix

�
A B

C D

�
(8)

is isometric, that is, it has orthogonal columns of unit

length. Such minimal isometric representations are

unique up to block-unitary transformations. That is,

if a behaviour has minimal isometric representation

(A;B;C;D) then all such representations are given by

(UAUT ; UBV;CUT ; DV ) with U and V n�n andm�
m unitary matrices. For �xed dimensions (m;n) we

de�ne the parameter set � �n�n �n�m�q�n�q�m as

the set of all isometric system matrices (A;B;C;D),

that is, with

�
A B

C D

�T �
A B

C D

�
=

�
In O

O Im

�
(9)

So these are isometric representations, but note that

minimality is not required. For � 2 � we denote

by (�) the behaviour corresponding to �, that is,

all the trajectories w that can be generated by the

equations state1, state2 for these values of the pa-

rameters. This parametrization is not injective, due

to the non-uniqueness of isometric representations.

The image of this parametrization consists of be-

haviours with complexity (m;n0) with n0 � n, and

n0 = n if � is minimal. The behavioural error is

de�ned by e(�) := e((�)) given in erbehav, and the

GTLS error by eN(�) := eN((�)) as in GTLS. More

explicit expressions in terms of the parameters can

be obtained. For instance, e(�) is given by erbe-

hav where P (ei�) = G(ei�)GT (e�i�) with G(ei�) =

D + C(ei�I � A)�1B the transfer function from v to

w in the state model state1, state2. The computa-

tion of eN(�) by means of a state model is described

in [11].

Apart from the parameter set � we will also consider

the subsets ��, with 0 < � � 1, de�ned by

�� = f� 2 �;�max(A) � �g (10)

where �max(A) denotes the maximum modulus of

the eigenvalues of the matrix A. Because of

the isometry condition there holds that �1 =

�. The following properties of the parametriza-

tion state1, state2, parset are proven in [7], where

k � k� denotes the supremum norm over ��, that is, it

is de�ned by keN � ek� := sup�2��
j eN(�) � e(�) j.

1. � and �� are compact;

2. e is continuous on �;
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3. for �xed N and �k ! � there holds

limsupk!1eN (�k) � eN (�);

4. eN is discontinuous only at non-minimal � 2 �;

5. for every � < 1 holds keN � ek� ! 0 almost surely

if N !1.

5 Consistency

The results in the foregoing section imply the fol-

lowing consistency result in terms of the system pa-

rameters. For �xed complexity (m;n) we denote by

��
� = argmin�2��

e(�) the set of optimal parameters

and by ��
�;N = argmin�2��

eN (�) the set of param-

eters of GTLS models for the observed data, and

k � k denotes the Euclidean norm on � as subset of
(n+q)(n+m). The following result is proved in [7].

1. ��
� is not empty;

2. sup�N2��

�;N
inf�2��

�
k�N � �k ! 0 almost surely in

case N !1.

This means that the parameters of optimal models,

obtained by the GTLS procedure applied to �nite

observed data, converge to the parameters of mod-

els that are optimal for the data generating pro-

cess. Similar results can be obtained on the level

of behaviours, that is, independent of the chosen

parametrization. For simplicity we will only state

the result for the case that the optimal behaviour is

unique, which holds generically true. Here generic-

ity of data generating processes is de�ned in terms

of the spectrum x(ei�) of the process w. Let S be

the set of q � q spectra that are bounded on the

unit circle, and let a metric on S be de�ned by

d(x1; x2) = sup'2[��;�]�maxfx1(ei')� x2(ei')g. Then
a subset S0 � S is called generic if it contains a subset

S00 � S0 that is open and dense in S.

For generic data generating process w, the be-

haviour of complexity (m;n) minimizing the error er-

behav exists and is unique, and the same holds true

almost surely for the minimization of GTLS.

In order to formulate consistency in terms of be-

haviours we use the following so-called gap metric

d(1;2 ) = kG1G
�
1 �G2G

�
2k (11)

where k � k denotes the supremum norm on the unit

circle, Gj(e
i�) = Dj + Cj(e

i�I � Aj)
�1Bj with �j =

(Aj ; Bj ; Cj ; Dj) an isometric representation of j , and

with G�j (e
i�) = GT

j (e
�i�), so thatGjG

�
j is the transfer

function corresponding to the operator of orthogonal

projection onto the behaviour j , j = 1; 2. In the fol-

lowing we assume that the complexity (m;n) is �xed

and that a bound � < 1 has been chosen. By (m;n; �)

we denote the optimal behaviour over �� for the data

generating process, and by N (m;n; �) the GTLS be-

haviour over ��. We assume that these behaviours are

unique, which because of the foregoing proposition is

the generic situation. In this case (m;n; �) = (�) with

� 2 ��
�, and N (m;n; �) = (�N ) with �N 2 ��

�;N . The

following result is proved in [7].

Under the above conditions, for �xed complexity

(m;n)

and � < 1, there holds d((m;n; �);N (m;n; �)) ! 0

almost surely for N !1.

So the optimal behaviour identi�ed from observed

data converges to the optimal behaviour for the data

generating process if the number of observations tends

to in�nity. This provides an answer to the consistency

question formulated in cons.

6 Conclusion

In this paper the GTLS method for linear system

identi�cation has been investigated within a stochas-

tic framework. The object of interest is the system

behaviour. This approach treats all variables in a

symmetric way and the basic system properties are

expressed independent of paramatrization. The cen-

tral result concerns the consistency of GTLS, in the

sense that the identi�ed model converges to an op-

timal approximation of the data generating process.

Here the complexity of the models is �xed. The main

restriction is that the maximum modulus of the eigen-

values of the state transition matrix is bounded a pri-

ori by a �xed number � < 1, while the full parameter

set has � � 1 (in fact, representations with � = 1 are

not minimal and hence correspond to systems of lower

complexity). This restriction is very helpful for prov-

ing the consistency result, details of which are given

in [7]. We conjecture that consistency without this

restriction, that is, on the full class of behaviours of

�xed complexity, does also hold true. This is a topic

of further research.
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