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1 Introduction

Warehouse operations tend to be labor-intensive and require large space for facilities. Large
buildings are needed to store the item assortment in racks, move stock, unload and load
trailers and containers, inspect picked orders, allow trucks to maneuver in the yard, and
dock the trucks. Among the warehouse activities, order picking is the most laborious and
expensive process. It includes collecting the right amount of the right products for a given
set of customer orders. Some estimate the order picking cost to account for 55 percent of
the total warehouse operating expenses (De Koster et al., 2007). Furthermore, order picking
tasks are often repetitive and can suffer from poor ergonomics. Therefore, they have become

the primary candidate for automation to improve efficiency in the fulfillment process.

Furthermore, unexpected major disruptions such as Brexit and the recent COVID-19 pan-
demic also impacted some warehouse operations. As a result of Brexit, several UK firms
face difficulties finding qualified workers since they are no longer part of workers’ free move-
ment within the European Union. COVID-19 pandemic requires significant social distancing
norms and new workplace protocols to ensure safety in warehouse operations. The resulting
“new normal” makes it challenging to operate a warehouse with manual labor. Phase-wise
automation of warehouses can be both safe and productive in the new normal times (Roy,
2020).

That being said, there is no one-size-fits-all solution for warehouse automation, and de-
pending on the type of the warehouse and its position within the supply chain, different
automated systems should be considered. In particular, retailers may choose different chan-
nels to reach their customers. For instance, they can directly ship items from the warehouse
or use physical stores. Therefore, different warehouse types have emerged as a result of
various distribution channels. Hence, it is crucial to understand what these channels are

and how they shape different warehouse requirements.

1.1 Distribution Channels

Buying and selling goods and services electronically over the internet or e-commerce has
completely changed consumers’ shopping behavior. In the past, one or more visits to a brick
and mortar store were required for any purchase. Today, consumers can search from a broad

range of products, compare the prices of different retailers, read customer reviews about
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the products, and finally purchase the item by just tapping on their smartphones at 10
pm, all from the comfort of their couch. E-commerce has also provided many opportunities
for businesses. Companies can extend their services beyond their geographical region and
tap into the national and international markets easily. Furthermore, a retailer can market
a much more diverse portfolio of products on the online platform than brick and mortar
stores (Open Access Government, 2019). For instance, Walmart! supercenters only carry
one-sixth of the number of SKUs (Stock Keeping Unit) that are carried by Walmart.com
(Brynjolfsson et al., 2003). The distribution platform enabled by e-commerce that retailers

use to distribute their products directly to the customers is called Online Channel.

The Offtine Channel, on the other hand, is the traditional distribution platform that retailers
use to distribute their products to the customers through physical stores. Despite being
overshadowed by online shopping growth, physical stores still play a significant role in
the consumer’s shopping experience. In particular, they provide instant satisfaction from
immediate possession of the purchased products (Agatz et al., 2008). Moreover, some
consumers combine the two shopping experiences by browsing for the items online while
making the actual purchase at the physical store, or the other way around (Skrovan, 2017;
Chiou et al., 2017). That is why some of the largest e-commerce companies, such as Amazon
and Alibaba, are heavily investing in having a physical presence (Schaverien, 2018; Hirnand,
2018).

Depending on how the channels are used, there are three distribution models.

o Single-Channel: In this model, a company only uses one of the channels to reach the
customers, i.e., completely online or completely offline. Bol.com? and Picnic® are two
companies that only use the online single-channel distribution model. Most of the

local retail shops use an offline single-channel distribution model.

o Multi- Channel: Different segments of customers prefer different channels of sales and
product delivery options. Therefore, retailers started to offer both online and offline
channels to their customers. When retailers provide different channels to their cus-
tomers that work independently of each other, it is known as a Multi-Channel model.
Customers can purchase the products from either the physical stores or the online
store. However, there is limited coordination among different channels, and the ma-
jority of the operations for each channel are done independently (Saghiri et al., 2017).
For instance, each channel has a separate warehouse. Even if they use the same ware-
house facility for both channels, most warehousing operations such as storage, picking,

packing, and shipping of the orders are entirely separated for each channel. Albert

!Walmart is an American multinational retail corporation that operates a chain of hypermarkets, discount
department stores, and grocery stores

2Bol.com is the leading webshop in the Netherlands for books, toys, and electronics

3Picnic is an online supermarket in the Netherlands
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Heijn® and Jumbo® are examples of companies deploying a multi-channel distribution
model (Dijkhuizen, 2020; De Weerd, 2019).

Omni-Channel: In this model, retailers also use both channels to reach customers.
However, unlike the multi-channel model, all channels are integrated seamlessly with
each other. Customers can buy their products from any channel, receive it in any of
the available delivery options, and, if required, return the product via any available
medium. For example, retailers offer purchasing options such as Buy-Online-Pickup-
In-Store (BOPIS, or click-and-collect), Buy-Online-Return-In-Store (BORIS) and de-
livery options such as ship product from one store to another store, and locker pick-up
(Uichanco et al., 2019). De Bijenkorf and Blokker® are examples of companies that

use an omni-channel model (Dijkhuizen, 2019a,b).

Figure 1.1 illustrates these three distribution models. The dashed arrows correspond to

the physical goods flow, and the solid arrows correspond to the flow of information. Next,

we discuss the different types of warehouses that have emerged due to various distribution

channels.

Offline Channel

Single-channel Multi-channel Omni-channel
|

S

!
E;n"r bkl n,.-_nm @ﬂum

Figure 1.1: Distribution channels (--» physical goods flow, — information flow)

1
|
1
N5 | 3 39
> : v%é‘:)\t
>
+ ! +
: : 5] : 3
¥ 1 : 1
[ H i
15 1 !
[ ! 1
| 2 @ : |
(=] 1 1
1 O /: :
P : |
1 1 1 )
] | 1
¥ I v
1
1
1
1
1
1

4 Albert Heijn is the largest and most famous Dutch supermarket chain with more than 1000 stores in

the Netherlands and Belgium

5Jumbo is the second largest Dutch supermarket chain with more than 600 stores in the Netherlands
SBlokker is a Dutch homeware retailer
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1.2 Different Warehouse Types

In an offline channel, warehouses act as a distribution center for store replenishment. We call
these warehouses Store Replenishment Warehouses. With the start of e-commerce, store-
based retailers started to transform their warehouses to incorporate the online channel.
In an online channel, although a small number of customer orders could be fulfilled from
stores, in large-scale operations, the orders are typically fulfilled directly from a warehouse.
In the beginning, when the share of e-commerce was still relatively small, a small part
of the store replenishment warehouse was dedicated to serving online orders as an ad-hoc
solution. However, with the online channel’s significant growth, fulfilling all orders from the
same facility became difficult. Particularly, three main reasons forced retailers to start a

dedicated E-commerce Warehouse:

1. Order Profile: Traditional store-based retail warehouses are accustomed to daily store
replenishment with a large number of daily order lines and large volumes per order line.
In contrast, in online retail, the number of daily orders can be much larger, with only
a few lines per order. For instance, the average order size at Amazon warehouses in
Germany is 1.6 items per order (Boysen et al., 2019). Moreover, store replenishment
orders often consist of pallets or overpacks, whereas online customer orders are for
piece quantities. Hence, handling online orders requires a different approach than the

store replenishment orders.

2. Storage Space: The storage cost in a warehouse is much lower compared to a store shelf.
Therefore, online retailers can afford to offer a much larger assortment of products on
their webshop since they do not have the physical store’s cost and space limitation
(Brynjolfsson et al., 2003). Therefore, with the strong growth of e-commerce, the
small part of the store-based retail warehouse that was initially dedicated to the online

channel could no longer accommodate the large product assortment.

3. Fast Delivery: Traditional store-based retail warehouses were not designed for fast
delivery. They aimed to replenish stores in time to prevent stock-outs. Consequently,
most warehouses were located in relatively remote but strategic locations from which
stores could be replenished with an acceptable lead time. When the online channel’s
share was small, it was still possible to accommodate occasional fast deliveries for
online customers from the same store-replenishment warehouse. But with the growth
of online customers and rising expectations of quick deliveries, e.g., next-day or even
same-day delivery, it was not possible to meet customer demands from the same ware-

house.

Many retailers have continued to operate with separate single-channel warehouses: store
replenishment warehouse, usually located in remote areas, and e-commerce warehouses,

usually located near urban areas (see Figure 1.2). Especially, retailers with a large volume
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of online daily orders do not have any other option but to operate with separate warehouses.
Meanwhile, several retailers with a moderately large number of daily online orders have com-
bined the two operations in Omni-Channel Warehouses (see Figure 1.3). The high cost of
land, especially in regions like Western Europe, and the shortage of labor for warehouse
work, have made it difficult for many retailers to maintain multiple warehouses. Further-
more, operating separate warehouses results in duplication of inventory. In contrast, in
an omni-channel warehouse, online and offline orders are fulfilled from the same inventory
thanks to new technological advancements that allow handling online customer orders and
store replenishment orders simultaneously from the same facility. De Bijenkorf and Blokker
are examples of companies that have recently merged the warehouse operations in a single

omni-channel warehouse (Dijkhuizen, 2019a,b).

