ImmunityUnchained
 Improving Cancer Immunotherapy by targeting the Tumor Macro-Environment

Anti-PD-L1 mediated anti-tumor immunity depends in part on abrogating PD-1/PD-L1 interactions in tumor-draining lymph nodes (this thesis).

Gemcitabine reduces myeloid-derived suppressor cell frequencies and regulatory T-cell proliferation but increases T- and NK-cell activation in peripheral blood of mesothelioma patients (this thesis).

Although cancer vaccines are effective in a subgroup of solid cancer patients, efficacy is enhanced in preclinical models by depletion or repolarization of macrophages (this thesis).

Preventing excessive and chronic T-cell activation by inhibiting intracellular JAK3-signaling improves anti-tumor T-cell immunity (this thesis).

The concept of a tumor macroenvironment better describes our systemic immune response to cancer and yields improved mechanistic insight into why some patients benefit from immunotherapy and others do not (this thesis).

Following the use of immunotherapy, the word 'cure' has now become part of the oncologist's vocabulary (Lesterhuis et al. Nature Reviews Drug Discovery 2017).

Many immunotherapy trials currently outpace our understanding of the biological mechanisms involved (adapted from De Visser et al. Nature Reviews Immunology 2020).

Physician-scientists are critical members of the biomedical workforce as they are uniquely placed to identify and prioritize the most pertinent clinical questions (adapted from Noble et al. Nature Cancer 2020).

Just in so far as the knowledge of physiology is sound will the practice of the physician be likely to be proficient (J.J.R. Macleod, Science 1914).

Only with knowledge can one innovate (Michel Troisgros, chef of >50-year three Michelin-star family restaurant Troisgros, Chef's Table: France, Episode 4).

