
Equal binomial coe�cients:some elementary considerationsBenjamin M.M. de WegerEconometric Institute, Erasmus University Rotterdam,P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.(e-mail: dweger@wis.few.eur.nl)August 19951 IntroductionIn the Pascal Triangle, consisting of the binomial coe�cients �nk� for n = 0; 1; 2; : : : and0 � k � n, one encounters each natural number (with the exception of 2) at least twice, andmany numbers more than twice. There are three well known relations that account for this,namely �nk� = � nn� k� ; �n0� = 1; �n1� = nfor n = 0; 1; 2; : : :, 0 � k � n. Notice that the third relation above implies 0@�nk�1 1A = �nk� ,so that there are in�nitely many numbers occurring at least 4 times in the Pascal Triangle.Stripped of these trivialities, the more interesting problem becomes to determine the naturalnumbers that occur at least twice as binomial coe�cients of the shape �nk� with 2 � k � 12n,and this is yet unsolved in its full generality. The only nontrivial solutions known at this timeare the following (see the Figure on the next page):�162 � = �103 � = 120; �212 � = �104 � = 210; �562 � = �223 � = 1540;�1202 � = �363 � = 7140; �1532 � = �195 � = 11628; �2212 � = �178 � = 24310;�782 � = �155 � = �146 � = 3003;and an in�nite family:�F2i+2F2i+3F2iF2i+3 � = �F2i+2F2i+3 � 1F2iF2i+3 + 1 � for i = 1; 2; : : : ;1
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where Fn is the nth Fibonacci number (de�ned by F0 = 0; F1 = 1, and Fn+1 = Fn + Fn�1 forn = 1; 2; : : :). This in�nite family is due to D.A. Lind [L] and D. Singmaster [Sin2]. Its �rst fewmembers (not counting the trivial �20� = �11� ) are�155 � = �146 � = 3003; �10439 � = �10340 � = 61218182743304701891431482520;�714272� = �713273� = 3537835171522765057006983148520718494957187357011427136n69137522738808260668458303266608833496206146190109n04775131978213300009061705655870408202364443894707n01575515092325417606033095416151914090271577807800 ; : : :and the existence of this family implies the existence of in�nitely many numbers occurringat least 6 times in the Pascal Triangle. It's an amusing exercise to start from the equation�nk� = �n� 1k + 1� , and to arrive at this in�nite family of solutions.There are no other nontrivial solutions of �nk� = �m̀� with �nk� � 1030 or maxfn;mg �1000, as we could show without di�culties in a few hours on a personal computer. Notice thatD. Singmaster [Sin2] searched up to 248 � 2:8� 1014.We did this computer search as follows. To start with, all solutions to �nk� = �m̀� withmaxfk; `g � 4, are known, see below. Next, we made a list of all �nk� � 1030 with 5 � k � 12n,and sorted this list. Thus numbers occurring twice in the list are easily found. Next, for eachmember of the list we checked whether they were of the form �m̀� for ` = 2; 3; 4 (which was themost time-consuming step). All these computations were done in exact (i.e. 30 digit) arithmetic.Finally, we made a list of all �nk� > 1030 with maxfn;mg � 1000 in 8 digit precision only,sorted this list, and checked for pairs being close enough.Let N(a) be the number of occurrences of a as a binomial coe�cient. Then N(1) = 1,N(2) = 1, and clearly 2 � N(a) < 1 for all a � 3. D. Singmaster [Sin1] proved that N(a) =O(log a), and conjectured that N(a) = O(1). Later [Sin2] he even conjectured that N(a) � 10for all a � 2. H.L. Abbott, P. Erd�os and D. Hanson [AEH] showed that the average and normalorder of N(a) is 2, and that N(a) = O( log alog log a). Maybe even the following is (too good to be)true.Conjecture A The equation �nk� = �m̀� has no nontrivial solutions but those given above.This conjecture would imply N(a) � 8 for all a � 2, and N(a) � 6 for all a � 2 with theexception of a = 3003, where the upper bound N(a) = 6 is attained in�nitely often.3



