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INTRODUCTION

In 2012 our research group started the Sophia Pluto Study, investigating growth, detailed 
body composition and feeding patterns in healthy, term-born infants during the first two 
years of life, with a focus on finding determinants of adiposity programming in early life. This 
thesis describes the results of six new studies embedded in the Sophia Pluto Study.

This introduction describes the current knowledge concerning the influence of infant growth 
on adult health and the potential factors that might influence infant body composition. In 
addition, the objectives of the studies presented in this thesis are described.

Infant weight gain influencing adult health

Accelerated weight gain during early life has been associated with an increased risk for adult 
diseases (1-4). In the PROGRAM-study, initiated in 2002, our research group showed that 
rapid gain in weight-for-length during the first months of life was associated with higher 
body fat percentage, increased serum levels of total cholesterol, triglycerides, low density 
lipoprotein cholesterol (LDL) and higher systolic and diastolic blood pressure in early adult-
hood (5). These findings suggested the presence of a critical window for adiposity program-
ming in the first postnatal months and indicated that accelerated weight-for-length standard 
deviation score (SDS) should be avoided to reduce the risk for obesity, type 2 diabetes and 
cardiovascular diseases in later life (5-7). Others also showed that the first postnatal months 
are important for adiposity programming (8).

In 2019, ~13% of the Dutch children between age 4 and 17 years was overweight. At age 
2 years already ~8% of the infants had moderate or severe overweight (9). Obesity dur-
ing childhood is associated with short-term morbidity, such as asthma and psychological 
problems. It has also been associated with an increased risk for adolescent and adult obesity 
(10-13), as most adolescents with obesity will have excessive adiposity during adulthood. 
This in turn puts them at risk for later cardiovascular diseases and cancer (13).

Over the last years, progress has been made in unraveling the genetics and epigenetics of 
obesity (14), but only a low proportion of the heritability of obesity has now been explained 
(15). The established loci, the position of genes on a chromosome, involved in obesity 
development explain only a small part of the variance and can only poorly predict obesity 
(16). It can, therefore, not be clinically used as a predictive tool (15). Since obesity has a 
multifactorial etiology (13), single treatment strategies are not likely to be effective for all 
obesity patients.

In addition, obesity later in life requires lifelong treatment (13). Treatment options range 
from nutritional diet with increased physical activity to drugs and surgery (14), but the 
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success rate is generally very low in obtaining and maintaining a healthy weight. It is, there-
fore, crucial to elucidate which factors influence adiposity programming in early life as this 
will help to develop prevention strategies for childhood obesity in the future.

Infant body composition

There is increasing evidence that excessive weight gain in early life increases the risk of more 
fat mass in childhood and in later life. It is important to specify weight gain in terms of gain 
in fat mass and fat-free mass in early life. Most studies, however, have mainly focused on 
longitudinal anthropometric outcomes like weight-for-length SDS, BMI and skinfold mea-
surements as proxy for adiposity during infancy (17). As the first 1000 days, from conception 
until age 2 years, are an important period for the development of the body and brain of 
the infant (18, 19), it is crucial to obtain longitudinal values of fat mass and fat-free mass 
during the first 2 years of life. Nowadays, there are various tools to measure detailed body 
composition in infants.

Methods for measuring infant body composition
For many years weight and the ponderal index after birth, calculated based on birth weight 
and birth length, were used as a proxy for body composition. These measures, however, do 
not reflect actual body composition (20). Techniques to determine body composition by the 
multi-component model for quantifying fat, water, mineral and protein or by magnetic reso-
nance imaging (MRI) have been applied in infancy and childhood (21-23). These methods  
can accurately determine body composition, but are very expensive and cannot be used 
routinely in large studies.

