
On the use of break quantities in multi{echelon dis-tribution systemsRommert Dekker, Hans Frenk, Marcel Kleijn, Nanda PiersmaErasmus University Rotterdam, The NetherlandsTon de KokEindhoven University of Technology, The NetherlandsOctober 1995 AbstractIn multi{echelon distribution systems it is usually assumed that demand is onlysatis�ed from the lowest echelon. In this paper we will consider the case where de-mand can be satis�ed from any level in the system. However, then the problem arisesof how to allocate orders from customers to the di�erent locations. A possible way ofdealing with this problem consists of using a so{called break quantity rule. This easyimplementable rule is to deliver every order with a size exceeding the break quantityfrom a higher echelon. The use of the break quantity rule now results in a reductionof the demand variability at the retailer and hence less safety stocks need to be held.The concept is studied for a two{echelon distribution system, consisting of one ware-house and one retailer, where the inventory at the retailer is controlled by an orderup to level policy, and where at the warehouse there is enough inventory to satisfyall orders from the retailer and the customers. For this system an approximationfor the long run average costs as a function of the break quantity is derived, and analgorithm is presented to determine the cost{optimal break quantity. Computationalresults indicate that the break quantity rule can lead to signi�cant cost reductions.Keywords: Break quantity rule, inventory, multi{echelon distribution systems.



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 11 IntroductionIn multi{echelon distribution systems, management is primarily concerned with meetingcustomer demand in a timely way at minimum cost. In practice, customer demand is oftennot known in advance, and can exhibit large 
uctuations over time. Such 
uctuationstypically occur when the demand process consists of many customers ordering small batchesand few customers ordering large batches. This may lead to high safety stock levels withlarge associated costs.A way to reduce the variability of the demand is by handling large orders in a special way.We introduce a so{called break quantity to distinguish between small and large orders. Inmany cases customers ordering large batches do not have an immediate need for delivery,since their orders are used as a replenishment for an inventory system, or their order sizesare larger than necessary because of quantity discounts. Two management procedures, inwhich large orders are handled separately, are considered in De Kok [13] and Nass, Dekkerand Van Sonderen{Huisman [15]. The �rst procedure is to split the large orders intosmaller batches, which are subsequently delivered. This way the variability of the ordersizes is reduced, and part of future demand will be known beforehand, which will enable areduction of the safety stock levels. The second procedure, which we focus on in this paper,is to supply the large orders, at a later stage, from a higher level in the distribution system.In this paper it will be shown that this tactical rule leads to a reduction of the safety stocksat the lowest level of the distribution system, thus decreasing the long run average costs.The main reasons for this are the fact that the break quantity �lters out the peaks inthe demand, and the fact that the total demand for the lowest level decreases. Anotheradvantage is the reduction of handling and transportation costs, due to the possibilityof delivering large orders directly to the customers, thereby skipping one or more nodesin the distribution chain. The e�ect of direct shipping strategies on the transportationcosts has been studied extensively in literature (e.g. Burns et al. [4], Gallego and Simchi{Levi [9], Sussams [19]). However, the e�ect on the inventory costs has only been analyzedfor deterministic demand. A last advantage of the break quantity concept is its simplicity:it can easily be implemented in practice, especially when only statistical information onfuture demand is known, and upon order entry immediate feedback on the supply sourcecan be given. However, besides advantages of handling large orders separately there arealso disadvantages. A negative aspect of the break quantity rule is the (possible) occurrenceof a setup cost for every large order. Another disadvantage is that the response time to the



