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CHAPTER 1 

GENERAL INTRODUCTION 





GENERAL INTRODUCTION 

1.1 Clinical aspects of TSC 

Tuberous sclerosis complex (TSC) was fIrst recognised by Desire-Magloire Bourneville in 

1880. The name of the disease originates from the characteristic sclerotic tubers 

(hamartomas) present in many patients. Other names describing the disease are Boumcville's 

disease (in honour of the French neurologist) or epiloia (epilepsy, low intelligence and 

adenoma sebaceum), which was the official name describing the classical triad of symptoms 

seen in 30-40% of the patients (McKusick, 1990). TSC is usually classifIed as one of the 

phakomatoses (Van der Hoeve, 1933), a group of disorders which also includes 

neurofIbromatosis types I (NFl) and 2 (NF2) (Phillips and Rye, 1994), von Hippel-Liudau 

disease (Bernstein ef al.,1987) and Sturge-Weber syndrome (prieto ef al.,1997). All fIve 

diseases show apparently randomly distributed patches of abnoffilal tissue, but they are 

distinct from each other with respect to the types of lesions and the affected tissues. 

TSC is characterised by the growth of a variety of benign tumours (hamartomas) and 

malfonnations (hamartias) in one or more organs (Gomez, 1988). The disease is clinically 

variable and almost every organ and tissue can be affected. The organs most frequently 

involved are the heart, skin, brain and kidneys. The variability is reflected by the type and 

number of symptoms and the severity of the disorder and is seen not only between patients 

from different families, but also between affected relatives within the same family. 

The first symptoms that can be indicative of TSC are cardiac rhabdomyomas, which have 

been detected by fetal echocardiography as early as in the 26th week of gestation. They are 

usually multiple, may be associated with fetal cardiac arrhytlunia. but often remain clinically 

silent (Watson,1991). A number of cardiac rhabdomyomas spontaneously regress after birth, 

suggesting that their prenatal occurrence is partly sex steroid~dependent. 

TSC patients can display a wide range of skin signs. Hypomelanotic macules (white spots) 

are often present at birth and appear in about 90% of the patients. They are usually multiple in 

TSC patients but are also detected in the nonnal population, so in themselves they are not 

suffIcient for the diagnosis of TSC. The facial angiofIbromas (adenoma sebaceum) are 
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pathognomonic for TSC and appear during the first years of life in 50-70% of the patients 

(Allison el al., 1994). Ungual fibromas are mostly seen in women from puberty on, whereas 

shagreen patches and fibrous forehead plaques are predominantly present in older TSC 

patients. 

Lesions in the brain are associated with severe manifestations of TSC. Epileptic seizures 

occur in about 85% of the patients and they often start in the first year of life with infantile 

spasms and partial motor seizures (Gomez, 1988) (figure 1.1). With increasing age, the 

seizures may become of a more generalised type. About 50% of the children with seizures 

develops mental retardation (Gomez, 1988). There is some correlation between the age of 

onset and the severity of generalised seizures, and the number, size and location of the brain 

lesions and degree of mental retardation (Curatolo et ai, 1991). Characteristic lesions in the 

central nervous system are cortical tubers, subependymal nodules and subependymal giant 

cell astrocytomas. Behavioural problems are quite common among children with TSC. 

Autism is present in approximately 50% of the patients (Hunt and Shepherd, 1993). 

Figure 1.1 Salaam cramp. Fonn of epilepsy often seen in small children; the name originates from 
the movements the child is making, while it is bending the head and lifting the anns. 
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Figure 1.2 Kidneys affected with multiple cysts and angiomyolipomas. 

In the second and third decade of life, renal problems are found in 40-80% of TSC patients. 

The most characteristic renal abnonnalities are cysts and angiomyolipomas, generally 

occurring bilaterally (figure 1.2). Occasionally a renal cell carcinoma develops in patients 

with TSC (Bjomsson et al., 1996; Cook et al., 1996). 

Many other organs may be affected in the pathogenesis of TSC, including the eyes, lungs, 

skeleton and endocrine glands. Involvement of the lungs in the forru of pulmonary 

lymphangioleiomyomatosis is infrequent. This complication is almost exclusively confined to 

women with TSC and is treated with anti-estrogens, suggesting a role for steroid homlones 

and their respective receptors in the development of these tumours (Lie, 1991). 

An overview of the criteria for the diagnosis ofTSC is listed in table 1.1. 
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Table 1.1 Current criteria for the diagnosis of TSC 

Primary features 
Facial angiofibromas 
Multiple ungual fibromas 
Cortical tuber l 

Subependymai nodule or giant cell astrocytoma' 
Multiple calcified subependymal nodules protruding into the ventricle2 

Multiple retinal astrocytoma 
Secondary features 

Affected first.degree relative4 

Cardiac rhabdomyoma!,2,3 
Other retinal hamartoma or achromic patch 
Cerebral tubers1 

Noncalcified subependymal nodules1 

Shagreen patch 
Forehead plaque 
Pulmonary lymphangiomyomatosis' 
Renal angiomyolipoma i ,l,3 

Renal cysts' 
Tertiary fcatures 

Hypomelanotic macules 
"Confetti" skin lesions 
Renal cysts1,3 

Randomly distributed enamel pits 
Hamartomatous rectal polyps' 
Bone cysts2 

Pulmonary lymphangiomyomatosis2 

Cerebral white-matter or heterotopias2 

Gingival fibroma 
Hamartoma of other organs! 
Infantile spasms 

The different types oflesions in TSC patients are subdivided into three different 
categories. A single primary feature is sufficient for the diagnosis ofTSC, 
while a combination oftwo secondary or one secondary plus two tertiary from 
the other categories is regarded necessary for a certain diagnosis ofTSC. 
!histoiogically confinned, 2radiographic evidence, 3ultrasound, 4the affection 
status of relatives is not taken into acount in our linkage studies. 
(Roach e/ ai.,1992; Neuman and Kandt, 1993) 

1.2 Histological and cellular aspects of TSC lesions 

The pathogenesis of TSC is poorly understood. The types of lesions most commonly seen in 

TSC patients are hamartomas and malfonnations affecting tissues of mesodennal and 

ectodermal derivation (Gomez, 1988). Histologically, the hamartomas display a disorganised 

and excessive cell or fiber proliferation without malignant transformation. 
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In the lesions from TSC patients the normal cellular organisation is often lost and cells are 

either not correctly differentiated, or are of the wrong type and in the wrong location 

(Johnson ef al., 1991). In the brain, cortical tubers contain large cells of unknown origin. The 

other two brain lesions, sub ependymal nodules and sub ependymal giant cell astrocytomas, 

are histologically identical and they display disordered hypertrophic neurons and enlarged 

astrocytes. 

Most skin lesions consist of a variety of (vascularised or non-vascularised) hamartomatous 

connective tissue, often characterised by the presence of large neuron-like cells (N-cells). N­

cells are large, slowly dividing, dendritic cells, that arise from a primitive precursor of both 

neurons and glia-cells (Johnson ef al., 1991). The hypomelanotic macules are distinct from 

the hamartomatous skin lesions. The pathology shows a reduction in size, number and 

pigmentation ofthe melanosomes (Fitzpatrick, 1991). 

The two most frequent kidney lesions are histologically different from each other. The 

angiomyotipoma consists of vascular, fatty and smooth muscle tissue and also these lesions 

often contain N-cells. The cyst is a cloved epithelium-lined cavity, filled with fluid. Renal 

histopathology of cysts from TSC patients resembles autosomal dominant polycystic kidney 

disease (ADPKD) (Torres ef al.,1994), however clinical onset is often early (Webb ef 

al.,1993) and significant cystic kidney disease in TSC fi'equently reflects additional 

mutational involvement ofthe PKDI gene (Sampson ef al., 1997). 

In summary, most TSC lesions contain abnonnal cells, which are often in wrong locations. It 

has been suggested, therefore, that TSC is a disease of abnormal cellular growth, migration, 

differentiation and organisation (Jolmson ef al., 1991). 

1.3 Treatment and life expectancy of TSC patients 

The life expectancy of TSC patients depends largely on the complications caused by the 

lesions in the brain and the kidneys (Shepherd ef al., 1991). Treatment of TSC patients is 

dependent on the type of lesion and affected organ system, and is usually symptomatic. 

Seizures can often be suppressed by medication, but 50% of the children with epilepsy 

develop cognitive dysfunction. Complications arising from brain lesions cause a higher 
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mortality rate amongst young TSC patients. Most skin lesions do not need treatment, but laser 

therapy is often applied to facial angiofibroma for cosmetic reasons. For symptomatic 

hamartomatous lesions in organ systems, surgery may be the method of choice. However, 

recent studies indicate that a conservative 'wait and see' policy may be better than early 

invasive surgery (Jozwiak, 1996). Complications arising from the renal lesions are the most 

frequent causes of death in TSC patients at adult age. Renal angiomyolipomas can be treated 

by selective embolisatioll, which helps to prevent fatal bleeding and postpone progressive 

renal insufficiency (Fleury, 1989; van Baal ef al.,1994). In mildly affected patients, many 

symptoms remain uunoticed until far in adulthood, and these patients have 'a nonnal life 

span'. 

1.4 Genetics of TSC 

Tuberous sclerosis was first recognised as a hereditary disorder in 1913 by Berg (Gomez, 

1988). The pattern of inheritance is autosomal dominant with high penetrance but an 

extremely variable expression. The prevalence of the disease has 'been subject of study since 

1935 and most recent data suggest that it may be as high as 1:6000 (Osborne el ai., 1991). The 

prevalence of TSC is probably underestimated because of the existence of very mild clinical 

phenotypes which are not recognised as TSC. 

TSC is a genetically heterogeneous disorder with loci on human chromosomes 9q34 (TSCl) 

and 16p13.3 (TSC2). About half of the multiplex families are linked to the chromosome 16 

locus and the other half to chromosome 9, suggesting an equal proportion of TSCI versus 

TSC2 mutations (Kwiatkowski el ai.,1993). There seems to be no clear correlation between 

the phenotype and the TSC locus involved. At least 60% of the TSC patients have non­

affected parents, representing sporadic cases with a de IlOVO mutation (Sampson et al., 1989; 

Osborne ef al., 1991). Quite recently, a rew cases of somatic mosaicism have been observed 

(Verhoef el ai., 1995; van den Ouweland, personal communication). In these families, parents 

(either apparently unaffected or affected with TSC) of a TSC patient were shown to carry the 

mutation in part of their leukocytes. However, little is known about the frequency of somatic 

mosaicism in TSC. 
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1.5 Tumour suppressor genes 

In 1971, Knudson proposed a model for tumour suppressor genes, in which the development 

of a tumour requires two hits. In familial cases, the fIrst mutation is in the gennline and the 

second hit is a somatic mutation, while in sporadic cases both mutations are somatic. Tumour 

suppressor gene products constitute key points in many complex cellular pathways that 

regulate proliferation, differentiation, apoptosis and response to genetic damage (Haber and 

Harlow, 1997). TP53 (P53) is considered to be the most frequently mutated gene in human 

cancers. Patients with Li-Fraumeni syndrome show a genll1ine mutation in t1ils gene (Li et 

al., 1988), but the gene is also mutated in more than 50% of all human cancers (Levine, 1997; 

Helin and Peters, 1998). Tumour suppressor genes have been implicated in several Mendelian 

tumour syndromes, which are summarised in table 1.2, but they are also involved in the 

progression of several common, nonheritable fonus of cancer, such as non-familial colorectal 

cancer (Stanbridge, 1990). 

Table 1.2 Tumour Suppressor Genes 
Gene (gene product) 
RBI (plIO) 
WTl 
TP53 (P53) 
NFl (neurofibromin) 
NF2 (schwamlOmin) 
DCC 
APC 
BRCAI 
BRCA2 
PTENiMMACI 
VHL (elongin) 
TSC I (ham.rtin) 
TSC2 (tuberin) 
MENI (mcnin) 
STKII 

Possible function 
cell cycle regulation 
zinc finger protein 
cell cycle regulation 
GTPase activating protein 
actin-cytoskeleton organisation 
cell surface interactions 
transcriptional regulator 
transcriptional regulator 
unknown 
novel phosphatase 
mRNA processing 
unknown 
GTPase activating protein 
unknown 
serine threonine kinase 

Familial syndrome 
retinoblastoma 
Wilm's tumour 
Li-Fraumeni syndrome 
neurofibromatosis type I 
neurofibromatosis type II 
colorectal cancer 
polyposis colorectal cancer 
breast and ovarium cancer 
breast and ovarium cancer 
Cowden disease 
von Rippel-Lindau disease 
tuberous sclerosis complex 
tuberous sclerosis complex 
multiple endocrine neoplasia type 1 
Peutz-Jeghers syndrome 

Although the precise cellular defect in TSC is still unknown, the multiple, random, focal 

distribution ofTSC lesions suggests that both TSC genes act as tumour suppressor genes. hl 

the case of TSC, a first lilt in the gennline results in a mutation in all somatic cells, and a 

single secondary, postzygotic mutation is supposed to be necessary for tumour fonnation 

(figure 1.3). This second somatic hit is often detected in lesioIls associated with the disease by 
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loss of heterozygosity (LOR) at polymorphic marker loci in the vicinity of the disease gene 

(table 1.3). 

gamete from 
affected parent 

gamete from 
normal parent 

Figure 1.3 Tumour growth in TSC patients. In one of the gametes from a parent, affected with 
TSC, the gene is mutated. A second somatic mutation (2nd hit) in the homologous wild-type copy of 
the gene results in complete loss of the gene and will lead to uncontrolled growth. 

Table 1.3 LOB frequency in different TSC lesions 
number LOR LOn no LOR 
investigated at 16p13.3 at 9934 detected (%) 

Angiomyolipoma 79 37 6 36 (45%) 
SEGA 23 5 2 16 (70%) 
Cortical tuber 20 3 I 16 (80%) 
Facial angiofibroma to 3 0 7 (67%) 
Cardiac rhabdomyoma 9 4 0 5 (56%) 
Renal cel1 carcinoma 7 1 4 2 (28%) 
Shagreen patch 2 I 0 1 (50%) 
SEGA=subependymal giant cell astrocytoma; data depicted from Green et at, 
(1994a-1994b). Carbonara e/ al. (1994). Renske e/ al. (1995a). Bjomsson 
e/ al. (1996) and Sepp e/ al. (1996), 
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The growths in TSC patients, with the exception of renal cell carcinoma, are mostly benign 

(hamartomas). Other multiple hamartomatous syndromes are Cowden disease (Mallory, 

1995; Liaw el al.,1997) and Peutz-Jeghers syndrome (Westennan ef al.,1997; Jenne el 

al., 1998). 

LOH is most frequently observed in the angiomyolipomas (AMLs). Since not all lesions have 

been investigated for LOH, it remains to be elucidated whether all lesions associated with 

TSC develop by means of two hits. Overall, LOH is more often found at 16pl3 than at 9q34. 

One exception may be renal cell carcinoma (RCC), which shows more often loss at 9q34, 

although only a limited number of cases have been investigated. LOB in the TSC2 region has 

also been detected in isolated AML (Henske ef al., 1995b) and SEGAs (Gutman ef al., 1997), 

not associated with the tuberous sclerosis complex. Whether the TSCI gene is involved in 

isolated tumours needs to be investigated. 

1.6 Towards the identification of the TSC genes 

Mapping of the TSC genes 

The first claim of linkage ofTSC was to the ABO bloodgroup locus on9q34 in 1987 (Fryer 

el al.} 1987); hence this locus has been designated TSCl. However, subsequent analysis of 

families by other groups showed no evidence for linkage to 9q34 (Nortlmlp ef al., 1987; 

Renwick., 1987; Kandt el al., 1989). The most likely explanation for this discrepancy was that 

gene defects at one or more additional loci may also cause TSC, a phenomenon known as 

locus heterogeneity. Proof came from a series of linkage studies in a large number of 

additional families from all over the world which not only confinued a TSCI locus on 

chromosome 9q34, but also indicated the existence of a second locus (Sampson et aI., 1989; 

Janssen el al., 1990; Haines el al., 1991; Povey ef al., 1991; Northrup ef al., 1992). Additional 

candidate loci were indicated by linkage analysis on chromosome 14 (Kandt el al., 1991) and 

by the detection of chromosomal rearrangements in combination with linkage shldies 

inclnding a trisomy of a portion of chromosome Ilq (Clark ef al.,1988; Smith ef al., 1990) 

and a translocation event involving chromosomes 3p and 12q (Fahsold ef al.,199Ia1b). 

However, these loci could not be confmlled in subsequent shldies (Sampson el al., 1992). A 

genome search on a subset of families which did not show linkage to chromosome 9, fmally 

yielded a second major TSC locus on chromosome 16p13.3 (TSC2) (Kandt ef al., 1992). 

19 



Additional studies in a large number of TSC families using methods for linkage analysis 

under locus heterogeneity defined only these two TSC loci without significant evidence for a 

third locus (Kwiatkowski ef al., 1993; Janssen ef al., 1994; Povey ef al., 1994). 

Identification of the TSC2 gene 

The TSC2 gene was cloned in 1993 (European TSC2 Consortium, 1993), one year after 

linkage had been fonnd. This was greatly facilitated by the availability of patients with gross 

rearrangements of the TSC2 region on chromosome 16. This included an unbalanced 

translocation in a family with TSC and ADPKD, and a few large deletions involving the tip 

of the short am1 of chromosome 16 innon-TSC patients. The 5.5 kb TSC2 transcript contains 

very short 5' and 3' untranslated regions. The 41 coding exons cover approximately 45 kb of 

genomic DNA and exens 25 and 31 are altematively spliced (Maheshwar ef al., 1996). The 

TSC2 gene shows a diverse mutational spectmm including large rearrangements, deletions, 

insertions, and llonsensc- and missense- mutations (Brook-Carter et al., 1994; Kumar et al., 

1995a-1995b-1997; Verhoef ef al., 1995-1998;Vrtel ef al., 1996; Wilson ef al., 1996; 

Maheshwar ef al., 1997; Au ef al., 1997-1998; Wang ef al., 1998). 

The TSC2 gene encodes a 1807 amino acid protein, designated tuberin, with a predicted 

molecular mass of 200 kDa. Analysis of the amino acid sequence of hlberin indicated that a 

region close to the carboxy-tenninus (aa 1593-1631) showed homology to the GTPase 

activating domain of rap I GAP (European TSC2 Consortium, 1993). Other possibly 

functional domains include a N-temlinal leucine zipper (aa 81-102), a C~terminal nuclear 

localisation signal (aa 1434-1451) (Tsuehiya ef al., 1996) and three potential transcriptional 

activation domains (exons 30-32 and 41) (Tsuehiya ef al., 1996). 
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1.7 Aims oflhe study 

Tuberous sclerosis shows a complex clinical phenotype and the prospect for fInding suitable 

therapy is hampered by the lack of knowledge about the underlying biochemical defect. After 

the TSC2 gene had been cloned in 1993, one of the first clinical applications was mutation 

analysis for diagnostic purposes. In our laboratory, about 113 of the TSC2 gene has been 

screened and mutations have been detected in 15% of the TSC patients. This provides 

molecular diagnosis, including a prenatal test to TSC2 families. Secondly, the first steps have 

been undertaken to leam about the function oftubeIin, but understanding why a defect in the 

TSC2 gene causes TSC does not only involve the function of tuberin, but also the gene 

product ofTSCl and possibly other proteins. 

Therefore, the main goal afmy project was to identifY the TSCI gene 011 chromosome 

9 using a positional cloning approach, allowing mutation analysis in patients and functional 

studies including both the TSCI and TSC2 proteins. 

When tllis project started, the TSCI gene had been mapped on 9q34 between the 

markers D9S149 and 09S114, a critical region of approximately 3 cM. A consortium, 

including groups from Boston, Cardiff, London and Rotterdam, was fonned with the aim to 

construct a cosmid contig covering the TSCI candidate region and to identify new markers 

from the region to narrow down the TSCI region. In addition, different gene isolation 

techniques were combined to identify as many positional candidate genes as possible from 

the critical region. 
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POSITIONAL CLONING 

Disease genes can be identified using different approaches. The two most common cloning 

strategies are fimctional cloning (Ruddle, 1984) and positional cloning (Collins, 1992), Whcn 

the primary protein defect is known, the conesponding gene can be cloned using antibodies 

raised against the protein or oligonucleotide probes against the deduced eDNA sequence 

(functional cloning). However, in most hereditary diseases hardly anything is known about 

the protein or biochemical defect, and positional cloning is applied to identify the gene of 

interest. One of the first genes identified by this approach was the Duchcuue muscular 

dystrophy (DMD) gene (Monaco e/ al., 1986). In the past 10 years, the human genome project 

has contributed many DNA polymorphic markers, appropriate physical maps, expressed 

sequence tags (ESTs) and genomic sequence data that facilitates positional cloning. 

Nowadays the positional cloning strategy is often combined with the positional candidate 

approach (Ballabio, 1993). It is expected that a shift will take place in the next decade 

towards studies that investigate the function of all these new genes, how they are regulated 

and how their products interact. 

2.1 Positional cloning in general 

Genetic mapping 

Positional cloning comprises different steps and starts with genetic mapping. During this 

process the inheIited trait is localised to a chromosome locus and a candidate region is 

defined. In some cases, cytogenetically visible chromosomal abnormalities, for example 

trans locations, can give a direct indication of the chromosomal region involved. In most 

cases, the genome needs to be screened with polymorphic markers (linkage analysis) in 

multiplex families to find a marker close to the disease gene locus. During linkage analysis, 

individual meioses are analysed to test whether the trait segregates with any of the 

polymorphic markers. 

