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1 Introduction

In the Pascal Triangle, consisting of the binomial coefficients Z for n = 0,1,2,... and

0 < k < n, one encounters each natural number (with the exception of 2) at least twice, and
many numbers more than twice. There are three well known relations that account for this,

(1) = () G)=r (1) =

n
forn =0,1,2,..., 0 <k < n. Notice that the third relation above implies <k> = <Z> ,
1

namely

so that there are infinitely many numbers occurring at least 4 times in the Pascal Triangle.
Stripped of these trivialities, the more interesting problem becomes to determine the natural
numbers that occur at least twice as binomial coefficients of the shape Z with 2 <k < %n,

and this is yet unsolved in its full generality. The only nontrivial solutions known at this time
are the following (see the Figure on the next page):

16 10 21 10 56 22
120 36 153 19 221 17
<2>:<3>:7140, <2>:<5>:11628, <2>:<8>:24310,
78 15 14
and an infinite family:
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(Z) k=2 3 4 5 6 7 8 9 10
n=4
5 10
6 15 20
7 21 35
8 28 56 70
9 36 84 126
10 45 252
11 55 165 330 462
12 66 220 495 792 924
13 78 286 715 1287 1716
14 91 364 1001 2002 3003 3432
15 105 455 1365 [3003 5005 6435
16 120 560 1820 4368 8008 11440 12870
17 136 680 2380 6188 12376 19448 24310
18 153 816 3060 8568 18564 31824 43758 48620
19 171 969 3876 [11628] 27132 50388 75582 92378
20 190 1140 4845 15504 38760 77520 125970 167960 184756
21 210 1330 5985 20349 54264 116280 203490 293930 352716
22 231 1540] 7315 26334 74613 170544 319770 497420 646646
23 253 1771 8855 33649 100947 245157 490314 817190 1144066
24 276 2024 10626 42504 134596 346104 735471 1307504 1961256
36 630 7140| 58905
56 1540] 27720
78 3003| 76076
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where F,, is the nth Fibonacci number (defined by Fy = 0, Fy = 1, and F,1y = F, + F,_; for
n =1,2,...). This infinite family is due to D.A. Lind [L] and D. Singmaster [Sin2]. Its first few

members (not counting the trivial (8) = (%) ) are

15 14 104 103
<5> = (6) = 3003, <39> = <40> = 61218182743304701891431482520,

(;%) = (g%) = 3537835171522765057006983148520718494957187357011427136\

69137522738808260668458303266608833496206146190109\
04775131978213300009061705655870408202364443894707 \
01575515092325417606033095416151914090271577807800 ,

and the existence of this family implies the existence of infinitely many numbers occurring
at least 6 times in the Pascal Triangle. It’s an amusing exercise to start from the equation

<Z> = (Z—I_- 1) , and to arrive at this infinite family of solutions.

l k
1000, as we could show without difficulties in a few hours on a personal computer. Notice that
D. Singmaster [Sin2] searched up to 2*® ~ 2.8 x 10'*.

There are no other nontrivial solutions of <Z> = (m) with <n> < 10°° or max{n,m} <

We did this computer search as follows. To start with, all solutions to <Z> = (?) with

max{k, (} <4, are known, see below. Next, we made a list of all Z <10°° with 5 <k < %n,
and sorted this list. Thus numbers occurring twice in the list are easily found. Next, for each
?) for ¢ =2,3,4 (which was the

most time-consuming step). All these computations were done in exact (i.e. 30 digit) arithmetic.

member of the list we checked whether they were of the form (

Finally, we made a list of all (Z > 10%° with max{n,m} < 1000 in 8 digit precision only,
sorted this list, and checked for pairs being close enough.