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 2customer increases, since in general the distance from the lowest level of the distributionsystem to the customer is smaller than from a higher level (e.g. Axs�ater [3]). An increasein the response time to the customers with large orders will induce penalty costs, thatmay represent price rebates to persuade customers to accept the longer delivery time. Theidea of using price rebates to compensate longer delivery times was already presented byJaikumar and Kasturi Rangan [10, 12]. They analyzed the question of how to set pricerebates that allocate orders to di�erent stages in a multi{echelon distribution system. Therebates di�er from one echelon to the other and they depend on the delivery location, socustomers are forced to choose the location from which they take possession of a product.The main goal of their papers was to structure the optimal buying arrangement such thatcustomers minimize their costs simultaneously, while the manufacturer maximizes pro�t.They did not analyze the e�ect on the inventories, and they only considered the case whereall orders were known beforehand.The analysis in this paper is motivated by a case study for a company in Western{Europethat delivers self{adhesive materials to customers through a multi{echelon distributionsystem (Nass, Dekker and Van Sonderen{Huisman [15]). The multi{echelon distributionsystem is composed of Plant Service Centres (PSC's), which are associated to productionplants and thus have both production and warehouse facilities, and of Distribution Centres(DC's), which are only used as stockpoints. In this system the customers, from all overEurope, could be served either by the nearest PSC or by the nearest DC. To operate thissystem the company needed a tactical rule to allocate orders from customers to di�erentlocations. The company used the break quantity rule, which was implemented such thatorders with a size smaller than or equal to the break quantity are delivered from the nearestDC within 48 hours, and orders with a size exceeding the break quantity are delivered fromthe nearest PSC within 10 days. Using this concept it was possible to reduce the averagesystem costs considerably.In this paper we will study the e�ects of the break quantity rule for a two{echelon distribu-tion system consisting of one warehouse and one retailer. The main goal of this paper is toshow the e�ect of the break quantity rule on the inventory costs at the retailer. Thereforewe make the simplifying assumption that the warehouse can always satisfy replenishmentorders from the retailer and large orders from customers. Hence, we do not take into ac-count the e�ect of the break quantity rule on the inventory at the warehouse. However, itis assumed that additional costs are incurred for delivering a large order separately, whichmay include price rebates and setup costs. In the next section an approximation for the



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 3minimum long run average system costs as a function of the break quantity are derived.Moreover, an easy and tractable condition under which the break quantity rule reducesthe total long run average costs is given. In Section 3 an algorithm that determines theoptimal break quantity is presented, while it is assumed that the management puts a re-striction on the minimum number of customers served by the retailer. Finally, in Section4 computational results are reported, to illustrate the in
uence of the break quantity ruleon the average costs for a wide range of parameter settings. The results indicate that inmany of the situations analyzed, a signi�cant reduction in the long run average costs canbe obtained. Moreover, it is shown that using the approximated cost function leads tosimilar results to those obtained by exact calculation.2 The modelConsider a single product, two{echelon distribution system, consisting of one warehouseand one retailer. Assume that at the retailer the inventory is reviewed at discrete timepoints and that every review an order is placed to raise the inventory to the order upto level S. This policy is in general optimal when the �xed ordering costs are negligible(e.g. Scarf [17]). In most of the literature on multi{echelon inventory theory (e.g. Eppenand Schrage [6], Federgruen and Zipkin [7], Langenho� and Zijm [14]) the order up to levelpolicy is considered, since it was proved by Clark and Scarf [5] that in this case the inventoryproblem can be decomposed. Tagaras and Cohen [20] observed that low ordering costs havebecome increasingly common with the advent of distribution information systems, and/orthe assumption that other considerations (e.g. routing schedules) dictate ordering anddelivery of materials every review period. Langenho� and Zijm [14] noted that in manypractical cases the �xed costs are already accounted for at a higher level, e.g. in a multi{product environment.If a replenishment order is placed in period t, it will be delivered in period t+L, i.e. there isa �xed lead time L. Let the lead time be an integral multiple of the review time, so that thereview time can be taken as unity. The sequence of events in any period is: review, order,demand and delivery of the replenishment order that was placed L periods ago. Demandthat cannot be satis�ed from stock on hand will be backlogged, hence the ordering costneed not be considered, since all demand must be replenished and after every review anorder is placed. At each review a holding cost h is charged for every unit of stock on hand,and for every unit backlogged a shortage cost p is charged. Orders arrive according to a