After the chromosomal position has been defined, refined genetic mapping is initiated, which 

involves a detailed Shldy of the IllOSt useful recombinant events. Recombination events can 

be very helpful in defining and narrowing down the critical region. In addition, refmement of 

the region can also result from large rearrangements, which are usually detected by 
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fluorescence in situ hybridisation (FISH) and longe range mapping by pulsed field gel 

electrophoresis (PFGE). The resolution of fine mapping is usually limited to about I eM 

(Collins, 1992). depending on the number of available informative meioses. 

Physical mapping 

The second step of the positional cloning process involves physical mapping, during which 

genomic clones are isolated and constmcted in an overlapping contig. Some of the most 

commonly screened libraries consist of yeast m1ificial chromosomes (Y ACs). bacterial 

artificial chromosomes (BACs), PI clones and cosmid clones. Nowadays, many different 

genomic gridded libraries are available. Clones up to lOOkb like cosmids, Pis and BACs can 

be fingerprinted by shared reshiction fragments. Y ACs in general have insclis too large to 

constmct detailed restriction and transcript maps and are physically mapped by the use of 

sequence tagged sites (STSs) or YAC fragmentation (Pavan et al., 1991). More recently 

FISH-derived methods have been developed that allow finer mapping at the level of the 

extended single DNA fiber, collectively called FiberFISH (Heislianen et al., 1996; Heng et 

at., 1997). An important application of Fiber FISH is to order individual genomic clones, and 

to estimate the size of gaps within contigs, because a very high resolution of 1-400 kb can be 

obtained (Michalet et al .• 1997). 

Identification oftranscripts 

During and after the mapping studies, transcripts can be isolated from the critical region using 

different techniques. Some of the most commonly used methods are cDNA screening, cDNA 

selection (expression dependent) and exon trapping (not expression dependent). 

The most traditional method to isolate genes from a candidate region is to screen eDNA 

libraries (cDNA screening). A large selection of probes can be applied to tlus method. The 

most widely used probes are of genomic origin, for example single copy fragments, whole 

cosmid clones and epG island probes. The technique is simple, but is too labour-intensive for 

the generation of a transcript map from an extensive candidate region. 

Nowad{lys, the most commonly used large scale gene isolation teclmiques are cDNA 

selection (Lovett et al.,1991; Parimoo et al.,1991) and exon trapping (Duyk et ai., 1990; 
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Buckler ef al., 1991). cDNA selection is based on the hybridisation of a selection of 

inllllobilised genomic DNA to a pool of cDNAs. Several direct selection strategies have been 

described, differing predominantly in the type and preparation of genomic DNA, type of 

eDNA and whether the hybridisation is perfonned in solution or 011 membrane (Lovett e/ 

al., 1991). Figure 2.1 represents the end ligation coincident sequence cloning (EL-CSC) 

method (Brookes ef al., 1994). 

Step 1 

Step 2 

Step3 

Step 4 

DNA source I DNA source II 

.~, 

.0~'-' 
o~tedcDNA 
inserts Egated 10 ~Mer 

• 
digested oosmld DNA ~galed 
10 blot:nylated rli1ker 

'" / lAD formation 

~ 
capture OO$Illld DNA an<.! hyt>OOlSed cDNAs 
on slreptavldil1-«laled magr,elic beads 

e!ule bound cDNAs, 
PCRaIT'~t::y 

~ '" ~ clone and chaiacterisa 
(> -v selected eDNAs 

Figure 2.1 eDNA selection protocoi (Brookes ef al.,1994) 
Step 1. addition ofbiotinylated synthetic oligonucleotides (catch-linkers) to the input DNA source II 
Step 2. inter-resource duplex (IRD) fomlation after preblocking of high copy repeat sequences 
Step 3. isolation of the complex via the biotin moieties and steptavidin coated magnetic beads 
Step 4. end~ligation reaction and peR amplification 

In brief, a selection of cosmids from the candidate region are hybridised in solution to a pool 

of amplified cDNA from a libraty or tissue. The cosmids are captured on beads via biotin 
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moieties and after several washing steps, the cDNAs are eluted, peR amplified, cloned and 

characterised. 

Exon trapping is based on the detection of coding sequences within genomic DNA, which are 

selected for by functional splice sites present in the DNA using specific exon-trap vectors. 

Neither cDNA selection nor exon trapping are sufficient to isolate all the transcripts from a 

region, and therefore, both techniques are usually combined dming a positional cloning 

effort. 

EST mapping and genomic sequencing 

The goal of the human genome project (HGP) is to unravel the DNA code from the 24 

different human chromosomes. An important aspect is the large-scale sequencing of random 

cDNAs from various tissues. These expressed sequence tags (ESTs) are partialS' and 3' 

sequence of a cDNA clone and are deposited in a public database named dbEST. ESTs that 

have already been assembled into contigs are present in a separate database called Unigene. 

Only a limited number of the ESTs have been mapped to chromosomal regions, but ESTs can 

contribute to the traditional positional cloning strategy by selecting the ones mapping to the 

region of interest or the ones with an interesting homology. Large scale sequencing of contigs 

from specific regions of interest is also a development from the last few years and tIils gives 

the most detailed infonllation about a candidate region. The raw DNA sequence can be 

analysed to predict coding sequences (exons) and promotors in the region (GRArr.; Xu ef 

al., 1994). 

Testing candidate genes 

In principle, every gene isolated from a candidate region should be tested for mutations in 

patients, using different techniques. Southel11 blot analysis is applied to screen for larger 

mutations. This method allows for testing a large collection of patients in a short period of 

time. Smaller mutations are usually screened for by single strand confonnation 

polymorphism analysis (SSCP) (Orita ef al., 1989) , heteroduplex analysis (HD) (Ganguly ef 

al., 1993) and direct sequencing. Both HD and SSCP rely on changes in electrophoretic 

mobility due to differences in 3D-structure of the DNA molecules and the majOlity of small 

mutations in a gene will be detected by these methods. 
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Sequence changes leading to a premature stop (deletions, insertions and nonsense mutations) 

are usually regarded to represent disease~causiI1g mutations. Missense mutations are more 

difficult to distingnish from polymorphic changes and additional suppo11 is required. Tills can 

be provided in several steps: 

1) In sporadic cases, both parents are tested for the sequence change. A de novo change 

in the patient is usually considered enough evidence. 

2) In familial cases, it is required that the mutation segregates with the affected persons 

in the family and 100-200 unrelated control chromosomes are tested for the same 

sequence change to evaluate the possibility that the mutation represents a relatively 

frequent polymorphism. 

2.2 Positional cloning applied to the TSCI gene 

2.2.1 Genetic mapping in 9q34 

Linkage for TSC was found with the ABO bloodgroup locus and the Abelson oncogene on 

9q34 in 1987 (Fryer ef al., 1987; Cormor ef al., 1987). TillS locus was denoted TSCI and 

subsequently, more markers from this specific region were isolated and tested to find 

infonnative markers close to the disease gene (figure 2.2). 

24 2J 22 21 13 121111 12 1321.121.221.322.122.222.3 313<'.33 34.1M.2M.3 

9p( _I'llli?%%?i _ • _ I }9q 

I I S2f2l1 I I 
514952127 5183051199 51198 

\ , 
S67 
UcM 

S158 

I I IsA.3IoJJ s,!1 I I 
ABO 5164 82135 5150 5122 566 A65114 

Figure 2.2 The TSCI region on chromosome 9. G-banded methaphase chromosome 9, with the 
TSCI region in 9q34. A detailed map of polymorphic markers in the region is included. 
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Figure 2.3: Candidate TSCI intervals, defined by recombination events in families with TSC. 
The markers defining the different candidate regions are listed at the top (not on scale, 
cen=centromere; tel=telomerc) A) Critical region as defined in 1994 in a review article; B) 
conflicting critical intervals defined by recombination events in affected individuals. Both 
recombinants were withdrawn because of an initial false-positive clinical diagnosis (pitiat) and 
misclassification of marker data (Janssen); C) independent recombinants in affected TSC patients; D) 
independent recombinations identified in two families in unaffected family members. TIle closed 
boxes represent the critical interval defined by the different recombination reports. 

For the TSC1 gene, a region spanning 3-4 eM between markers D9S114 and D9S149 was 

defined to be the critical region (Sampson and Harris,1994) (figure 2.3a). This interval was 

supported by a somatic LOH event at 9q34, in which D9S114 and D9S149 were the most 

proximal and distal markers retained in an astrocytoma from a patient from a TSCl-lil1ked 

family (Carbonara ef al., 1996). 

Refining the critical region in affected individuals proved to be difficult. because two groups 

reported conflicting data in chromosome 9-linked families (Janssen et al.,1994; Pitiot et 

al.,1994) (figure 2.3b). Novel markers helped to refine the TSC1 region; D9S2127 and A6 

were considered to be the centromeric and telomeric boundaries of the interval (Kwiatkowski, 

personal communication; Au ef al., 1996) (figure 2.3e). 

In addition, nvo independent recombinations had been described in unaffected individuals in 

two different TSC families (Nellist ef al.,1993; Haines ef al.,1991) (figure 2.3d). In each 

family, two individuals from successive generations with no evidence ofTSC disease carried 

the same recombinant chromosome. Although the clinical phenotype can be very mild in 
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some patients, the penetrance of TSC is almost complete. Thus, this obsen'ation was 

sufficient to focus our search on the centromeric part of the region between D9S150 and 

D9S2127. 

2.2.2 Physical mapping in 9q34 

Isolation of genomic clones from 9q34 

Attempts at Y AC cloning revealed a poor representation of tllis region in various libraries. An 

added disadvantage was that most of the Y ACs isolated were chimeric, deleted or rearranged 

(Nellist, 1994). At that time, a chromosome 9-specific cosmid libraty became available 

(Lawrence Livennore Chromosome 9 Cosmid Library; kindly provided by Pieter de Jong) 

and a cosmid-based strategy was followed as an alternative to build a contiguous contig. 

Contig assembly 

Five different markers from across the candidate region (D9S149-ABO-DBH-D9SIO­

D9S114) were chosen as starting points and several cosnlid contigs were constmcted (chapter 

2.6.1). Newly isolated cosmids were EeaRl fingerprinted and the original cosmid probe was 

hybridised to the filter to orientate the cosmids in the contig. End fragments and inter alu 

PCR products generated from the cosnlids were used in a new screening. Another method, 

HinjI fingelprilltillg, was employed by our collaborators in London (Nahmias et al., 1995). 

The two different fingerprinting methods resulted in the construction of a 1.7 Mb contiguous 

cosmid contig, spamling the entire candidate region between D9S149 and D9S114 

(Homigold ef al" 1997) (chapters 2.5 and 2.6.2). 

The gap between the cosmids 180Ft and 50D9 remained uncloned and the size of the gap 

was detennined using dynamic molecular combing (DMC) in combination with fluorescent 

hybridisation (Michalet ef al., 1997). With this technique human genomic DNA is being fixed 

as parallel DNA fibers, aligned in a single direction, on a cover slip. Cosmid probes on both 

sides of the gap were hybridised to the DNA and the size of the gap was estimated to span 30 

kb of DNA (figure 2.4). 

31 



117F9 165A9 

41.2 ± 2.6 kb [62] 

255A6 220F3 180F1 

II 

/ 

10.0 ± 1.4 kb[85] 

5009 

55.0 ± 3.0 kb [54] 

20 kb 

Figure 2.4 Genomic map of part of the 9q34 region. Distances and gaps in the TSCI cosmid 
contig were measured on combed total human genomic DNA (Michalet el al.,1997). Cosmid probes 
117F9 and 165A9 were used as controls, because the distance between those cosmids was known. 
The gap between cosmids 255A6 and 220F3 and between cosmids 180Ft and 50D9 was estimated to 
be 10 and 30 kb, respectively. 

2.2.3 Identification oftl'3nscripts from the cosmid contig 

Different complementary gene isolation methods were combined in the different groups in the 

search for the TSCI gene. In our group we isolated genes using expressioll~dependent eDNA 

identification methods. Genes were isolated by eDNA screening with cosmid~derived 

hybridisation probes and by eDNA selection (figure 2.1). Other groups in the consortium 

used expression-independent gene identification techniques, like exon trapping (London, 

Boston) and genomic sequencing (Whitehead Institute). 

eDNA screening 

Two different transcripts were isolated from the centromeric part of the critical interval by 

screening a gridded infant brain eDNA library (gift from Bento Soares). B11 was picked up 

using a single copy EcoRI fragment of 4.5 kb from cosmid 99b 11. More sequence data were 

derived from additional eDNA clones, which had been isolated from a fetal brain library and 

by computer EST analysis. The B 11 gene represented a novel gene, since no sequence 

homology with any known protein or motif in the database was detected. A second gene, B2, 

was cloned by hybridising cosmid 115b2 to the infant brain library. The isolation of the fhll 

length transcript will be discussed in more detail in chapter 2.2.4, because mutations detected 
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in this gene identified it as the TSCI gene. 

eDNA selection 

Genes isolated by tltis technique were the carboxyl ester lipase gene (CEL), RaIGDS, 9b9b 

and CIO. RalGDS (Humphrey ef al.,1997) and 9b9b were also isolated by exon trapping. 

CEL represented a known gene, previously mapped to 9q34 (Taylor ef al.,1991). We were 

able to locate tltis gene more precisely at 9q34 in the cosmid contig, just proximal of ABO. 

C I 0 and 9b9b were new transcripts of unknown fimction, but RaIGDS, a member of the ras 

superfamily of small GTPases, seemed a particulary strong candidate, because the TSC2 gene 

contains a putative GTPase activating domain. This gene was extensively tested for mutations 

in TSC patients, but no abnormalities were detected (Humphrey ef al., 1997). 

Exou trapping 

Exon trapping was perfomled by two of the collaborating groups (Boston and London) on a 

large part of the cosmid contig. Many exons were isolated from the region and are 

summarised in the transcript map in chapter 2.5. 

Genomic sequencing of the cosmids 

The ESTs that mapped to 9q34 and the ones with an interesting homology (good candidates 

for the TSCI gene on the basis of homology in the database to other genes or domains) were 

selected for more precise mapping to the candidate TSCI interval. The sequencing of our 

contig resulted in additional ESTs and putative new transcripts in the region. Cosmid 

sequences were analysed using GRAIL2 (Xu ef al., 1994). This program predicts exons, CpG 

islands, promotor regions and poly-A sites from genomic sequence. About 80% of the 9q34 

cosmid contig between markers D9S2127 and A6 has been sequenced and the sequence has 

been deposited in GenB.nk. 

2,2,4 Testing candidate genes for mutations 

All genes isolated by the different groups in the consortium were tested for mutations in TSC 

patients. In principle, the mutation detection scheme consisted of the search for larger 

mutations by Southem blotting and the detection of small deletions and point mutations by 

SSCP, HD and direct sequencing. 
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Southern blot analysis 

Our initial choice of mutation analysis was the search for deletions and insertions using 

Southern blots. In about 10% of our collection ofTSC families and sporadic cases, a mutation 

has been detected in the TSC2 gene using tlils method (van den Ouweland, personal 

communication). DNA from over 200 unrelated patients, not having a TSC2 mutation, was 

tested for larger mutations in the TSCI region on 9q34 on Southem blots using four different 

restriction enzymes (EcoRI, HindIIL TaqI and PsI!). All isolated eDNA clones were tested in 

our set of patient DNAs, but none of the candidate genes showed an aberrant banding pattern. 

SSCP and HD analysis 

The sequencing project enabled exon predictions in the region to be made and a new strategy 

was developed to screen every exon from the region for small mutations in a selection ofTSC 

patients from chromosome 9-linked families by SSCP or HD analysis. In one of the largest 

exons from the region, several shifts were detected in DNA ofTSC patients by Kwiatkowski 

and colleagues. After sequencing, all shifts were shown to reflect tnmcating mutations and 

were therefore considered to represent disease-causing mutations. TIlls exon was part of the 

previously identified B2 gene (see chapter 2.2.3). 

2,3 Identification of the TSCI gene 

The 31 end ofthe B2 gene originated from cosmid 115b2, and serial screeillngs resulted in the 

isolation of a 4.5 kb fetal brain cDNA clone. No open reading frame was present, but a major 

8.6 kb transcript could be detected on a Northem blot in every tissue tested. The KIAA0243 

EST clone of 6.8 kb (Nagase el al., 1996) showed 100% homology to the fetal brain clone and 

contained an open reading frame of2 kb. Once it was shown that B2 encoded the TSCI gene 

by the identification of mutations in TSC patients, the complete cDNA was detelmined. The 

5' end of the TSCI gene was amplified from fetal brain by 5'RACE (Rapid Amplification of 

cDNA Ends). All intron-exon boundaries could be identified from the genomic sequence 

from two cosmids containing the 5' end of the gene (63gI0) and the 3' end of the gene 

(l15b2) that had been sequenced. The TSCI gene is comprised of23 exons, of which 21 are 

coding, and spans a genomic distance of 45 kb. The direction of transcription is towards the 

centromere (figure 2.5). 
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Figul'e 2.5 Genomic stl'uctul'e of the TSCI gene. Representation of the TSCI gene with its 23 
exons, of which 21 are coding (not on scale). The startcodon is in exon 3. Thee cDNA clones are 
indicated at the bottom by closed boxes; a 1.7 kb 5' RACE product (exon 1-15); an RT-PCR product 
of 2 kb (exon14-23); a 4.5 kb fetal brain clone (3' untranslated region, striped box).The TSCt gene 
spans about 45 kb of genomic DNA. 

(A) 
[exon IaJ [exon lb] [exon 2] 

S'-tggagggactgtgag gtaaaeagetgagggggaggagacggtgg tgaccatgaaagacaccaggttgacagcactggaaactgaagtaccagttg 
tcgctagaacag tttggtagtggccccaafgaagaaccttcagaacctgfageacac ......... -3' 

[exon 3J 

Different splice fonus; 

(8) 
[exon la] [exon 2] 

S'-gtgctgtacgtccaagatggcggcgcctgtaggctggagggactgtgag tgaccatgaaagacaccaggttgacagcactggaaactgaagtaccagttgt 
cgctagaacag utggfag tggccccaa tgaaga accff cagaacctgta geae ae ......... -3' 

[exon 3] 

(C) 
[exon Ib] [exon 3J 

S'.cagctgagggggaggagacggtgg tttggtagtggccecaatgaagaaectteagaacctgtageae3c ...... -3' 

FigUl'e 2.6 Different splice variants in the S'UTR. (A) Most extended constmct; cxonla and Ib 
are contiguous on the genomic map. The startcodon of the TSCI gene is in exon3. (B) part of exon I 
(lb) is spliced out. (C) exon 2 is spliced out. 

Several altemative splice forms that are variable at the 5' end have been isolated (figure 2.6; 

unpublished results). The functional significance of these alternative fonns remains to be 

investigaled. 
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2.4 Mutational spectruJll of the TSCI gene 

SSCP analysis of the 21 coding exons was perfonned in our collection of225 unrelated TSC 

patients and 29 mutations were detected. All types of small mutations leading to a premature 

stop have been observed: small deletions/insertions, nonsense mutations and splice-site 

mutations (figure 2.7), as well as a small number of potential missense mutations. The 

majority of the mutations are clearly inactivating and about half afthe mutations are clustered 

in eXOllS 15 and 17. The disease-causing mutation has been detected in 17% of our familial 

cases (small families and families linked to 9q34) and in II % of sporadic TSC patients. After 

clinical evaluation of the patients with a TSCI mutation, we find no evidence for a genotype­

phenotype correlation in TSCI disease (chapter 2.6.4). 
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367deiT 1240deIA 

Y312X 
1499deiT 

2318ins28 
2328deiCT 
R692X(5x) 

2787deiG 
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TAA 

Figure 2.7 Distribution of mutations in the TSCI gene 'The nomenclature of the mutations is 
according to the Ad Hoc Committee on Mutation Nomenclature. (1996). The clinical data of the 
patients with a mutation in the TSCI gene are summarised in chapter 2.6.4. 
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2.5 A transcript map ill 9q34 
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Detailed EcoRi restriction map of the 1.7 Mb cosmid contig covering the TSCI region in 9q34. 
Cosmids are shown below the EcaRI map. Vertical arrows represent RFLP markers, STSs and 
microsatellites. Genes are shown above the restriction map as thick bars and the direction of 
transcription, when known, is indicated by an arrow. 
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Abstract 

Tuberous Sclerosis (TSC) is a heterogeneous mUltisystem disorder, with loci on 9q34 (TSCl) 

and 16p13.3 (TSC2). The TSC2 gene has recently been isolated, wltile the TSCI gene has 

been mapped to a 5-cM region between the markers D9S149 and D9S1l4. In our effort to 

localise and clone TSCl, we have obtained three adjacent cosmid contigs that cover the core 

of the candidate region. The 3 contigs comprise approximately 600 kb and include 80 

cosmids, 2 PI clones, 1 YAC, 5 anonymous markers and 4 sequence-tagged sites. The ABO 

blood group locus, the Surfeit gene cluster, the dopamine B hydroxylase gene (DBH) and 

V A V2, a homologue of the vall oncogene, have aU been mapped within the cOlltigs. Exon 

trapping and mutation screening experiments, aimed at identifying the TSC 1 gene, are 

currently in progess. 

Introduction 

Tuberous sclerosis (TSC) is an autosomal dominant multisystem disorder. The brain, 

skin, heart and kidneys are often affected and almost all other tissues and organs may be 

involved, except muscle syncytia [1]. The disease shows a high penetrance with variable 

expression and is known for its locus heterogeneity, with one locus mapping to chromosome 

9q34 (TSCl) and another to chromosome 16p13.3 (TSC2) [2]. The number offantilies linked 

to each locus is approximately equal and there is no significant evidence for a third locus (3). 