In this note we will contribute a little bit to the knowledge on this conjecture, and show thatthe special case �n3� = �m4� has essentially been settled over 30 years ago by L.J. Mordell,without anybody having realized this (so it seems). The special cases �n2� = �m3� and�n2� = �m4� have been settled before, but by much more complicated methods than we (andMordell) need. Further, we will also prove a partial result on rational solutions of �n3� = �m4� .We restrict ourselves entirely to elementary methods, i.e. the deepest mathematics we requireare only the �rst essentials of algebraic number theory.2 Integral solutionsIn the context of diophantine equations, it's a bit more natural to study the equation �nk� =�m̀� for the extended de�nition of �nk� to all n; k 2Zwith k � 0, as follows:�nk� = n(n � 1) � � � (n � k + 1)k! :In this more general sense (and, by the way, also in the restricted sense), for �xed k; ` (withk < `) the equation �nk� = �m̀� has been completely solved in two cases only, namely thecase (k; `) = (2; 3) by �E.T. Avanesov [Av] using Skolem's method, and the case (k; `) = (2; 4),after Richard K. Guy had drawn attention to the problem in Section D3 of [G], by the presentauthor [dW] and independently by �Akos Pint�er [Pi], both using the Gelfond-Baker method.It is the �rst purpose of this note to show that the case (k; `) = (3; 4) is comparatively easy,as it is an almost trivial consequence of the result of L.J. Mordell [M1], which itself has a more orless elementary proof. In this paper, Mordell determines the products of 2 consecutive integersthat are equal to products of 3 consecutive integers. It is quite remarkable that this connectionbetween Mordell's well known result and our binomial diophantine equation seems to have beenunnoticed for over 30 years.So here's our �rst main theorem, which might come as a disappointment to the readerexpecting nontrivialities.Theorem 1 The only solutions n;m 2Zto �n3� = �m4� are the following trivial ones:(n;m) 2 f0; 1; 2g � f0; 1; 2; 3g; (n;m) = (3; 4); (3;�1); (7; 7); (7;�4):Proof Write out the equation �n3� = �m4� as16n(n� 1)(n� 2) = 124m(m� 1)(m� 2)(m� 3):4



Suggested by symmetry we put X = n� 1; Y = 12m(m� 3);and then we obtain the equation Y 2 + Y = X3 �X:In other words, we are looking for products Y (Y +1) of two consecutive integers being equal toproducts (X � 1)X(X + 1) of three consecutive integers. Mordell's Theorem 2 below gives usall the solutions for (X;Y ), which are easily traced back to the trivial solutions for (n;m) givenabove. This completes the proof. 2Theorem 2 (Mordell, 1963) The only solutions in X;Y 2Zto the equationY 2 + Y = X3 �Xare the following 10:(X;Y ) 2 f�1; 0; 1g � f�1; 0g; (X;Y ) = (2; 2); (2;�3); (6; 14); (6;�15):Theorem 2 was proved in an elementary way by L.J. Mordell [M1] in 1963 (see also Theorem2 in Chapter 27 of his book [M2]). By 'elementary' we mean that the deepest results that areused are the explicit knowledge of a class group and generators of a unit group in a certaincubic number �eld. For a di�erent approach, that seems to be more complicated, see Exercise9.13 of J.H. Silverman's book [Sil]. We mention that a third line of proof (using much moremachinery, both theoretical and computational) is made possible by the recent method of ellipticlogarithms, developed independently by R.J. Stroeker and N. Tzanakis [ST], by J. Gebel, A.Peth�o and H.G. Zimmer [GPZ] (see also the software package Simath [Simath]), and by N.P.Smart [Sm]. Below we will return to Mordell's proof.3 Rational solutionsNote that we can even extend the de�nition of �nk� further, to n 2 Q (of course we can justas well take n 2 R, or even n 2 C , but we do not want to leave the area of number theory).When we want to study the equation �nk� = �m̀� for �xed k; ` in this context, we enter thedomain of arithmetic algebraic geometry.In the case (k; `) = (2; 3) the equation �n2� = �m3� is a Weierstra� equation of an ellipticcurve. This curve has trivial torsion, and rank 2, and the group of rational points is generatedby (n;m) = (1; 0) and (n;m) = (1; 1). Now, using the addition law on the elliptic curve, onecan start producing the in�nitely many rational solutions. In other words, the set of solutionsn;m 2 Q of �n2� = �m3� is in�nite, but well understood. For practical computations withsuch elliptic curves it is useful to have available computer software such as Pari [Pari] and Apecs[Apecs] (see also [Sil]). 5