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 4Poisson process with arrival rate �, and the sizes Y1; Y2; : : : of the consecutive orders arei.i.d. with distribution function F . For convenience we assume that F has a continuouspositive density on its support. Finally, as already mentioned in the introduction, it isassumed that the warehouse can always satisfy replenishment orders from the retailer andlarge orders from customers. Hence, we do not consider the inventory cost of the warehouse.We will �rst focus on the e�ects of the break quantity rule on the inventory costs at theretailer. If the break quantity rule is applied, then all orders with size smaller than or equalto the break quantity are delivered by the retailer, while the large orders are delivered fromthe warehouse. In the next �gure the distribution system is illustrated.
���� ���� ����- -jWAREHOUSE RETAILER CUSTOMERlarge orders small ordersreplenishmentordersFigure 1: A two{echelon distribution system with the break quantity ruleIf the break quantity equals q, the order size of the ith customer with respect to the retailerequals Yi1fYi�qg, where 1fYi�qg = 8<: 1 if Yi � q0 if Yi > qdenotes the indicator function.Let Dq be the total demand for the retailer during L+1 periods if the break quantity equalsq, and let its distribution be given by Gq. Then it is well{known (see e.g. Karlin [11]) thatthe expected one{period holding and shortage costs for the above system are given byL(S; q) = h Z S0 (S � y)dGq(y) + p Z 1S (y � S)dGq(y) (1)Applying standard newsboy arguments (e.g. Porteus [16]), it follows that the optimal orderup to level S� is given by S� = G�1q ( pp+ h)



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 5with G�1q : [0; 1]! [0;1) the inverse function of Gq, i.e.G�1q (x) = inffy � 0 : Gq(y) � xgIf �q and �2q respectively denote the mean and variance of the random variable Dq, itfollows that (e.g. Tijms [21]) �q = �(L + 1)E[Yi1fYi�qg] (2)�2q = �(L + 1)E[Y 2i 1fYi�qg] (3)Substituting S� in (1) we obtain that the minimum expected one{period holding andshortage costs are given byL(S�; q) = �h�q + (p + h) Z 1pp+h G�1q (z)dz= �q(p+ h) Z 1pp+h Ĝ�1q dz (4)with Ĝq the distribution of the normalized random variable Dq��q�q , i.e. Ĝq( z��q�q ) � Gq(z).Unfortunately the integral in the above expression is in general di�cult to compute. More-over, it depends on the value of q. However, since Ĝq is the distribution of a normalizedcompound Poisson sum of i.i.d. random variables, we may apply the central limit theorem(Feller [8]) and approximate Ĝq by the standard normal distribution � with expectation0 and variance 1. The main advantage of using the standard normal distribution is thatfor every q the distribution Ĝq is replaced by the same distribution, and thus the aboveintegral is no longer depending on the break quantity.Approximating R 1pp+h G�1q (z)dz by R 1pp+h ��1(z)dz it follows from (3) and (4) thatL(S�; q) � c1qE[Y 2i 1fYi�qg] (5)with c1 := q�(L + 1)(p + h) Z 1pp+h ��1(z)dz= q�(L + 1)(p + h) 1p2� exp(�12(��1( pp+ h))2) (6)Since E[Y 2i 1fYi�qg] is an increasing function in q one can easily see that the expected one{period holding and shortage costs for the retailer are reduced by the break quantity rule.However, the break quantity rule also causes extra costs. Assume that the unit cost of



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 6delivering large demand by the warehouse is given by c and the �xed costs per large orderis given by K. Since the normal ordering costs are not taken into account in the analysis,the value c should be interpreted as the additional unit cost for not delivering the largedemand from the retailer. In the value of c are included the reduction in transportationand handling costs due to the fact that the order can be delivered directly to the customer,and the penalty costs for a possible increase in waiting times for the customers with largeorders. Although it is in general not easy to determine the value of c, we assume that it isknown. Furthermore, observe that c does not necessarily has to be positive. In the valueof K are included the possible occurrence of setup costs for delivering a large order, and a�xed penalty cost per large order. Clearly, the value of K should satisfy K � 0.The order size of the ith customer with respect to the warehouse equals Yi1fYi>qg, sothe costs for serving the ith customer from the warehouse are equal to (cYi +K)1fYi>qg.Hence it follows by the memoryless property of the Poisson process that the expectedcosts for delivering the large orders separately for a typical period are given by �E[(cYi +K)1fYi>qg] = �cE[Yi1fYi>qg] + �K(1 � F (q)). These observations lead to the followingconclusion.Conclusion: The minimum costs for the model with a break quantity 0 � q � 1 areapproximated by C(q) = c1qE[Y 2i 1fYi�qg] + c2E[Yi1fYi>qg] + c3(1� F (q)) (7)where c1 is given by (6), c2 := �c and c3 := �K.By the above expression for the cost function C(q) it is easy to derive a su�cient andtractable condition for the break quantity rule to be pro�table, i.e. that there exists someq for which C(q) < c1qE[Y 2i ]. Since E[Y ki 1fYi�qg] = R q0 xkdF (x) one can easily verify thatthe derivative of C(q) is given byC 0(q) = �12c1q2v(q)� c2q � c3� f(q) (8)where v(q) := �E[Y 2i 1fYi�qg]��1=2A su�cient condition for the break quantity rule to be pro�table is given in the nexttheorem.