Store Replenishment Warehouse E-commerce Warehouse
Inventory for Inventory
offline | for online
channel channel

I

Inbound Outbound Inbound  Outbound

T 00

Figure 1.2: Inventory and goods movement in single-channel warehouses

1.3 Warehouse Automation

We identify three warehouse types depending on the distribution model, each with different
characteristics and requirements. Therefore, the choice of a suitable automated system is

different depending on the warehouse type.

Automation for Store Replenishment Warehouses: The main objective of a store
replenishment warehouse is to replenish stores at the due time to avoid stock-outs. These
warehouses should fulfill orders with many lines with large volume per line, i.e., pallets or
overpacks, from a medium assortment of products under a moderate time pressure (Boysen
et al., 2020). Furthermore, they do not require much throughput flexibility since the stores’
demand pattern is more or less fixed with predictable peaks (Kembro et al., 2018). In

normal circumstances, store replenishment warehouses have weekly cycles, often with peaks
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Inventory for
both channels -
|
I
|
4 I
| v
Inbound for Outbound — Outbound —
both channels offline channel online channel

T

Figure 1.3: Inventory and goods flow in an omni-channel warehouse (--» online channel
goods flow, — offline channel goods flow)

on Fridays, to ensure stores are replenished for the peak sales in the weekends, and on
Mondays, to refill the stores afterward (Boysen et al., 2020). Therefore, an automated
solution should be able to handle pallets and large box items with moderate throughput
flexibility. Fully-Automated Case Picking is an example of a fully automated order fulfilment
process for store replenishment warehouses. In this system, incoming goods, predominantly
homogeneous unit load pallets, are first stored in an Automated Storage and Retrieval
System (AS/RS). When a certain product is requested, the pallet is retrieved and moved
into a depalletizing stage. In this step, pallets are broken down into individual cases by an
industrial robot. The loose cases are then transported with a conveyor to be stored using a
mini-load AS/RS. Once a store places an order, the cases are retrieved from the AS/RS and
transported to a palletizing stage. There, another industrial robot stacks the loose cases to

create mixed pallets or roll cages according to the store order (Boysen et al., 2020).

Automation for E-commerce Warehouses: E-commerce warehouses should fulfill small-
sized orders, from a large assortment of products, under significant time pressure, and need
to be flexible enough to adapt to unpredictable demand fluctuations (Boysen et al., 2019).
Traditional goods-to-men automated systems, such as mini-load AS/RS, are expensive and
inflexible with a long implementation time, making them less suitable for an e-commerce
warehouse. These issues have given birth to robot-based picking solutions. These systems
use free-roaming retrieval robots, such as shuttles, free-roaming Autonomous Guided Vehicle
(AGVs) and Autonomous Mobile Robot (AMRs), to improve picking efficiency. Although
they are a bit slower in terms of hourly pick rate than conventional automated systems such
as mini-load AS/RS, they are preferred due to their lower cost, quick deployment, flexibility,
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and scalability. Shuttle-based storage and retrieval systems and robotic mobile fulfilment

systems are two examples of such robotic solutions for e-commerce warehouses.

Automation for Omni-channel Warehouses: The main challenge in an omni-channel
warehouse is the presence of small-sized customer orders along with large-sized store re-
plenishment orders. Therefore, the automated solution should be able to pick orders with
few and with many order lines. Robotic solutions, in particular AMRs, can pick for vari-
ous order sizes, which make them a viable candidate for order picking in an omni-channel

warehouse. Pick-support AMRs (PS-AMR) are an example of such a robotic solution.

Warehouse automation requires considerable scale and a long-term vision, as the investments
can be earned back only in the medium and longer-term. Therefore, it is crucial to develop
tools to help decision-makers find the correct solutions for their warehouses. In this thesis,
we aim to provide useful academic and practical insights by modeling and optimizing the

performance of different automated and robotic picking systems.

1.3.1 Research Opportunities

The majority of warehouse research still focuses on conventional storage and order picking
methods. Due to rapid system developments, it is time for an update, as the new technolo-
gies have provided new and interesting research opportunities. Therefore, in Chapter 2, we
structure the latest automated technologies and give an overview of these technologies and
the research. We also review the modeling techniques used and the research opportunities
they provide. In this chapter, we do not limit ourselves to a particular warehouse type and

review systems that are used in all three warehouse types.

In Chapter 3, we turn our attention to e-commerce warehouses. The main challenge in many
fulfillment centers is to adapt the picking capacity to the order volume required. This is more
pronounced in e-commerce rather than store replenishment warehouses due to unpredictable
demand fluctuations. The Shuttle- or Autonomous Vehicle-based Storage and Retrieval
System (AVS/RS) is one very popular candidate to address this challenge. In this system,
a combination of autonomous shuttles and lifts are used to perform the order fulfillment
process. In each tier, shuttles move autonomously in the horizontal directions using rails
and are transported in the vertical direction between tiers using lifts. We categorize these

systems as Horizontal systems (see Figure 1.4).

The major problem with these systems is that the system throughput is constrained by
the number of lifts present in the system, limiting their flexibility to react to a change in
demand. Recently, robotics-based storage and retrieval systems have been developed to ad-
dress this issue by eliminating the multi-touch retrieval process of AVS/R systems. In these
systems, a single robot can move independently and autonomously in the horizontal and

vertical directions inside the rack structure to transport items between storage locations and
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Figure 1.4: Horizontal system (Source: Vanderlande)

workstations. Therefore, we categorized these systems as Vertical systems (see Figure 1.5).
Many studies exist that describe and analyze the horizontal systems’ performance, while
the vertical system has not been studied yet. Furthermore, there are fundamental differ-
ences between the two systems, which leads to a different modeling approach and different
layout designs and control policies for the vertical system. Therefore, in Chapter 3, we first
investigate the vertical system in more detail, and then we compare its performance and

costs with the horizontal systems.

|

(a) PerfectPick (Source: OPEX) (b) Skypod™ (Source: EXOTEC)

Figure 1.5: Vertical system

In Chapter 4, we study a system that can be used in all three warehouse types. In this
system, PS-AMRs collaborate with human pickers to carry out the order fulfillment (see
Figure 1.6). In this collaborative environment, the picker accompanies the AMR, only for
item picking, and the AMR autonomously carries out the remaining travel and drop off
functions. Manual pickers and pickers collaborating with PS-AMRs can work side-by-side,
making this collaborative system ideal for companies who want to automate their manual
system but are skeptical about the investment costs. Companies can start with a small

number of PS-AMRs and gradually expand this over time without affecting their current
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pick process, reducing investment cost and automation risk significantly. The parallel move-
ment of pickers and AMRs makes the modeling, analysis, and optimization of this system
completely different from fully manual picking systems or other robotic systems. Therefore,
we dedicate Chapter 4 to a detailed analysis of such systems. Particularly we investigate

optimal operational policies when using PS-AMRs in an omni-channel warehouse.

Figure 1.6: Pick-Support AMR (Source: Fetch Robotics)

1.4 Contribution and Thesis Outline

Chapter 2: Robotized and Automated Warehouse Systems: Review and Recent

Developments”

This chapter reviews new categories of automated and robotic handling systems, such as
shuttle-based storage and retrieval systems, shuttle-based compact storage systems, and
robotic mobile fulfillment systems. Particularly, we aim to answer the following research

questions:

e What is the current state-of-the-art academic literature focusing on automated and

robotic handling systems?

e What are the key research methods deployed to analyze the performance of these

systems?
e What are the prime areas for further academic research?

For each system, we categorize the literature into three groups: system analysis, design
optimization, and operations planning and control. Our focus is to identify the research
issue and operations research modeling methodology adopted to analyze the problem. We
find that many new robotic systems and applications have hardly been studied in academic
literature, despite their increasing use in practice. Because of unique system features (such

as autonomous control, flexible layout, networked and dynamic operation), new models and

7Azadeh, K., De Koster, R., and Roy, D. (2019). Robotized and automated warehouse systems: Review
and recent developments. Transportation Science, 53(4):917-945.
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methods are needed to address the design and operational control challenges for such sys-
tems, particularly for the integration of subsystems. Integrated robotic warehouse systems
will form the next category of warehouses. All vital warehouse design, planning, and control
logic, such as methods to design layout, storage and order-picking system selection, storage
slotting, order batching, picker routing, and picker to order assignment, will have to be

revisited for new robotized warehouses.

Chapter 3: Design, Modeling, and Analysis of Vertical Robotic Storage and
Retrieval Systems 8

This chapter builds a framework to analyze the performance of the vertical system and
compare its throughput capacity with the horizontal system. We aim to answer the following

research questions:

e How do we build accurate and efficient analytical models to analyze the performance

of the vertical system?
e What is an optimal layout for the vertical system in terms of throughput performance?
e How do the blocking delays affect the throughput performance of the vertical system?

e Which system is better in terms of costs and throughput capacity: horizontal or

vertical?