The TSC2 gene has been isolated [4] and both genes may act as growth- or tumour­

suppressors, since loss of heterozygosity (LOH) has been demonstrated on 9q34 [5-7] or 

16p13 [7] in various hamartomatous tissues from patients with TSC. 

The chromosome 9 locus for tuberous sclerosis, TSCl, is tightly linked to the ABO 

blood group locus [8] and maps in a gene-rich region on chromosome 9q34. Since the iltitial 

linkage report by Fryer et al. [8], the TSC1 region has been refined to a region of 5 cM 

between D9S149 and D9S114 [3,9-14]. However, there is no consensus on the exact position 

of TSCI within this interval, since some groups have found recombinants in favour of a 

position proximal to ABO and the dopamine B hydroxylase gene (DBH), while other groups 

have presented data supporting a location distal of these markers [IS]. The conflicting 

observations have several possible causes, including misclassification of individuals with 

only minor clinical findings or non-linkage of one or more families. 

Several genes have been mapped within the TSCI candidate region, including ABO, 
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DBH, the Surfeit gene cluster and VA V2 [16-18], while other disorders genetically linked to 

ABO include torsion dystonia [19] and nail patella syndrome [20-21]. 

In this paper we present the results of a contig assembly and gene mapping effort, 

focnsed on part ofthe TSCI candidate region around ABO and DBH. Our detailed map spans 

600 kb, corresponding to more than 2 eM of the TSCI critical region. Eight genes and several 

known and novel genetic markers have been precisely positioned on a genomic EcoRi map 

between D9S149 and D9S1l4. 

Materials and Methods 

Libraries 

The ICI Y AC library [22] was accessed through the UK Human Genome Mapping 

Resource Centre and sets of primary, secondary and tertiary pools for peR screening were 

provided by R. Elaswarapu. Primary pools from the st. Louis Y AC library [23] were supplied 

by J. den Dunnen from the Department of Human Genetics in Leiden. The PI library was 

made from human foreskiu fibroblast DNA [24]. The library was gridded into 125 96-well 

plates with approximately 12 different P I clones per well and pools were made for PCR 

screening. The chromosome 9-specific cosmid library LL09NCOl"P" was constmcted at the 

Biomedical Sciences Division, LLNL, Livennore, CA 94550, USA under the auspices of the 

National LaboratOlY Gene Library Projects sponsored by the US Department of Energy. The 

library was replicated on gridded filters as described [25] at the Y AC screening core of the 

Department of Human Genetics in Leiden. Two sets of membranes were used to make pools 

for PCR screening [26]. The nomenclature of the cosmids in the contigs is the same as the 

nomenclature of the library source from which they were obtained. Cosmid ABO 17 was 

provided by J. Wolfe. 

Cosmid Librm)1 Screening 

Hybridisation probes were generated by inter Alu PCR [27] using primers CLi and 

CL2 [28] or by isolating end fragments from cosmids in low-melting agarose. Probes were 

randomly labeled, competed with total human DNA, hybridised to nylon filters and washed 

using standard procedures [29]. Cosmid libraty screening by PCR was perfonned by 

screening two dimensional pools of clones as described by Green and Olson [30]. 
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YACs, PI and Cosl1lid Clones 

Cosmid and PI DNA was prepared, isolated and fingerplinted using standard 

techniques [29], Y ACs, PI and cosmid clones were mapped back to 9q34 by fluorescence in 

situ hybridisation (FISH) [31]. 

Sequellce-Tagged Sites (STSs) 

STSs were developed by Y AC end rescue inverse peR or direct sequencing of 

cosmids. Y AC end rescue was performed as described by Silvennan et al. [32] and the 

products were sequenced directly. The sequence was derived from the cosmid clones by cycle 

sequencing (Pharmacia) with the appropriate vector primers. 

Result and Discussion 

Strategy 

We aimed to isolate a significant part of the TSCI critical region between the markers 

D9S149 and D9S1l4 on 9q34. Several additional markers are known to map between these 

two, but have not been convincingly associated with genuine recombination events. The 

initial strategy was to isolate the region in YACs, PI and cosmid clones. However, attempts 

to obtain YACs were hampered by underrepresentation orthe region in the available libraries. 

This prompted us to foHow an alternative strategy which consisted of cosmid walking 

complemented by screening PI libraries. 

YAC Libral}' Screening 

Two YACs from the ICI library, 4DDI (l20kb) and 25DG9 (320kb), were identified 

with primers specific for the ABO locus. STS mapping using primer pairs from both ends of 

the YACs indicated that the left ends of both inserts overlapped, however inter-Alu PCR in 

combination with hybridisation experiments suggested that the region of overlap was small. 

FISH analysis confinned the localisation of both Y ACs to chromosome 9q34, however 

25DG9 gave an additional signal on chromosome 18 indicating chimerism. This clone was 

not investigated further. No additional Y ACs were identified in the ICI library using the end 

clone STSs from 4DDI or 25DG9, or with additional markers from the TSCI candidate 

region (D9SIO, D9S66, DBH). An STS derived from the left arm ofYAC 4DDI was used to 

screeu the St. Louis YAC library and identified two duplicate clones, 51A7 and 61AlO 
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(200kb). FISH analysis mapped 51A7 to 9qter, however STS mapping experiments using 

primers derived from the right arm of this clone suggested that it contained a large deletion 

(data not shown) and it was not investigated further. It is interesting to note that the TSC2 

locus on chromosome 16 was also found to be underrepresented in YAC libraries (unpuh!. 

results). 

Colllig Assembly 

Starting points for cosmid contig assembly were ABO, DBH and D9SI0 (fig. I). 

Cosmids were identified with both the left and right end clones of YAC 4DDI and two 

contigs were constmcted of 110kb and 130kb respectively (fig. 2, contig A and B). The 

orientation of the cosmid contigs was consistent with results from YAC inter-Alu peR 

screening of the cosmid library and with the Y AC STS mapping experiments. No cosmids 

could be identified distal of cosmid 255A6 (contig B). Only a single non-rearranged cosmid 

and a single PI clone were detected at the ABO locus, and no clone could be detected linking 

the two contigs. However, from the size of the 4DDI Y AC and direct visual hybridisation 

(DIRVISH) experiments of s!reched DNA [33] (unpubl. results), we estimated that the gap is 

approximately 30kb. 

Cosmids were identified with the DBH cDNA and probe pMCT136 from the D9SlO 

locus. DBH and D9S 10 map I and 2 cM distal of ABO, respectively, and were linked by 

chromosome walking, covering a physical distance of 150 kb (contig C). This indicates that 

the genetic versus physical distance ratio in this region is large. The contig was extended 

proximal ofDBH by 125 kb, but could not be extended further towards ABO. We did isolate 

a P I clone with an STS from the proximal end of 251 C9, but could not bridge the gap. The 

distance between clone 251C9 (contig B) and 255A6 (contig C) could not be resolved by 

interphase FISH, indicating that the gap between contig Band C is small. DIRVISH DNA 

mapping experiments are in progress to estimate the size afthe gap. 

In regions of overlap the contigs presented here were consistent with the cosmid 

contigs constmcted by HillfI fmgerprinting as described by Nahmias et al. [34]. They need at 

least 50% overlap between cosmids before the clones are joined in a contig. Our data are 

more detailed and detect smaller overlaps. Additional cosmids have been isolated from the 

flanking locus D9S149. Chromosome-walking experiments are currently focussed on closing 

the gap between D9S149 and the most proximal ABO contig (contig A). 
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Fig. 1. Schematic representation of the TSCI region. The starting points for YAC and cosmid 
walking are indicated, together with the YAC 4DDl, the cosmid contigs and PI clones. 

A/apping of Markers and Genes ill the Contigs 

RFLPs and unique STSs are listed in tables I and 2. The STSs ISOG3-T3 and 4DDIL 

map to adjacent EcoR! fragments in contig A. Two additional STSs, 4DD IR and 251 C9-T3 

were mapped to contigs Band C respectively. Existing minisatellite repeats (D9S122 and 

D9S150) [13] were precisely positioned within tltis contig (fig. 2, contig C) and a HindII! 

polymorphism (D9S96S) was detected immediately proximal ofDBH. 

Locus 
D9S1O 

D9S968 
DBH 
VAV2 

Table 1. List ofRFLPs in the region 
Enzyme Probe Fragment sizes, kb 
Pst! MCT136 2.5 and 2.3 
HindlII MCTl36 2.2 and 2.0 
(RFLPs show linkage disequilibrium) 
HindlIl RD560 4.5 and 2.6 
(several RFLPs' + (CA)" all listed in GDB) 
Pst! 5' VAV2 5,4.2 and 2.2 

(bases 1-865) 

Heterozygosity.% 
50 
50 (200 chromosomes) 

14 (lIS chromosomes) 

48 (>100 chromosomes) 

All RFLPs marked with an asterisk are already listed in GDB. The heterozygosity percentages 
of the new RFLPs (without asterisk) have been detennined in at least 100 chromosomes from 
Causasians. The map position of each locus is indicated in figures 1 and 2. The VA V2 RFLP maps 
within the VAV2 gene, distal to the end of the cosmid contig. 
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Table 2. List of STSes in the region 
STS Primer sequences Product Map position 

length 
180G3-T3 5' GGTGT GGTTC TCCCA AGGG 3' 128 bp distal part of 

GAGAG AGGCT TCCTG CTTGC contig A 
4DDIL 5' CCAAG GGAAG CTGGA GAAGT 3' 97 bp left arm of 

CCAGA CCCAG CCTAC ATTIC YAC 4DDl 
4DDIR 5' CATGC TGTTG GCACTGTTGTA 3' 135 bp right arm of 

TTICT CTTIG GCTTC CCTCTT YAC 4DDI 
251C9-T3 5' GGAAA GAGGA GCGAG GAAG 3' 152 bp proximal end of 

CACAA TCTCA CAGTG AATGCC contig C 
A number of polymorphic STSs at ABO, DBH, VAV2, D9S149, D9S150, D9S122, D9S66 

and D9S114 have been described previously and are therefore not included in the list. 

The position and orientation, where known, of genes identified within the contigs are 

indicated in figure 2. The role and expression pattem of the ABO blood group transferase 

indicate that it is not a good candidate for TSCI. The Surfeit gene cluster had been previously 

mapped by in situ hybridization telomeric to the c-ab/ and call genes on 9q34 [35]. A 

oligonucleotide derived from the Surf-3 eDNA sequence detected a 1.2 kb EcoRi fragment in 

several cosmids, slightly distal to ABO in contig B. Cosmid 255A6 was digested with XbaI to 

orientate the cluster in the map. In the mouse this cluster consists of 6 house keeping genes, 

which are unrelated by sequence homology [35]. To date the Surfeit genes fonn the tightest 

gene cluster known in mammals. Since these genes are in the critical region of TSC 1 and not 

much is known about their function, mutation analysis in TSC patients must be considered. 

Our EcoRI mapping data from the DBH locus is consistent with that of Kobayahi et 

al. [36]. The direction of transcription is towards the telomere. The role of DBH in the 

conversion of dopamine to noradrenaline and the neurological manifestations of TSC led to 

the proposal that DBH could be a candidate for the TSCI gene [37]. However, more recent 

results suggest that TSCI maps either distal or proximal of DBH and consequently DBH is 

not such an attractive candidate. 

Exon trapping [38] efforts using our cosmids from the D9S 10 locus identified a gene 

homologous to the val' oncogene [16]. Tllis gene, designated VA V2, was considered a good 

candidate for the TSCI gene. However, intensive screening failed to identify any mutations, 

and VA V2 was consequently excluded as a candidate gene for TSCI [16-17]. 
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Fig. 2. Detailed EcoRi restriction map of the three contigs described in this paper. Cosmids are 
shown below the the EcoRl map. Thin bars represent RFLP markers and vertical arrows indicate 
STSs and microsatellites. Genes are shown above the restriction map as thick bars. The size of the 
bars indicates the maximal genomic extent. The direction of transcription is indicated by arrowheads. 
For DBH, surf-l, swf-2, slIIf-3 and VA V2, the gene structure was studied by Nalmlias et al. [34], 
Yon et al. [35] and Kwiatkowski et al. [16]. TIle position and orientation of the genes in the cosmid 
contigs were deduced from our experiments and previously published restriction maps {34,35) 
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Eight different genes could be placed on the map. The region is gene dense and 

although some genes map extremely close to each other, we can not exclude the presence of 

other, as yet unidentified, expressed sequences in the same region. Experiments to identify 

and characterise additional genes from the TSCI candidate region arc in progress. 

Further efforts are directed towards extending the contigs and screening TSC patients 

for mutations by pulsed-field gel electrophoresis using novel probes derived from our cloned 

material. The identification of large deletions at the TSC2 locus made a significant 

contribution to the rapid isolation ofthe TSC2 gene [4]. 

In conclusion we have identified 80 cosmids, 2 PI clones and a single non-rearranged 

YAC from the TSCI candidate region on 9q34. We have constmcted a detailed restriction 

map of three adjacent cosmid contigs and oriented the maps with respect to known and 

previously unidentified genes and DNA markers. We have shown that DBH and D9SIO, 

previously estimated to be I cM apart, are separated by less than 300 kb, and estimate that the 

physical distance between ABO and DBH is less than 300 kb. 

In conjunction with the accompanying article [34] we have shown that cosmid 

walking, using a large chromosome specific cosmid library can provide almost complete 

coverage of a large genomic region. Tllis minimises the need to search for non-chimeric nOll­

rearranged Y AC clones, which have been difficult to obtain from the TSCI region. Moreover, 

our contigs and the associated maps provide a good tool for generating novel markers and 

cloning additional genes from tlils region. It would be of great help to get more excluding 

data on the recombinants witllin the region, so that the search for TSCI can be restricted to a 

smaller area. LOH studies in tumours of patients and the development of new polymorphic 

CA repeats in the area, especially between ABO and D9S149, could help reduce the critical 

region. Ultimately it is hoped that tlils work will lead to the identification of the TSCI gene. 
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The disease gene TSCI has been genetically mapped 
to human chromosome region 9q34, in a 4-eM interval 
between the markers D9S149 and D9SU4. Within this 
interval there is conflicting genetic evidence as to the 
finer localization of the gene. We have used finger­
printing methods and hybridization to produce a 1.7· 
Mb overlapping clone map covering the TSCI candi­
date region, with a single gap of 20 kb. We have local· 
ized 12 previously cloned genes and 17 genetic mark­
ers on this map and have confirmed the order of the 
genetic map. This deep set of overlapping clones is now 
ready to be used for candidate gene isolation, for tran. 
scription studies, or for sequencing. 01991 AcademleP.es. 

INTRODUCTION 

Tuberous sclerosis (TSC) is an autosomal dominant 
disorder characterized by a variety of skin signs, by 
mental handicap, and by seizures, but the severity of 
the symptoms is very variable. The incidence of TSC 
may be as high as 1 in 6000 live births (Osborne et ai., 
1991). TSC shows locus heterogeneity, with approxi­
mately 50% of cases being caused by each of two genes 
(Povey et 01., 1994a). TSCI shows close genetic linkage 
to the ABO blood group locus in 9q34 (Fryer et al., 
1987). TSC2 is on chromosome 16 and has been isolated 
(The European Chromosome 16 Tuberous Sclerosis 
Consortium, 1993). 

Analysis of meiotic breakpoints in families where 
TSC shows clear linkage to chromosome 9 suggests 
that the disease gene must lie in a 4-cM interval be­
tween the loci D98149 and D9S114 (Povey et 01., 
1994b). Recombinations have been published that place 
TSCI distal to DBH (Kwiatkowski et 01., 1993; Gilbert 
et al., 1993) and distal to D98122 (Pitiot et ai., 1994). 
Other reports have suggested that TSCllies proximal 

I To whom correspondence should be addressed at Wolfson House, 
4 Stephenson Way, London NWI 2HE UK. Telephone: 0171 380 
7417. Fax: 0171383 2048. E-mail:jwolfe@galton.ucLac.uk. 

to DBH (Nellistet ai., 1993, and J. R. Sampson, Cardiff, 
pers. comm., 1996). Because of this uncertainty we 
have decided to construct a physical map across the 
whole of the region from D98149 to D98114 to confirm 
the marker order given by the genetic data and to pro­
vide a resource for further work to isolate the gene. 

A number of contiguous arrays of cos mid clones (con­
tigs) in this region have been described in Nahmias et 
ai. (1995) and in van Slegtenhorst et 01. (1995). These 
contigs have now been extended by probing the 
LL09NCOl"P" library with inter Alu PCR 01' YAC end 
rescue products from selected YAC and PAC clones and 
with further cosmid end probes. This has allowed us 
to construct a deep overlapping clone map, consisting 
mainly of cosmid _ clones but including three YAC 
clones, one PI clone, one BAC clone, and three PAC 
clones, covering the TSCI candidate interval between 
D98149 and D9S114, with a single gap of 20 kb, be­
tween D9S164 and D9S150. 

MATERIALS AND METHODS 

Sources of clones. Clones previously in contigs came from a num­
ber of sources (Nahmias et oi., 1995, van Siegtenhorst el ai., 1995). 
YAC clones 35HG8 and 15GFl and cosmids derived feom the YAC 
Cll-C (Zhou et al., 1995) were provided to us by R. Furlong. PAC 
clones 63F12, 145N8, and 213M24 were obtained by PCR screening 
of the PAC human genomic library constrocted by Pieter de Jong, 
with primers for D9S164 and for P6 (M. Smith, unpublished primer 
sequences). PCR pools and clones were ae<:essed via tho HGMP Re­
source Centre. PI clone DMPC-HFFI-0529F4, which was positive 
for ABO, was provided by H. Clausen (Bennet et 01., 1995). BAC 
clone 9E21 was provided by J. Korenburg. All other now cosmid 
clones were obtained by screening the LL09NCOl"P" chromosome 9· 
specific library. 

Cosmid library screening and contig construction. Hybridization 
probes from YAC and PAC clones were generated by inter Atu PCR 
using primers AluIV (Cotter et at., 1991) and 5R' (Nahmias et at., 
1995). End clones from cosmids were generated either by isolating 
end fragments from agarose gels or by vectorette PCR using primers 
designed from vector sequence. End probes from YACs were made 
aocording to the method ofSihwman et ai. (1991). Contig assembly 
by Hinfl fingerprinting and EcoRI restriction fragment analysis has 
been described elsewhere (Nahmias et al., 1995, van Slegtenhorstet 
at., 1995). 
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FISH onto metophase chromosomes. Metaphase spreads were 
prepared from the cell lines SOl and 9T12, with karyotypes 46XX, 
1(9;22) (q34.1jqIl}(Dhutet af., 1991) and 46XY, t(9;20) (q34.3;ql1.2) 
(Zhou et of" 1992, Woodward at ol., 1995), respectively. Cosmid DNA 
was biotin labeled by nick-translation using BioNick kits (Gibco 
BRL) and ethanol precipitated with a 4Q·fold excess of human Cotl 
DNA. Two hundred nanograms of biotinylated probe was used for 
each slide,and detection was by FITe-avidin (Vector Laboratories) 
aner the method of Pinkel et of. (1986). 

Strand FISH. Target genomic DNA for the three-color strand 
FISH of dones around ABO was prepared from nonnal human pe­
ripheral blood lymphocytes in ag;uose blocks and extended onto poly­
L-lysine slides (BDH) as described by Heiskanen et af. (1995). Biotin­
yialed probes were made by the same method as was used for the 
FISH onto metaphase spreads. Digoxigenin.ll-UTP-labeled probes 
were made using a Boehringer Mannheim nick-translation kit. Hy­
bridization was performed with 200 ng of each probe in 50% for­
mamide, 2x sse, 10% dextran Sulfate. The yellow probe was 
achiewd using equal quantities ofbiotinylated and digoxigenin·la­
beled probe. Images were captured with a confocal1aser s<:snning 
microscope system (Bio-Rad MRC 600). 

RESULTS AND DISCUSSION 

The TSCl Candidate Interval 

Genetic mapping currently places the TSC1 gene in 
the 4-cM interval between D9S149 and D98114. Many 
such areas of the genome are now covered by overlap· 
ping YAC clones; however. 9q34 generally is very un­
derrepresented in the currently existing YAC libraries. 
The YAC contig map produced by the Whitehead Insti­
tute has no YACs containing markers distal to D9S164. 
Thus the map has no coverage at all in the distal part 
of the TSCI candidate interval, and there are problems 
correlating the YAC contig data with the genetic data. 
The YAC contig map produced by Genethon includes 
contigs containing markers from the proximal and dis­
tal parts of the TSCI interval, but there are clearly 
problems with the YACs in 9q34 since some of the map­
ping positions contradict other available physical map­
ping evidence in 9q34 and the order of the genetic map. 
Our own experience with CEPH YACs that were picked 
with D9S164 showed that these all mapped onto chro­
mosome 6. This observation may stem from the paral­
ogy seen between 9q34 and 6p21.3 (Katsanis et ai., 
1996) and illustrates one of the problems with using 
whole-genome YAC libraries to map a particular area. 
Our more focused efforts allowed us to produce a better 
detailed map_ A physical map of the region distal to 
DBH in overlapping YAC clones has been produced by 
Murrell et al. (1995). Most of the YACs that they used 
were derived from a chromosome 9-specific YAC library 
made in their laboratory especially for the experiment. 
They used the YACs to isolate cosmids both from the 
LL09NC01''P'' library and from their own cosmid li­
brary, and these cosmids were binned according to hy­
bridization data from the YAC clones and from STSs 
that they developed in the region. The cosmids from 
their own library were not available for our mapping, 
but those from the LL09NCOl library were finger· 
printed and added to our database. Most of these map 
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to the expected region, but some are placed elsewhere, 
showing that the YACs used to isolate these clones 
contain rearrangements. The existence of a fast and 
efficient fingerprinting method for the mapping of cos­
mid clones, coupled with an already high coverage of 
this area in cosmid contigs, persuaded us to map the 
whole of the TSC1 candidate interval in overlapping 
cosmids. A deep cosmid contig map of the TSC1 candi­
date interval is more detailed than a map based on 
YACs and prevents problems ,vith rearranged clones. 