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 7Theorem 2.1 Assume that c1, c2 and c3 are �nite{valued and let 0 < u <1 be given byu := �c2 +qc22 + 2c1c3E[Y 2i ]�1=2� =c1E[Y 2i ]�1=2 (9)If F (u) < 1, then there exists a q <1 such that C(q) < c1qE[Y 2i ].Proof: Observe that v(q) is decreasing in q and thus v(q) � v(1) = (E[Y 2i ])�1=2. Sinceu uniquely solves the equality12c1 �E[Y 2i ]��1=2 x2 � c2x� c3 = 0for x > 0, we obtain for q > u that12c1v(q)q2� c2q � c3 � 12c1 �E[Y 2i ]��1=2 q2 � c2q � c3 > 0and so it follows by f(q) > 0 for all q that C 0(q) � 0 for q > u.Moreover, observe that F (u) < 1 implies that there exists a q̂ > u such that f(q̂) > 0, andthus C 0(q̂) > 0. Hence, there exists a q <1 such that C(q) < C(1) = c1qE[Y 2i ]. 2In the next section an algorithm which determines the optimal break quantity will bepresented.3 Determining the optimal break quantityIn this section the main focus will be on solving the probleminffC(q) : a � q � bg (P)where C(q) is de�ned in (7), and a and b are de�ned asa := inffx > 0 : F (x) � �gb := supfx > 0 : F (x) < 1gwith 0 < � < 1. Observe that a is a lowerbound on the break quantity which is setby the management through a restriction on the percentage of customers served by theretailer. The motivation for the introduction of this restriction is threefold. First, dueto �xed overhead costs at the retailer and for competitive reasons it is desirable that alarge percentage of customers is served through the retailer. Secondly, it is likely that



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 8a customer ordering a small batch is less sensitive to a price reduction than a customerordering a large batch, implying that the cost for delivering large orders from the warehousebecomes relatively higher if the break quantity decreases. Hence, the value of c and K mayonly hold for relatively large break quantities. Finally, the normal approximation of thelead time demand is only justi�ed for relatively large break quantities, because for lowbreak quantities the average number of orders in a period becomes too small and thecentral limit theorem may not apply anymore. Observe also that b is an upperbound onthe break quantity, since by de�nition the size of an order cannot exceed b.Any q� 2 (a; b) solving (P) must satisfy the necessary �rst{order optimality conditionC 0(q�) = 0, i.e. q� must be a stationary point. By Theorem 2.1 we obtain that C 0(q) > 0for q > u. Since u is �nite{valued it follows that the set of possible stationary points isbounded and given by (a;min[b; u]). For notational convenience we de�ne b0 := min[b; u].Before presenting an algorithm which reduces the set of possible optimal points, we need tointroduce the function � : [a; b0]! [a; b0]. Let the value of �(q) for q 2 [a; b0] be determinedby Algorithm 3.1.'
&
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%

Step 0 Set i := 0 and qi := qStep 1 Let qi+1 > 0 solve 12c1v(qi)q2i+1 � c2qi+1 � c3 = 0,i.e. qi+1 := �c2 +qc22 + 2c1c3v(qi)� =c1v(qi)Step 2 If qi+1 = qi then �(q) := qi+1 and stop,if qi+1 � a then �(q) := a and stop,if qi+1 � b0 then �(q) := b0 and stop,otherwise set i := i+ 1 and go back to Step 1Algorithm 3.1: An algorithm to calculate �(q)Observe that 12c1v(q)q2�c2q�c3 = 0 for a < q < b0 is equivalent to C 0(q) = 0. Moreover, ifC 0(qi) < 0 one can easily verify that the value of qi+1 > 0 solving 12c1v(qi)q2i+1�c2qi+1�c3 =0 must satisfy qi+1 > qi. Since v(qi+1) < v(qi) if qi+1 > qi it follows that C 0(qi+1) < 0, thusq0; q1; : : : is an increasing sequence and its limit point q1, if it exists, satis�es C 0(q1) = 0.A similar observation holds for the case where C 0(qi) > 0. We are now able to proof thenext lemma that will help us to determine the set of stationary points.