In the case (k; `) = (2; 4) the equation �n2� = �m4� also is an equation of an elliptic curve.This curve has a torsion group of order 2, generated by (n;m) = (0; 1), and the free part of thegroup of rational points is of rank 2, and is generated by (n;m) = (0; 0) and (n;m) = (1; 1).Thus again the set of solutions n;m 2 Q of �n2� = �m4� is in�nite, but well understood.In the case (k; `) = (3; 4) things are di�erent, because the algebraic curve de�ned by theequation �n3� = �m4� has genus 2, and thus, by Faltings' work [F], has only �nitely manyrational points. It is notoriously di�cult to solve such problems of explicit determination ofrational or integral points on curves of genus > 1. That we succeeded above in proving ourTheorem 1 on the integral points on our curve �n3� = �m4� , is due to the remarkable factthat this curve is (in geometric language) a double cover of an elliptic curve, namely the onegiven by Mordell's equation Y 2 + Y = X3 � X (this is just a reformulation of our proof ofTheorem 1 above). The rational points on this elliptic curve are again not too di�cult todescribe, in fact, that's what Silverman uses in his Exercise 9.13 referred to above. The curvehas trivial torsion, rank 1, and the group of rational points is generated by (X;Y ) = (0; 0).It is an interesting challenge to �nd out, e.g. on the basis of the facts mentioned above, whatcan be said about the set of rational points on the curve �n3� = �m4� . With Apecs we searchedfor solutions coming from the rational points N � (0; 0) on the elliptic curve Y 2 + Y = X3 �X,for jN j � 50 only (but note that the numerator and denominator of the second coordinate of50 � (0; 0) are already numbers of about 85 digits). So we feel safe to formulate the followingguess.Conjecture B The only solutions n;m 2 Q to �n3� = �m4� , besides the integral ones givenin Theorem 1 above, are (n;m) = �54 ; 12� ;�54 ; 52� :It is the second theme of this note to extend Mordell's elementary proof of Theorem 2 [M1]to make a �rst step towards the solution of this problem. Our extension concerns so-calledS-integral solutions, i.e. rational solutions of which the denominators have prime divisors froma �xed �nite set of primes only. We now restrict ourselves to the set consisting of the prime 2.Thus we have the following result.Theorem 3 The only solutions n;m 2 Q of which the denominators are powers of 2 to theequation �n3� = �m4� , are the ones given in Conjecture B above.Note that this result extends Theorem 1. Following the above proof of Theorem 1, it is clearthat Theorem 3 is a consequence of the following result, which is an analogous extension to theS-integral case of Mordell's Theorem 2. 6



Theorem 4 The only solutions X;Y 2 Q of which the denominators are powers of 2 to theequation Y 2 + Y = X3 �X, besides the integral ones given in Theorem 2 above, are(X;Y ) = �14 ; �58 � ;�14 ; �38 � ;�16116 ; �206564 � ;�16116 ; 200164 � :4 Proof of Theorem 4We will now prove Theorem 4, partly following, and partly extending the line of argument inMordell's original proof of Theorem 2 [M1]. Note that our proof is completely elementary.Proof of Theorem 4 We see at once that there is an integer k � 0, and integers X1; Y1,such that X = X122k ; Y = Y123k :Then the equation Y 2 + Y = X3 �X leads toY 21 + 23kY1 = X31 � 24kX1:The idea is to complete the square in the left hand side of the equation, and then factor bothsides in the ring of integers of an appropriate number �eld. For convenience we putU = 2X1; V = 2Y1 + 