Isolation of Clones 

PAC clones 145NS and 213M24 were isolated using 
primers for the genetic marker D98164. They proved 
also to be positive ,vith primers from the gene SURF4. 
PAC 63F12 was isolated with primers for the marker 
P6 in the ORFX gene (M. Smith, unpublished primer 
sequences). Inter Alu PCR probes have been produced 
from two of the YACs on the map, 15GF1 and 35HGS. 
and also from the PACs 63F12, 145N8, and 213M24. 
End probes were produced from 4DD1. 15GF1, and 
35HGS and from many cosmids. 32P_Iabeled probes 
were hybridized individually to filters of the gridded 
LL09NCOl''P'' library. A total of 189 cosmids were 
picked. 

Contig Assembly 

The cosmid clones were analyzed in two ways: by 
Hinfl fingerprinting and by EcoRI restriction mapping, 
and positions were verified by hybridizations with cos­
mid end fragments. The positional data produced by 
these two techniques were broadly in agreement even 
though the lengths and positions of Hinfl fingerprinted 
clones are only estimated from the number of bands in 
the fingerprints. There were slight differences (about 
2% of clone length) caused by variations in the density 
of HinfI sites. Three continuous cosmid contigs have 
been produced covering the T8C! candidate region, and 
they are separated by a small gap between SURF and 
D9S164 and by a second small gap between D9S164 
and D9S150. The first of these gaps is covered by two 
PAC clones that both contain SURF4 as well as 
D98164, but no clones have been detected covering the 
second gap. The map now contains 410 cosmids, 3 
YACs,! P1, 1 BAC, and 3 PACs, and the average depth 
of the contigs is 10 clones. It spans approximately 1.7 
Mb from a point 125 kb proximal to D98!49 to 110 kb 
distal to D98114. PAC, P1, BAC, and YAC clones have 
been positioned on this map according to their patterns 
of hybridization to the cosmid clones. A representative 
section of the contig is shown in Fig.!. The data from 
the Hinfl fingerprinting and probe hybridizations have 
been put into an ACeDB database. Complete details of 
the contig in AceDB format are available from 
the chromosome 9 home page, http://www.gene.ttcl. 
ac.uklchr9/. OJ' they c.an be obtained from the authors. 
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positions of ABO and of the SURF cluster of genes are shown below the ('antig, and the EeaRl restriction map of this region is shown on 
the lowest line of the figure. 

Testing Results by FISH to Metaphase Chromosomes 

A large number of those contigs that had been con­
structed with the clones picked using inter Alu peR 
from irradiation hybrids were positioned relative to 
translocation breakpoints, by FISH onto metaphase 
chromosomes (Nahmias et at., 1995. Woodward et ai., 
1995). Two cell lines in particular carry translocations 
that define an interval within which the TSCI region 
lies. These are SD1, which carri.es the Philadelphia 
breakpoint in the first intron of ABL, and 9T12, which 
carries a breakpoint that has been mapped to between 
D9S114 and D9S298. The TSCI candidate region cov­
ers the distal half of this interval. As the anchored 
contigs in the TSCI interval were expanded, they incor­
porated a number of other contigs that had been as­
signed by FISH to between these two breakpoints. Fur­
ther cosmids were tested against the breakpoints as 
the work progressed. The map now contains 24 clones 
that have been mapped to between SD1 and 9T12 in 
this way. The mapping of these clones by FISH was 
helpful during contig construction, in suggesting which 
potential overlaps would be most useful to investigate 
further, and in confirming the integrity of the contig. 
One clone. in the region just proximal to ABO, gave 
signals on both derivative chromosomes on the cell line 
9T12. Further investigation by hybridization to an STS 
developed from the YAC 4DD1 and by careful examina-

tion of the fingerprint data showed that this result was 
not an artifact, but represents a part of the chromosome 
that is duplicated proximal to ABO and in distal 9q34 
neaf the gene PAEP. 

Strand FISH 

In the region around and proximal to ABO the depth 
of coverage of our contig is reduced from about 10 cos­
mids deep in the majority of the contig to only 3 clones 
deep (see Fig. 1). This region appears to be absent from 
the LL09NC01''P'' library but is covered by 2 cosmids 
subcloned from the ICI YAC C11-C and with YAC 
4DDl (Zhou et ai., 1995) and 1 cos mid derived from a 
human whole genome library (ABO.I7; Cachon-Gonza­
lez, 1992). To confirm the integrity of the contig in this 
region, we have performed strand FISH, hybridizing 
cosmid probes to a single strand of genomic DNA on a 
slide, using 3 clones simultaneously (Fig. 2). These 
clones were shown to map in the same order and at 
approximately the same distances from each other that 
we had predicted from our contig. No statistical analy­
sis of the distances between the cosmids was possible 
because there were too few signals on the slide. 

The size of the gaps in the cosmid contig between 
SURF and D9S164 and of those between D9S2135 and 
D9S1793 was estimated by two-color strand FISH, Cos­
mids for this work were carefully chosen to avoid those 
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FIG. 2. Strand FISH experiment confirming the positions of cos­
mids 203H12 (green), ABO.I7 (red), and 255A6 (yellow). 

containing large amounts of repetitive DNA. The size 
of the gap between D9S2135 and D981793 was also 
measured using PFGE by Dr. J, R. Sampson (unpub­
lished data), Two-color FISH of cosmids from either 
side of the gaps onto combed genomic DNA (Ekong et 
al., in preparation) has also provided estimates of their 
sizes, The more proximal gap is about 10 kb, and the 
distal gap is about 20 kb. Probes made from the imme­
diate proximal edge of this distal gap hybridize to a 
great many clones in the LL09NCOl"P" library_ FISH 
on metaphase chromosomes using these cosmids shows 
a large signal at the centromere of chromosome 9 and 
further scattered signals on 9q (data not shown). This 
indicates that there is a copy ofa chromosome 9·specific 
repeat at this point in 9q34 and that nlost of the copies 
of this repeat are found near the centromere of chromo­
some 9. Both of the other places where our overlapping 
clone map is reduced in depth contain DNA that is 
duplicated elsewhere on chromosome 9. The existence 
of this repetitive DNA may explain our difficulty in 
finding clones covering these areas. 

centromeric 

Genes and Polymorphic Markers Placed 011 the Map 

Twelve previously known genes have been positioned 
on this physical map according to the cosmids or EcoRI 
fragments that contain them. These are, in order, from 
centromere to telomere: CEL-RaIGDS-ATSV-ABO­
SURF5 - SURF3 - SURFI- SURF2 - SURF4 - DBH­
VAV2-0RFX. The gene ATSV has not been mapped 
on the LL09NC01"P" library but is positioned on our 
map by its reported position in cosmids cC31 and cCll 
(Zhou et ai., 1995; Furlong et ai., 1995). Seventeen poly­
morphic loci have also been positioned on the map, from 
centromere to telomere: D9S149-D9S2127-D9S212S­
D9S1199-D9S1198-ABO-SURF -D9S164-D9S2135-
D9S1793 - D9S150 - DBH - D9S122 - D9Sl0 - D9S66-
PS-D9S114 (P6; Smith and Handa, 1996) (see Fig. 3). 
This confirms the previously deduced order of the ge­
netic map in this region. Detailed knowledge of the 
physical positions of these markers should facilitate 
investigation into relationships between allelic associa­
tion and physical distance, and these studies are in 
progress. The 4·cM interval (sex averaged) between 
D9S149 and D9S114 represents 1.5 Mb of DNA. It has 
been known for some time that the recombination rate 
is elevated in 9q34, similar to that in other telomeric 
regions, and this result conforms to the estimate re­
ported by Ozelius et aI. (1992) that 1 cM is equivalent 
to approximately 400 kb of DNA in this part of the 
chromosome. 

Apart from the small gap already mentioned this 1.7-
Mb contig is now sequence ready and can be used for 
gene-hunting strategies. Work on cDNA selection and 
on trapping and analyzing exons from the cosmids of 
this contig has been started. 
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Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by 

the widcsprcad development of distinctive tumors termed hamartomas. TSC­

determining loci have been mapped to chromosomes 9q34 (TSCl) and 16p13 (TSC2). 

The TSCI gene was identified from a 900-kilobase region containing at least 30 genes. 

The 8.6-kilobase TSCI transcript is widely expressed and encodes a protein of 130 

kilodaltons (hamartin) that has homology to a pntaive yeast protein of unknown 

function. Thirty-two distinct mutations were identified in TSC1, 30 of which were 

truncating, and a single mutation (210SdelAAAG) was seen in six apparently unrelated 

patients. In one of these six, a somatic mutation in the wild-type allele was found in a 

TSC-associated renal carcinoma, which suggests that hamartin acts as a tumor 

suppressor. 

TSC is a systemic disorder in which hamartomas occur in multiple organ systems, 

particularly the brain, skin, hemi, lungs, and kidneys (1,2). In addition to its distinct clinical 

presentation, two features serve to distinguish TSC from other familial tumor syndromes. 

First, the tumors that occur in Tse are very rare in the general population, such that several 

TSC lesions are, by themselves, diagnostic ofTse. Second, TSC hamartomas rarely progress 

to malignancy. Only renal cell carcinoma occurs at increased frequency in Tse (~2.5%) and 

with earlier age of onset; it appears to arise in TSe renal hamartomas, tenned 

angiomyolipomas (3). Nonetheless, TSC can be a devastating condition, as the cortical tubers 

(brain hamartomas) frequently cause epilepsy, mental retardation, autism, or attention deficitR 

hyperactive disorder, or a combination of these conditions (1,4). 

TSC affects about 1 in 6000 individuals, and -65% of cases are sporadic (5). Linkage of 

TSC to chromosome 9q34 was fIrst reported in 1987, and tIus locus was denoted TSCI (6). 

Later studies provided strong evidence for locus heterogeneity (7) and led to the identification 

of chromosome 16pl3 as the site ofa second TSC locus (denoted TSC2) (8). The TSC2 gene 

was identified by positional cloning and the encoded protein, denoted tub erin, contains a 

domain near the COOH-tenninus with homology to a guanosine triphosphatase (GTPase) 

activating protein (GAP) for rapl, a Ras-related GTPase (9). 

The focal nature of TSC-associated hamartomas has suggested that TSCI and TSC2 may 

function as tumor suppressor genes. The occurence of inactivating gennline lllutations of 
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TSC2 in patients with tuberous sclerosis (9-11) and of loss of heterozygosity (LOR) at the 

TSC2 locus in about 50% of TSC-associated hamartomas (12-14) supports a tumor 

suppressor function for TSC2. In contrast, LOH at the TSCl locus has been detected in <10% 

of TSC-associated hamartomas (13,14), suggesting the possibility of an alternative 

mechanism for lesion development in patients with TSCl disease. 

As part of a comprehensive strategy to identify TSC1, we identified 11 microsatellite 

markers from the 1.4-Mb TSCl region and developed an overlapping contig (with only a 

single gap of 20 kb) of cosmid, PI artificial chromosome (PAC), and bacterial artificial 

chromosome (BAC) clones (15). Figure 1 shows the TSCl region (16,17), including limiting 

centromeric and tclomeric markers, as derived from analysis of affected individuals (solid 

arrows) from families with lad scores of >2 (18). These limits arc also consistent with the 

information available from LOH studies (13). Two additional recombination events were 

identified in unaffected individuals (open arrows), also from families with lod scores of >2 

(19). In each of these families, two individuals from different generations carried the same 

recombinant chromosome, and all four had no evidence of TSC in nearly 100% (2), we 

concentrated our search within the 900-kb region between markers D9S2127 and DBH. 

In a search for further positional infonnation, we looked for large deletions and 

rearrangements by means of pulsed-field gel electrophoresis (Fig. 1) (9) and through analysis 

of patient-derived hybrid cell lines retaining a single chromosome 9 bearing a TSCl mutation 

(20). No abnormalities were detected, and we therefore began a systematic gene-by-gene 

analysis. 

Several teclmiques were used to identify genes in the TSCl region, which proved to be 

relatively gencMrich. Using a combination of exontrapping (21), eDNA selection, expressed 

sequence tag (EST) mapping, and whole-cosmid hybridization (22), we identified 142 exons 

and 13 genes between D9S 1199 and D9S 114. In all, 30 genes were identified or mapped to 

the 900-kb critical region. 

In parallel, we began sequencing the entire contig (23). We used the polymerase chain 

reaction (PCR) to amplify putative (24) and confirmed exons found in 208 kb of sequence on 

a screening set of 60 DNA samples from 20 unrelated familial TSC cases with linkage to 

9q34, and 40 sporadic TSC cases (18). Amplification products were analyzed for hetero­

duplex fomlation using weakly denaturing polyacrylamide gels (25). The 62nd exon screened 

demonstrated mobility shifts in 10 of the 60 patient samples (Fig. 2A). 
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Fig. 1. TIle TSCI region on chromosome 9. The ideogram (top) represents a normal G-banded 
metaphase chromosome 9, with the TSCI region located at 9q34. The male genetic map (next line) 
shows selected anchor polymorphic loci mapped to 9q34. The detailed physical map of the candidate 
region (next level) shows the positions of polymorphic markers and key recombination events in 
affected members (filled arrows) and unaffected members (open arrows) of families showing linkage 
to TSC to 9q34; the approximate positions of kflu! (M) sites (with sites that partially cut in genomic 
DNA shown in parentheses) and of probes used to screen the region for rearrangements in patients 
with TSC by means of pulsed-field gel electrophoresis (orange boxes); genes previously mapped to 
the TSCI candidate region (blue boxes); novel cDNAs isolated from the region (red boxes); ESTs 
mapped to the region (green); and additional putative genes predicted by GRAIL analysis of genomic 
sequence (light blue boxes). There was a single 20-kb gap in the contig near D9S1793. The map of 
the TSCI gene (bottom) shows the 23 exons, of which exons 3 to 23 are coding. B2 is the TSCI gene. 
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Sequence analysis revealed seven small frameshifting deletions (three identical), one 

nonsense mutation, one missense change, and one polymorphism that did not change the 

encoded amino acid (Fig. 2B). Eight of the nine mutations were from the familial cases 

tested, and only one mutation was seen among the 40 sporadic cases (Fig. 2C). Analysis of 

samples from other family members confiImed that each of the familial mutations segregated 

with TSC and that a fi-ameshift mutation had occured de novo in the sporadic case (Fig. 2D). 

The recurrent mutation, 2105de1AAAG, was identified in two apparently unrelated familial 

cases and a sporadic case. Haplotype analysis of the families, using markers flanking the 

mutation (D9S2126, D9S1830, and D9S1l99, Fig. I), confimled that the three mutations 

were of independent origin. 

A 

::: 
.i.t..ll 

B 

TGCATGCATGCA 

o 
.",,,,,:,'1. ~ •• ~ ... __ ..... 1;;,.."':'6 .... 

WB~ 

c 

;X'~.~ 
• W%'J Iii.' 
C 

Fig. 2. Identification of mutations in TSCl 
exon 15 (A) Hetcroduplex analysis. Control 
sample (left) is followed by 10 samples with 
a shift. (B) Sequence analysis demonstrating 
2105delAAAG mutation. TIle . sequence 
reactions were done in antisense orientation, 
so that reading from the top down (b2083 to 
2124 of the normal allele sequenced is 
shown), the allele sequenced on the left has 
the deletion, the middle sequence is a normal 
allele, and the sequence on the right is the 
heteroduplex product with both alleles. (C) 
In a sporadic case, the heteroduplex mobility 
shift is not present in either parent. (D) 
Segregation of heteroduplex mobility shifts 
in a large family with TSC (left) and 
digestion of amplification products with 
Mwo I in another family (right) demonstrates 
segregation of the 2105delAAAG mutation 
with the disease. 

The exon with mutations was part of a transcriptional unit identified by earlier gene 

discovery efforts (26). The full sequence of the TSCI gene was detemlined by comparison of 

genomic sequence and cDNA clone sequence, including clones obtained by 5' rapid 

amplification of eDNA ends (RACE). The TSCI gene consists of 23 exons, of which the last 

21 contain coding sequence and the second is aitematively spliced (Fig. I, bottom). The open 

reading frame (ORF) of the longest transcript begins at nucleotide 162, and the likely initiator 
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ATG codon is at nucleotide 222. The first stop codon is at nucleotide 3738, leaving a 4.5-kb 

3' untranslated region. Northern (RNA) blot analysis with a coding region probe (nucleotides 

1100 to 2100) revealed a major 8.6-kb transcript that was widely expressed and was 

particularly abundant in skeletal muscle (Fig. 3). 
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Fig. 3. Norhem blot analysis 
of TSCI expression. Each 
lane contained 2~g of polya­
denylated RNA from adult 
human organs, and the probe 
consisted of base pairs llOO-
2100 of the TSCl gene. 
Minor hybridization signals 
of size 4 and 2.5 kb are also 
seen. *= skeletal. 

The predicted TSCI protein, which we call hamartin, consists of 1164 amino acids with a 

calculated mass of 130 kD (Fig. 4). The protein is generally hydrophilic and has a single 

potential transmembrane domain at amino acids 127-144 (27) as well as a probable 266-

amino acid coiled-coil region beginning at position 730 (28). Database searches identified a 

possible homolog of TSCI in the yeast Sclzizosacclzaromyces pombe (GenBank accession 

numberr Q09778), a hypothetical l03-kD protein, but there were no strong matches with 

vertebrate proteins (29). 
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Fig. 4. Predicted amino acid 
sequence of the TSCI protein, 
hamartin. A potential trans­
membrane domain (amino acids 
127 to 144) and a coiled-coil 
domain (amino acids 730 to 965) 
are underlined. The TSCI 
genomic sequence and the cDNA 
sequence have been deposited in 
GenBank (accession numbers 
AC002096 and AF013168, 
respectively). 
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Because the initial screen identified a high frequency of mutations in exon 15, we studied 

this exon in a large sample of patients. Mutations in exon 15 [559 base pairs (bp), 16% 

coding region] were identified in 8 of 55 (15%) familial DNA samples with linkage to the 

TSCI region, and in 15 of 607 (2.5%) DNA samples from sporadic patients or families 

uninfonnative for linkage (Table 1). A screen for mutations in all coding exons in 20 familial 

cases and 152 sporadic patients yielded eight mutations in each group (40% and 5%, 

respectively). In total, 19 mutations were found in coding exons other than exon 15. No 

mutations have been detected thus far in exon, 3 to 6, 8, II to 14, 16 or 21 to 23. Of the 32 

distinct mutations seen in 42 different patients or families, five were recun'el1t. Thirty were 

predicted to be tnmcating, one was a possible missense mutation, and one was a splice site 

mutation. Analysis of a renal cell carcinoma from a TSC patient with gennline mutation 

2105delAAAG, revealed a somatic mutation, 1957delG, in the wild-type TSCI allele (30). A 

giant cell astrocytoma from another patient with gemlline lllutation 1942delGGinsTTGA had 

retained the mutant allele but lost the wild-type allele. 

Table 1. All mulaUons found In TSCI. Both helerodup~ex and s'ng'e·slrand conformatfon polymor-
phism (33) gels were used to search for mutations after the initial screen;ng. F. fam'::al; S. spofad~. 

Number of patients 

"00 screened' 
Mutation-s Pat:ents 

8 

7 20 152 86500fTT 18 
9 39 230 966de1A 18 

970T -> G, L250X 1F 
993G -> T, E258X 1F 
1112T->G,Y29TX >F 

10 20 152 1207de:CT 18 
15 55 607 17460 .... T, R509X IF,2$ 

175Ode~CA IS 
lSOlde'AG 1F 
1892del23 18 
1929de'AG 2S 
1942de~GG:nsTTGA IS 
1981A-.G,K585R 1F 
2009deIT IS 
2041deITT 1F 
2060deiA IS 
21Q'x:!eW\AG 4F,2S 
2122de'AC 2S 
2126de1AG >F 
2176defTG 1F 

17 45 296 2295C .... T, R692X 1F 
2324duplGTTACTC 1F 
2332delAT IS 
2395TnsA 18 

18 45 296 2448C -> T, Q743X 18 
2519del23bp 18 
254Ode'C IF 
2577C -> T, R7B6X IF, IS 
2583G --.> T, E7BBX 1F 

19 39 230 2691delAC 18 
20 39 230 2724-1 G--.>T 1F 

2730nsA 18 

'Fam~es are ~~ned as t.hose ,",'til fnkag'llo tha TSC1I"ivn and neg~'r,'e tr.~~ 10 tra TSC2 1l.'g0fl. SporJ.jcs 
irJcIuo;8 both spor<dccases arod cas.;s from fam ~es w~mut I rl~ in'orma~m bon struclu'e oM ptirr>£>( in'Otma~oo 
a-e pto,-;cJOO at httpJleypmedbwh_haNardeduip.-ciect:;/1srJ. 
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Our results support the hypothesis that TSCl functions as a tumor suppressor gene. First, 

the majority of mutations are likely to inactivate protein function. Second, in two TSC­

associated tumors we have shown that loss of the wild-type TSCl allele occurred through 

LOR or intragenic somatic mutation. The paucity of LOR for the TSCl region found in 

patient lesions (13, 14) may reflect the same mutational spectrum seen in the gelll1line of 

TSC patients with a high frequency of small mutations causing inactivation of the second 

allele. It is also possible that there is a greater frequency of TSC2- versus TSC1- associated 

disease among the sporadic cases providing the lesions analyzed. This is suggested by the low 

frequency of mutations we have detected in TSCl in sporadic cases. However, in families 

suitable for linkage analysis, about half show linkage to TSCl and half to TSC2 (16, 31). 