Body composition by air-displacement 
plethysmography
Body composition in infants can nowadays be as-
sessed by air-displacement plethysmography (PEA 
POD, Infant Body Composition System, COSMED, 
Italy). ADP assesses fat mass (FM), fat mass percent-
age (FM%), fat-free mass and fat-free mass percent-
age by direct measurements of body mass and body 
volume, based on the whole-body densitometry 
principle (24). Body mass is measured on the in-
tegrated scale of the PEA POD and body volume is 

measured inside the closed test chamber by applying pertinent gas laws that relate pressure 
changes to volumes of air. Details of the principle and operating procedure of the PEA POD 
have been described (25, 26). Studies have shown that ADP is a valid, non-invasive and fast 
technique for measuring body composition in infants from birth until the upper limit of ap-

Figure 1. PEA POD by Cosmed. derived 
from the brochure on www.cosmed.com.
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proximately 8 kg (27-29). Another ADP system, BOD POD, is available from approximately 
2-3 years onward (30), but there are no ADP systems for children between age 6 months (± 
8 kg) and 2 years, which complicates obtaining longitudinal body composition by ADP during 
the important first 2 years of life.

Body composition by dual-energy X-ray Absorptiometry
Dual-energy X-ray absorptiometry (DXA) is an alternative 
measurement technique for body composition in infants 
(29, 31-33). DXA has good reproducibility in infants in case 
of a successful scan (31), but successful measurements 
are extremely difficult to obtain of infants, especially be-
tween the age of 1 and 2 years, due to movement artifacts 

(34-36). Also, it has been reported that DXA might overestimate FM (35). Reference values 
for body composition measured by DXA scan only exist from age 4 years onwards (37).

As abovementioned, obtaining successful 
measurements of infant body composition 
by DXA scan is limited due to movement ar-
tifacts. The use of a vacuum cushion might 
be a solution in preventing movement 
during DXA scan, which might improve the 
chance of obtaining successful measure-
ments. It was unknown if this would indeed 
be the case. An evaluation of the use of a 
vacuum cushion was, therefore, required.

In addition, it was unknown whether measurements of body composition by ADP and DXA, 
either with or without a vacuum cushion, would be comparable at the transition point at age 
6 months. This is essential for using longitudinal measurements of body composition during 
infancy by ADP and DXA.

Abdominal subcutaneous and visceral fat mass by ultrasound
Not only the total amount of fat mass, but also the location 
of fat mass is important. Particularly increased abdominal vis-
ceral FM has been associated with an unfavorable metabolic 
health profile during childhood and later on (38, 39).
Ultrasound is a non-invasive method to estimate abdominal 
fat mass. Ultrasound measurements of subcutaneous and 

Figure 2. DXA https://www.acertys.
com/nl/producten/ge-lunar-prodigy

Figure 3. DXA with vacuum cushion. Photo depicted 
with permission from parents.

Figure 4. Visceral fat mass thick-
ness by ultrasound.
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visceral fat mass thickness are reliable and reproducible estimates of abdominal subcutane-
ous fat mass and intra-abdominal (visceral) fat mass (40, 41).

Body composition – potential influencing factors
Several factors might influence the development of infant body composition (Figure 5), 
which are explained point-by-point below.

Boys and girls
Sex differences in body composition development during the first 2 years of life might be 
present due to different sex hormone levels in boys and girls in early life. It was already 
known that girls have higher fat mass and lower fat-free mass compared to boys after birth 
and we previously described higher fat mass in girls at age 6 months (27, 42-44), but the fat 
mass development until age 2 years was unknown.

Maternal characteristics
Maternal pre-pregnancy body mass index (BMI) and gestational weight gain are determi-
nants of fetal growth, infant birth weight and fat mass percentage at birth (45-47). Associa-
tions between these maternal factors and body composition in infants and children were not 
found during the postnatal period until age 6 months (48, 49), but independent relationships 
of maternal early pregnancy BMI with childhood BMI and adiposity have been found at age 
6 years (50). However, little is known about the effect of maternal pre-pregnancy BMI and 
gestational weight gain on early infant body composition trajectories.

Figure 5. Potential influencing factors of infant body composition development.
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Infant feeding
Breastfeeding and formula feeding are two types of infant feeding. Breastfeeding is consid-
ered the gold standard infant feeding, as it can result in health benefits for mother and child 
(51). Breastfeeding lowers the risk for adiposity during childhood (52-56) and is a protective 
factor against several infections (51), asthma development (57), eczema and allergic rhinitis 
(58) by supporting the development of the immune system and microbiota (59). For moth-
ers, breastfeeding lowers the risk of breast cancer (51).
Breastfeeding is, however, not always possible, for example due to maternal disease and/
or use of medication or is not desired by parents. In such cases, formula feeding is another 
option. Differences between breastfeeding and formula feeding exist in macronutrient com-
position and bioactive factors (60). In addition, there are also different formula feeding 
options, in brand and compound (61). Formula feeding has been associated with altered 
body composition in infancy compared to breastfeeding, as shown in small cohorts and 
short-term follow-up periods (60).