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 9Lemma 3.1 De�ne I(x; y) := fz : min(x; y) � z � max(x; y)g. Then for any q 2 [a; b0] itfollows that C 0(y) 6= 0 if y 2 I(q; �(q)) n f�(q)g. Moreover,C 0(�(q)) = 8>>><>>>: � 0 if �(q) = a= 0 if a < �(q) < b0� 0 if �(q) = b0Proof: From the observations above this lemma it follows that if Algorithm 3.1 startswith q 2 [a; b0], no point between q and �(q) can be a stationary point, and hence the �rstimplication is proved. If a < �(q) < b then �(q) is a limit point of the sequence q0; q1; : : :generated by Algorithm 3.1 and thus �(q) is a stationary point. If qi � a and qi+1 � athen either qi+1 = qi and thus C 0(qi+1) = 0, or qi+1 < qi and C 0(y) > 0 for qi+1 � y � qi.A similar observation holds for the upperbound b0. 2Algorithm 3.2 will reduce the set of possible optimal break quantities on [a; b0]. It isassumed that the number of stationary points is �nite. Hence, there exists an � > 0 suchthat if q�1 and q�2 are stationary points, it follows that jq�1 � q�2j > �.'
&

$
%

Step 0 Set X := fq : a � q � b0g, and set X � := ;Step 1 Calculate I(a; �(a)) and I(b0; �(b0)), set X := X � I(a; �(a))� I(b0; �(b0))and set X � := X � + f�(a); �(b0)gStep 2 Let q be the midpoint of the largest convex subset of Xand calculate �(q)Step 3 Set X := X � I(q; �(q)) and X � := X � + f�(q)gStep 4 If the length of the largest convex subset of X is smaller than �,then go back to Step 2, else stop.Algorithm 3.2: An algorithm to reduce the set of possible optimal pointsTaking the element of X � with the lowest associated average costs, we get the optimal breakquantity. This algorithm is a special case of the C{programming algorithm introducedby Schniedovich [18]. It can easily be veri�ed that the algorithm will terminate withinO(log b0�a� ) number of iterations.



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 104 Computational ResultsIn this section, Algorithm 3.2 will be implemented to solve problem (P) for a wide varietyof parameters. We will analyze the case where the order sizes of the customers are Gammadistributed. The motivation for this choice is threefold. First, for this distribution onlypositive order sizes are allowed, in contrast with for example the normal distribution.Secondly, the distribution can easily be �tted around the mean and the variance of theorder sizes. In many practical situations managers do not have complete information onthe demand distribution, but they only know the mean and variance. Finally, in order tocompute v(q) one only needs to compute the incomplete Gamma function, for which manynumerical approximations are available. We used an approximation given by Abramowitzand Stegun [1].In order to determine how much the approximation of the lead time demand distributionby the normal distribution in
uences the results, we also will calculate the exact lead timedemand distribution to determine the exact optimal break quantity and its correspondingminimum costs. We used Adelson's recursion scheme (Adelson [2]) to determine the cdf ofthe compound Poisson distribution. However, since this recursion scheme is only de�ned fordiscrete distributions, we transformed the continuous Gamma distribution into a discretedistribution in the following way:P (X = x) := 8<: F (x)� F (x� 1=N) for x = 1=N; 2=N; : : :0 otherwisewhere N � 1 is an integer number. Clearly, the value of N determines the accuracy ofthe transformation. For our computations we used N = 5, and to determine the optimalbreak quantity a simple enumeration technique was used.Generally, management will be interested in obtaining a quick estimate of the optimal breakquantity. For this purpose we also analyzed the quality of approximating the optimal breakquantity by u, which is given in Theorem 2.1. This value can be calculated without havingto perform any numerical procedures. Henceforth we will refer to this approximation asthe u{approximation.We have analyzed the bene�ts of the break quantity rule for many di�erent parametervalues. However, the following parameters were always �xed: � = 10, L = 2, h = 1, � :=E[Yi] = 10 and � = 0:75. The other parameters were varied, i.e. p = f5; 10; 15; 20; 25g, c =f�1;�2; 0; 1; : : : ; 7g, K = f25; 50; 75; 100g and �2 := V AR[Yi] = f50; 100; 150; 200; 250g.By varying �2 for � �xed we basically vary the coe�cient of variation cY , de�ned as cY := �� ,