Let N(a) be the number of occurrences of a as a binomial coefficient. Then N(1) = oo,
N(2) =1, and clearly 2 < N(a) < oo for all ¢ > 3. D. Singmaster [Sinl] proved that N(a) =
O(loga), and conjectured that N(a) = O(1). Later [Sin2] he even conjectured that N(a) < 10
for all @ > 2. H.L. Abbott, P. Erdés and D. Hanson [AEH] showed that the average and normal
order of N(a) is 2, and that N(a) = O(222%). Maybe even the following is (too good to be)

logloga
true.

Conjecture A The equation <Z> = (?) has no nontrivial solutions but those given above.

This conjecture would imply N(a) < 8 for all @ > 2, and N(a) < 6 for all @ > 2 with the
exception of @ = 3003, where the upper bound N(a) = 6 is attained infinitely often.



In this note we will contribute a little bit to the knowledge on this conjecture, and show that

the special case <§> = (T) has essentially been settled over 30 years ago by L.J. Mordell,

without anybody having realized this (so it seems). The special cases <g> = (?) and

<g> = (T) have been settled before, but by much more complicated methods than we (and

4

We restrict ourselves entirely to elementary methods, i.e. the deepest mathematics we require
are only the first essentials of algebraic number theory.

Mordell) need. Further, we will also prove a partial result on rational solutions of <§> = (m) .

2 Integral solutions

In the context of diophantine equations, it’s a bit more natural to study the equation <Z> =

(ng) for the extended definition of <Z> to all n,k € Z with k > 0, as follows:
n _n(n—l)---(n—k—l—l)
k] k! '

In this more general sense (and, by the way, also in the restricted sense), for fixed k, ¢ (with
k < ) the equation <Z> = (ng) has been completely solved in two cases only, namely the
case (k,0) = (2,3) by E.T. Avanesov [Av] using Skolem’s method, and the case (k, () = (2,4),
after Richard K. Guy had drawn attention to the problem in Section D3 of [G], by the present
author [dW] and independently by Akos Pintér [Pi], both using the Gelfond-Baker method.

It is the first purpose of this note to show that the case (k, /) = (3,4) is comparatively easy,
as it is an almost trivial consequence of the result of L.J. Mordell [M1], which itself has a more or
less elementary proof. In this paper, Mordell determines the products of 2 consecutive integers
that are equal to products of 3 consecutive integers. It is quite remarkable that this connection
between Mordell’s well known result and our binomial diophantine equation seems to have been
unnoticed for over 30 years.

So here’s our first main theorem, which might come as a disappointment to the reader
expecting nontrivialities.

Theorem 1 The only solutions n,m € Z to <§> = (T) are the following trivial ones:

(n,m) € {0,1,2} x {0,1,2,3}, (n,m)=1(3,4),(3,=1),(7,7),(7,—4).

Proof Write out the equation <§> = (m) as

4
1 1
gn(n —1)(n—-2)= ﬂm(m — 1)(m —2)(m — 3).



Suggested by symmetry we put
1
X=n—-1, Y= §m(m—3),
and then we obtain the equation
Yi4Y =X°—X.

In other words, we are looking for products Y (Y + 1) of two consecutive integers being equal to
products (X — 1)X(X + 1) of three consecutive integers. Mordell’s Theorem 2 below gives us
all the solutions for (X,Y'), which are easily traced back to the trivial solutions for (n,m) given
above. This completes the proof. a

Theorem 2 (Mordell, 1963) The only solutions in X,Y € Z to the equation
VP4+Y =X"-X
are the following 10:
(X,Y)e{-1,0,1} x {-1,0}, (X,Y)=(2,2),(2,-3),(6,14),(6,—15).

Theorem 2 was proved in an elementary way by L.J. Mordell [M1] in 1963 (see also Theorem
2 in Chapter 27 of his book [M2]). By ’elementary’ we mean that the deepest results that are
used are the explicit knowledge of a class group and generators of a unit group in a certain
cubic number field. For a different approach, that seems to be more complicated, see Exercise
9.13 of J.H. Silverman’s book [Sil]. We mention that a third line of proof (using much more
machinery, both theoretical and computational) is made possible by the recent method of elliptic
logarithms, developed independently by R.J. Stroeker and N. Tzanakis [ST], by J. Gebel, A.
Petho and H.G. Zimmer [GPZ] (see also the software package Simath [Simath]), and by N.P.