We build closed queuing network models to estimate the throughput performance of the
system. The performance measures are, in turn, used to identify the optimal system design
parameters. The results show that the optimal height-to-width ratio in time of a vertical
system is around one. Because a large number of system robots may lead to blocking and de-
lays, we compare the effects of different robot blocking protocols on the system throughput:
Robot Recirculation (REC) and Wait-on-Spot (WOS). The WOS policy produces a higher
system throughput when the number of robots in the system is small. However, for a large
number of robots in the system, the REC policy dominates the WOS policy. Finally, we
compare the operational costs of the vertical and horizontal transport systems. For systems
with one load/unload (L/U) point, the vertical system always produces a similar or higher
system throughput with a lower operating cost compared with the horizontal system with
a discrete lift. It also outperforms the horizontal system with a continuous lift in systems
with two L/U points.

Chapter 4: Dynamic Human-Robot Collaborative Picking Strategies °

One popular way of warehouse automation is with Autonomous Mobile Robots (AMRs)

that collaborate with human pickers to efficiently pick the orders by reducing the pickers’

8 Azadeh, K., Roy, D. and De Koster, R., (2019). Design, modeling, and analysis of vertical robotic
storage and retrieval systems. Transportation Science, 53(5):1213-1234.

9 Azadeh, K., Roy, D., and De Koster, R. (2020). Dynamic human-robot collaborative picking strategies.
Awvailable at SSRN
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unproductive walking time. Picker travel time can be reduced even more by zoning the
storage area. In this strategy, the warehouse is divided into multiple storage zones, with
one or multiple pickers assigned to each zone. Pickers only pick from their dedicated zones.
In every zone, the robot is paired with a picker from that zone, and together they pick all
the required pick list items from that zone. If the order is incomplete, the robot progresses
to another zone. Else, if all needed items are picked, it travels back to the depot, and
the picker becomes available for processing the next order. We call this picking strategy a
Progressive Zoning (PZ) strategy. There is also a No Zoning (NZ) strategy in which the
robot is paired with any available picker, and together they pick all the pick list items from
the whole warehouse. Few zones are particularly good for the large store replenishment
orders, while many zones are particularly good for the small online orders. However, the
optimal zoning strategy for an omni-channel warehouse using these robotic systems is not
clear since they usually process various order sizes. In this chapter, we study the effect of
dynamic zoning strategies, i.e., dynamic switching between NZ strategy and PZ strategy.

We aim to answer the following research question:

e Is it possible to achieve a higher pick performance with lower operational costs in a
human-robot collaborative picking system by dynamically switching between the pick

strategies, given a fixed number of resources?

We solve the problem in two stages. First, we develop queuing network models to obtain
load-dependent pick throughput rates corresponding to a given number of AMRs and a
picking strategy with a fixed number of zones. Then, we develop a Markov decision model to
investigate how higher pick performance can be achieved by dynamically switching between
these pick strategies. Using data from an omni-channel warehouse that processes orders of
various sizes, we show that a Dynamic Switching (DS) policy can lower operational costs
by up to 7 percent. However, these cost savings decrease as the number of robots per picker

increases.

Research Statement

This Ph.D. thesis has been written during the author’s work at the Erasmus University
Rotterdam. The author is solely responsible for formulating the research questions, building
the analytical models, analyzing the results, and writing all the chapters of this thesis. While
carrying out the research, the author received valuable and constructive feedback from the
doctoral advisors and other doctoral committee members, which subsequently increased the
quality of research. Chapters 2 and 3 are published, and Chapter 4 has been submitted to

a scientific journal and is undergoing the review process.






2 Robotized and Automated Warehouse Systems:

Review and Recent Developments

2.1 Introduction

Warehouse operations tend to be labor intensive and require large space for facilities. Large
buildings are needed to store the item assortment in racks, to move stock, to unload and
load trailers and containers, to inspect picked orders, to allow trucks to maneuver in the
yard, and to dock the trucks. With the advent of e-commerce, companies store millions
of unique items and handle large and variable daily order volumes. On the other hand,
the most laborious and expensive process, order picking, is repetitive, often suffers from
poor ergonomics, and requires high-quality labor willing to work in shifts, which is often
difficult to get. It is therefore not surprising that warehousing systems and processes are
key candidates for automation. In addition, the land available for warehouses (which should
preferably be close to the demand points) has become scarce, and many warehouses have

to operate 24/7. Together, this has given warehouse automation a big boost.

Warehouse automation dates back to the 1960s, when the first high-bay (20-40 m high was
quite standard) unit-load warehouses were established in Germany with aisle-captive cranes
driving on rails, constructed as a silo building (Industrie-forum, 2004). These so-called
AS/R (automated storage and retrieval) systems were able to store bulk stock on unit loads
(pallets, or totes: miniload system). They could also work in conjunction with manual pick
stations as a parts-to-picker system, where the retrieved unit load was restored after picking

units from it.

Since then, AS/R systems have become very popular in practice, and research has gained
momentum with the papers by Hausman et al. (1976), and Bozer & White (1984). Hundreds
of papers have been published on these systems. An overview on AS/R systems classification

and research studies is given by Roodbergen & Vis (2009).

During the last decade, warehouse automation has developed rapidly. A big boost has been
given by the AVS/R (autonomous vehicle-based or shuttle-based storage and retrieval) sys-
tems. These systems use racks with aisles and deploy autonomous shuttles that operate at
each level in each aisle. Vertical transport is enabled by lifts. Another important develop-

ment has been automated pallet stacking and destacking technologies, in particular also by
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mixed-case palletizing technology developed in the early 2000s. A new generation of Au-
tonomous Mobile Robots (AMRs), supporting the order picking process has recently been
introduced. These systems will gradually result in automated picking processes. Pioneered
by Witron, combining multiple technologies has led to the advent of completely automated
warehouses, particularly in the store-based retail industry (mostly grocery). Based on the
authors’ experience, in Western Europe alone, about 40 fully automated warehouses are in
operation and many are under development. Although these warehouses are large, they are
much smaller (and supposedly more cost-efficient) than their conventional, manual coun-
terparts. Figure2.1 shows a flow diagram of such a warehouse with typical storage and

handling systems.
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Figure 2.1: Material flow in a typical automated warehouse

In such an automated retail warehouse, selected suppliers unload their own trucks and feed
the pre-announced single-SKU (stock-keeping unit) pallets to a check-in conveyor (step 1).
The pallets are then stored in an AS/R system (2). When a certain product is requested,
the pallet is off loaded and automatically destacked (3). The loose cases are then often
put on trays to ease manipulation and are stored in a miniload AS/R, or in an AVS/R
system (4). When the store order arrives, the cases are retrieved and sequenced (5), and
mixed-case palletizers build the pallets or roll-cages in a store-specific sequence that allows
rapid shelving in the store (6). These roll-cages then wait in an order consolidation buffer
(OCB), usually an AS/R system (7), until the departure truck arrives, after which they are

retrieved and loaded in the sequence determined by the stop sequence in the truck route.

Apart from the (many) technicians needed to keep the system alive, no manual handling
is involved. In addition to these fully automated warehouses, many partially robotized

warehouses have been built. According to Buck Consultants International (2017), in the
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Netherlands alone 63 large new warehouses were constructed in the period 2012-2016, using
robot technologies. However, the majority of warehouse research still focuses on conventional
storage and order picking methods. The overview by De Koster et al. (2007) provides
some avenues for research into (semi-)automated picking methods. Due to rapid system
developments, it is time for an update, as the new technologies have provided new and
interesting research opportunities. This paper structures the new automated technologies
and provides an overview of these technologies and the research carried out already. It also
reviews the modeling techniques used and the research opportunities they provide. We focus
on the design and control aspects of order picking systems because they form the heart and
soul of any warehouse. In doing so, we include the corresponding automated product storage
and handling techniques. Figure2.2 categorizes the automated picking systems, both the

classical as well as the newly developed automated picking systems.
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Figure 2.2: Classification of automated picking systems. The literature of the gray-shaded
systems is reviewed. The numbers placed next to the systems indicates the number of
reviewed papers.

In this study, we focus on recent robotic automated picking systems, in particular systems
that use free-roaming retrieval robots such as shuttles and free-roaming AMRs (the grey
shaded systems in Figure2.2). The more conventional systems, such as cranes, automated
forklifts, carousels and automated dispensers have been reviewed in other papers (Roodber-
gen & Vis, 2009; Litvak & Vlasiou, 2010; Gagliardi et al., 2012; Boysen & Stephan, 2016);
we only highlight a few key articles. To find articles, we used the following search terms

in Scopus: “autonomous vehicle/shuttle storage and retrieval systems”, “robotic mobile
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fulfillment system”; “puzzle-based storage system”, “compact warehouse storage systems”
and “robotic warehouse storage and retrieval systems”, as well as variants of these search
terms. We review papers published in high quality journals, complemented by some working
papers and proceedings for prominent systems that have not received much attention yet.

We review 54 papers on the core systems indicated in the gray-shaded boxes in Figure 2.2.

We first describe various modeling methods used in the design and operation of the systems
and the associated objectives (Section 2.2). Section 2.3 deals with the ‘conventional’ AS/R
systems, that have been researched intensively, and then continues with less conventional
crane and automated forklift-based systems, such as multi-deep racks operated by cranes and
satellites. Section 2.4 discusses different types of carousels, Vertical Lift Modules (VLM),
and automated dispenser systems. Section 2.5 discusses various types of aisle-based AVS/R
systems, and Section 2.6 considers grid-based storage and retrieval systems. Section2.7
continues with robotic movable rack-systems. Section 2.8 discusses directions for future
research and includes emerging technologies, in particular, humans picking in collaboration
with AMRs. We conclude in Section 2.9.