23k;and so obtain the equation 2V 2 = U3 � 24k+2U + 26k+1; (1)in which the left hand side has the obvious factorization 2 � V � V over Z.Let � be any root of the polynomial u3 � 4u + 2. Then the right hand side of equation (1)factors over the ring of integers OK of the cubic number �eld K = Q(�) asU3 � 24k+2U + 26k+1 = �U � �22k� �U2 + �22kU + (�4 + �2)24k� :The following facts of the �eld K are well known (or can be computed easily, e.g. usingpackages such as Pari [Pari] or KANT [KANT], see also Cohen's book [C]): the �eld discriminantis 148 = 22 37, a Z-basis for the ring of integers OK is f1; �; �2g, the class group is trivial, andthe free part of the unit group of OK is generated by�1 = �1 + �; �2 = 1� 2� � �2:Further we have the following factorizations into prime ideals:(2) = (�)3; (�4 + 3�2) = (�)2(1 + � + �2);and we have N�1 = N�2 = 1; N� = �2; N(1 + � + �2) = 37:Note that Mordell [M1] uses ��21�2 = 2� � 1 instead of �2 as second fundamental unit, and4� � 3 = �1(1 + � + �2) instead of 1 + � + �2. 7



Let � be the squarefree part of U � �22k. If a prime element � 2 OK divides �, it divides 2 orV 2. In the latter case even �2 divides 2V 2, and because � is squarefree, � must divide the otherfactor of the right hand side of (1), U2 + �22kU + (�4 + �2)24k, too. But then � will divide anylinear combination of U � �22k and U2 + �22kU + (�4 + �2)24k, in particular it will divide�U2 + �22kU + (�4 + �2)24k�� �U + �22k+1� �U � �22k� = (�4 + 3�2)24k:In view of the above prime factorizations this leaves for � only the possibilities � and 1+ �+ �2,up to units.Hence we can write U � �22k = � � a square; (2)where � = (�1)a�b1�c2�d(1 + � + �2)efor some a; b; c; d; e 2 f0; 1g, and the square is an algebraic integer, i.e. an element of OK. Forthe norm of � we have on the one handN� = (�1)a+d2d37e;and on the other hand, by (1), it di�ers by a rational integral square factor fromN �U � �22k� = U3 � 24k+2U + 26k+1 = 2V 2:It follows that a = d = 1 and e = 0. This leaves us four possibilities for �, namely� 2 f��1�;��1�2�;��;��2�g:At this point, to show that two of these four cases do not admit solutions, we use an argumentthat we �nd somewhat more elegant and more general than Mordell's arguments (on p. 1351 of[M1]). We study the three embeddings �1; �2; �3 of K into R. They send � to �1(�) = �2:21 : : :,�2(�) = 0:53 : : :, and �3(�) = 1:67 : : :. BecauseU3 � 24k+2U + 26k+1 = �U � 22k�1(�)� �U � 22k�2(�)� �U � 22k�3(�)� = 2V 2has to be positive, we have two possibilities: either U > 22k�3(�), or 22k�1(�) < U < 22k�2(�).Because by (2) for each i 2 f1; 2; 3g the sign of U � 22k�i(�) has to be equal to the sign of �i(�),we study the signs of these explicitly known numbers:� �1 �2 ��1� ��1�2� �� ��2��1 � � + � � + +�2 + � � + � � +�3 + + � � + � +This shows that in the case U > 22k�3(�) it must be true that � = ��2� (we call this the �rstcase), and in the case 22k�1(�) < U < 22k�2(�) we must have � = �� (we call this the secondcase).The �rst case. 8



Let us �rst treat the case U > 22k�3(�), thus � = ��2� = �2+3�+2�2. Making explicit thesquare in (2), for some A;B;C 2Zwe haveU � �22k = (�2 + 3� + 2�2)(A+B� + C�2)2:Working out the brackets and comparing coe�cients, we �nd the following system of threequadratic equations: A2 + 3B2 + 9C2 + 3AB + 6AC + 8BC = 0; (3)3A2 + 8B2 + 20C2 + 12AB + 16AC + 36BC = �22k; (4)�2A2 � 6B2 � 16C2 � 8AB � 12AC � 24BC = U:We may assume without loss of generality that A;B;C are coprime, and that B � 0.From now on our proof diverges from Mordell's proof. We feel that for the situation we'rein, with k not necessarily zero, our line of argument works prettier, but this is to some extent amatter of taste.We view equation (3) as a quadratic equation in the variable A. Its discriminant should bea square, if rational solutions are to exist. Hence for a D 2Zwe haveD2 = (3B + 6C)2 � 4(3B2 + 8BC + 9C2) = B(4C � 3B):Here we are lucky, because the