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 11which is often used as an indicator of the variability of demand. Observe that for theseparameter settings the maximum coe�cient of variation of the lead time demand, obtainedwhen �2 = 250, is equal to p�2+�2�p�(L+1) = p35010p30 � 0:34, and thus the probability of negativelead time demand when using the normal approximation is negligible.In total we evaluated the e�ect of the break quantity rule for 1000 parameter settings.In Table 1 the cost reduction obtained by the 3 di�erent methods is classi�ed. In the�rst column the classes are presented, in the other columns the frequencies obtained byexact calculation, Algorithm 3.2, and the u{approximation are reported. We mention thatthe points �(a) and �(b0), calculated in Algorithm 3.2, in all cases coincided, hence withAlgorithm 3.2 the solution was quickly determined.cost frequenciesreduction (%) discrete exact calculation Algorithm 3.2 u{approximation[ 0.00, 1.00) 499 598 601[ 1.00, 5.00) 165 111 109[ 5.00, 10.00) 66 53 59[ 10.00, 25.00) 90 75 73[ 25.00,1 ) 180 163 158Table 1: Cost reduction obtained by break quantity ruleOne can see that in most of the cases the cost reduction obtained by the break quantityrule was less than 1%, but in more than 15% of the cases the reduction exceeded 25%.This implies that if the break quantity rule is pro�table, the costs can be reduced consid-erably. We also observe that the results of the u{approximation are close to the results ofAlgorithm 3.2.In table 2 some of the results are presented. We have selected the following 16 representativecases: p = f10g, c = f�1; 1; 3; 5g, K = f50; 100g and �2 = f100; 200g. In the �rst fourcolumns the values of the parameters are shown. In columns 5, 6 and 7 the optimal breakquantity q�, the corresponding percentage of customers served by the retailer F (q�), andthe corresponding relative reduction in average costs C:R:(%) are presented, which areobtained by exact calculations. Note that C:R:(%) is equal to the ratio of the reduction inaverage costs due to the break quantity rule, and the average cost without using the breakquantity rule. In columns 8, 9 and 10 similar results are presented, but then obtained byAlgorithm 3.2. Algorithm 3.2 was terminated when the largest \uncovered" subset wassmaller than �, which we set equal to 10�3. Finally, in the last three columns the value ofu, the percentage of customers served by the retailer and the minimum costs are presented,