2.2 Modeling Methods and Objectives in Storage, Transport and
Order Picking Process

Two approaches exist to model the systems: Analytical-based and Simulation-based. Simulation-
based models can mimic reality accurately and produce the least error. However, conceptu-
alizing and designing a detailed and accurate simulation model is time intensive. Optimizing
the entire design space may require the development of multiple models. Therefore, at an
early stage, analytical models are preferred, to reduce the design search space and to identify
a limited number of promising configurations. Compared to simulation modeling, analytical
models run faster and can obtain the optimal configuration either directly or with a quick
enumeration over a large number of design parameters. The error made in the estimated per-
formance measures using analytical models is usually acceptable for the conceptualization
phase. Section2.2.1, explains analytical models. Section2.2.2 discusses what the different
objectives and decisions are in evaluating automated warehouses and how the analytical
models are used to optimize those objectives. We also present the classification scheme that

we use for reviewing articles.

2.2.1 Analytical Models

The most common analytical models for storage and retrieval are classified into three cat-
egories: Linear and Mized-Integer Programming Models, Travel Time Models, and Queuing
Network (QN) Models.



2.2 Modeling Methods and Objectives in Storage, Transport and Order Picking Process 17

Linear and Mixed-Integer Programming Models

Many of the design and operational decisions in automated systems can be optimized using
Linear Programming (LP) or non-linear and Mixed Integer Programming (MIP) models.
For instance, LP and MIP models can be used for optimizing the shape of the system, ob-
taining the right choice of storage policy, scheduling and sequencing order transactions, and
establishing order batching rules. LP and MIP models are usually used in a deterministic

setting. To capture the stochasticity, travel time and queuing network models are preferred.

Solution Methods for Linear and Mixed-Integer Programming Models: LP mod-
els can be solved exactly in polynomial time. However, the exact solutions for the majority
of the MIP models are intractable. As a result, metaheuristic algorithms are developed
which provide near optimal solutions in a short time. The notion behind metaheuristic
algorithms is to find the best solution out of all possible feasible solutions. Some notable
example of metaheuristic algorithms include genetic algorithms, tabu search, simulated
anealing, and adaptive large neighborhood search. See Glover & Kochenberger (2006) for a
more detailed overview of the different metaheuristic algorithms. Recent developments in
exact and heuristic algorithms have resulted in an integrated technique called matheuristics.
In this method, the problem is decomposed into several small sub-problems which can be
solved using exact algorithms. Later, the results of sub-problems are used in the heuristic
algorithm (see Puchinger & Raidl (2005)).

Travel Time Models

Using travel time models, the design engineer can obtain the amount of time that it takes
for a resource to move from one location to another. For instance, in an automated parts-
to-picker picking context, travel time models can be used to obtain a closed-form expression
for the expected load storage and retrieval time. The closed-form travel time expressions are
usually simple and computationally friendly. Therefore, they can be used to limit the search
space before adopting a detailed simulation, or for optimizing the design choices. They can
also be used to estimate the expected service time of a server in a network of queues. Despite
the simplicity of the travel time models, they are not capable of capturing several factors
such as interaction between multiple resources, parallel processing by multiple resources, or

queuing within the system. In these scenarios, QN models are preferred.

Queuing Network Models

Automated picking systems can be modeled as a multi-stage service system using a QN.
In a QN, a customer arrives in the system, undergoes several stages of service and leaves

the system. Several types of queuing networks have been studied: Open (OQN), Closed
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(CQN), and Semi-Open (SOQN). In an OQN, customers, such as orders to be picked, arrive
from an external source and after receiving service in different nodes, they leave the system.
An OQN is particularly useful to estimate expected order throughput time. However, in
many systems, resources accompany orders during the whole or a part of the process, e.g.,
a transport vehicle, or a transport roll container or a pallet. Often, the number and the
capacity of the resources are limited that affect the performance of the system. For instance,
orders might be transported by expensive robots in the system. In this scenario, an OQN
is not capable of accurately estimating the performance of the system as it assumes an
infinite supply of robots. One way to overcome this challenge is to model the system as a
CQN. In a CQN, a limited number of resources are paired with the incoming orders. Once
an order is completed, the resource becomes available to serve another order. The limited
number of resources enforces a population constraint in the CQN. However, it is implicitly
assumed that an infinite number of orders are waiting outside the system (Heragu et al.,
2011). CQNs are useful to estimate the maximum throughput capacity of the system. Using
a CQN to model the systems in which the incoming customers and the resources are paired
together throughout the process, leads to an underestimation of the true customer waiting
time. The reason lies in the assumption (infinite number of customers waiting externally in
a CQN). However, in reality, there are times when a customer needs to wait for a resource
or vice versa. In this situation, an SOQN is a suitable model because it can accurately
capture the external transaction waiting time. As it illustrated in Figure 2.3, an SOQN (in
the literature sometimes called an open queuing network with limited capacity) possesses a
synchronization station in which incoming customers waiting at an external queue are paired
with available resources in the resource queue. Then, the customer is processed using the
resource that carries the customer to pre-specified different nodes (Cai et al., 2013; Roy
et al., 2015b; Roy, 2016).

External Queue

Customer Arriva] —————»

Resource Queue :D'[:. Customer Exit

—

Any arbitrary network

Synchronization

N

Figure 2.3: A general semi-open queuing network with N circulating resources

Solution Methods for Evaluating Queuing Networks: One of the most important
methods for calculating performance measures of product-form queuing networks (Baskett
et al., 1975) is Mean Value Analysis (MVA) (Reiser & Lavenberg, 1980). The MVA algorithm
is based on Little’s Law and the arrival theorem. However, networks used in analyzing

automated picking systems usually do not have product-form solutions for a number of
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reasons, such as non-exponentially distributed service times, customer blocking, or non-
Markov routing. Therefore, approximation algorithms are used to estimate the performance
measures of the system. Several approximation techniques such as Approximate Mean Value
Analysis (AMVA) and the parametric decomposition approach proposed by Whitt (1983)
have been developed based on the characteristics of the network. Bolch et al. (2006) provide
a detailed overview of exact and approximate algorithms to evaluate the performance of
open and closed queuing networks. The SOQN does not have a product-form solution,
even for Poisson arrivals and exponential servers. The Matrix-geometric method (MGM),
aggregation, network decomposition, parametric decomposition, and performance bounds
are the most common solution approaches for approximating the performance of an SOQN.
A detailed overview of solution techniques to evaluate an SOQN is presented in Jia & Heragu
(2009) and Roy (2016). When it is not possible to analytically solve a queuing network, it

is always possible to obtain its performance measures by simulation.

2.2.2 Decision Variables and Performance Objectives

Two levels of decision-making can be distinguished in warehouse planing and design: long-

term (tactical) and short-term (operational).

In long-term planning, decisions revolve around the hardware design selection and optimiza-
tion (DO) of the system. At this level, the prime objective is to maximize the throughput
and the storage capacity of the system. The objectives are affected by several decision
variables, such as the physical layout configuration (e.g., the number of aisles, the depth of
each aisle, the number of cross-aisles, and the number of tiers), the number of robots and
lifts, and the number and location of load/unload points and workstations. At this stage,

the focus is on the decisions that are hard to alter once the system is in place.

Short-term decision-making focuses on operational planning and control (OP&C). The
prime objectives are to minimize lead time, waiting time, response time, and resource idle-
ness, etc. Decisions include vehicle assignment policies, blocking prevention protocols, dwell
point use of the vehicles, i.e., selecting the location where a vehicle without a job (idle ve-

hicle) is parked, storage slotting, and workstation assignment rules.

Analytical models can address both the long-term and short-term decision-making. LP
models are used to optimize any objective function (e.g., cost) while satisfying multiple
constraints. With a (usually non-linear) travel time model, it is (sometimes) possible to
obtain a closed-form expression of the performance measures, such as the average processing
time. By taking derivatives with respect to the desired decision variables, one can optimize
the system with regards to the performance measure. However, deriving a closed-form
expression of system measures such as transaction time (including waiting) is often not
possible. For this purpose, queuing network and simulation-based models are used. Design

performance optimization then is done by enumerating the decision variables. Sometimes,
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combinations of decision variables have a joint effect on the performance of the system. As a
result, some authors, such as Ekren & Heragu (2010b) suggest using regression models with
interaction variables to evaluate the combined effect of decision variables on the performance
of the system. Then, the enumeration is done over the variables and their combinations to

examine the effect on the desired performance measure.

Table 2.1 presents a framework of different objectives and decision variables and the suitable

modeling approach to address them.