The mutations observed in TSCl consist of slllall deletions, small insertions, and point 

mutations. No genomic deletions or rearrangements in TSCl were detected by Southern 

(DNA) blot analysis of2S0 TSC patients. This reshicted mutational spectrum may reflect an 

intrinsic tendency for tlus type of mutation in this region of the genome. Alternatively, it may 

reflect selection against more disruptive mutations such as large deletions, which would 

involve neighboring genes. 

The mechanism by which loss of hamartin expression produces TSC lesions is unknown. 

It is likely that hamartin and tuberin participate in the same pathway of cellular growth 

control, because the clinical features of TSCl and TSC2 disease are so similar (31). Tuberin 

has modest GAP activity for both rap I and rabS, members of the Ras superfamily of small 

GTPases. The physiological function of the rap I GTPase is not understood, whereas rab5 is 

thought to be involved in aerly endosomal transport. Tuberin-deficient rat embryo fibroblasts 

display increased endocytosis, which suggests that the rab5 interaction of tuberin has 

physiological relevance (32). It is unclear how a deficiency of GAP activity for rapl or rabS, 

if that is the critical function oftuberin, leads to tumor development. The sequence homology 

of hamartin to a putative S. pombe protein suggests that it lllay participate in an 

evolutionarily conserved pathway of eukaryotic cell growth regulation. The identification of 

TSCl will enable analysis of the functions of both hamartin and tuberin, and may pemlit 

further insight into the molecular pathogenesis ofTSC. 
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Abstract 

Tuberous sclerosis complex is an inherited tumour suppressor syndrome, caused by a 

Illutation either in the TSCI or TSC2 gene. The disease is characterised by a broad 

phenotypic spectrum that can include seizures, mental retardation, rcnal dysfunction 

and dermatological abnormalities. The TSCI gene was recently identified and has 23 

exons, spanning 45 kb of genomic DNA, and encoding an 8.6 kb mRNA. After screening 

all 21 coding eXOIlS in our collection of 225 ullrelated patients, only 29 small mutations 

·were detected, suggesting that TSCl mutations arc under-represented among TSC 

patients. Almost all TSCl mutations were small changes leading to a trullcated protein, 

except for a splice-site mutation and two in-frame deletions in exon 7 and exon 15. No 

clear difference was observed in the clinical phenotype of patients with an in~fl'ame 

deletion or a frameshift or nonsense mutation. \Ve found the disease causing mutation 

in 12% of our unrelated set of TSC patients, with more than half of the mutations 

clustered in exons 15 and 17, and no obvious under-representation of mutations among 

sporadic cases. About 500/0 of the patients with a TSCI mutation were mentally 

retarded with no detectable position effect of the mutations. In conclusion, we find no 

support for a genotype-phenotype correlation for the group of TSCI patients compared 

to the overall population ofTSC patients. 

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder 

characterised by the growth of hamartomas in many tissues and organs, including brain, skin, 

heart and kidney [I]. Common neurological manifestations including seizures and mental 

retardation have their onset during early childhood, while cysts and angiomyolipomas in the 

kidney mostly become apparent during adult life. Considerable clinical variation is observed 

between as well as within families [2]. At least 60% of the TSC patients represent sporadic 

cases, as they have non-affected parents [3]. 

Linkage analysis has demonstrated locus heterogeneity for TSC, with one locus on 

chromosome 9 [4] and a second locus on chromosome 16 [5]. About half ofthe large families 

can be linked to the TSCI locus on chromosome 9q34 and the other half to the TSC2 locus on 

chromosome 16p13 [6,7]. The TSCl gene as well as the TSC2 gene were identified by 

positional cloning [8,9] and there is abundant evidence that both genes act as tumour 

suppressor genes [10-13]. 
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The TSC2 gene consists of 41 exons, spanning 43 kb of genomic DNA [14]. It encodes a 

200 kDa protein, tuberin, which has a putative GAP activity for rab5 [IS] and rapl [16], two 

members ofthe ras superfamily of small GTPases. The mutational spectrum of TSC2 includes 

a number of large deletions often disrupting the PKDI gene as well [17,18], but also point 

mutations [19-27] and a number of missense changes. [28]. 

The TSCl gene contains 23 exons and encodes an 8.6 kb mRNA. It spans 45 kb of genomic 

DNA and codes for hamartin, a ll64 amino acid protein of 130 kDa. Analysis of the amino 

acid sequence revealed a potential coi1ed~coi1 domain at the C~terminus but no homology to 

tuberin or any other known vertebrate protein was detected [8]. 

The first report describing the molecular genetic and phenotypic analysis of the TSCl gene 

suggested that all lllutations are small changes, that TSCI mutations are less common in the 

sporadic population and that there is a reduced risk of mental retardation in TSCI related 

disease [29]. The goal of this study was to constmct the mutational spectrum of the TSCI 

gene in our collection of TSC patient samples by Southern blot- and SSCP- analysis. This 

would enable testing whether there is a significant difference in the detection rate between 

familial and sporadic cases and whether there is a genotype-phenotype correlation for the 

TSCl group compared to the overall population ofTSC patients. 

Patients and methods 

PATIENT SELECTION AND DNA ISOLATIONS 

In this study, 225 unrelated patients with tuberous sclerosis complex, diagnosed according to 

Gomez' criteria [I] were included. Bigthy-two patients represented familial cases (36%) with 

at least one affected parent and/or other affected relatives (fust degree). Three large families 

showed linkage to 9q34 [7]. One hundred and fourty-t1uee patients were designated sporadic 

cases (64%), in the absence of an apparent family history of TSC. DNA was isolated fi'om 

peripheral blood cells according to standard procedures [30]. 

SOUTHERN BLOTTING ANALYSIS 

Genomic DNA (6Jlg) of 200 unrelated patients was digested with four different restriction 

enzymes (EcoRI, HilldIf!, Pst! alld Taq!) and mn on a 0.7% agarose gel. Southem blotting 

and hybridisation were perfonned using standard methods [31]. Tlu·ee cDNA clones were 

tested on the blots; a 5'RACB clone which had been amplified from a fetal brain cDNA pool 

(bp 24-1696)(Clontech), an RT-PCR product (bp 1616-3684) generated from fibroblast RNA 
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and a fetal brain cDNA clone (bp 4100-8600). The three probes cover the coding sequence as 

well as the 5'- and 3'-untranslated region of the TSCI gene. 

SSCP ANALYSIS AND DNA SEQUENCING 

Sequences of primers used for amplification of the 21 coding exons of the TSCl gene arc 

provided at http://expmed.bwh.harvard.edu/projects/tsc/. For exon 22, a new intronic forward 

primer was designed (5'-atactaccagcttactttccata-3'). SSCP analysis was perfonlled following 

Orita ef at. [32]. 2 III of the PCR product were applied to the Phannacia GenePhor 

Electrophoresis system. Gels were nlll for 2.5 hours at both 5 and 18 degrees Celsius. 

Running conditions for two gels were 600 V, 50 mA and 10 W. Subsequently, bands were 

visualised using a DNA silver staining kit (Phannacia) in a Hoefer automated gel stainer. 

Variant patterns were further characterised by direct sequence analysis of the peR products 

on an automated DNA sequencer (ABI 377) using the cyclesequencing Dyeprimed kit (Perkin 

Elmer). 

ASO HYBRIDISATION 

Oligonucleotides for ASO hybridisation were designed for the mutated and llonnal sequence. 

ASO hyblidisations were perfonned at 37' C for 30 minutes. Filters were washed to 0.3XSSC 

for 10 minutes at 37° C. 

Results 

SCREENING FOR LARGE ABNOIUvlALlTIES 

No large insertions or deletions were identified in the TSCI gene by Southem analysis in 200 

patients. Only in one case (T2965) an aberrant restriction pattem in a Tag! digest was 

detected (figure la), but no consistent change was seen with other enzymes. Comparing the 

genomic sequence of the TSCI gene with the size of the extra fragment, we could locate the 

lost Tag! site in exon IS. Sequencing exon IS ofthe TSCI gene of this patient revealed a C to 

T substitution at bp position 1719 (figure Ib), resulting in the nonsense mutation R500X. The 

presence of this mutation was con tinned by allele specific oligonucleotide (ASO) 

hybridisation (figure Ic). 
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Figure 1; (A) Southern blot of TaqI digested DNA from 2 unrelated TSC patients, hybridised with a 
5' TSCI eDNA probe (nt 24-1696). A novel 3 kb fragment is detected in lane 2, indicated by the 
arrow. (B) Direct sequence analysis reveals the de 1I0VO nonsense mutation C-->T (RSOOX) in a TaqI 
site in patient TI965. (C) ASO hybridisation of the R500X mutation in patient T2965 (P) and a 
control (C). N= nonnal allele; M= mutant allele. 

SCREENING FOR SIvIALLER MUTATIONS 

Systematic SSCP analysis was undertaken to screen the 21 coding exons in the TSCI gene for 

small mutations. In total 29 mutations were detected in a set of 225 unrelated patients (table 

1). All types of mutations resulting in a tmncated protein have been observed: small 

deletions/insertions, nonsense mutations and splice-site mutations. In addition two in-frame 

deletions and 9 missense changes (table 2) were detected. 

Fourteen of the 29 mutations were small deletions, ranging from 1 to 23 bp. Three of these 

mutations have been reported previously [8]. In nvo patients we detected in-frame deletions 

of 3 and 9 bp respectively. In family T1298, a three basepair deletion in exon 7 segregated 

with the disease phenotype and resulted in a small amino acid change (Asp-Phe to lie at 

position 198) in the protein. The grandparents, having no signs of TSC, tested negative for 

the mutation. In a sporadic patient (T5913), 9 basepairs were deleted in exon 15, also leading 

to a different protein product (Cys-Lys-I1e-Pro to Ser at aa position 586). Both parents tested 

78 



negative for the mutation. All the other deletions lead to a premature stopcodon. Nonsense 

mutations were detected in 11 cases; R692X was present in four sporadic cases and in one 

family. Three insertions were identified: a single basepair substihltion in exon 7 and exon 10 

in familial cases, and a duplication of28 bp in exon 17 in a sporadic patient. A substitution at 

a splice-site (bp postition 432-1) was detected in a sporadic patient, of which the parients 

tested negative for the change. The most downstream mutation detected is a one basepair 

deletion in cxon 20 in the middle of the coiled-coil domain of hamartin. No mutations were 

found 3' of the coiled-coil domain (aa 719-998). 

Table 1. Mutations identified in the TSCl gene. 

Exon Patienlcode mutation (nl substitution) Familial/Sporadic 
4 1'2545 367delT Familial 
5 TI214 WI03X (529G-A) Familial 

TI817 432-IG-·A Sporadic2 

7 TI298 814delACf Familial 
8 T4715 944insA Familial 

T8129 958delG Sporadic2 

9 17806 R249X (966A-T) Sporadic 
10 TI207 1210 insT Familial 

T3945 1240del Familial 
T9809 Y312X (1157C-A) Sporadic 

12 TI0301 1473deiC Familial 
13 TlSIS3 1499deiT Familial 
15 1'2965 R500X (1719C-T) Sporadic 

T9886 R509X (1746C-T)' Sporadic 
T3922 1892de123 Sporadic2 

1'2067 1929delAG1
' Familial 

T5913 1978de19 Sporadic2 

1'2636 2007delT I Sporadic2 

T4124 2105de1AAAG" Sporadic 
17 TI197 R692X (2295C-T)' Familial 

T3838 Sporadic2 

T3908 Sporadic 
T5210 Sporadic2 

TI0816 Sporadic! 
17659 2318ins28 Sporadic 
T4068 2328delCf Sporadic 

18 1'2077' R786X (2577C-T)' Familial 
20 T5406 2729de1AACA Familial 

T1295 2787deiG Familial 
nt=nucleotide; Imutatioll reported before (van Sleglenhorsl ef at., 1997); 
lparents tested negative for the mutation; 3family linked to chromosome 
9 (Janssen et aI., 1994); 'recurrent mutation, also identified by other 
groups (van Sleglenholst et at., 1997; Jones ef at., 1998). 
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Table 2. Missense and silent changes in the TSCt gene. 

Exon 
4 
7 

8 
12 
14 
15 

Code 
T5768 
T1486 
T4712 
TI524 
Tl0383 
1'2083 
T5100 
T8775 

ntchange 
374A-C 
789C-T 
793T-A 
892T-G 
1429C-T 
1556A-G 
2415C-T 

aa change 
E5lD 
RI90S' 
Ll9lH 
M224R 
S403 
E445' 
H732Y' 

21 Tl219 3050C-T A943' 
'confimled polymorphism; E445, H732Y and A943 were 
reported before (Jones). nt= nucleotide, aa""'amino acid 

Table 3. Overall summary of clinical features of all patients with Ulutations in the TSCi gene. 
A distinction has been made between patients with a mutation 5' ( exons 3~14), 3' (exons 15~23) and inframe. 

mutation mutation inframe total 
exon 3~t4 exon15~23 deletion 

Facial angiofibroma 6/10 1lI19 3/3 20/32 (63%) 
Ungual fibroma 4/8 6/18 2/3 12/29 (41%) 
Hypomelanotic macule 9/10 14/16 4/4 27/29 (93%) 
Subependymal nodule 8/8 16/20 314 27/32 (84%) 
Cortical tuber 2/8 8/20 2/4 12/32 (38%) 
Epilepsy 8/10 15/20 2/4 25/34 (74%) 
Mental retardation 5/8 8/19 lI3 14/30 (47%) 
Renal cyst 2/8 2/18 0/4 4/30 (13%) 
Renal angiomyolipoma 0/8 lI18 0/4 lI30 (3%) 
Cardiac rhabdomyoma 2/8 3/16 lI4 6/28 (21%) 

Table 4. Clinical features of patients with mutation R692X. 

code 
ase 

Tl197a T1l97b T3838 T3908 T5210 T10816 Total 
56 15' 14 54 6 3 

Facial angiofibroma + + + 3/6 (50%) 
Ungual fibroma + + 2/6 (33%) 
Hypomelanotic macule + + + + 4/6 (67%) 
Subependymal nodules + + + + + 516 (83%) 
Cortical tuber + lI6 (17%) 
Epilepsy + + + + + 5/6 (83%) 
Mental retardation 7 + lI5 (20%) 
Renal cyst ? 0/5 (0%) 
Renal angiomyolipoma ? 0/5 (0%) 
Cardiac rhabdomyoma + + 2/6 (33%) 
• died age 15 of giant cell astrocytoma 
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MISSENSE AND SILENT CHANGES 

Nine different abnonnal SSCP pattems were observed representing missense or silent 

changes (table 2). In four cases the change was also found in the nonnal population. These 

polymorphisms were RI90S (present in unaffected parent and absent in the affected parent), 

E445 (allele frequency of 16% innonnal population), H732Y (allele frequency of 0.5%) and 

A943. E445, H732Y and A943 were reported before [29]. None of the additional missense 

abn0l111alities have been confinned to represent the disease causing mutation yet. 

TSC 1 MUTATIONS IN FAMILIAL AND SPORADIC CASES 

Eighty two of our 225 unrelated patients (36%) had other affected family members. Ofthe 29 

mutations, 13 were identified in the 82 familial TSC patients (16%), and 16 in the 143 

sporadic cases (11 %). Hence, we do not find a significant difference in detection rate between 

familial and sporadic cases. In about half of the sporadic cases, both parents were available 

for analysis and tested negative for the mutation. In the other sporadic patients, DNA of both 

parents was not available, but there was no clinical indication ofTSC disease in the family. 

CLINICAL SYMPTOMS VERSUS TYPE AND POSITION OF THE MUTATION 

Patients with a mutation in the TSCl gene were scored for the most frequent skin, brain, 

kidney and heart lesions detected in TSC. A distinction has been made between type 1 

mutations detected in TSCl (deletion, insertion, splice site and nonsense mutations) in exons 

3-14 versus type I mutations in the exons 15-23 (table 3). No positional effect was noted for 

mental handicap or other TSC symptoms. In addition the clinical phenotype was evaluated of 

patients with a type 1 mutation versus the in frame deletions (type 2 mutations) in exons 7 

and 15. Comparing both types of mutations, no obvious correlation could be detected 

between the genotype and phenotype in the TSC patients. The missense changes were left out 

of the analysis, because so far none of them has been confinned to represent a disease causing 

mutation. 

CLINICAL MANIFESTATIONS IN PATIENTS WITH TIlE RECURRENT MUTATION R692X 

The mutation R692X was present in 4 sporadic TSC patients and in 2 patients from the same 

family. The clinical data of these 6 patients are sunnnadzed in table 4. Ahnost all patients 

have a history of epilepsy. No renal lesions were detected, but only 2 patients are older than 

15, so these results could be biased by the later onset of the cysts and angiomyolipomas. All 
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other symptoms were scored once at least. The patients with the R692X mutation do not 

share an obvious similar phenotype. 

Discussion 

After screening the 21 coding exons of the TSCl gene, 29 mutations were detected, all of 

them small changes. The only mutation detccted by Southern blot analysis was duc to the 

substitution of a C to T in a Tag! (TCGA) restriction site, resulting in a stopcodon. Since four 

different restriction enzymes have been used to test a selection of our TSC patients on 

Southem blots, it is unlikely that large abnonnalities dismpting the TSCl gene have remained 

undetected. Previous mutation studies in the TSC2 gene have shown a diverse mutational 

spectrum including large realTangements, deletions, insertions, and nonsense- and missense 

mutations. In the TSC2 gene, approximately 10% of the mutations detected so far are large 

deletions, often resulting in dismption of the neighbouring PKD 1 gene as well. A possible 

explanation for the lack of large mutations in TSCl can be the presence of unknown 

neighboring- or intragenic- genes that are essential for embryonic development and survival. 

Although all the mutations detected in the TSCl gene were small, we could not confiml any 

missense change as the disease causing mutation. Only one missense mutation in TSCl has 

been reported before by Jones et al., but this de 110VO change in the gene appeared not to be 

the disease causing mutation (pen~onal communication). Conversely, a number of missense 

mutations have been reported in the TSC2 gene [28]. It remains to be explaincd why the 

mutational spectmm of the TSCl and TSC2 gene is different. Despite the differences, most of 

the mutations in either TSCl or TSC2 lead to a tnmcated protein, which is in concordance 

with a loss of function mechanism. Results obtained by interaction studies indicate that 

hamartin and tuberin function as a complex [33], which supports the phenotypic overlap 

observed between TSC patients with either a TSCI or TSC2 mutation. 

So far we have detected a mutation in the TSCl gene in 13% of our unrelated TSC 

collection screening all of the coding region of the gene by SSCP analysis. It is likely that tltis 

technique fails to detect al1 of the mutations and the promoter region has not been tested yet. 

We only detected the disease causing mutation in two out of tlu·ee of our clearly chromosome 

9 linked families. This number is too small to give an indication of the ratio of the undetected 

mutations in the TSCl gene. We expect that for the whole group ofTSC patients, the majOlity 

of the mutations will be found in the TSC2 gene. The coding region of the TSC2 gene is twice 
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as large and mutations have already been detected in 15% of our patients, after screening only 

30% of the coding region (unpublished data). We do not observe a significantly larger 

number of TSCI mutations in our familial cases versus the sporadic population, as was found 

in a recent study [29], although it is possible that some of our patients are nllsclassified as 

sporadic, because in only half ofthese cases material from both parents was available. 

We find a clustering of mutations in exon 15 and 17. In these exons, 14 out of29 identified 

mutations were present. The high mutation rate in exon 15 was already observed when the 

TSCI gene was identified [8] and can be partially explained by the size of the exon (17% of 

the coding region). The high proportion of recurrent mutations detected in exon 15 and 17 

suggests that part of these exons are particularly proue to nucleotide changes. 

We did not detect a clear correlation between the location or nature ora TSCI mutation and 

the clinical phenotype. hl a previous study, mental handicap was seen only in patients with 

truncated TSCI mutations towards the 3' end of the gene (exens 15-23) [29]. In our study, 

mental handicap was detected equally in patieuts with a mutation in exons 3-14 (table 3). In 

addition the type I versus the type 2 mutations in the TSCI gene did not show an obvious 

difference in clinical phenotype in the patients. The six patients with the recurrent mutation 

R692X also displayed a wide range of clinical symptoms. TIllS is comparable with the clilllcal 

differences detected within families with TSC. The phenotypic differences in TSC patients 

are more likely caused by mechanisms such as a second hit [10-12], somatic mosaicism [18] 

and modifying genes. The latter has also been proposed to contribute to the complex 

phenotype in the comparable 'monogenic' disease neurofibromatosis I (NFl) [34]. In 

conclusion we find no support for a different phenotypic spectrum in patients with a mutation 

in the TSCI gene. 
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FUNCTIONAL ANALYSIS OF THE TSC GENE PRODUCTS 

3.1 The TSCI gene product, hamartin 

The TSCI gene encodes a 1164 amino acid protein of 130 kDa. The protein was called 

hamartin, after the hamartomatous lesions seen in patients. Analysis of the protein sequence 

(Smith ef al .• 1996) showed a putative transmembrane domain at the N-tenninus (aa 127-144) 

and an extensive predicted coiled-coil region at the C-tenninus (aa 719-998). Coiled-coil 

domains are alpha-helical stmctures, which often mediate homomeric interactions and 

interactions with other proteins (Lupas ef al., 1991). The TSCI nucleotide and amino acid 

sequence was analysed using different Basic Local Aligmnent Search Tool (BLAST) 

programs, but no significant homology with the TSC2 protein or any other known vertebrate 

protein ,vas detected. Only the coiled-coil domain in hamartin matches other coiled-coil 

stmctures, but the significance ofthese homologies needs further characterisation. 