Smart [Sm]. Below we will return to Mordell’s proof.

3 Rational solutions

Note that we can even extend the definition of <Z> further, to n € Q (of course we can just
as well take n € R, or even n € C, but we do not want to leave the area of number theory).
When we want to study the equation <Z> = (ng) for fixed k, ¢ in this context, we enter the

domain of arithmetic algebraic geometry.

In the case (k, () = (2,3) the equation <g> = (?) is a Weierstrafl equation of an elliptic

curve. This curve has trivial torsion, and rank 2, and the group of rational points is generated
by (n,m) = (1,0) and (n,m) = (1,1). Now, using the addition law on the elliptic curve, one
can start producing the infinitely many rational solutions. In other words, the set of solutions

n,m € Q of <g> = (?) is infinite, but well understood. For practical computations with

such elliptic curves it is useful to have available computer software such as Pari [Pari] and Apecs

[Apecs] (see also [Sil]).



In the case (k, () = (2,4) the equation <g> = (T) also is an equation of an elliptic curve.
This curve has a torsion group of order 2, generated by (n,m) = (0,1), and the free part of the
group of rational points is of rank 2, and is generated by (n,m) = (0,0) and (n,m) = (1,1).

Thus again the set of solutions n,m € Q of <g> = (T) is infinite, but well understood.

In the case (k,f) = (3,4) things are different, because the algebraic curve defined by the
equation <g> = (ZL has genus 2, and thus, by Faltings” work [F], has only finitely many

rational points. It is notoriously difficult to solve such problems of explicit determination of
rational or integral points on curves of genus > 1. That we succeeded above in proving our

Theorem 1 on the integral points on our curve <g> = (T) , 1s due to the remarkable fact

that this curve is (in geometric language) a double cover of an elliptic curve, namely the one
given by Mordell’s equation Y? +Y = X? — X (this is just a reformulation of our proof of
Theorem 1 above). The rational points on this elliptic curve are again not too difficult to
describe, in fact, that’s what Silverman uses in his Exercise 9.13 referred to above. The curve
has trivial torsion, rank 1, and the group of rational points is generated by (X,Y) = (0,0).

It is an interesting challenge to find out, e.g. on the basis of the facts mentioned above, what
can be said about the set of rational points on the curve <g> = (?) . With Apecs we searched
for solutions coming from the rational points N - (0,0) on the elliptic curve Y? +V = X3 — X
for |[N| < 50 only (but note that the numerator and denominator of the second coordinate of
50 - (0,0) are already numbers of about 85 digits). So we feel safe to formulate the following
guess.

Conjecture B The only solutions n,m € Q to <g> = (T) , besides the integral ones given

wn-(32).(9)

It is the second theme of this note to extend Mordell’s elementary proof of Theorem 2 [M1]

in Theorem 1 above, are

to make a first step towards the solution of this problem. Our extension concerns so-called
S-integral solutions, i.e. rational solutions of which the denominators have prime divisors from
a fixed finite set of primes only. We now restrict ourselves to the set consisting of the prime 2.
Thus we have the following result.

Theorem 3 The only solutions n,m € Q of which the denominators are powers of 2 to the

equation <§> = (T) , are the ones given in Conjecture B above.

Note that this result extends Theorem 1. Following the above proof of Theorem 1, it is clear
that Theorem 3 is a consequence of the following result, which is an analogous extension to the
S-integral case of Mordell’s Theorem 2.