Table 2.1: Decision-making framework and appropriate modeling methods

Decision Level Prime Objectives

Decision Variables

Modeling Approach

Maximize:
Throughput capacity
Storage capacity

Long-Term Decisions
(Design Optimization)

Minimize:
Lead time
Waiting time
Response time
Resource idleness

Short-Term Decisions
(Operational Planning
and Control)

Physical layout:
number of aisles
number of cross aisles
depth of the aisle
number of tiers
Number of robots
Number of lifts
L/U point(s)
workstation(s) location

Vehicle assignment policy
Block prevention policy
Dwell point policy
Storage policy

Resource scheduling

Simulation

Travel Time Model

Closed Queuing Network

Semi-Open Queuing Network
Deterministic Optimization (LP,IP,MIP)

Simulation

Travel Time Model

Closed Queuing Network

Semi-Open Queuing Network
Deterministic Optimization (LP,IP,MIP)

Sequencing transactions

When reviewing the articles in Section 2.5, Section 2.6 and Section 2.7, we leverage the pre-
sented framework in Table2.1 and group the articles based on the prime objective being
investigated. The categories include: System Analysis, Design Optimization, and Oper-
ations Planning and Control. System analysis articles focus on modeling techniques to
estimate the performance of the system without focusing on any optimization. Design op-
timization articles focus on hardware optimization of the system (e.g., system layout), and
operations planning and control articles focus on the software optimization of the system

(e.g., block prevention policies).

2.3 Automated Storage and Retrieval Systems with Cranes or
Automated Forklifts

Crane-based Automated Storage and Retrieval Systems (AS/RS) were introduced in the
1960s. Initially, their main application was in pallet warehouses storing bulk inventories.
Later, mini-load warehouses and more compact multi-deep order picking warehouses were
also automated. In this section, we discuss the different types of crane/automated forklift-

based automated storage and retrieval systems, as mentioned in Figure 2.2.
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2.3.1 Single/Double-Deep Storage

Such a system consists of racks and automated handling systems such as cranes or automated
forklifts. These handling systems can be aisle-captive (typically cranes) or aisle-roaming
(typically high-bay automated forklifts). To perform a storage operation, a crane picks
up a load, usually from a conveyor, and stores it in the 30-40m high racks. Driving and
lifting in the aisle take place simultaneously. The process sequence is reversed for a retrieval
operation. It is also possible to carry out a dual command cycle, in which a storage and
a retrieval job are combined. This would save one movement per dual command cycle;
however, there may be an additional wait for pairing a storage transaction with a retrieval.
If totes instead of pallets are stored, the system is referred to as mini-load. Figure 2.4 shows

an example of such a warehouse.

Figure 2.4: Automated high-bay warehouse for pallets with aisle-captive cranes (De Koster,
2015)

Unit-load and mini-load aisle-captive single-deep AS/R systems have been studied exten-
sively. One of the first scientific articles is by Bozer & White (1984). They calculate the
average cycle time of the crane for single command cycles, and assume that crane travel
to any location within the rack has the same probability (random storage policy). Their
expected cycle time is E[T] = 1+ (—t/;uﬁ .te, in which ¢, is the travel time to the far-
thest location in the rack and ¢, is the lifting time to the highest location in the rack. The
formula assumes that the crane drives and lifts at the same time and that the travel time
to the farthest location is longer than the lifting time. Using this formula, the optimal ratio
between the length and height of an aisle can be obtained, which proves to be square in
time (SIT), meaning that the travel time to the farthest location and the lifting time to
the highest location are identical. Assuming that a crane travels approximately four times
faster than it lifts, the length of the aisle should therefore be four times its height in order
to minimize the cycle time. Later on, this formula was adjusted to include other aspects of

the warehouse, such as different storage strategies (such as ABC storage), dual command
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cycles, and different locations of the load and unload points (the above formula assumes one
such point, at the lower corner of the rack). We refer to Roodbergen & Vis (2009) for an
extensive overview of the literature on AS/R systems. Furthermore, Gagliardi et al. (2012)
provide an overview of the simulation-based models for AS/R systems. Boysen & Stephan
(2016) present a novel classification schemes for defining various crane scheduling problems

in AS/R systems. Later, they applied the scheme to review the literature.

In the case of ABC (or product turnover-based) storage, the items are divided into classes
(e.g., three: A B, C), based on item turnover rate. The locations are also divided into
groups based on travel time to the L/U point. This ensures that the items from the class
with the highest turnover rate are located closest to that point. Hausman et al. (1976)
investigated the cycle time calculations with ABC storage and EOQ-based replenishment.
Later, their results were extended to N product classes by Rosenblatt & Eynan (1989).
Hausman et al. (1976) calculated the optimal class boundaries for known ABC demand
curves, for example, 20/70 demand curves, whereby 20% of the items (or unit-loads) are
responsible for 70% of the demand. In the calculation, they considered product restocking
according to a continuous review <s, Q> policy, with the stocking quantity Q being equal to
the optimal order quantity. However, they did not take into account that the more storage
classes there are, the fewer items are stored per class. This requires more space per item
stored in the class, since the space within the classes cannot be shared by the items which
lengthens crane travel time. In the extreme case of one item per class, the space required
is > [Q: + SS;] whereas in the extreme case of one class containing all items (i.e., random
storage), the space required is Z]'% + S§S;] . This means that an optimum number of
storage classes can be distinguished. In practice, the optimal number of classes is small
(about 3 to 5,) but the cycle time is relatively insensitive to the exact number. At such
a limited number of classes, products can perfectly share the space available in the class.
However, the required number of locations on top of the average stock level quickly amounts
to an additional 40% (Yu et al., 2015).

2.3.2 Multi-Deep (Compact) Storage

AS/R systems can also be used to store loads double-deep in the racks. To this end, the
cranes can be equipped with double-deep telescopic forks. Deep lane, or compact, multi-deep
(3D) AS/R systems can store loads even more deep in storage lanes (see Figure2.5). The
storage depth depends on the type of product and the technology; e.g., 5-15 loads. These
systems are particularly popular for storing products when storage space minimization is a
primary concern, e.g., fresh produce and cold storage warehouses. In a typical crane-based
compact storage system, a storage and retrieval (S/R) crane takes care of movements in the
horizontal and vertical directions of the rack, and an orthogonal conveying mechanism takes

care of the depth movement. Multi-deep lane crane-based compact storage systems can be
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further classified into three categories based on the mechanism of the depth movement:

push-back rack, conveyor-based, and satellite-based (see Figure 2.2).

Figure 2.5: A crane-based multi-deep compact storage system (De Koster et al., 2008)

Push-Back Rack: In this variant, the crane (or automated forklift) stores the loads by
mechanically pushing them into the storage lanes. The system works according to the Last-
In-First-Out (LIFO) principle. A slight slope on the storage lane utilizes the gravity to
ensure that a load is always available in front of the storage lane. The depth of the lane in

a push-back pallet rack is up to about five loads.

Conveyor-Based: The racks in these systems are equipped with conveyors (see Figure 2.6).
If the conveyor can move in two directions, the operation is LIFO, similar to the push-back
racks. The conveyors can also operate in pairs (either by gravity or powered). On the
inbound conveyor, unit loads flow to the rear end of the rack. The outbound conveyor is
located next to the inbound conveyor. On the outbound conveyor, unit loads flow to the
rack’s front end and stop at the retrieval position of the crane. In the case of a gravity
conveyor, the rack is equipped with a simple elevating mechanism at the back of the rack
to lift unit loads from the down inbound conveyor to the upper outbound conveyor (see
Figure2.6). A stop switch located at the front side of the outbound conveyor stops a unit
load when it is needed for retrieval. The lift drives the rotation of unit loads and, as it is
the slowest element, it determines the effective rotation speed. In order to retrieve a pallet,
the two neighboring gravity conveyors should have at least one empty slot (De Koster et al.,
2008). The system with powered conveyors does not need lifts, but uses more expensive
powered conveyors (that are not so easy to fix in the case of a malfunction). However,
powered conveyors allow more dense storage because racks with powered conveyors can be

constructed deeper than racks with gravity conveyors.

Satellite-Based: In this variant, a satellite (connected to the crane) or a shuttle (freely
roaming) is used to perform the depth movement. The crane with a shuttle picks up a storage

pallet and travels to the storage lane. Then the crane releases the shuttle in the rack and
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Figure 2.6: Working mechanism of gravity conveyor (De Koster et al., 2008)

the shuttle travels along the storage lane to store the load. Likewise, to retrieve a load,
the shuttle travels underneath the load to retrieve the pallet and completes the remaining
operations in a reverse sequence. In some cases, the shuttles can also be dedicated to lanes.
If a system has fewer shuttles than storage lanes, the crane moves the shuttles between the
lanes (Stadtler, 1996).

Unlike single-deep AS/R systems, the number of papers on multi-deep AS/R systems is
limited. Sari et al. (2005) develop closed-form travel time expressions for a flow rack AS/RS.
The expressions, which rely on a continuous storage rack approximation, are validated using
discrete-even simulations. The simulations use a discrete rack dimensional approach. They
find that the percentage errors are quite reasonable (varying between 11%-14%). Hence,

such models can be used to estimate system throughput capacity.