Human milk is composed of macronutrients, micronutrients and bioactive factors (62). Dif-
ferent techniques exist for analyzing macronutrient composition, with infrared human milk 
analyzers (HMA) being a method to estimate this composition. These methods are mainly 
used for optimizing feeding for preterm infants. It is, however, unknown to what extent 
human milk macronutrients might be involved in early adiposity programming, since studies 
investigating human milk macronutrients in association with (changes in) body composition 
in early life are very limited.

Rapid weight gain in early life
Accelerated gain in weight-for-age SDS during the first postnatal months has been associ-
ated with an increased risk for overweight and obesity in childhood and adulthood (63-67), 
unfavorable metabolic health profiles in young adults (6, 7, 68) and cardiovascular diseases 
in later life (4, 69). In addition, associations between early weight gain and childhood obesity 
have been described (55, 70, 71).
We have previously shown that newborns with similar weight and weight-for-length SDS 
might have different fat mass (72). Until now, data on associations between gain in fat mass, 
instead of gain in weight, and body composition trajectories in early life do not exist.
Longitudinal reference values for FM% until the age of 2 years are also lacking due to the 
different measurement techniques at different ages. Obtaining these longitudinal measure-
ments is of great importance as this period in early life is important for infant development 
(18, 19). In addition, it is important to compare body composition during the first 6 months 
of life, a critical window for adiposity programming, with the period from 6 months to 2 
years. These data are of interest since two studies showed that fat mass accretion until age 
6 months associated with higher fat mass index at age 4 years and that fat mass accretion 
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until age 8 months associated with overweight/obesity at age 6-11 years in a small group of 
children (73, 74).

Appetite regulating hormones
Appetite regulating hormones (ARH) are involved in the regulation of food intake through 
specific brain centers. The hypothalamus plays a key role in controlling glucose and energy 
homeostasis and food intake (75, 76). Active ghrelin, a stimulating hormone, increases food 
intake, while other hormones like leptin and PYY decrease food intake and increase meta-
bolic rate and adiponectin increases the uptake of fatty acids and carbohydrates (76, 77). 
Furthermore, the (active) ghrelin/PYY ratio is a marker of orexigenic drive (78, 79).
Data on ARH trajectories during early life are very limited. ARH have been associated with 
later growth and adiposity, but most studies used cord blood (80-85) instead of blood 
samples obtained during early infancy and specifically during the first 6 postnatal months. 
Investigating ARH and their trajectories in early life is of interest as they might play a role in 
adiposity programming.
Three studies compared ARH levels between breastfed and formula fed infants and reported 
different ARH levels in early life between both groups (86-88), but associations of ARH with 
human milk macronutrients, infant appetite and body composition have not been reported.

Figure 6. Appetite regulating hormones (partly adapted from www.sigmanutrition.com).
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Leukocyte telomere length
Telomeres are non-coding repetitive DNA sequences located at the end of chromosomes, 
protecting DNA in maintaining stability (89). Leukocyte telomere length (LTL) is a marker 
of biological aging as shortening occurs over time, because DNA polymerase is not able to 
fully replicate the end of chromosomes. When telomeres are reduced to a critical length, 
cells enter a state of arrest (90). By using a quantitative PCR technique, telomere length can 
be measured in leukocytes (90, 91). Shorter LTL has been associated with adiposity and a 
higher risk of cardiovascular diseases (92, 93). Until now, only one study has investigated 
longitudinal LTL during the first two years of life (94), which is an important period for infant 
development (18). Their first LTL measurement, however, was at a mean age of 8.6 months, 
thus not during the critical window for adiposity programming until age 6 months. It is 
important to specifically investigate LTL during this period in early life in association with 
changes in body composition until the age of 2 years.