Theorem 4 The only solutions X,Y € Q of which the denominators are powers of 2 to the
equation Y* +Y = X — X, besides the integral ones given in Theorem 2 above, are

vy (L5 1 -3 161 —2065 161 2001
(X, )_<Z’?>’<Z’?>’<F’T4 ><ﬁ6—4>
4 Proof of Theorem 4

We will now prove Theorem 4, partly following, and partly extending the line of argument in
Mordell’s original proof of Theorem 2 [M1]. Note that our proof is completely elementary.

Proof of Theorem 4  We see at once that there is an integer £ > 0, and integers Xi, Y],

such that
X1 Yi

SN
Then the equation Y24+ Y = X° — X leads to

X =

}/12_|_23k1/1 :Xf) —24kX1.

The idea is to complete the square in the left hand side of the equation, and then factor both
sides in the ring of integers of an appropriate number field. For convenience we put

U=2X,, V=2Y,+2%*

and so obtain the equation

2v2 _ U3 . 24k-|—2U T 26k+1 (1)
in which the left hand side has the obvious factorization 2 x V x V over Z.

Let 6 be any root of the polynomial u® — 4u + 2. Then the right hand side of equation (1)
factors over the ring of integers Ox of the cubic number field K = Q(0) as

U3 o 24k+2U + 26k+1 — <U _ 022k> <U2 + 022kU + (_4 T 02)24k> ]

The following facts of the field K are well known (or can be computed easily, e.g. using
packages such as Pari [Pari] or KANT [KANT], see also Cohen’s book [C]): the field discriminant
is 148 = 2237, a Z-basis for the ring of integers Oy is {1,0,0*}, the class group is trivial, and
the free part of the unit group of Ox is generated by

a=—140, e¢=1-20—0"
Further we have the following factorizations into prime ideals:
(2) = (0%, (—4+30%) = (0)°(L+0+0),

and we have

Neg=Nea=1, NO=-2 N(1+0+0%) =37

Note that Mordell [M1] uses —efe; = 20 — 1 instead of €3 as second fundamental unit, and

40 — 3 = €,(1 + 0 + 6?) instead of 1 + 6 + 6.



Let § be the squarefree part of U — 02% . If a prime element 7 € O divides §, it divides 2 or
V2, In the latter case even 7% divides 2V%, and because ¢ is squarefree, 7 must divide the other
factor of the right hand side of (1), U* + 022k + (—4+ 02)24k, too. But then 7 will divide any
linear combination of U — 022% and U? + 022U + (—4+ 02)24k, in particular it will divide

(U? 4 02°20 + (=4 4 02)2%) — (U + 02%1) (U — 62°%) = (—4 + 307 )2*".

In view of the above prime factorizations this leaves for 7 only the possibilities # and 1+ 8 + 62,
up to units.

Hence we can write
U —02%% = § x a square, (2)

where
6 = (—1)(16?6;(951(1 +0+ 02)6

for some a,b,c,d, e € {0,1}, and the square is an algebraic integer, i.e. an element of Og. For
the norm of § we have on the one hand

N§ = (—1)*T92937°,
and on the other hand, by (1), it differs by a rational integral square factor from
N (U = 02°F) = U? — 22 4 255+ = 2172,
It follows that « = d = 1 and e = 0. This leaves us four possibilities for 4, namely

) € {—610, —61620, —0, —620}.

At this point, to show that two of these four cases do not admit solutions, we use an argument
that we find somewhat more elegant and more general than Mordell’s arguments (on p. 1351 of
[M1]). We study the three embeddings oy, 03, 05 of K into R. They send 0 to 01(0) = —2.21 ...,
o9(0) = 0.53. .., and o3(#) = 1.67.... Because

U? = 2020 4 255+ = (U — 2%%01(0)) (U — 2% 05(0)) (U — 2% 05(0)) = 2V?
has to be positive, we have two possibilities: either U > 2% 5(0), or 2%%0,(0) < U < 2%*55(0).