De Koster et al. (2008) develop closed-form travel time expressions for a crane-based com-
pact storage system with rotating conveyors, using a single-command cycle and random
storage policy. The crane’s expected retrieval travel time is identical for both gravity and
powered conveyors. Using the expected travel time expressions, they calculate the optimal
ratio between the three dimensions that minimized the travel time. They also provide an
approximate travel time expression for dual command cycles and use it to optimize the
system dimensions. They find a counter-intuitive result that the cube-in-time dimensions
for the rack is not the optimal choice. The performance for a cube-in-time rack is still
fairly good and deviates from the optimal rack configuration (optimal ratio along the three
dimensions: 0.72:0.72:1) by about 3%. Yu & De Koster (2009b) extend the analysis of
De Koster et al. (2008) for a turnover-based storage policy and determine the optimal rack
dimensions that minimizes the expected cycle time. They analytically determine the opti-
mal rack dimensions for any given rack capacity and ABC curve skewness. They find that
with greater skewness of the ABC curve, savings in the expected time increase compared
to the random storage policy. Yang et al. (2015) further extend the analysis of De Koster
et al. (2008) by optimizing the shape of the system and by considering the acceleration and
deceleration of the S/R machine, which has a direct impact on the optimal shape of the
system. For the special case of constant speed of the S/R machine, their findings are in
line with the results of De Koster et al. (2008). Hao et al. (2015) also develop expected

travel time expressions and optimize the rack layout for a random storage policy. However,
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they choose an I/O point located in the middle of the rack (which, in reality, is difficult to
construct for aisle-captive cranes). Under the same operating conditions, they obtain lower

expected travel time and higher throughput.

One of the biggest disadvantages of dense storage is that the pallets are accessible from
only one side. Therefore, pallets are either retrieved based on LIFO principle or they
undergo multiple relocations/reshuffles to allow access to the right pallet. Stadtler (1996)
uses the retrieval time estimate of each pallet and proposes a storage and retrieval assignment
planning tool considering this issue. The decision models are formulated as mixed-integer
programs and are solved using a tabu search heuristic. The results show that the compact
storage systems can operate at heavy workload and high storage rack utilization with a
small number of pallet relocations (6% relocations at 78% rack utilization over a period of
42-day operation). Yu & De Koster (2012) develop heuristic approaches to sequence a block
of storage and retrieval transactions for a compact conveyor-based storage system operating
in a dual-command cycle. They compare the makespan performance for five sequencing
heuristics: 1) First Come First Serve (FCFS), 2) Nearest Neighbor (NN), in which the
sequence is based on the minimum travel distance between storage and retrieval locations,
3) Shortest Leg (SL), in which the open storage location lies on the Tchebychev path leading
to the retrieval location, 4) Shortest Dual Cycle (SDC) in which sequencing is done in a
way to minimize the dual cycle time in every step, and 5) Percentage Priority to Retrievals
with Shortest Leg (PPR-SL), in which a certain percentage of retrievals are given a higher
priority for pre-positioning than the storage open locations. Numerical results suggest that
PPR-SL strategy outperforms all sequencing strategies by 20% or more. For a compact
AS/R system with shuttles or satellites, one of the biggest challenges is the additional time
required to reshuffle unit loads and retrieve the right unit. Many companies, therefore,
use a dedicated storage policy per lane, which reduces the reshuffle time, but decreases
lane utilization (and requires a larger system). To overcome this shortcoming, Zaerpour
et al. (2013) propose a mathematical model for a shared storage policy that minimizes the
total retrieval time in a cross-dock/temporary storage environment. They solve the model
using a construction and improvement (C&I) heuristic. They show that for most real cases,
shared storage outperforms dedicated storage, with a shorter response time and better lane
utilization. Yu & De Koster (2009¢) focus on identifying the optimal class zone boundaries
for a compact 3D crane-based systems with two storage classes (a high turnover class and
a low turnover class). They formulate the problem as a non-linear integer program and
obtain a solution using a decomposition technique and a one-dimensional search scheme.
They show that the crane travel time is significantly influenced by zone dimensions, zone

boundaries, and the ABC curve skewness.
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2.4 Carousels, Vertical Lift Modules and Automated Dispensing

Systems

Carousels are automated storage and retrieval systems in which shelves are linked together
and rotate in a closed loop. The rotation is either horizontal or vertical (see Figure 2.7a and
Figure 2.7b). In this system, the picker has a fixed location in front of the system, and the
system transports the items to the picker. Carousels are especially suitable for small and

mid-size items such as books, health and beauty products (Litvak & Vlasiou, 2010).
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Figure 2.7: Carousels (Meller & Klote, 2004; Litvak & Vlasiou, 2010)

A Vertical Lift Module (VLM) is similar to a carousel, but operates differently. It consists of
two columns of trays with a lift-mounted inserter/extractor in the center (see Figure2.8a).
When an item is needed, the inserter/extractor locates the trays in which the item is stored
and brings the tray to the picker, who is located in front of the system, like in a carousel
(MHI, 2015). The static location of the picker in these systems eliminates pickers walking
(Meller & Klote, 2004), which can improve picking productivity. The pickers can also
perform other tasks such as packing and labeling or even serving another carousel or VLM

while waiting for the carousel to retrieve items.

In an automated dispensing system, products are dispensed automatically. The replen-
ishment is still carried out manually, but it can be done without interrupting the picking
process. A common automated dispensing system is the A-frame. This system consists of
product channels positioned in an “A” shape layout creating a tunnel in which the collection
belt is located. The orders are filled by automatically dispensing the corresponding products
in a virtual window on the conveyor belt (see Figure2.8b). A-frames are suitable for large
orders of small-sized items. The systems are mainly used in pharmaceutical, cosmetic and
mail order industries (Pazour & Meller, 2011; MHI, 2015).

Horizontal carousel models have been extensively studied in the literature dating back to

the 1980s when the basic foundation for studying carousals was laid out by Bartholdi III &
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(a) Vertical lift module (b) A-Frame

Figure 2.8: Vertical lift module and A-frame (MHI, 2015, 2017)

Platzman (1986). Different aspects have been studied such as storage arrangement, response
time, and design issues. Litvak & Vlasiou (2010) give an extensive literature overview on
performance evaluation and design of carousel systems. Pazour & Meller (2013) investigate
the effect of batch retrieval on the performance of the horizontal carousel system. They
show that batching retrievals reduces the cycle time in the carousel by 20% compared to
sequential processing. The number of studies on horizontal carousels have declined and the
only recent study is by Pazour & Meller (2013). The reason could be that more and more
companies are replacing their horizontal carousels with shuttle-based storage and retrieval
systems, which we discuss in Section 2.5. VLMs, on the other hand, have been studied only
in a handful of articles. Meller & Klote (2004) develop a throughput model for a single VLM
pod. Dukic et al. (2015) extend the research to model the throughput of a dual-tray VLM.
Rosi et al. (2016) use simulation to analyze the throughput performance of the single-tray
VLM for different design profiles (height and width of VLM) and the lift velocity. Similar
to VLMs, A-frames and automatic dispensers have been studied in few articles. Caputo
& Pelagagge (2006) develop a decision support system for an A-frame system. They use
a heuristic approach to determine the number of channels in the system, reorder level and
maximum quantity to be dispensed based on recorded performance of the last period and
the forecasted demand. Meller & Pazour (2008) investigate an SKU assignment problem
for an A-frame, and use a knapsack heuristic approach to solve it. Pazour & Meller (2011)
develop a mixed-integer linear program to determine the infrastructure investment of an
A-frame as well as SKU allocation to the A-frame. They develop a heuristic solution to
a solve real size SKU allocation problem. They also propose a closed-form equation to
calculate the system throughput of an A-frame. Imahori & Hase (2016) investigate the

SKU assignment of an A-frame as well as the optimal sequencing of the order retrievals in
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order to minimize the total retrieval time. They analyze the problem for computational
complexity and develop a graph-based heuristic to obtain the best sequence for retrieving
orders and SKU allocations. Kim et al. (2016) study the effect of different ejecting zone (EZ)
methods on the performance of an A-frame system. An EZ is a segment of the conveyor
belt that is dedicated to an order on which the required SKUs for that specific order are
ejected while that zone passes through the A-frame. They investigate three EZ methods:
unequal, equal, and combined. They use simulation to show which EZ method is suitable

for the system, depending on the order throughput time and energy usage.

2.5 Aisle-based Shuttle Systems

Throughput capacity of AS/R systems is constrained because only one crane is responsible
for handling loads at all vertical levels within a given storage aisle. This led to a new
generation of automated order picking systems, Autonomous Vehicle-based Storage and
Retrieval Systems (AVS/RS), which were first introduced by Savoye Logistics in the 1990s.
Such systems are increasingly popular because the required investment is similar to that of
AS/R systems, while they offer a much higher retrieval capacity, and are also significantly
more flexible in capacity. By using additional shuttles, system capacity can be increased,
and by removing shuttles, capacity can be decreased. Typical AVS/R systems use shuttles,
which can drive in the x-direction and the y-direction on any level in the aisle, and lifts
move shuttles (or unit loads) between the levels. In this variant, shuttles can only move
horizontally, and rely on lifts for vertical movements. Recently, several robotic solutions have
emerged, in which the shuttles (called robots) have the ability to not only move horizontally
but also to elevate up to different tiers by either moving diagonally or vertically (Azadeh
et al., 2019b). Therefore, the AVS/R system can be classified based on their shuttles’
movement capability into three categories: Horizontal, Vertical, and Diagonal systems (see
Figure2.2). In this section, we discuss different types of Horizontal systems and leave the

discussion on Vertical and Diagonal systems for Section 2.8.