quadratic form in B;C in the right hand side factors overZ. Welet � be a prime divisor of the squarefree part of B. Then � divides also the squarefree part of4C� 3B, and since � divides both B and 4C� 3B, we �nd that � divides 4C. If � divides bothB and C then (3) implies that � also divides A, and this contradicts (4). Hence � = 2, and byB � 0 our conclusion is that B is a square or twice a square.In the case B = E2 for an E 2Z, also 4C � 3B is a square, say F 2, and we have D = �EF .We now solve (3) for A: A = �32B � 3C � 12D;and express everything in E;F . In this way we �ndA = 14(�15E2 � 2EF � 3F 2); B = E2; C = 14(3E2 + F 2):Because of symmetry (F $ �F ) we may take the �-sign to be a +-sign. We insert the aboveexpressions for A;B;C into equation (4), and obtain116(�25E4 + 12E3F + 18E2F 2 � 4EF 3 � F 4) = �22k:We are lucky again, since the binary form in the left hand side of this equation factors over Z,and we thus �nd (E � F )(25E3 + 13E2F � 5EF 2 � F 3) = 2m; (5)where m = 2k + 4. Had we not been this lucky, we would have arrived at a so-called Thue-Mahler equation. Procedures for solving such equations are known (see [TW2]), but are far fromelementary. 9



Before studying this equation, we �rst mention that the second case, when B = 2E2, leadsto the same expressions for A;B;C in terms of E;F as above, multiplied by a factor 2. Hencewe �nd the same quartic equation (5), but this time with m = 2k + 2.Returning to equation (5), let us write (E;F ) = (�1)g2h(P;Q) for some nonnegative integersg; h, such that P;Q are coprime, and P > Q. Now we proceed to solve(P �Q)(25P 3 + 13P 2Q� 5PQ2 �Q3) = 2n;with n = m � 4h. Because P �Q divides 2n, there is an integer ` � 0 such that P � Q = 2`.Substituting P = Q+ 2` into the above equation we �nd32Q3 + 2`+53Q2 + 22`+311Q + 23`25 = 2n�`: (6)If ` = 0 then (6) immediately yields that n = 0. So we have to solve4Q3 + 12Q2 + 11Q+ 3 = 0;which is easily seen to have only Q = �1 as integral solution. It leads to P = 0, and, usingthe fact that A;B;C are coprime, further to (E;F ) = (0;�2) with m = 4, and to (A;B;C) =(�3; 0; 1) with k = 0. Finally, this gives (U; V ) = (2;�1), and (X;Y ) = (1; 0); (1;�1).If ` = 1 then (6) becomes 32Q3 + 192Q2 + 352Q + 200 = 2n�1:The �rst terms 32Q3, 192Q2 and 352Q are all divisible by 32, whereas the last term 200 is onlydivisible by 8, and not anymore by 16. Hence the entire left hand side is divisible by 8 but notby 16, so n� 1 = 3, and we �nd the equationQ3 + 6Q2 + 11Q + 6 = 0:It has the solutions Q = �3;�2;�1, leading to P = �1; 0; 1. The case (P;Q) = (�1;�3) leadsto (E;F ) = (�1;�3) with m = 4, and to (A;B;C) = (�9; 1; 3) with k = 0. Finally, this gives(U; V ) = (12;�29), and (X;Y ) = (6; 14); (6;�15). The case (P;Q) = (0;�2) does not satisfythe requirements of P;Q being coprime (and is seen to lead to the solutions found above at ` = 0).The case (P;Q) = (1;�1) leads to (E;F ) = (1;�1) with m = 4, and to (A;B;C) = (�5; 1; 1)with k = 0. Finally, this gives (U; V ) = (4;�5), and (X;Y ) = (2; 2); (2;�3).It remains to treat the case ` � 2. This time in (6) the last three terms 2`+53Q2, 22`+311Qand 23`25 are divisible by 64, whereas the �rst term 32Q3 is only divisible by 32, but not by 64.It follows that n � ` = 5. Note that in Mordell's original work only k = 0 is treated, in whichcase n � 4, so that then the case ` � 2 is trivial.Putting, for convenience, Z = Q+ 2`; W = 2`�2;we �nd the equation Z3 � 4ZW 2 + 2W 3 = 1: (7)Equation (7) is a so-called Thue equation, that we conjecture to have only the following solutions:(Z;W ) = (1; 2); (1; 0); (�1;�1); (�5;�3); (�31; 14):10