Because by (2) for each 7 € {1,2,3} the sign of U — 2%%¢;(0) has to be equal to the sign of &;(d),
we study the signs of these explicitly known numbers:

0 € €|—el —eeld —0 —eb
o0l- - +] - - + +
ol - —| + - = 4+
o+ + - -+ - 4
This shows that in the case U > 22¥03(f) it must be true that § = —cy0 (we call this the first
case), and in the case 2% 0(0) < U < 2*0,(0) we must have § = —0 (we call this the second
case).

The first case.



Let us first treat the case U > 22k03(0), thus § = —cpf = —2+ 30 + 202?. Making explicit the
square in (2), for some A, B, C € Z we have

U —02% = (=2 +30 +20*)(A + BO + CH*)*.

Working out the brackets and comparing coefficients, we find the following system of three
quadratic equations:

A? 4+ 3B* +9C* + 3AB 4+ 6AC +8BC = 0, (3)
3A7 +8B? +20C% + 12AB + 16AC + 36BC = -2, (4)
—2A% —6B? — 16C* —8AB — 12AC — 24BC = U.

We may assume without loss of generality that A, B, (' are coprime, and that B > 0.

From now on our proof diverges from Mordell’s proof. We feel that for the situation we’re
in, with k not necessarily zero, our line of argument works prettier, but this is to some extent a
matter of taste.

We view equation (3) as a quadratic equation in the variable A. Its discriminant should be
a square, if rational solutions are to exist. Hence for a D € Z we have

D* = (3B 4+ 6C)* — 4(3B* + 8BC +9C?) = B(4C — 3B).

Here we are lucky, because the quadratic form in B, C in the right hand side factors over Z. We

let 3 be a prime divisor of the squarefree part of B. Then 3 divides also the squarefree part of

4C'— 3B, and since 3 divides both B and 4C' — 3B, we find that 3 divides 4C. If # divides both
B and C then (3) implies that 3 also divides A, and this contradicts (4). Hence 8 = 2, and by

B > 0 our conclusion is that B is a square or twice a square.

In the case B = E? for an E € Z, also 4C — 3B is a square, say F?%, and we have D = £EF.

We now solve (3) for A:

3 1
A=-2B-3C+=-D
2 2"

and express everything in £, F'. In this way we find
1 1
A= Z(—15E2j:2EF—3F2), B=FE* (= Z(?)EQ—I—FQ).

Because of symmetry (F' < —F') we may take the +-sign to be a +-sign. We insert the above
expressions for A, B, C into equation (4), and obtain

1
—(=25E* + 12E°F + 18E*F? —4AEF? — FY = —92%%,
16

We are lucky again, since the binary form in the left hand side of this equation factors over Z,
and we thus find
(E — F)(25E° + 13E*F — 5EF* — F3) = 2™, (5)

where m = 2k 4+ 4. Had we not been this lucky, we would have arrived at a so-called Thue-
Mahler equation. Procedures for solving such equations are known (see [TW2]), but are far from
elementary.



Before studying this equation, we first mention that the second case, when B = 2E2, leads
to the same expressions for A, B, C in terms of F, I’ as above, multiplied by a factor 2. Hence
we find the same quartic equation (5), but this time with m = 2k + 2.

Returning to equation (5), let us write (£, ') = (—1)92"(P, ) for some nonnegative integers
g, h, such that P, () are coprime, and P > (). Now we proceed to solve

(P —Q)(25P° +13P*Q — 5PQ? — Q%) = 2",

with n = m — 4h. Because P — () divides 27, there is an integer / > 0 such that P — Q = 2%
Substituting P = Q + 2¢ into the above equation we find

3207 4+ 2°°3Q% + 22211Q + 2325 = 27, (6)

If ¢ = 0 then (6) immediately yields that n = 0. So we have to solve
4Q° +12Q% +11Q +3 = 0,

which is easily seen to have only () = —1 as integral solution. It leads to P = 0, and, using
the fact that A, B, C are coprime, further to (F, F') = (0, —2) with m =4, and to (A, B,C) =
(—3,0,1) with & = 0. Finally, this gives (U, V) = (2,41), and (X,Y) = (1,0),(1,—1).