2.5.1 System Description
Single/Double-Deep Storage

The storage area in an AVS/R system consists of aisles with multi-tier storage racks on both
sides and a cross-aisle that runs orthogonal to the aisles. To perform storage and retrieval
actions, a lift is used for vertical movements between tiers and autonomous vehicles or
shuttles are used for the horizontal movements within the tier (Roy, 2011). To retrieve a
tote, a shuttle moves to the tote’s storage location and picks up the tote, pulls it on board

and moves towards the lift for vertical travel. Then the shuttle either hands the tote to the
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lift (tier-captive system (Heragu et al., 2008)), or uses the lift to move the load to a lower
level (tier-to-tier system (Heragu et al., 2008)) where it is transferred to the pick station by
conveyor belt. After picking, the tote again uses the lift and a shuttle to be stored in the

system.

Figure 2.9: Adapto™AVS/R system (Source: Vanderlande)

Multi-Deep (Compact) Storage

Crane-based compact storage systems lack flexibility in the volumes they can handle. Shuttle-
based multi-deep storage systems, using lifts instead of cranes, have more throughput flex-
ibility by adding or removing shuttles. They are adapted for safe and secure handling of a

variety of products such as textiles, automobile spare parts, and fresh produce.

These systems consist of multiple tiers of multi-deep storage lanes, each of which holds one
type of product (see Figure2.10). The loads in a lane are managed using a last-in-first-out
(LIFO) policy unless the retrieval is possible from opposite sides. In such a system, the
vertical transfer of loads (usually pallets) across multiple tiers is carried out using lifts,
whereas the horizontal transfer of loads within a tier is carried out using shuttles. These

shuttles move underneath the loads within each storage lane to store or retrieval the load.

The horizontal movements of shuttles and loads in the system can be carried out either by
“specialized” shuttles and a transfer car, or by “generic” shuttles that can move in both

horizontal directions without the transfer car.

2.5.2 Literature
Single/Double-Deep Storage

Using the framework we discuss in Section 2.2.2, the literature on the single/double-deep
horizontal AVS/R systems is categorized in three categories: System Analysis, Design Op-

timization, and Operations Planning and Control.
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Figure 2.10: Multi-deep shuttle-based compact storage system (Tappia et al., 2016)

System Analysis: Malmborg (2002) was the first to analyze the AVS/R system. He
developed a state equation model to estimate the vehicle utilization and cycle time of the
unit-load AVS/RS. He estimates the vehicle cycle time to be (1 — a)tsc + atpc/2, in
which tsc and tpc denote the single-command and dual-command cycle times and « is
the proportion of all cycles that are dual-command cycles. Malmborg (2003a) emphasizes
the design advantage of an AVS/R system relative to an AS/R system, which is the ability
to adapt the vehicle fleet size in response to the transaction demand. Malmborg (2003b)
extends the state equation model by including the number of pending transactions in the
state space description, to estimate «, in a system with opportunistic interleaving, i.e., dual-
command cycles are used only if storage and retrieval requests are pending in the transaction
queue at the time when the cycle is initiated. However, the state equation approach is
computationally inefficient for solving large scale problems. Therefore, Kuo et al. (2007)
and Fukunari & Malmborg (2008) propose a computationally efficient model to overcome
this problem. In this approach, the lift system is modeled as a closed queuing network
which is nested within a separate vehicle closed queuing network. They model the queuing
dynamics between vehicles and transactions using an M/G/V queue (with V' vehicles),
and the dynamics between transactions/vehicles and lift using a G/G/L queue (with L
lifts). The two systems are analyzed iteratively until the performance measures converge.
Although the nested queuing approach is computationally efficient, it is not able to model
a scenario in which the cycle starts outside of the storage rack, i.e., when loads are received
from outside the storage rack. Fukunari & Malmborg (2009) propose a queuing network
model as an alternative to address this drawback. They propose a closed queuing network
for estimating resource utilization in the AVS/R systems. Although the earlier models are
effective in estimating vehicle utilization with reasonable accuracy, they are ineffective in
estimating transaction waiting times. Using a series of queuing approximations, Zhang

et al. (2009) address this problem by dynamically choosing among three different queuing
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approximations, based on the variability of transaction inter-arrival times. This procedure
significantly improves the accuracy of transaction waiting time estimates. Recent studies use
a semi-open queuing network to analyze the performance of the AVS/R system and estimate
the external transaction waiting time with better accuracy. Roy et al. (2012) build a multi-
class SOQN with class switching for a single-tier AVS/RS, and design a decomposition
method to estimate system performance. Ekren et al. (2013) model a tier-to-tier AVS/RS
as an SOQN and present an analytical approximation by extending the algorithm of Ekren &
Heragu (2010a) to estimate the performance measures. Later, Ekren et al. (2014) improved
the estimation of the number of transactions waiting in the vehicle queue by developing
a matrix-geometric method for the SOQN model. Cai et al. (2014) model a tier-to-tier
system as a multi-class multi-stage SOQN, and use matrix-geometric methods to analyze
it. Ekren (2011) performs a case study by simulating the performance of a real AVS/RS
under pre-defined design scenarios (number of aisles, bays, tiers, and vehicles). He also
includes the total cost of the system in his analysis. The number of studies on tier-captive
configurations is limited. Heragu et al. (2011), Marchet et al. (2012), and Epp et al. (2017)
use the open queuing network approach to estimate the transaction cycle time of the AVS/R
system with tier-captive vehicles. Heragu et al. (2011) then use an existing tool called
the Manufacturing Performance Analyzer (MPA) to compare the performance of AVS/R
systems and traditional AS/R systems. Ekren (2017) uses simulation to model the system
and provide a graph-based solution for performance evaluation of the system (utilization
of lifts and the cycle time) under various design configurations. Roy et al. (2017) model
the system as an integrated queuing network and estimate the cycle time and resource
utilization. They model each tier as a semi-open queuing network and the vertical transfer
unit as a multi-class queuing network with G/G/1 queues corresponding to each vertical
transfer segment. They replace each tier subsystem with a single load-dependent queue,
and approximate the first and second moments of inter-departure times using embedded
Markov chain analysis. Then they solve the integrated model by capturing the linkage
between arrivals and departures in the tier subsystem and the vertical transfer unit. Lerher
et al. (2015) and Lerher (2016) develop travel time models for single-deep and double-deep
AVS/R systems, respectively. They develop a closed-form expression for the cycle time and

consider the effect of shuttle acceleration and deceleration.

Design Optimization: Roy et al. (2012) develop a semi-open queuing network model and
optimize the shape of the system. Their results suggest that the layout configuration with
depth-to-width ratio D/W = 2 for a system with the lift in the middle, provides the best
system performance. Roy et al. (2015a) extend the model, and show that the end of the
aisle is the optimal cross-aisle location for the system. Ekren & Heragu (2010b) provide
a simulation-based regression analysis for the rack configuration of the system. In their
regression model, the average cycle time is chosen as the output variable, and the input

variables are the number of tiers (7'), aisles(4) and bays (B). The regression function
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demonstrates that the cycle time is positively related to 1" and B, but is negatively related
to T % A as well as to T« B. Marchet et al. (2013) simulate an AVS/R systems with a
tier-captive configuration and illustrate the effect of rack configurations on the throughput
performance. By varying the rack configuration and observing the performance impact,
they optimize the shape of the system.

Operations Planning and Control: Ekren et al. (2010) develop a simulation-based
experimental design to identify the effect of a combination of several input factors (dwell-
point policy, scheduling rule, I/O location, and interleaving rule) on the performance of the
system (average cycle time, average vehicle, and lift utilization). They investigate the effect
of up to four-way interactions of input variables on the performance of the system. Kuo
et al. (2008) use the closed queuing network approach to investigate the effect of a class-
based storage policy on the cycle time of an AVS/R system. They conclude that class-based
storage policies can mitigate the cycle time inflation effect of vertical storage, while keeping
the space efficiency of the random storage intact. Kumar et al. (2014) simulate an AVS/R
system in which the vehicles are captive in vertical zones rather than in tiers. They show
that the optimal partitioning of vertical zones can reduce the transaction cycle times by up
to 12% compared to the tier-captive configuration. Roy et al. (2012) develop a semi-open
queuing network model and analyze the effect of vehicle location, the number of storage
zones, and vehicle assignment policies on the performance measures. They show that using
multiple zones reduces travel time along the cross-aisle which improves the performance of
the system. However, increasing the number of zones beyond a threshold results in longer
transaction waiting time and worsens the system performance. Finally, they observe that
the most efficient vehicle assignment policy is the random policy. Roy et al. (2015a) extend
the model to analyze different dwell-point policies. They shows that the best dwell policy
is the L/U point dwell policy. He & Luo (2009) use colored time Petri nets to dynamically
model AVS/R systems and established the necessary conditions to have a deadlock-free
system. Roy et al. (2014) use a semi-open queuing network to investigate the effect of
vehicle blocking within a single tier of the AVS/R system. Their results show that the
blocking delays could contribute significantly (up to 20%) to the transaction cycle time.
They also show that the percentage of blocking delays goes up as the number of vehicles
increases. However, the effect of blocking decreases as the utilization of vehicles increases,
since the waiting time to obtain a free vehicle dominates in a system with high vehicle
utilization. Roy et al. (2016) arrive at a similar conclusion using a simulation model. Roy
et al. (2015b) evaluate congestion effects in a multi-tier AVS/R system. They develop a
semi-open queuing network and use a decomposition-based approach to solve it. Their model
provides the steady state distribution of the vehicles at the cross-aisles and aisles of each tier,
conveyor loops, at the LU point. The model also captures the blocking delays at the cross-
aisle and aisle nodes. Zou et al. (2016) investigate a scenario in which the lift and vehicles

in the tier-captive AVS/R system are requested to move a load simultaneously rather than
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sequentially. They model the system with a fork-join queuing network. They show that
the parallel processing policy improves the response time of the system by at least 5.5%
compared to the sequential processing policy, for small-sized systems (system with fewer
than ten tiers). In large systems with more than ten tiers and a ratio of aisle length to rack
height of more than seven, they find a critical point for the retrieval transaction arrival rate.
Before that rate, the parallel processing policy performs better. For arrival rates more than

the critical point, the sequential processing policy should be used.