3.2 TSC genes in otber species 

Since hamartin did not show significant homology to any known vertebrate proteins, the next 

step was to compare the human TSCI sequence with TSCI sequences from different species. 

This is one of the approaches to gain insight into gene evolution and function (Rastan and 

Beeley, 1997). For example, functional domains in proteins are often represented by regions 

that are highly conserved through species. The TSC2 gene has been identified in the rat 

(Yeung ef al., 1994; Kobayashi ef ai., 1995a), the mouse (Kim ef al.,1995), Fugu rubripes 

(Maheshwar ef al.,1996) and Drosophila II/elallogasfer (1847aa, 30% identity) (Gerald 

Rubin, personal communication). Thus far, TSCI sequences have been detected in the i 
genome databases of the mouse, the yeast strain Schizosaccharomyces pombe and D. 

melallogasler. Over a distance of 145 nucleotides, the homology with a mouse EST clone 

(GenBank accession number 604696) is 95% (aa identity is 98%). The homology with a 

putative S. pOll/be protein (GenBank accession number Q09778) is relatively low and 

restricted to two regions in hamartin. The TSCI gene in D. melallogaster was presented at the 

ASHG meeting 1997 (1100aa, 24% identity) (Gerald Rubin, personal communication). The 

completion of the genome sequencing projects for these different organisms may help to 

understand the function of the TSCI and TSC2 gene products in nomlal development aud in 

disease pathology. 
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3.3 Expression studies 

The TSC2 gene is widely expressed in many different cell lines and tissues when studied by 

Northern blot analysis (European TSC2 Consortium, 1993). Transfection studies indicate that 

tubedn is present exclusively in the cytoplasm (chapter 3.6). III situ hybridisation (ISH) 

showed that the expression of TSC2 mRNA is most prominent in cells with a rapid mitotic 

rate and tumover (Menchine e/ al.,1996). No major differences were detected in TSC2 

mRNA expression between TSC2 patients and nonnal individuals in any organ or tissue 

tested (Menchine e/ al., 1996). At least six splice variants of tuberin have been reported to be 

present in humans and rodents, showing both an age-associated and tissue-related expression 

pattern. 

Northern blot analysis for the TSCI gene showed expression in all tissues tested, including 

brain and kidney, which was expected from the known multiorgan involvement in patients. 

All tissues show a major 8.6 kb transcript, with potentially smaller mRNA bands, a!hough no 

tissue-specific expression was detected for any of the bands. The first studies with a 

polyclonal antisemm, which has been raised against hamartill, show a 130 kDa protein on a 

Western blot in fibroblasts, COS- and HeLa- cells. When hamartin is overexpressed in COS 

cells, a punctated cytoplasmic labelling pattem is detected. 

3.4 A natural animal model for the TSC2 gene, the EkeI' rat 

After the TSC2 gene had been cloned, two reports linked a model of hereditary renal 

carcinoma in the Eker rat to a gennline mutation in the rat homologue of the TSC2 gene 

(Yeung e/ al., 1994; Kobayashi e/ al., 1995a). The mutation in the rat is an intragenic insertion 

of about 4.5 kb and has been identified as a rat intracisternal A-particle (lAP) element (Xiao 

e/ al.,1995), resulting in a frameshift and premature stopcodon before the GAP related 

domain. Virtually all heterozygous rats develop renal cell carcinoma by the age of one year 

and tumours in the spleen, utems and pituitary also occur (figure 3.1). 

Only the mutated transcript is expressed in the tumour, supporting the two-hit model for the 

tumours seen in the Eker rat. Most of these tumours have not been described in TSC patients, 

although renal cell carcinoma has been reported in about 30 cases with TSC (Bjomsson e/ 
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al., 1996). Eker hlmour cell lines provide a nice model to test tumour suppressor function of 

tub erin, since they lack nonnal TSC2 expression. 

x 

l ! 

tt f 
Homozygous Heterozygous Homozygous 

1 
12nd hit 

1 
Lethal Renal Cell Carcinoma Normal 

and other tumours 

Figure 3.1 Eker rat model (Kobayashi et al., 1995a). Inheritance of two mutant TSC2 alleles is 
lethal in developing embryos. Heterozygous animals have a strong predisposition to tumour 
formation and all animals develop RCC in the first year of life. after a second somatic hit. 

First experiments showed that re-introduction of TSC2 suppresses the tumourigenicity of 

these cell-lines, strongly suggesting a role for tuberin in growth control (Jin et at., 1996). 

3.5 Interaction between the TSCI and TSC2 gene products 

The clinical similarities between patients with TSC1 and TSC2 disease suggests that the 

proteins function in the same pathway. A widely used system to detect interactions between 

two proteins is the yeast two-hybrid system (Field and Song, 1989). Interactions between 

gene products from other genetically heterogeneous disorders have recently been described 

for ADPKD (Tsiokas et at.,1997; Qian et at.,1997) and Fanconi's anaemia (Kupfer et 

at., 1997). 
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Yeast two-hybrid system 

The 'original' yeast two-hybrid system is based on the properties of the yeast GAL4 protein, 

which consists of separate domains responsible for DNA-binding and transcriptional 

activation. The first application of this system is to screen for unknown interacting proteins 

with a protein of interest. Identifying interacting proteins is a powerful tool to learn more 

about the function of a protein. One of the most prominent examples is Huntington's disease. 

Several interacting proteins have been identified in the last few years (Wankler ef al., 1997; 

Kalclnnan ef al., 1997; Boutell ef al., 1998) and the type of proteins suggest an indirect role for 

huntingtin in vesicle trafficking through the cytoskeleton (Engelender ef al.,1997) and as a 

regulator of a ras-related signalling pathway (Colomer ef al., 1997). 

DNA.·binding domain hybrid 

Activation domain hybrid 

G,IJ,.4 (768-881) 

i 
GAL.I.JacZ 

Interaction between DNA·blnding domain 
hybrid and activation domain hybrid 

GAL .. (16M81) 

GALt.f3cZ 

Figure 3.2 Yeast two-hybrid system. The DNA-binding domain of yeast protein GAIA is used to 
generate a fusion with target protein X and the GAIA activation domain is fused to target protein Y. 
Both domains arc required for normal activation of transcription. Interaction of protein X and Y will 
lead to expression of the reporter gene lacZ 
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A second, more specific application is to test for an interaction between two proteins of 

interest, and to define domains of proteins involved in interactions. In this application, 

plasm ids encoding two hybrid proteins are constmcted and transfonned into yeast. 

Interaction between the two proteins will lead to transcriptional activation of a reporter gene 

containing a binding site for GAL4 (figure 3.2). When an interaction has been detected, the 

interacting site within the proteins can be defined using tnmcated or otherwise mutated 

constmcts. 

The yeast two-hybrid system was applied to test whether hamartin and tuberin can interact. 

Several TSCI and TSC2 constructs were tested and it was found that the two TSC proteins 

can fonn a complex and that the interaction between hamartin and tuberin is mediated by 

their predicted coiled-coil domains (chapter 3.6). The specificity of the interaction was further 

examined by two independent techniques, coimmunoprecipitation of endogenous proteins 

and immunofluorescence after transfection. 

CoimmUDoprecipitatioJl 

Coimmunoprecipitation is one of the most commonly used techniques to study protein­

protein interactions ill vivo. A major advantage of this method is that the endogenous proteins 

are studied in their natural cellular environment. This technique was applied to Shldy the 

interaction between the TSC proteins, and both hamartin and tuberin could be recovered from 

immunoprecipitates of antisera specific for tuberin or hamartin (chapter 3.6). 

Immunofluorescense 

A third method to study the interaction between hamartin and tuberin was by 

immunofluorescense. The endogenous proteins were difficult to detect in cell systems, so 

both proteins were transfected into mammalian cells. In cotransfection assays, a specific 

punctated labelling patten> was observed to which hamartin and tuberin colocalised (chapter 

3.6.1). A major disadvantage of the transfections is that the overexpression might change the 

nonnal behaviour of the proteins. Therefore it is important to interpret the results with 

caution. However, the results from the coimmunoprecipitations and inmmllofiuorescense 

were in concordance with those obtained using the two-hybrid system, giving strong evidence 

that the twoTse proteins function in a complex. 
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Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by a mutation 

either in the TSCI or TSC2 tumour suppressor gene. The disease is eharaeterised by a 

broad phenotypic spectrum that can include seizures, mental retardation, renal dys­

function and dermatological abnormalities. TSC2 encodes tuberin, a putative GTPase 

activating protein for rapl and rabS. The TSCI gene was recently identified and codes 

for hamartin, a novel protein with no significant homology to tuberin or any other 

known vertebrate protein. Here we show that hamartin and tuberin associate physically 

ill vivo and tbat tbe interaction is mediated by predicted coiled-coil domains. Our data 

suggest that hamartin and tuberin function iu the same complex rather than in separate 

pathways. 

INTRODUCTION 

Tuberous sclerosis (TSC) is characterised by the widespread development of hamartomatous 

growths in many tissues and organs. The brain, eyes, kidneys, heart and skin are frequently 

affected but the lungs, skeleton and endocrine glands may also be involved (I). The lack of 

clues as to cellular functional abnormalities has meant that efforts to identify the primary 

underlying defect in TSC patients have focussed on positional cloning. 

TSC is genetically heterogeneous, with loci on chromosome 9q34 (TSCI) and 16p13.3 

(TSC2) (2). The TSC2 gene was isolated in 1993 (3) and codes for tuberin, a 200 kDa (1807 

amino acid) protein. Tuberin contains a relatively hydrophobic N-temlinal domain (4) and a 

conserved 163 amino acid region close to the C-tenninus that is homologous to the GTPase 

activating proteins (GAP) rap I GAP and mSpal (5). 

The TSCI gene was recently identified (6) and codes for hamartin, a 130 kDa (1164 amino 

acid) hydrophilic protein with no significant homology to tuberin or other known vertebrate 

proteins. 

We tested whether hamartin and tuberin could interact using the yeast two-hybrid system 

(7) and transfection assays. Further, in human cells in culture, we investigated the association 

between endogenous hamartin and tuberin by coimmunoprecipitation. OUf data demonstrate 

that hamartin and tuberin associate physically ill vivo suggesting that both proteins playa 

closely related role in an as yet undetermined physiological process. 
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RESULTS 

The predicted coiled-coil domain in hamal'tiu interacts with a putative coiled-coil 

domain in tubelln 

The predicted amino acid sequences of hamat1in and tuberin were analysed for potential 

interaction domains. COILS version 2.1 (8) identified a more extensive coiled-coil structure 

in hamartin than reported previously (6) (amino acids 719-998, window size 28) (figure la) 

while a less stringent analysis (window size 14) of the oIiginal tuberin sequence (3) predicted 

two coiled-coil domains at amino acid positions 346-371 and 1008-1021 (figure I a). As 

coiled-coil domains have the capacity to fOiro homophilic and heterophilic protein complexes 

(8), these domains were made the focus of subsequent yeast two-hybtid experiments. 

A construct coding for tubetin (amino acids 1-1784, as described in reference 3) fused to 

the GAL4 DNA-binding domain was tested against constructs coding for the GAL4 

trans activating domain fused to the N-temlinal (XBI, amino acids 23-357) and C-temlinal 

(EEla, amino acids 334-1153) domains of ham art in (figure Ib). A strong, specific interaction 

was detected between tuberin and EEla, containing the C-tenninal, putative coiled-coil 

domain of hamartin. No interaction was detected between tubelin and the N-tenninal domain 

of hamartin. Self-activation of GAL4 activity for any of the constmcts used in this study was 

not observed. 

To define the binding domain within hamartin more precisely a series of truncated 

constructs were analysed (figure lb). Only construct ESA (amino acids 334-673), lacking the 

entire coiled-coil domain, did not interact with tuberin. Construct EE2 (amino acids 334-788) 

tested positive, suggesting that the first seven heptad structures in the coiled-coil domain 

were sufficient for hamartin to interact with tuberin. 

The interaction domain in tuberin was also defined using partial COIlstmcts (figure Ic). A 

potential leucine zipper (amino acids 81-121), the two putative coiled-coil domains (amino 

acids 346-371 and 1008-1021) and a deletion constmct (GRD; amino acids 1-41 and 861-

1784) containing the GAP related domain were tested against the EEl (amino acids 334-

1153) hamartin construct. Only the most N-tenninal coiled-coil construct (amino acids 346-

371) tested positive. The specificity of the coiled-coil interaction was investigated in the two­

hybrid assay using another coiled-coil containing protein, giantin (9), against hamartin and 

tuberin. No GAL4 activation occurred (data not shown), indicating that the interaction 

detected between the coiled-coil domains in hamartin and tubelin was specific. 
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Figure 1. Coiled~coil predictions and mapping of the interacting domains of ham art in and tuberin in 
the yeast two~hybrid system. (A) Plot showing the position and the probability of the coiled-coil 
motifs in tuberin and hamartin. COILS version 2.1 window size 28 for hamartin and window size 14 
for hlberin. (B) One N-tenninal and four C-tenninal TSCI constructs, fused to the DNA 
transactivation domain of GAL4 (XBl, EEla, ESM, EE2 and ESA), were assayed for interaction 
with a full-length TSC2 constmct, fused to the DNA binding domain of GAL4. The deletion 
constructs of EEl a were created with the intemal restriction sites SmaI (ESM), EcoR! (EE2) and SaIl 
(ESA). The putative coiled-coil domains (cc; shaded boxes) in hamartin and tubenn and the N­
terminal leucine zipper and C-tenninal GAP-related domain in tubedn (hatched boxes) are indicated. 
The bait and prey constructs were cotransforrned in yeast strain YGHl bearing a lacZ reporter. 
Interaction was detected with the B-galactosidase assay, positives resulting in a blue colour (last 
colunm). (C) The N-terrninal leucine zipper (LZI) and C-tenninal construct (GRD), fused to the 
GAL4 DNA-binding domain, and the two putative coiled-coil structures fused to the GAL4 
transactivation domain (pADlO and pAD26) were tested against the EEl hamartin construct fused to 
either the GAL4 DNA-binding- (EElb) or transactivation -domain (EEla). 
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Hamartin and tubel'in colocalise in transfected mammalian cells 

In order to confinn the two-hybrid results, the localisation of hamartin and tuberin in 

transfected cells was shldied using immunofluorescent microscopy. A full-length TSCI 

cDNA in the pcDNA3.l expression vector was transfected into COS cells. A distinct label­

ling pattern was observed, consisting of discrete structures in the cytoplasm (figure 2A). In 

contrast, expression of an epitope tagged full-length TSC2 constmct produced a general 

cytoplasmic labelling pattern (figure 2B). When COS cells were cotransfected with the TSCI 

and TSC2 constmct, both hamartin and tuberin localised to the same stmcturcs as well as to 

the cell cytoplasm (figure 2C-E). Untransfected COS cells did not stain with the hamartin and 

tuberin specific antisera. Similar results were obtained in transfected HeLa and CHO cells 

(data not shown). To investigate whether the colocalisation was due to overexpression of 

hamartin and tuberin, several control proteins including the fragile X mental retardation 

protein, acid a-glucosidase and the C-tenninal domain of polycystin, containing a predicted 

coiled-coil structure (10), were co-expressed with hamartin in COS cells. None of the 

controls colocalised to the hamartin positive stmctures, confinning that the colocalisation of 

hamartin and tuberin was specific. 

Hamartin and tuberin coimmulloprecipitate ill vivo 

In order to investigate whether the observed association between hamartin and tuberin also 

occurred ill vivo, the endogenous proteins were immulloprecipitated from HeLa cells and 

cultured human fibroblasts. Hamartin could be recovered from the inununoprecipitates of 

antisera specific for tuberill, willIe tuberin coimmulloprecipitated with hammiill when an 

antisenllll specific for hamartin was used (figure 3). Identical results were obtained with 

different anti-hamartin and anti-tuberin antisera (data not shown). Preimmune sera and a 

control antiserum (against human acid a-glucosidase) were negative, demonstrating that the 

observed coimmunoprecipitation of htberin and hamartin was specific and confinning that the 

association detected by the two-hybrid assay occurs in mammalian cells. 
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Figure 2. Colocalisation of hamartin and tuherin in COS cells. (A) COS cell, transfected with the 
full-length TSCI construct. (D) COS cell, transfected with the full-length TSC2 construct. Both 
proteins were detected with specific rabbit polyclonal primary antisera, followed by anti-rabbit IgG 
secondary antisera conjugated to fluorescein (FITC). (C, D and E) Cotransfection of full-length 
TSCI and TSC2 constructs. CelJs were double labelled: (C) hamartin was with a specific rabbit 
polyclonal antiserum (as in (A», followed by an anti-rabbit IgG Texas Red coupled secondary 
antibody and (D) tuberin was visualised with a mouse monoclonal against an N-tenninal epitope tag 
sequence, followed by an anti-mouse IgG-FITC conjugate (Xpress; Invitrogen). (E) Colocalisation of 
hamartin and tuberin in the cytoplasm of COS cells (yellow). 
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Figure 3. 11/ vh'o coimmunoprecipitation of 
tuberin and hamartin. Tuberin and hamartin 
were immunoprecipitated from fibroblast 
lysates with tuberin specific antiserum (lanes 
1 and 6), hamartin specificantiserum (lanes 2 
and 7) and an antiserum against human acid 
a-gluco-sidase (lanes 3 + 8). Lanes 4 + 9 
contain the lysate prior to immuno­
precipitation. The molecular weight marker 
is in lane 5 (from top to bottom: 230 kDa, 
100 kDa, 80 kDa). Lanes 1 to 4 were 
incubated with anti-tuberin antibody and 
lanes 6 to 9 with anti-hamartin antibody. IgG 
heavy chains (50kDa) are visible in lanes 1, 
2, 3, 6, 7 and 8. The additional lower 
molecular weight bands in lane 9 are most 
likely degradation products of hamartin, not 
con- sistently observed (data not shO\VJl). 
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DISCUSSION 

To investigate the molecular mechanism underlying TSC, we tested for an interaction 

between tuberin and hamartin using three independent methods. In each case we showed that 

the proteins are partners. In view of the phenotypic overlap observed between TSC patients 

with either a TSCl or TSC2 mutation, this suggests that inactivation of hamartin Of tuberill 

may prevent the fomlation of a functional protein complex. A comparable scenario has been 

reported recently for the PKD 1 and PKD2 proteins (1O, II). However, unlike polycystin 1 

and 2, no regions of homology between tuberin and hamartin have been detected (6). 

The interaction between tuberin and hamartin is mediated by potential coiled-coil 

domains. A predicted N-tenninal coiled-coil domain in tuberin interacts with only a small 

part of an extensive coiled-coil region in hamartin. Preliminary results indicate that the 

coiled-coil domain in hamartin can form a homophilic complex (data not shown). We are 

currently investigating whether the additional coi1ed~coi1s in hamartin mediate interactions 

with additional proteins important in the pathogenesis ofTSC. 

Overexpression of hamartin in COS cells showed a distinct labelling pattem in the 

cytoplasm, while tuberin produced a general cytoplasmic labelling. When hamm1in and 

tuberin were cotransfected in mammalian cells, tuberin was recruited in a specific manner to 

the hamartin positive stmctures and the proteins colocalised more generally in the cytoplasm. 

These data, together with the ill vivo association of hamartin and tuberin detected by 

coimmunoprecipitations, support the results of the two~hybrid system and provide strong 

evidence that hamartin and tuberin exist as a complex. 

Recently it has been demonstrated by the two-hybrid system that the C-temlinal part of 

tuberin interacts with rabaptin-5, (I2). Rabaptin-5 is an 115 kDa cytosolic protein, that is an 

effeclor for the endosomal small GTPase rab5 and therefore involved in endocytic fusion 

events (l3). Consistent with the tuberin~rabaptin-5 interaction, tuberin has been shown to act 

as a GTPase activating protein for rab5 and to reduce the rate of fluid-phase endocytosis (12). 

It will be important to establish whether binding between hamartin and tuberin regulates the 

rab5 GAP activity of tuberin and to investigate the effect of hamartin expression on fluid­

phase endocytosis and eady endosome fusion. We are currently investigating the nature of the 

hamartin containing stmchlres detected in the transfection experiments. The identification of 

additional endosomal proteins that interact with either hamartin, tuberin or both may help to 

clarify whether dysregulation of endocytosis is important in the aetiology ofTSC. 
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MATERIAL AND METHODS 

TSCl and TSC2 constl'llcts 

A full-length TSC2 eDNA (nucleotides 1 - 5474) was derived from previously identified 

partial cDNAs (3) and cloned into the pGBT9 (Clontech) and pcDNA3.1HisA (Invitrogen) 

vectors. The TSC2 C-tenninal GAP domain construct (GRD) was made by digesting with 

SacII, leading to an in-frame deletion of amino acids 42-860. The full-length TSCI cDNA 

was amplified by RT-PCR with oligonucleotides 5'-TGAGGTAAACAGCTGAGGGG-3' and 

5'-AAGGTCAAGAGGCATTTCAA-3' and cloned into pGEM-T Easy (promega) and 

subsequently into pcDNA3.1. The remaining TSCI and TSC2 constructs were derived by 

PCR using primers with linkers for direct restriction site cloning. pAD26, pADI0 and LeuZip 

were amplified from a TSC2 cDNA clone using the primer pairs 5'-CTCGAATTC 

CACGCAGTGGAAGCACTCTG-3' and 5'-CTCGGATCCGGAAGGGTAATCCTTGATG 

ACC-3' for LeuZip, 5'-GGAATTCCAGACGTCCCTCACCAGTGC-3' and 5'-GCTCTAG 

AAGCCGTGAAGTTGGAGAAGA-3' for pAD26, 5'-GGAATTCGAGATCGTCCTGTCC 

ATCAC-3' and 5'-GCTCTAGACGCACATCTCTCCACCAGTT-3' for pADlO. The TSCI 

deletion constructs were amplified by RT-PCR with the primer pairs 5'-CCCGGG GGAC 

GACGTGACAGCTGTCTTT-3' and 5'-CCCGGGGAGTGGTCATACCACAAACCAT-3' 

for XBl, 5'-GGATCCCATGATGAGTCTCATTGTAGTC-3' and 5'-GGATCCGACACG 

GCTGATAACTGAACCA-3' for EEla, 5'-GGATCCTCATGATGAGTCTCATTGTAGT-3' 

and 5'-GGATCCCGACACGGCTGATAACTGAACCA-3' for EElb. pAD26 and pADIO 

were cloned into pAD-2.1 (Stratagene); LeuZip and EElb into pGBT9 (Clontech); and XBl 

and EEla into pGADGH (Clontech). Three deletion constructs (ESM, EE2 and ESA) were 

generated using internal restriction sites (SmaI, EcoRI and Sall respectively). All constructs 

were checked by sequencing and where appropriate by in vitro coupled transcriptioll­

translation assay (TnT system, Promega). 