If ¢ =1 then (6) becomes
32Q° + 192Q% 4 352Q + 200 = 21

The first terms 32Q°, 192Q?* and 352Q are all divisible by 32, whereas the last term 200 is only
divisible by 8, and not anymore by 16. Hence the entire left hand side is divisible by 8 but not
by 16, so n — 1 = 3, and we find the equation

Q°4+6Q*+11Q + 6 = 0.

It has the solutions @ = —3, -2, —1, leading to P = —1,0,1. The case (P, Q) = (—1, —3) leads
to (K, F) = (—1,-3) with m = 4, and to (A, B,C) = (=9, 1,3) with £ = 0. Finally, this gives
(U, V) = (12,429), and (X,Y) = (6,14),(6,—15). The case (P,Q) = (0, —2) does not satisfy
the requirements of P, Q) being coprime (and is seen to lead to the solutions found above at £ = 0).
The case (P,Q) = (1,—1) leads to (£, F') = (1,—1) with m = 4, and to (A, B,C) = (=5,1,1)
with k = 0. Finally, this gives (U, V) = (4,45), and (X,Y) = (2,2), (2, -3).

It remains to treat the case ¢ > 2. This time in (6) the last three terms 27°3Q?, 22¢+311Q
and 2325 are divisible by 64, whereas the first term 32Q? is only divisible by 32, but not by 64.
It follows that n — ¢ = 5. Note that in Mordell’s original work only k& = 0 is treated, in which
case n < 4, so that then the case £ > 2 is trivial.

Putting, for convenience,

Z=Q+2, W=2"%

we find the equation

73— 4ZW? 4 2W? = 1. (7)

Equation (7) is a so-called Thue equation, that we conjecture to have only the following solutions:

(Z, W) =(1,2),(1,0),(=1,-1),(=5,-3), (=31, 14).

10



This can probably be proved by the deep methods of the Gelfond-Baker method, cf. [TW1]. But
for us it would be like firing a cannon to kill a mosquito, because all we need is those solutions
of (7) for which W is a power of 2. This can be done in an elementary way as follows.

First we show that if |W/| > 2 then ‘%‘ < 2.61. Namely, let 6,6,, 05 be the three roots of
1 — 4t + 2 = 0 (thus the 6; are the o;(0) defined above, but not necessarily in the same order).
The equation (7) now factors as

and for a given solution Z, W we take indices such that
|Z — W | < |Z -0, W| < |Z—0;W|.

Either |Z — 6,W| > 1[W|min|6; — 6;| > 0.567|W|, and then

3
L=]]1Z-0W|>|Z-60W| > (0.567|W])°,
=1
and then it follows that W] < 1, or |[Z — 6, W] < £|W|min |6; — 6], and then for k = 2,3 we
find |
|Z — W | > W0, — 0| — |7 — 0. W| > §|W|min|(9i —0;] > 0.567|W|,

and thus by |[W| > 2

1 1
=16 <2224 ———— < 261.
01+ | Z — Woy||Z — Ws||W| +0.5672|W|3

— 9,

A
< |(91| + ‘W

VA
w
Next we show that when Z # 1 and / is large, then so is ‘%‘ Namely, we look at (7)
(mod 2%-2):
7P =4ZW? —2WP 41 = 22*72 -2 1 1 =1 (mod 2*7?),
provided that ¢ > 3, and 1t follows that
PN -1 = (Z - )2+ Z+1).