Multi-deep (Compact) Storage

The number of research articles on multi-deep AVS/R systems is limited. The literature is

categorized in two categories: System Analysis and Design Optimization.

System Analysis: Manzini et al. (2016) develop an analytical model to determine the
travel time and travel distance for single and dual-command cycles for a layout configuration.
D’Antonio et al. (2018) present an analytical model to calculate the cycle time and its

standard deviation for a system.

Design Optimization: Tappia et al. (2016) model each tier and the vertical transfer
mechanism using a multi-class semi-open queuing network and an open queue, respectively.
They suggest that generic shuttles may reduce the total travel distance for storage and
retrieval operations since additional shuttle movements in the cross-aisle without a load are
not required. However, they argue that a specialized shuttle might be attractive from an
economic perspective, since a generic shuttle is about twice as expensive as a specialized one.
They also show that a single-tier system with a depth/width ratio of around 1.25 minimizes
the expected throughput time. Manzini et al. (2016) calculate the optimal location of the
L/U point and the optimal shape of the system. They also calculate the optimal number
and depth of the lanes depending on the demand pattern by minimizing the operative costs

and maximizing the storage space efficiency.

Table 2.2 presents an overview of the literature on shuttle-based storage and retrieval systems

with aisles.

2.6 Grid-Based Shuttle Systems

In this section, we discuss a variant of the shuttle-based automated storage and retrieval
systems in which shuttles move on a grid. In a grid-based system, the storage locations
are either dynamic or static (see Figure 2.2). In a dynamic storage system (or puzzle-based
system), the stored SKUs need to move (on a shuttle) in order to store or retrieve an item.

We discuss the static storage systems in Section 2.8.
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Table 2.2: Overview of the literature (34 papers) on shuttle-based storage and retrieval
system (aisle-based)

Research Category System

Article

Research Issue

Methodology

System Analysis

Single/Double Deep
(tier-to-tier)

Malmborg (2002),
Malmborg (2003a,b)

Estimate vehicle utilization
and cycle time

State equation model

Kuo et al. (2007),

Fukunari & Malmborg (2008)

Estimate vehicle utilization
and cycle time

Nested queuing model

Fukunari & Malmborg (2009)

Estimate vehicle utilization
and cycle time interfacing
material flow system

Closed queuing
network

Zhang et al. (2009)

Estimate transaction
waiting time

Variance-based nested
queuing model

Ekren (2011)

Evaluate performance of
a real system under
predefined design scenarios

Simulation

Ekren et al. (2013),
Ekren et al. (2014),
Cai et al. (2014)

Model the system

Semi-open queuing
network

Single/Double Deep
(tier-captive)

Marchet et al. (2012),
Epp et al. (2017)

Estimate transaction
cycle time

Open queuing
network

Heragu et al. (2011)

Estimate transaction
cycle time, Compare with
AS/RS

Open queuing network
network

Lerher et al. (2015),
Lerher (2016)

Estimate mean travel time

Closed-form solution

Ekren (2017)

Graph-based solution for
performance evaluation
of the system

Simulation

Roy et al. (2017)

Estimate transaction
cycle time and resource
utilization

Multi-stage semi-open
queuing network

Multi-Deep

Manzini et al. (2016),
D’Antonio et al. (2018)

Estimate cycle time

Travel time model

Design Optimization

Single/Double Deep
(single tier)

Roy et al. (2012)

Optimal rack configuration

Semi-open queuing
network

Roy et al. (2015a)

Optimal cross-aisle location

Semi-open queuing
network

Single/Double Deep
(tier-to-tier)

Ekren & Heragu (2010b)

Optimal rack configuration

Simulation-based
regression

Single/Double Deep
(tier-captive)

Marchet et al. (2013)

Optimal rack configuration
of the system

Simulation

Multi-Deep

Manzini et al. (2016)

Optimal L/U point location,
Optimal layout configuration,
Optimal number and depth
of the lanes

Semi-open queuing
network

Tappia et al. (2016)

Optimal layout configuration,
choice of shuttle and
vertical transfer

Semi-open queuing
network

Operations Planning
and Control

Single/Double Deep
(single tier)

Roy et al. (2012)

Effect of design choices
on cycle time and vehicle
utilization

Semi-open queuing
network

Roy et al. (2014)

Effect of vehicle blocking
on performance

Semi-open queuing
network

Roy et al. (2015a)

Optimal dwell-point policy

Semi-open queuing
network

Roy et al. (2016)

Effect of vehicle blocking
on performance

Simulation model

Single/Double Deep
(tier-to-tier)

Kuo et al. (2008)

Effect of class-based storage

Closed queuing

on cycle time network
He & Luo (2009) Deadlock-free control policy Colored time
Petri nets

Ekren et al. (2010)

Effect of combination

of dwell-point, I/O location,
scheduling and interleaving
rule on performance

Simulation, ANOVA

Kumar et al. (2014)

Optimal partitioning of
vertical zones in the system

Simulation

Roy et al. (2015b)

Congestion effect on
the performance of the system

Semi-open queuing
network

Single/Double Deep
(tier-captive)

Zou et al. (2016)

Simultaneously vs sequentially
requesting vehicles and lifts

Fork-join queuing
network
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2.6.1 System Description

Gue (2006) shows that the storage density of a k-deep aisle-based system, is less than or
equal to 2k/(2k + 1), i.e., 2/3 for a single-deep and 4/5 for a double-deep system. To
achieve an absolute maximum storage density, a new concept based on the famous Sam
Loyd’s puzzle game has been developed; the 15-slide puzzle (Loyd & Gardner (1959)). The
15-slide puzzle is a game in which 15 numbered tiles slide within a 4 x 4 grid, and the
objective of the game is to arrange the tiles in the correct numerical sequence, starting from

a random initial arrangement.

The “Puzzle-Based Storage and Retrieval” concept (Gue & Kim, 2007), follows a similar
idea. A tile represents a tote, a pallet, or even a container that is stored in a grid with
only one open spot on the grid, which allows a (n — 1)/n storage density, where n is the
number of cells in the grid. To retrieve a requested unit load, the system repeatedly moves
the open locations, which ultimately brings the load to the Input/Output (I/O) point. This
is illustrated in Figure2.11.
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be retrieved

|:| Other items
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Figure 2.11: Maneuvering a load (item) to the I/O point

To retrieve a load, an open location first needs to be moved next to the requested item.
Then the open location should be used to move the item to the I/O point. In other words,
the open location “escorts” the requested item to the I/O point. An open location is called
an escort (Gue & Kim, 2007). Several compact storage system variants have emerged from

the puzzle-based concept in practice and in the literature.

GridStore: Building upon the puzzle-based storage system concept, Gue et al. (2014)
propose a high-density storage system for physical goods called GridStore. The system
consists of a rectangular grid of square conveyor modules with the capability to move items in
the four cardinal directions. The modules can communicate with their neighboring modules
as well as with the item they carry. At the south side of the grid, the retrieval conveyor

moves products away from the grid. At the north a replenishment conveyor moves products
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that need to be stored in the grid. Figure 2.12 illustrates the movement of the items toward

1 Replenishment conveyor

the retrieval conveyor.
2 3 4 5
Retrieval conveyor m

6 7 8 9
Item to
u be retrieved
[ other items
O Empty cells

Figure 2.12: Items movements toward the retrieval conveyor in GridStore

GridPick: Based on the GridStore architecture, Uludag (2014) introduces an order picking
systems called GridPick. The system is filled with high-density storage containers, without
any fixed lanes or aisles; only a few open spots on the grid allow items to move during
the retrieval process. The objective of the system is to provide a high order picking rate
while minimizing any congestion effects. Unlike the GridStore, items do not leave the grid
in the GridPick system. Only containers holding the requested item, move to the edge of
the system, called the pick face. The picker picks the items and accumulates the order in a
picking cart. There is also a backward movement, away from the pick face, to balance the

empty cells in each row. This balancing rule helps to avoid deadlocks in the system.

Figure 2.13 illustrates an 