Y cast two-hybrid assay 

Yeast host strain YGHI was co-transformed with 2.5~g of each plasmid according to the 

SBEG method (14). Transfonnants were plated on minimal media lacking Tryp and Leu. 

After 3 days, 3 colonies per interaction were plated on media lacking His, Tryp and Leu, and 

growing colonies were tested for il-galactosidase activity with the filter assay. 
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Generation of tuber in and hamartin specific antisera 

Two fusion proteins containing N-tenuinal histidine tag sequences and amino acids lS3S-

1784 from tuberin and 543-1087 from hamartin were overexpressed in bacteria and affinity 

purified under denaturing conditions according to the manufacturer's protocol (Qiagen 

Gmbh). The final eluates were concentrated through an Amicon PM-IO filter and dialysed 

against phosphate buffered saline. New Zealand white rabbits were inmmnized with 150 ~g 

of purified fusion protein suspended in Freund's complete adjuvant, and boosted at 4 week 

intervals with 150~g fusion protein in Freund's incomplete. Serum was collected 10 days 

after injection of the inlluunogen. The resulting polyclonal sera were checked for specificity 

by Western blot and transfection experiments. 

Immunofluorescence 

Expression constructs were transfected into COS cells with lipofectamine, as recommended 

by the manufacturer (Gibco BRL). For innnunocytochemistry, cells were fixed in 3% 

paraformaldehyde (10 minutes, room temperature), quenched with 50 mM NH4CI (10 

minutes), and pernleabilized in 0.1% Triton X-IOO (5 minutes). Cells were incubated with 

primary antibodies, followed by fluorescein (FITC) or Texas Red (TRITC) coupled 

secondary antibodies. Images were captured using the Power Gene FISH system on a Leica 

DM RXA microscope. Images were processed using a filter wheel (Chroma Technology) and 

the Adobe photoshop software package. In addition to the polycional sera against hamartin 

and tuberin generated as part of tlus study, antibodies against FMRP, polycystin and u­

glucosidase were used for control experiments. 

Coimmunoprecipitations 

Washed cells (one 10cm plate) were lysed in 700~1 TNE buffer (40mM Tris-HCI, pH7.4, 

150mM NaCl, hnM EDTA, 0.5% Nonidet P-40 contahung 0.2mM PMSF), according to 

standard procedures (15) and cleared by centrifugation (10 OOOg, 10 minutcs, 4°C). The 

supematant was recovered and incubated with 2111 antisera for 60 minutes on ice before the 

addition of30j.lISO% protein A-Sepharose suspension. After gentle rotation for 60 minutes at 

4°C, the immunoprecipitates were washed extensively with TNE buffer. Immunoblotting was 

performed according to standard procedures (IS) and coimmunoprecipitating proteins were 

detected using the appropriate antibodies and enhanced chemiluminescence (Amersham). 
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GENERAL DISCUSSION 

4.1 Positional cloning 

New developments and collaborations 

Positional cloning of disease genes has accelerated enonnously during the past years. On one 

side, many new techniques have been developed to screen rapidly large regions of the 

genome for genes, on the other side the Human Genome Mapping Project has led to a large 

collection of expressed sequencing tags (ESTs) in databases and to the genomic sequence of 

parts of several chromosomes. The identification of the TSCI gene benifited from both these 

developments. It was the systematic application of a whole collection of methods rather than 

anyone particular technique that finally allowed the TSCI gene to be isolated. In addition, a 

collaboration with groups in the USA and UK made it possible for each group to concentrate 

on specific tasks, thus avoiding duplication of effort. A crucial contribution was made by the 

TSC patients, their families and their Associations by participating in tillS study. 

The time span between localisatioll and identification of the TSCI gene 

Despite these new developments and collaborations, it took about 10 years from the original 

discovery of linkage to the isolation of the gene itself. The major rate limiting factors were 

the locus heterogeneity, which complicated the linkage analysis, conflicting recombinant 

data, and the absence of large rearrangements in the region. 

Several candidate TSC loci were identified but subsequently excluded. Additional 

difficulties resulted from the high proportion of sporadic cases and small families, which is 

probably due to reduced reproductive fitness of the patients. 

Conflicting recombinant data were mainly caused by false positive clinical diagnosis and 

mis-interpretation of marker data. Even though TSC is considered to be ahuost completely 

penetrant, the variability of clinical expression can hamper a correct phenotypic classification 

in both affected and unaffected individuals. Ultimately, recombination events in clinically 

rigorously investigated unaffected individuals in TSC families proved to have been of more 

value to narrow down the region than the ones in presumably affected persons. 

Only a few other genes have been identified by positional cloning without any indication 

from cytogenetic abnonnalities. Comparable examples are the searches for the genes for 

cystic fibrosis (Rommens ef al .• 1989; Riordan ef al .• 1989; Kerem ef al .• 1989), Huntington's 
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disease (Huntington's Disease Collaborative Research Group, 1993) and myotonic dystrophy 

(Harley ef al., 1992). The time span between the fIrst linkage reports and the identification of 

the genes for Huntington's disease and myotonic dystrophy also covered up to ten years. 

4.2 First applications after the cloning ofthe TSCI gene 

Mutation analysis 

The fIrst application after the cloning of the gene was mutation analysis in our collection of 

TSC patients. The detection of the mutation in the TSCI gene (13% of our cases) or the 

TSC2 gene (thus far 15% of the cases) enables reliable genetic counseling for relatives at risk 

and prenatal testing have become options for these patients and their families. Previously, 

prenatal testing was only possible for a few large families which had been linked to either the 

chromosome 9 or the chromosome 16 locus, or in families shown to have a mutation in the 

TSC2 gene. Mutation analysis has the obvious advantage of being a direct method, the 

application of which is not restricted by the chance of recombination and the lack of 

infonnativc markers. 

It is likely that some of the mutations in the TSC1 gene haveremained undetected. Small 

lllutations in regions outside of the coding region, for example in the promotor region and 

other untranslated regions, which may have a role in control1ing expression levels, have not 

been screened for yet. Furthemlore, each mutation detection method, including SSCP, is 

known to be less than 100% sensitive. 

Since there are no data supporting the existence of a TSC3 gene in familial cases, the most 

likely explanation for the paucity of TSC1 mutations is that the majority of the disease­

causing mutations will be located in the TSC2 gene. Preliminary data from our group support 

this hypothesis (A van den Ouweiand, personal conmlUnication). Explanations for the excess 

ofTSC2 mutations could include the largersize of the TSC2 gene and the greater variety of 

mutations detected at tIus locus. More mutations in the TSC2 gene is consistent with the 

observation of more frequent LOH at 16p13.3 in TSC-associated lesions. 

On the other hand, linkage data in a subset ofTSC families suggest an equal distribution of 

TSC I and TSC2 mutations, at least in the large TSC families. An explanation could be that 

the TSCI mutations are underrepresented among sporadic cases as was concluded in a 

recently published study (Jones ef al.,1997). However, in our own studies, a statistically 

significant difference in detection rate ofTSCI mutations among familial and sporadic cases 
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could not be found (chapter 6). Moreover, no obvious differences have been detected so far in 

the severity ofthe phenotype between TSCI and TSC2 disease in sporadic or familial cases. 

An alternative hypothesis is that a proportion of the sporadic patients have a mutation in 

another, as yet unidentified, gene. If this is the case, patients with a mutation in 'TSC3' would 

be expected to have a more severe phenotype with more severely reduced reproductive 

fitness, since all large TSC families are either linked to TSCI or TSC2. After both genes 

have been completely screened for mutations, the percentage of missed mutations in 

chromosome 9 and 16 linked families can be extrapolated to the small families and sporadic 

cases, and this may give an indication whether a putative additional gene in TSC might exist. 

Genotype versus phenotype in TSCI disease 

The mutational spectmm in the TSCI gene is different from the TSC2 gene. In TSCI mostly 

small mutations leading to a tmncated protein have been detected, while the TSC2 gene also 

harbours large deletions and missense mutations. The lack of large deletions at a disease 

locus can often be explained by the presence of adjacent genes that may play an essential role 

in embryonic development and survival. Potential intragenic transcripts and a putative growth 

repressor gene have been identified 5' of the TSCI gene by computer analysis, but their 

existence and possible functional meaning have not yet been confimled. Although the 

spectmm of mutations is different in TSCI and TSC2, the mechanism by which the mutations 

operate is the same: 'loss-of-function'. 

As described in chapter 2.6.4, no correlation was found between the type and location of the 

mutation in the TSCI gene and the clinical phenotype in the Rotterdam patient set. A recent 

report (Jones ef ai.,1997) suggested that there was a reduced risk for mental retardation in 

TSCI disease, but our data shows that 50% of the patients with a mutation in the TSCI gene 

are mentally retarded, which is in agreement with the overall reported prevalence of mental 

retardation in TSC (Gomez ef ai.,1988). Since the clinical variation observed within TSC 

families is wide, the lack of any obvious phenotype-genotype correlation is, perhaps, not 

surprising. FurthenTIore, the majority of mutations are loss-of-function lllutations leading to 

the same null effect at the protein level. 

The absence of a correlation between genotype and phcnotype in TSCI shows the 

complexity of this 'monogenic' disease. Shldies of other autosomal dominant phakomatoses 
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neurofibromatosis type I (NFl) (Cnossen, 1997) and von Rippel-Lindau disease (Crossey ef 

ai, 1994) are similar in this respect. The timing and tissue distribution of second hits may be 

responsible for a large part of the clinical variability. Additional factors that may contribute to 

the influences of other genetic factors (modifying genes), and somatic mosaicism (Verhoef et 

ai, 1995). 

Since the clinical phenotype is unlikely to help solve the question whether a patient has a 

defect in the TSCI or TSC2 gene, both genes need to be screened when mutation analysis is 

requested. For the TSCI gene, all exons can be screened for mutations in one SSCP run. 

Based on the number of mutations in TSCI observed with this method so far, it is expected 

that a TSC I mutation will be detected in approximately 13% of the patients. Screening for 

TSC2 mutations has proven to be more laborious and complicated, because different methods 

have to be employed to detect the different types of mutations in this gene. 

To overcome tItis problem, it would be of great help to develop a test to look at protein 

expression levels in tumour material from patients, but at present this is not feasible. 

Restrictions are the limited availability of tumours, and the current lack of data on the nonnal 

expression pattem of the TSC gene products. Further it is not known whether loss of ham art in 

affects the level of tuber ill or vice versa. 

Automated mutation analysis with the newly developed DNA chip teclmology 

(O'Domlell-Maloney and Little, 1996) will enable quick screening of many genes in the near 

future, but it is not likely that the TSC genes will be included in the first conlll1ercial 

applications of tItis tec\ntique. The developmental costs are relatively high and, because TSC 

is a relatively rare disorder, the commercial value would be low. 

4.3 How do the different lesions develop in TSC patients? 

TSC-specific lesions mainly occur in tissues that are normally populated by cells derived 

from the neural crest and neural tube (Lalier, 1991; Johnson ef al., 1991). In humans, both 

structures develop from a tItickened area of embryonic ectoderm called the neural plate. The 

neural crest is a transient embryonic stmcture from which cells migrate extensively before 

they develop into the peripheral nervous system and a variety of differentiated cell types. The 

neural tube differentiates into the central nervous system thereby giving rise to all neurons 

and macroglial cells. 

112 



Loss of tuberiu has been detected in both renal and brain lesions from TSC patients (Henske 

e/ ai., 1996-1997), suggesting that they only develop after a second, somatic, hit. 

Interestingly, loss of tuberin does not affect all cell types in this lesion. To illustrate the 

diversity of the TSC lesions, a schematic model for the development of some of the most 

conmlOIl features has been drawn in figure 4.1. 

Hamartomas 

Cardiac rhabdomyoma is a characteristic benign tumour in TSC patients, and LOH has been 

detected in 50% of the cases investigated (table 1.3). 

Benign TSC lesions in the kidneys (cysts and angiomyolipomas) are conllllOnly multiple 

and bilateral and the histopathologic findings are practically diagnostic of TSC (Bernstein e/ 

al., 1986). LOH has been detected in both lesions, but much more frequently in 

angiomyolipomas. 

Cortical tubers are histologically heterogeneous lesions, composed of abnormally shaped 

neurons and giant cells. The cells within tubers stain positive for nestin, which is a marker of 

an immature cellular phenotype (Crino e/ al., 1996), suggesting that the cells in tubers have 

retained the molecular phenotype of embryonic or immahuc neurons due to early dismption 

of neuronal maturation caused by loss of either tuberill or hamartin. LOH has been 

demonstrated within tubers (Green e/ al., 1994), suggesting that a second hit is also required 

for tuber development. The subependymal nodule is another distinctive neuropathologic 

feature of TSC. Histologically, they are composed of cells that are similar to those found in 

the cortical tubers. However, they frequently undergo calcification, while the cortical tubers 

generally do not (Richardson, 1991). 

In summary, most TSC-associated hamartomas show abnomlal cells, which arc often 

enlarged and in the wrong location, suggesting that the lesions share a common 

developmental mechanism. The number and location of hamartomas in a TSC patient are 

most likely determined by the second hits at the cellular level. 
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Figure 4.1. Schematic representation of the development of some distinct characteristic TSC 
lesions. Some common TSC-associated lesions have been selected (cardiac rhabdomyoma, cyst, 
angiomyolipoma, renal cell carcinoma, hypomelanotic macule, cortical tuber and subependyrnal 
nodule), which are likely to develop via distinct pathways. Each phase in the development of the 
lesion is indicated by an arrow. It is not clear whether all lesions require a second somatic hit. 

Renal cell carcinoma 

In some TSC patients malignancies occur in the kidneys in the fonn of renal cell carcinoma 

(RCC). It appears unlikely that RCCs develop from the atypical cellular changes in 

angiomyolipomas. Instead renal cysts, with their epithelial cell proliferation, are supposed to 

be a more probable origin ofRCC (Bernstein and Robbins, 1991). 

TSC-associated RCC occurs at an earlier age than sporadic RCC. Another difference is 

that half of the TSC-associated twnours occur bilaterally (Cook ef al., 1996). Some of the 

tumours in TSC patients have been reported to have a different immuno-phenotype than 

sporadic RCC (Bjornsson ef al., 1996), and it remains to be investigated whether mutation.s at 

9q34 and 16p13 occur in sporadic RCC. 

Studies in the Eker rat show that the RCC develops through multiple stages from 

phenotypically altered renal tubules to adenomas and carcinomas, and that LOR is already 

detected in very early preneoplastic lesionslstages (Kubo ef al., 1995). Therefore the second 
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hit in one of the TSC genes is likely to result in loss of nomlal regulation of proliferation 

and/or differentiation ofthe renal tubules. 

Several genes with an increased expression in Eker renal carcinoma cells have been 

identified (Hino e/ al .• 1995; Urakami e/ al., 1997). Almost all of the genes identified so far 

with an increased expression in TSC-associated RCC are members of the AP-l transcription 

factor family (Lau and Nathans, 1986; Szabo e/ al., 1996). The increased expression suggests 

that these genes may have a role in the development of RCC, but the mechanisms by which 

they are regulated are largely unknown. 

Hypomelanotic macule 

Hypomelanotic macules are common lesions in TSC patients, but are also frequently detected 

in the Honnal population. They are composed of melanocytes deficient in the production of 

melanin (Fitzpatrick, 1991). Melanocytes are also neural crest derived and apparently migrate 

without problem to their destination, but fail to differentiate into mature cells. Whether a 

second hit is involved in this process remains to be investigated. 

In conclusion, the mechanism by which mutations in either the TSCI or TSC2 gene cause the 

disease is predominantly by homozygous inactivation by a first hit in the gennline and a 

second hit in the abnonnal tissue. LOH has been detected in only a minority of the lesions 

studied, but it could very well be that most of the second hits are small changes. Very 

recently, the first somatic point mutation in the wild-type TSCI allele of an RCC from a TSC 

patient with a known TSCI gennline mutation has indeed been described (TSCI consortium, 

1997). 

Hypomelanotic maculae in TSC patients may be an exception to the second hit mechanism. 

There is no LOH data available for this skin lesion. Furthennore the nature of the lesion is 

different from the hamartomas whereas it is the most frequent feature in TSC patients. It is 

possible that reduced levels of the TSCI or TSC2 gene product, due to the presence of only 

one nonnal copy of the gene (haploinsufficiency), leads to the development of this particular 

lesion. 
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4.4 The function of the TSC gene products 

4.4.1 Function of hamar tin 

The predicted sequence of the TSCI protein, hamartin, does not resemble that of any known 

protein. Two potential functional domains are an N-tenninal transmembrane domain and an 

extensive coiled-coil region at the C-tenninus. We have recently demonstrated that hamartin 

colocalises in the cytoplasm with vesicle-like stmctures of unknown origin and that tuherill is 

recruited to these compartments. Since a mutation in either of the two genes causes a similar 

clinical phenotype, interaction between hamartin and tuberin was one of the first hypotheses 

to test for. The interaction between hamartin and tuberin was shown to occur ill vil'o and ill 

vitro and is mediated by coiled-coil domains (chapter 3.6). Preliminary results indicate that 

the coiled-coil domain in hamartin can also fonn a homophilic complex, but whether this is 

of functional importance needs to be elucidated. Since hamartin interacts with tuberin, 

hamartin is most likely associated with the function of tuber in in the pathology ofTSC. 

So far, abundant expression of the TSCI gene has only been detected on Northern blots with 

RNA from adult tissues. It will be interesting to study the expression pattern in early stages of 

development, because some of the TSC lesions develop very early in life. Preliminary data 

from studying a giant cell astrocytoma from a TSC patient suggest that expression of tuberin 

is lost, but there is no evidence for abnormal or elevated hamartill expression. Additional 

expression studies in a large number of TSC-3ssociated tumours should be performed in the 

near future to test whether there is an effect of the absence of one of the TSC proteins on the 

expression pattern of the other. Expression studies in both nomlal and hamartinltuberin 

negative cell lines will contribute to knowledge about the function of the TSC gene 

products. The effect of hlberin or hamartin deficiency on expression levels of other genes is 

another important approach in this endeavour. Additional valuable data can be collected from 

studies in celllines from foetal tissues, which can be induced to differentiate. 

Immunocytochemistry and RNA ill situ hybridisation can be applied to study the differences 

in the levels of expression of the TSC mRNAs and proteins, thereby giving an indication 

about the level at which expression is controlled. Further, studying the differences between 

expression in normal and TSC-associated tissues can be a step forward in unravelling the 

tumour-suppression function of both hamartin and tuberin. 
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4.4.2 Function of tnberin 

The Eker rat 

Apart from LOR studies and the nature of the tumours in TSC (bilateral, multiple and focal), 

functional evidence for a tumour-suppressor role of the TSC2 gene has now been 

demonstrated in a naturally occurring animal model, the Eker rat. Re-illtroduction of the wild­

type TSC2 gene in Eker cell lines lacking functional tuberin, suppresses growth and 

tumourigenicity (Jin ef at.,1996; Kobayashi ef at., 1997). In the first studies in the rat, 

tumours were detected only in the kidney (renal cell carcinoma), utCl11S (leiomyomata), 

spleen (hemangiosarcoma) and pituitary. In contrast, TSC patients display predominantly 

benign braiu-, heart-, and kidney-tumours and a variety of skin lesions. Quite recently, closer 

examinations of the brain of Eker rats demonstrated the presence of subependymal and 

subcortical hamartomas (Yeung e/ al., 1997), which provides evidence for remarkable 

pathological similarities between brain lesions in the Eker rat TSC patients. These ftndings 

open possibilities to study cell lines derived from these specific lesions to learn more about 

the mechanisms by which they develop. It is not clear, however, whether the Eker rat can 

serve as a model for epilepsy. It would be interesting to check whether cardic rhabdomyomas 

are present in animals which died in utero or velY early in life. Despite the differences 

between the rat and human, the Eker rat has already proven its importance in studying 

tumourigellesis and will contribute in future studies to more knowledge about some 

functional aspects oftuberin. 

Apart from the Eker rat, future studies will focus on additional animal models. Transgenic 

and knock-out mice are being developed at the moment for both TSCI and TSC2. Targeted 

transgene expression with inducible promotors (cell-type, tissue and time specific) can 

contribute to studying the effect of second lilts on the development ofthe different lesions. 