This can probably be proved by the deep methods of the Gelfond-Baker method, cf. [TW1]. Butfor us it would be like �ring a cannon to kill a mosquito, because all we need is those solutionsof (7) for which W is a power of 2. This can be done in an elementary way as follows.First we show that if jW j � 2 then �� ZW �� < 2:61. Namely, let �1; �2; �3 be the three roots oft3 � 4t+ 2 = 0 (thus the �i are the �j(�) de�ned above, but not necessarily in the same order).The equation (7) now factors as(Z � �1W )(Z � �2W )(Z � �3W ) = 1;and for a given solution Z;W we take indices such thatjZ � �1W j < jZ � �2W j < jZ � �3W j:Either jZ � �1W j � 12 jW jmin j�i � �jj > 0:567jW j, and then1 = 3Yi=1 jZ � �iW j > jZ � �1W j3 � (0:567jW j)3;and then it follows that jW j � 1, or jZ � �1W j < 12jW jmin j�i � �jj, and then for k = 2; 3 we�nd jZ � �kW j � jW jj�1� �kj � jZ � �1W j > 12 jW jmin j�i � �jj > 0:567jW j;and thus by jW j � 2���� ZW ���� � j�1j+ ���� ZW � �1���� = j�1j+ 1jZ �W�2jjZ �W�3jjW j < 2:22 + 10:5672jW j3 < 2:61:Next we show that when Z 6= 1 and ` is large, then so is �� ZW ��. Namely, we look at (7)(mod 22`�2): Z3 = 4ZW 2 � 2W 3 + 1 = Z22`�2 � 23`�5 + 1 � 1 (mod 22`�2);provided that ` � 3, and it follows that22`�2�� (Z3 � 1) = (Z � 1)(Z2 + Z + 1):Since Z2+Z +1 is always odd, we have Z � 1 (mod 22`�2), hence Z = 1 or jZj � 22`�2� 1. Inthe latter case we must have ���� ZW ���� � 22`�2 � 12`�2 = 2` � 12`�2 :Putting things together, on noting that 2` � 12`�2 < 2:61 implies ` = 1, we �nd for thecase ` � 2 only the possibilities jW j � 1 or Z = 1 (note that ` = 2 implies W = 1). Thesolutions of (7) satisfying these conditions are easy to determine: the only one is (Z;W ) = (1; 2),with ` = 3. It leads to (P;Q) = (1;�7), and to (E;F ) = (1;�7) with m = 8, furtherto (A;B;C) = (�44; 1; 13) with k = 2, to (U; V ) = (322;�4066), and �nally to (X;Y ) =�16116 ; �206564 � ; �16116 ; 200164 �. 11



The second case.Now we treat the case 22k�1(�) < U < 22k�2(�) where � = ��. Note that in Mordell'soriginal work only k = 0 is treated, in which case we have at once �2 � U � 1, which is trivial.We proceed as in the �rst case above. So for some A;B;C 2Zwe haveU � �22k = ��(A+B�+ C�2)2:Working out the brackets and comparing coe�cients, we �nd the following system of threequadratic equations: �C2 +AB + 4BC = 0; (8)�A2 � 4B2 � 16C2 � 8AC + 4BC = �22k; (9)2B2 + 8C2 + 4AC = U:We may assume without loss of generality that A;B;C are coprime, and that B � 0.We are lucky once more, in that equation (8) now gives at once(C � 2B)2 = B(A+ 4B);so that again B is a square or twice a square.In the case B = E2 we have A+ 4B = F 2, and we may take C = 2E2 +EF . We substitutethis into (9), and thus obtain12E4 + 28E3F + 24E2F 2 + 8EF 3 + F 4 = 2m (10)with m = 2k. And again, in the case B = 2E2 we �nd the same equation (10), but withm = 2k � 2.This time the binary form in the left hand side of (10) does not factor over Z, so now weseem to have run out of luck, and have to turn to non-elementary methods such as [TW2]. Butfortunately this is not so. To start with, if m � 1 then F is even, say F = 2F1. Hence2m�2 = 3E4 + 14E3F1 + 24E2F 21 + 16EF 31 + 4F 41 ;and we see that if m � 3 then also E is even. This means that by dividing out common divisorsof E;F all solutions can be traced back to solutions with m � 2.Further, our luck is that (10) does not have any linear factors over R. Using this, we observethat x4 + 8x3 + 24x2 + 28x + 12 has as minimal value 1 (at x = �1), and then by (10) we get2m = E4 �FE�4 + 8�FE�3 + 24�FE�2 + 28FE + 12! � E4:But then we see E4 � 2m � 4, hence jEj � 1. Now it is easily seen that in fact there areonly three solutions: (E;F ) = (0; 1); (1;�1); (1;�2). The case (E;F ) = (0; 1) with m = 0leads to (A;B;C) = (1; 0; 0) with k = 0, further to (U; V ) = (0;�1), and �nally to (X;Y ) =(0; 0); (0;�1). The case (E;F ) = (1;�1) with m = 0 leads to (A;B;C) = (�3; 1; 1) with k = 0,further to (U; V ) = (�2;�1), and �nally to (X;Y ) = (�1; 0); (�1;�1). The case (E;F ) =(1;�2) with m = 2 leads to (A;B;C) = (0; 1; 0) with k = 1, further to (U; V ) = (2;�2), and�nally to (X;Y ) = �14 ; �58 � ; �14; �38 �.This completes the proof. 212
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