Figure 7. Telomere shortening (adapted from http://www.wholehealthinsider.com/newsletter/2012/a-genet-
ic-solution-to-slowing-aging-and-preventing-disease/ and thesis Lin Smeets: Silver-Russell Syndrome & Small 
for Gestational Age – long-term health perspectives.)

Hypotheses

We hypothesized that a rapid increase in fat mass percentage in the first 6 postnatal months 
leads to a higher fat mass percentage at the age of 2 years. We also hypothesized that infant 
feeding, milk macronutrient composition, leukocyte telomere length and appetite regulating 
hormones associate with adiposity development in the first two years of life.
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The Sophia Pluto Study birth cohort

The Sophia Pluto Study was initiated in 2012 to prospectively identify determinants of adi-
posity programming in early life in healthy, term-born infants during the first 2 years of life. 
The in- and exclusion criteria are described in Appendix A.

Aims of the studies

This thesis presents the results of 6 studies in healthy, term-born infants participating in the 
Sophia Pluto Study.
1.	 Longitudinal body composition assessment in early life
	 To evaluate the reliability of using a vacuum cushion during dual-energy X-ray absorpti-

ometry (DXA) to prevent movement artifacts and to compare fat mass (FM) measured by 
DXA with FM measured by air-displacement plethysmography (ADP).

	 To construct sex-specific longitudinal body composition values and charts from age 1 
month until 2 years.

2.	 Rapid increase in fat mass in early life and later body composition
	 To investigate in which postnatal months a change in FM% is associated with FM% at age 

2 years
	 To investigate whether a rapid increase in FM% in the first months of life is associated 

with higher trajectories of body fat mass during the first 2 years of life.
3.	 Human milk macronutrients, body composition and appetite
	 To investigate human milk macronutrients at age 1 and 3 months in association with 

body composition and appetite until age 2 years in healthy, term-born infants.
4.	 Leukocyte telomere length and body composition
	 To obtain longitudinal LTL measurements and determine the shortening of LTL during 

the first 2 years of life in healthy, term-born infants and to associate LTL shortening with 
potential stressors and body composition.

5.	 Appetite regulating hormones and body composition until age 6 months
	 To investigate longitudinal serum ghrelin (acylated), PYY, ghrelin/PYY ratio and leptin lev-

els until age 6 months and their associations with body fat mass, infant feeding, human 
milk macronutrient composition and infant appetite until age 6 months.

6.	 Appetite regulating hormones and body composition until age 2 years
	 To investigate longitudinal appetite regulating hormone levels from age 3 months to 2 

years in association with FM parameters at age 2 years and their predictive value for FM 
development until age 2 years.

	 To investigate associations of appetite regulating hormone trajectories until 6 months 
and from 6 months to 2 years with trajectories of FM parameters in the same periods.
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Appendix A

The Sophia Pluto Study cohort

The Sophia Pluto Study birth cohort was initiated based on the outcomes of the PROGRAM 
study, to prospectively identify determinants of adult disease in early life.

Subjects

Healthy infants are included in the Sophia Pluto Study. The inclusion into this study is still 
ongoing and the total number will be 1250 infants.

Inclusion criteria

•	 Gestational age of 37 weeks or more
•	 Age < 28 days
•	 Uncomplicated neonatal period without signs of severe asphyxia (defined as an Apgar 

score below three after five minutes), sepsis or long-term complication of respiratory 
ventilation

Exclusion criteria

•	 Known congenital or postnatal disease that could interfere with body composition devel-
opment

•	 Confirmed intra-uterine infection
•	 Maternal use of corticosteroids or significant maternal medical condition that could 

interfere with infant’s body composition development (e.g. diabetes)

Study design

The Sophia Pluto Study is a prospective, observational follow-up study of a birth cohort. The 
infants were included before age 28 days and visited the outpatient clinic at age 1, 3, 6, 9 
months and 1 year, 18 months and 2 years. During the visits, anthropometrics, body com-
position and various other parameters were measured and blood samples were collected. 
Until and including age 6 months, FM% was measured by air-displacement plethysmography 
(PEA POD) and from 6 months onward by DXA-scan. Abdominal subcutaneous and visceral 
fat mass were measured by abdominal ultrasound.
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