Comparison of the conservation of gene sequence and structure through evolution can 

provide additional insight into gene function. So far, TSC2 homologues have been isolated 

from mouse, rat, F. rubripes, and D. Melallogaster. Since many basic biochemical processes 

are conserved through evolution, TSCI homologues would also be expected to be present in 

these and other organisms. 
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Figure 4.2 Applications ofTSC genes in other species 
Sequence comparison against sequences of animals at relatively great evolutionary distance (yeast, 
wonn and fish) can indicate the presence of functional domains and important aspects of gene 
structure. Rodent, fly and wonn are most frequently used as knock out models to compare phenotype. 
These animal models can make contributions to knowledge about the function of a gene product. The 
TSCI and TSC2 genes have not been detected in C. e/egal/s yet. 

Genetic pathway studies are most powerful in the worm and fly. Given a particular 

phenotype, selection for suppressors and enhancers of the phenotype is relatively easy. For 

example, the rap-dependent signalling pathway, like the ras-signalling pathway, is conserved 

in the worm (Oliver, 1996), giving opportunities to identify upstream and downstream 

(target) molecules in this model system. Drosophila offers a large catalogue of mutations with 

well-defined phenotypes (Gelbar! ef 01., 1997). In Drosophila, both TSCI and TSC2 

homologues have been cloned (Gerald Rubin, personal communication). The TSC2 

homologue was identified through a homozygous lethal mutant in the fly and was called 

gigas, due to the presence of larger wing bristles and eye cells. The TSCI homologue was 

cloned by searching GenEaok for fly ESTs. These different animal models can provide 

insight into the stmcture and functions of the TSCI and TSC2 genes and into the 

pathogenesis ofTSC itself(figure 4.2). 
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Putative GAP activity of tuberin 

Tuberin displays a variety of putative functional domains. In the past four years the GAP 

related domain at the C-tcrrninus has been the target of functional studies. Tuberin has been 

shown to act as a GTPase activating protein (GAP) for rap! and rab5, two members of the 

ras superfamily ofthe small GTPases. The different members of this family play critical roles 

in the control of cell growth, differentiation and proliferation. They are either in the active 

GTP-bound fOlTIl or in the inactive GDP-bound form. Regulation occurs through a variety of 

distinct factors, including GAPs. The bio!ogical role for rap! has not been identified yet, 

while rabS regulates early endosome fusion events. 

How does tuberin regulate rap!? 

Tuberin has been shown to function as a negative regulator of rap! (Wienecke ef al., 1995). 

Although not much is known about the precise fimction ofrapl, there is a striking similarity 

between the effector domains ofras and rapl, suggesting that ras and rapl might bind to the 

same down-stream effectors (Noda, 1993). Unlike ras, however, rap 1 does not have 

oncogenic potential, but rather seems to show growth-promoting activity (McConnick, 1995). 

80me reports have localised rapl and tuberin to the Golgi-compartment (Wienecke ef al., 

1996), whereas our studies detected a more general cytoplasmic labelling pattern for tuberin 

(chapter 7). In addition, the rap! expression pattern has been shown to depend mainly on the 

cell type or tissue studied. For example in fibroblasts, rap I has also been localised to the early 

and late endosomes (pizon ef al., 1994; Beranger ef al., 1991). A role for rapl has been 

proposed in a pathway which is antagonistic to ras signalling (Cook ef al., 1993; Urano ef al., 

1996), but little solid evidence exists to support this hypothesis. Putative downstream effector 

molecules of rapl include rafl (Burgering ef al., 1993) and RalGD8 (Bos ef al., 1997). 

However, it is not clear whether and/or how they mediate rap 1 function and only additional 

studies can clarify this. 

Alterations in the rapl signalling pathway are important in the development of certain 

sporadic gliomas (Gutman ef al., 1997), suggesting that alterations in the rapI signalling 

pathway may be associated with the development of human astrocytomas. Mutations in the 

T8C2 gene may dismpt the nonnal interaction of tuberin with the rapl gene product and 
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thereby cause abnonnal growth. Although an interaction between these two proteins has not 

yet been demonstrated, it is tempting to speculate that rap I plays a physiologically relevant 

role in the tumour suppression function oftuberin. 

Neurofibromin, the protein product of the neurofibromatosis I (NFl) gene, has been shown to 

stimulate the intrinsic GTPase activity of ras (Johnson ef al.,1994), suggesting that 

neurofibromin may also function as a tumour suppressor through a GAP like activity. The 

link between ras and rap on one side, and the tumour suppressor genes NFl and TSC2 on the 

other side, raise the possibility that the growth inhibitory function of neurofibromin and 

tuberin have much in common. 

One report (Soucek ef al., 1997) provides evidence that tuberin is a potent regulator of 

GO/G I transition during the cell cycle. It will be interesting to investigate the effect of 

hamartin on tlus vital process, e.g. by the use of specific TSCI-antisense oligonucleotides. 

Is tuberin au effector molecule for rabS? 

Members of the rab family of small GTPases are required in the control of vesicle-mediated 

transport. More than 30 different rab proteins have been identified and each rab protein is 

found at a particular stage ofa membrane transport pathway (Nuoffer and Balch, 1994). 

A putative role for tuberin in the membrane transport pathway was first postulated when 

rabaptin-5 was isolated by a two-hybrid screen with tuberin as bait (Xiao ef ai, 1997). 

Rabaptin-5 is a 100kDa cytosolic protein involved in endocytic fusion events and behaves as 

an effector for the endosomal GTPases rab5 and rab4 (Stemnark ef al., 1995). Also, tuberin 

has been shown to stimulate the GTP hydrolysis ofrab5 and to behave as a negative regulator 

of endocytosis (Xiao ef al., 1997). 

A simplified model for a role the TSC genes might play in rapl and rab5 signalling is 

proposed in figure 4.3. 
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Figure 4.3 Simplified model for rapllrab5 signalling pathway in TSC. Loss of a functional 
tuberin/hamartin complex by a mutation in either of the genes, accompanied by a second somatic 
mutation leads to more rapt and rab5 in the active (GTP-bound) fonn.Tumour growth is caused by 
uncontrolled cell proliferation and differentiation. 

Unfortunately, we have not been able to confiml the interaction between tuberin and rabaptin-

5, either by yeast two-hybrid screening or coitmllunoprecipitation studies. The identification 

of additional interacting proteins for hamartin and tuberin may help to clarify whether 

dysregulation of endocytosis and/or the rap I signalling pathway are important to the 

aetiology of TSC. Preliminary results indicate that hamartin and tubenn are part of a larger 

complex (Mark Nellist, unpublished results), so it is expected that additional interacting 

proteins will be identified in the near future. 
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Cell fractionation studies indicated that hamartin as well as tuberill are associated with 

membranes (unpublished results), however neither hamartin nor tuberin colocalised with any 

early- and late-endosomal, lysosomal or Golgi markers. At present, the nature of the 

hamartin-positive stmcturesJ detected in the transfection assays, are the subject of further 

investigation. Electron microscopic examination of these stmctures will be facilitated by the 

construction of cell lines stably transfected with TSCI and TSC2. Whether hamartin 

functions as an effector molecule of tuberin can be studied using in vitro GAP assays and by 

measuring the effect of ham art in and tuberin expression on fluid-phase endocytosis. 

Some major topics of interest in the near future will be the study of the role of hamartin and 

tuberin in cell cycle control and endocytosis. A combinational approach will be necessalY to 

study the different putative pathways and the links between them. 

In summary, a few examples of experimental approaches have been discussed, of which 

some have already been initiated. They are all likely to contribute to an insight into the TSC 

pathology, but it is difficult to predict how and when the results might be used to improve the 

treatment ofTSC patients. 
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SUMMARY 

This thesis describes the identification and the characterisation of the gene involved in 

tuberous sclerosis complex (TSC) on chromosome 9 (TSCl). For tItis purpose we used the 

positional cloning approach, a strategy by which many other disease genes, including the 

TSC2 gene on chromosome 16, have been isolated in the past years. The identification of the 

TSCI gene has taken 10 years of search and involved the cloning of the entire 1.5 Mb 

candidate region. 

Tuberous sclerosis is characterised by the widespread development of distinctive tumours 

(hamartomas) in many different tissues, and a broad phenotypic spectnl1u which lllay often 

include disturbed mental function, renal problems and dermatological abnormalities. TSC has 

an estimated prevalence of 1/6000 and occurs when either one of the TSCI or TSC2 tumour 

suppressor genes is inactivated. Mutations in the TSCI and TSC2 genes cause a velY similar 

clinical phenotype, suggesting that both genes play a closely related role in a still 

undetenllined biological process. 

Evidence for linkage between TSC and markers on cluomosome 9q34 had already been 

found in 1987. A consensus TSCI interval was defined in 1994, spanning approximately 1.5 

Mb of genontic DNA. Refining the critical interval in affected individuals proved to be 

difficult, because of conflicting recombinant data in TSC families. 

Therefore, the entire 1.5 Mb candidate region was cloned in a contiguous cosmid contig, 

which served many applications (chapter 2.6.2). New polymorpltic markers and single copy 

probes were isolated frolU the contig and they were used to refine the genetic and physical 

map position of the TSC11ocus. Furthennore, several genes were isolated from the cosmids 

and a detailed transcript lUap was constructed. A start was made with sequencing the entire 

cosmid contig and, ultimately, one of the candidate genes was proven to be the TSCI gene 

(chapter 2.6.3). 

The coding region of the gene has already been screened for mutations in our collection of 

225 unrelated TSC patients, and the mutaional spectnllll consists of predominantly small 

changes, detected in 13% oflhe patients (chapter 2.6.4). The majority of mutations are clearly 

inactivating and we find no support for a genotype-phenotype correlation in the group of 

TSCI patients. We have detected a small difference in detection rate between sporadic and 

familial cases, but it remains to be proven whether TSC1 mutations are tmely under­

represented among sporadic cases. Although only part of the TSC2 has been analysed, TSC2 
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mutations are found more frequently and therefore we expect that the majority of the 

mutations will be in the TSC2 gene. 

The TSCI gene is expressed in a wide variety of tissues, which was expected from the 

mUlti-organ involvement in patients. The TSCI gene encodes a 1164 aa protein, hamartin, 

with a potential coiled-coil domain at the C-terminus. The protein sequence of the TSCI gene 

product did resemble the sequence of tuberin or any other vertebrate protein, thereby giving 

no direct indication for a possible function for hamartin. So far, putative TSCI sequences 

have been detected in the genome databases of the mouse, the yeast strain S. Pombe and the 

fly D. Melanogas!er (chapter 3.2). 

In order to start functional analysis of hamartin, polyc1onal antibodies have been raised 

against different parts of hamartin. Immunohistochemical studies indicate that hamartill is 

predominantly detected in the cytoplasm in mammalian cells. We have investigated putative 

interactions between the TSCI and TSC2 gene products using several approaches including 

the yeast twoMhybrid system, immunoprecipitation and transfection assays in mammalian 

cells. Initial results indicate that hamartin and tuberin can fonn a complex in the cytoplasm 

and that the interaction is mediated by coiled-coil domains (chapter 3.6). The labelling pattern 

is punctated, in which the hamartin-tuberin complex seems to colocalise with vesicleMlike 

struchlres. The nahne of these vesicles is under investigation and future research will 

hopefully resolve the pathways through which hamartin and tuberin function. 

The identification of the TSCI gene is an important step forward towards a better 

understanding of the disease pathology of TSC. Abundant evidence that both TSC genes act 

as hlmour suppressors has been accumulated. However, it is not clear whether all TSC­

associated lesions require a second somatic hit to develop. It could very well be that the 

hypomelanotic macule develop by a different mechanism, for example haplo-insufficiency. 

On the other hand, most data suggests that a second hit, probably during early development, 

results in defects in migration and differentiation processes, thereby giving rise to hltt10Ur 

growth. Interestingly, malignant transformation in TSC patients is only very rarely observed 

and occurs predominantly in the kidneys, resembling the tumourigenesis in a natural animal 

model for the TSC2 gene, the Eker rat. 

Tuberin has been shown to act as a putative GTPase activating protein (GAP) for rap I and 

rab5, suggesting a role for the TSC2 gene product in the rap I signalling pathway andlor early 

endosome fusion. A link between the rap I signalling pathway and uncontrolled growth in 
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TSC patients is plausible, although not much is known about the precise functions of rap 1. 

The second putative GAP activity of tuberin, for rab5, suggests a role for the TSC proteins in 

endocytosis. A model could include a defect in the uptake of molecules that playa role in 

growth regulation and/or signal transduction. Whether there is a link between vesicle 

trafficking and controlling specific signalling pathways in TSC will be a challenge to unravel 

in the future. 

The hypothesis arising from the interaction studies is that hlberin can only function 

correctly when it is associated with hamartin. Therefore, a plausible explanation for the 

similar phenotype caused by a mutation in either the TSCI or TSC2 gene is that hamartin 

regulates the GAP activity of tuberin. Whether there are additional interacting proteins and 

what role they may play in the etiology of TSC is one of the pressing questions at the 

moment. 

The ultimate aim ofTSe research is a complete understanding or the disease process at the 

cellular and molecular levels, as a pre-requisite for future therapeutic intervention. The 

isolation of both TSC genes has been a critical step forward in this endeavour. 
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SAMENV ATTING 

Dit proefschrift beschrijft het kloneren en het karakteriseren van het gen voor de ziekte 

tubereuze sclerosis complex (TSC) op chromosoom 9 (TSCI). Omdat er niets bekend is over 

het biochcmische defect bij patienten met deze aandoening, hebben we de 'positional 

cloning' techniek gekozen. Al in 1987 was bekend dat het TSCI gen op chromosoom 9 moest 

liggen, vlakbij het locus voor de ABO bloedgroep, maar het heeft in totaal 10 

onderzoeksjaren gekost voordat het gen gevonden is. 

TSC is een autosol11aal dominant overervellde aandoening, met een geschatte prevalentie 

van I :6000. De ziekte wordt gekenmerkt door goedaardige tUlUoren, hamartomas, die zich in 

vrijwel aile organen en weefsels kUmlell ontwikkelen en vaak leiden tot epilepsie, mentale 

achterstand en nierproblemen in patWllten. De ziekte wordt veroorzaakt door cen mutatie in 

het TSC1 of het TSC2 gen en beide genen opereren als 'tumor-suppressor genen'. Dit 

betekent dat beide kopie~n van het gen uitgeschakeld moeten zijn (2 hits), voordat een tumor 

kan gaan groeien. Er is klinisch geen onderscheid te maken tussen patienten met een mutatie 

in het TSC1 ofTSC2 gen, en daarom vervullen beide genen waarschijnlijk een verwante rol 

in eell nog onbekend bioiogisch praces in de eel. 

In 1987 werd het TSC1 gen gelinkt met de ABO bloedgroeplocus op chromosoom 9. De 

volgende stap omvatte het defini~ren van een kandidaat gebied aan de hand van 

reeombinaties die opgetreden waren binnen TSC families, Er werd overeenstemming bereikt 

over een gebied tussen de markers D9S149 en D9S114 in 1994. Dit gebied was vrij groot, 

1500000 baseparen, en het is door de jaren heen moeilijk gebleken om het gebied te 

verkleinen, omdat er door verschi1lende groepen data gepresenteerd werden die elkaar 

tegenspraken. Een belallgrijke stap was dan ook de fonnatie van een consortium met groepen 

nit Londen, Cardiff en Boston, met als doel het TSC1 gen te kloneren. 

Het in kaart brengen van het kandidaat gebied is gedaan met overlappende cosmide klonen 

(hoofdstuk 2.6.2.). De cosmiden zijn gebruikt voor verschillende doeleinden. Nieuwe 

polymorfe markers zijn gei'dentificeerd, verschillellde technieken Zijll toegepast om kandidaat 

genen te isoleren en er is een start gemaakt met het sequencen van de contig, Om het TSCI 

gen te identificeren is bekeken welk gen in TSC pati~nten gemuteerd is. Een groot aantal 

kandidaat genen nit het gebied zijn getest voor mutaties, en uiteindclijk zijn er mutaties 

aangetoond in een van de ge[soleerde genen (hoofdstuk 2.6.3). 
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Nadat de genomische structuur (exon-intron grenzen) van het TSCI gen opgehelderd was, 

zijn de 21 coderende exonen getest voor mutaties in de 225 onafhankelijke in Rotterdam 

bestudeerde TSC patienten. In tolaal hebben we 29 mulalies in het TSCI gen gevonden 

(13%), waarvan de helft terug te vinden is in de exonen 15 en 17. Bijna aIle mutaties leiden 

101 een vroege stop in hel eiwil, behalve 2 in-frame delelies (hoofdstuk 2.6.4.). In 

tegenslelling lot hel TSC2 gen hebben we geen grole deleties gevonden in hel TSCI gen en 

geen van de missense veranderen kon worden bevestigd als de ziekte vereorzakende mutatie. 

In onze greep patienten met een TSCI mutatie hebben we geen relatie aan kUlmen tonen 

tussen het type mulalie (genotype) en de klinische symplomen (fenotype). Na 30% van het 

TSC2 gen gescreend te hebben, zijn er mutaties gedetecteerd in 15% van onze TSC patienten. 

We verwachten daarom dat de meerderheid van de mutaties in het TSC2 gen gevollden gaat 

worden. 

Het TSCI gen komt tot expressie in vrijwel aile weefsels en codeert voor een eiwit van 

1164 animozuren (hamartine). In de voorspelde TSCI arninozuur volgorde is een coiled-coil 

domein geYdentificeerd. Dit is een stntctuur die interacties aan kan gaan met andere eiwitten. 

Hamartine vertoond geen overeenkomsten met bekende vertebrate eiwitten, maar er zijn weI 

homologe sequenties gevonden in de muis, in de vlieg (Drosophila) en mogelijk in gist (S. 

Pall/be). 

Om eell start te kunnen maken met functionele studies zijn polyklonale antisera 

geproduceerd. We hebben kunnen aantonen dat hamartine voomamelijk tot expressie komt in 

het cytoplasma van cellen en vervolgens is gestart met interactieproeven om te testen of 

hamartine kan binden aan het genprodukl van hel TSC2 gen, luberine. Met behulp van hel 2-

hybrid systeem in gist hebben we aangetoond dat coiled-coil domeinen in beide eiwitten een 

interactie aangaan. De interactie tussen tuberine en hamartine is bevestigd ill vivo door 

coYmmunoprecipitatie pro even. Tenslotte hebben we beide eiwitten tot overexpressie gebracht 

in fibroblaslen en COS cellen, en daamit blijkl dal er een colok.lis.lie oplreedt in het 

cytoplasma met nog ongedefinieerbare bla.s.chlige slmcluren (hoofdstuk 3.6). 

De identificatie van het TSCI gen is een belangrijke stap voorwaarts om een beter begrip 

te krijgen hoe de ziekte zich in patienten ontwikkelt. Het is nu bekend dat beide genen als 

'tumor suppressor genen' werken (2-hit mechanisme), maar het is nog niet duidelijk of alle 

verschillende lesies zich via dit mechanisme ontwikkelen. Tevens worden er zeldell 

kwaadaardige hUlloren in TSC patienten gevonden. Ben uitzondering zijn 'renal cell 
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carcinomas', die identiek zijn aan tllmoren die in een natuurlijk diemlodel voor TSC jde Eker 

rat' gevonden worden. 

Het TSC2 gen is ge1dentificeerd in 1993 en codeert voor tuberine, een potentiee1 GTPase 

activerend eiwit (GAP) voor rapl en rabS. Dit kan cen aanwijzing zijn voor een rol voor 

tuberine in de celcyclus en in endocytose. Een ral vaor tuberine in de celcyclus is 

aamlemelijk, omdat veel tumaren onstaan doordat dit proces ontregeld is. Een model voar 

tuberine in endacytose zou gelinkt kUlmen zijn aan een defect in de apname van molekulen 

die betrokken zijn bij de regulatie van graei afhet geven van signalen in de eel. 

De hypothese die voortkomt uit de interactie studies is dat tuberine aileen correct kan 

functianeren als het in een complex is met hamartine. Een aannemelijke verklaring voar het 

identieke fenotype in TSC patienten, onafhankelijk van welk gen gemuteerd is, is dat 

hamartine de GAP activiteit van tllberine reguleert. Of er naast hamartine en tuberine nag 

meer eiwitten betrokken zijn bij het ontstaan van tubereuze sclerosis is een belangrijke vraag 

die hopelijk ill de nabije toekolllst opgelost gaat worden. 

Het eillddael van TSC onderzoek is am het zielcteproces op het nivo van cellen en 

molekulen te begrijpen, wat hopelijk zal leiden tot betere therapie mogelijkbeden voor de 

patienten. Met het klancren van beide TSC genen is een belangrijke stap voanvaarts gezet. 
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Abbreviations 

aa 
ADPKD 
AML 
BAC 
cM 
DBH 
DCC 
DNA 
DMC 
DMD 
EST 
FISH 
GAP 
HD 
HGP 
IRD 
YAC 
kb 
LOH 
Mb 
N-cells 
NF 
nt 
PFGE 
RACE 
RCC 
SEGA 
SSCP 
STS 
TSC 
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amino acid 
autosomal dominant polcystic kidney disease 
angiomyolipoma 
bacterial artificial chromosome 
centiMorgan 
dopamine P hydroxylase gene 
deleted in colorectal cancer 
deoxyribonucleic acid 
dynamic molecular combing 
duchenne muscular dystrophy 
expressed sequence tag 
fluorescence ill situ hybridisation 
GTPase activating protein 
hetroduplex, not to be confused with Huntington's Disease 
human genome project 
inter-resource duplex 
yeast artificial chromosome 
kilobase 
loss of heterozygosity 
megabase 
neuroll-like cells 
neurofibromatosis 
llucleotide 
pulsed field gel electrophoresis 
rapid amplification of cDNA ends 
renal cell carcinoma 
subependymal giant cell astrocytoma 
single strand confonnation polymorphism 
sequence-tagged sites 
tuberous sclerosis complex 
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