Since Z%+ 7 + 1 is always odd, we have Z = 1 (mod 2%~%) hence Z =l or |Z| > 2?2 —1. In
the latter case we must have
22(—2 -1 1

Y4
HZW—Q =

Putting things together, on noting that 2¢ — 2131_2 < 2.61 implies £ = 1, we find for the
case { > 2 only the possibilities |[W| < 1 or Z = 1 (note that £ = 2 implies W = 1). The
solutions of (7) satisfying these conditions are easy to determine: the only one is (Z, W) = (1, 2),
with ¢ = 3. It leads to (P,Q) = (1,-7), and to (E,F) = (1,=7) with m = 8, further
to (A, B,C) = (—44,1,13) with & = 2, to (U,V) = (322,44066), and finally to (X,Y) =

<161 —2065) <161 2001)
’

167 64 16 7 64

11



The second case.

Now we treat the case 2%%0,(0) < U < 2%0,(0) where § = —0. Note that in Mordell’s
original work only k = 0 is treated, in which case we have at once —2 < U < 1, which is trivial.

We proceed as in the first case above. So for some A, B, ' € Z we have
U— 02" = —0(A+ B0+ CH*)*.
Working out the brackets and comparing coefficients, we find the following system of three
quadratic equations:
~C*+ AB+4BC = 0, (8)
—A? —4B? —160C* —8AC +4BC = —2%% (9)
2B* +8C* +4AC = U.

We may assume without loss of generality that A, B, (' are coprime, and that B > 0.
We are lucky once more, in that equation (8) now gives at once
(C —2B)* = B(A+4B),
so that again B is a square or twice a square.

In the case B = E? we have A +4B = F?, and we may take C' = 2E? + EI'. We substitute
this into (9), and thus obtain

12E* + 28 F + 24F* F* + 8EF® + F* = 2™ (10)

with m = 2k. And again, in the case B = 2E? we find the same equation (10), but with
m = 2k — 2.

This time the binary form in the left hand side of (10) does not factor over Z, so now we
seem to have run out of luck, and have to turn to non-elementary methods such as [TW2]. But
fortunately this is not so. To start with, if m > 1 then F is even, say F' = 2F;. Hence

2172 = 3B+ 14BPF) + 24 F2 + 16 EF] + 4F),

and we see that if m > 3 then also F is even. This means that by dividing out common divisors
of K, F all solutions can be traced back to solutions with m < 2.

Further, our luck is that (10) does not have any linear factors over R. Using this, we observe
that a* + 82® + 242% 4+ 28z + 12 has as minimal value 1 (at « = —1), and then by (10) we get

F\* \° N’ F
zm:E‘*((E) —|—8<E> +24<E> +285+12> > B

But then we see E* < 2™ < 4, hence |F| < 1. Now it is easily seen that in fact there are
only three solutions: (K, F) = (0,1),(1,—1),(1,—2). The case (E,F) = (0,1) with m = 0
leads to (A, B,C) = (1,0,0) with & = 0, further to (U, V) = (0,41), and finally to (X,Y) =
(0,0),(0,—1). The case (E, F') = (1,—1) with m = 0 leads to (A, B,C') = (=3,1,1) with k =0,
further to (U, V) = (=2,41), and finally to (X,Y) = (=1,0),(=1,—1). The case (£, F) =
(1, =2) with m = 2 leads to (A, B,C') = (0,1,0) with k = 1, further to (U, V) = (2,42), and
finally to (X,Y) = (1 _—5> \ (1 _—3>
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This completes the proof. a
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Software packages

[Apecs] APECS, software for elliptic curve computations, written by I. Connell in Maple, avail-
able by anonymous ftp from math.mcgill.ca.

[KANT] KANT V2, software for algebraic number theory computations, written by M. Pohst
et al. in C on the Magma platform, available by anonymous ftp from
ftp.math.tu-berlin.de.

[Pari] PARI, software for algebraic number theory computations, written by H. Cohen et al.
in C and assembler languages, available by anonymous ftp from
megrez.math.u-bordeaux.fr.

[Simath] SIMATH, software for number theory computations, written by H.G. Zimmer et al.,
available by anonymous ftp from ftp.math.uni-sb.de.
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