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 12when the break quantity is equal to u.parameters exact, N = 5 Algorithm 3.2 u{approximationp c K �2 q� F (q�) C.R.(%) q� F (q�) C.R.(%) u F (u) C.R.(%)10 -1 50 100 21 0.878 26.10 22 0.892 24.27 26 0.927 23.0610 1 50 100 48 0.992 2.26 53 0.995 1.17 55 0.996 1.1510 3 50 100 81 1.000 0.14 100 1.000 0.01 100 1.000 0.0110 5 50 100 110 1.000 0.01 153 1.000 0.00 153 1.000 0.0010 -1 100 100 37 0.975 7.70 39 0.980 6.17 41 0.984 6.0610 1 100 100 62 0.998 0.83 69 0.999 0.32 70 0.999 0.3210 3 100 100 90 1.000 0.07 112 1.000 0.01 112 1.000 0.0110 5 100 100 116 1.000 0.01 161 1.000 0.00 161 1.000 0.0010 -1 50 200 19 0.832 50.65 20 0.845 48.62 28 0.905 45.4010 1 50 200 48 0.972 9.60 54 0.980 6.19 63 0.988 5.7610 3 50 200 96 0.998 1.32 118 0.999 0.30 120 0.999 0.3010 5 50 200 135 1.000 0.24 185 1.000 0.01 185 1.000 0.0110 -1 100 200 36 0.942 24.66 38 0.948 21.70 44 0.965 20.6610 1 100 200 66 0.990 5.13 74 0.994 2.79 79 0.995 2.7210 3 100 200 106 0.999 0.92 131 1.000 0.18 132 1.000 0.1810 5 100 200 142 1.000 0.19 194 1.000 0.01 194 1.000 0.01Table 2: The e�ect of the break quantity rule for di�erent methodsIt can be seen that the success of the break quantity rule very much depends on thevalue of c. Hence, it is very important that the management has good information on theadditional variable costs for delivering a large order from the warehouse. Observe that themain positive component of c is the penalty cost that has to be paid to compensate forthe (possibly) longer delivery times. Therefore, the management should try to keep thiscost as low as possible, e.g. by setting agreements with the customer. One can think ofgiving each customer with a large order some �xed price reduction if the customer acceptsthe longer waiting time due to the break quantity rule. For this reason, it is interestingto analyze the e�ect of the values of c and K on the cost reduction obtained by the breakquantity rule. In Figure 1 the cost reduction is plotted for values of p and �2 �xed atp = 10 and �2 = 150, and for values of c and K varying from c = [�2; 7] and K = [25; 100].Moreover, � is set equal to zero, so no restriction on the percentage of customers servedby the retailer is taken into account.This �gure is based on results obtained by using Algorithm 3.2. It shows that the sensitivityof the cost reduction for c is much larger than for K. Hence, it seems pro�table to \buyo�" the penalty cost for delivering large orders separately by giving a �xed price reductionfor each large order. Whereas the value of c has a large in
uence on the fact whether or not
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Figure 2: The impact of c and K on the cost reductionthe break quantity rule is pro�table, from Table 2 it is also observed that the coe�cient ofvariation of the order sizes has a big impact on the size of the cost reduction. For instance,for �2 = 200 the cost reductions are almost twice as big as for �2 = 100. Finally, weobserved that the shortage cost p does not seem to have a signi�cant in
uence on the costreduction that can be obtained by using the break quantity rule.The cost reduction obtained by the normal approximation of the lead time demand in allcases underestimated the actual cost reduction. Therefore, Algorithm 3.2 will generallyprovide a lowerbound on the cost reduction that can be obtained by using the breakquantity rule.5 ConclusionsIn this paper a multi{echelon distribution system is analyzed, where orders from customerscan be delivered from any level in the system. To allocate orders from customers to thedi�erent locations, we introduced a so{called break quantity rule. The break quantitydetermines whether an order of a customer is small or large, and the break quantity rule isimplemented in the following way: a small order will be delivered from the lowest echelon,a large order will be delivered from a higher echelon. It is shown that using this rule, theinventory costs at the lowest echelon can be reduced signi�cantly. However, in general thedelivery of a large order from a higher echelon will also cause extra costs, e.g. because the



Dekker et al./ On the use of break quantities in multi{echelon distribution systems 14delivery lead time may increase. An approximation for the minimum costs as a functionof the break quantity is derived in Section 2, and an algorithm to determine the optimalbreak quantity is presented in Section 3. Moreover, an easy and tractable condition underwhich the break quantity rule is pro�table is given. This condition is that with a positiveprobability the order size of a customer exceeds the value u, which can be calculatedwithout having to perform any numerical procedures.From the computational results in Section 4 it follows that if the management can persuadethe customer to accept the break quantity rule (for a possible �xed price reduction and/orsmall price reduction per unit demanded), and the demand is erratic, the total costs can bedecreased signi�cantly. In almost 15% of the cases we considered, the cost reduction is morethan 25%. It is also shown that by using approximated minimum average cost function,the optimal break quantity and the corresponding cost reduction are well approximated.Hence, the results obtained by Algorithm 3.2 give good insight into the e�ect of the breakquantity rule on the distribution system. Finally, it turned out that approximating theoptimal break quantity by u, given in Theorem 2.1, gives satisfactory results.References[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, NewYork, 1965.[2] R.M. Adelson. Compound Poisson distributions. Operations Research Quarterly,17:73{75, 1966.[3] S. Axs�ater. Continuous review policies for multi{level inventory systems with stochas-tic demand. In S.C. Graves, A.H.G. Rinnooy Kan, and P. Zipkin, editors, Handbooksin OR & MS, Vol. 4. Elseviers Science Publishers, North{Holland, 1993.[4] L.D. Burns, R.W. Hall, D.E. Blumenfeld, and C.F. Daganzo. Distribution strategiesthat minimize transportation and inventory costs. Operations Research, 33:469{490,1985.[5] A.J. Clark and H. Scarf. Optimal policies for a multi{echelon inventory problem.Management Science, 6:475{490, 1960.[6] G. Eppen and L. Schrage. Centralized ordering policies in a multi{warehouse sys-tem with lead times and random demand. In L.B. Schwarz, editor, Multilevel pro-
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