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1 IntroductionMuch recent research in both theoretical and applied time series analysis has focusedon nonlinear features of economic variables. Typical nonlinear time series modelswhich appear useful in practice concern various forms of regime-switches. Examplesare the Markov regime-switching model of Hamilton (1989), the threshold autore-gressive (TAR) model, discussed in Tong (1990) and Tsay (1989), and the smoothtransition autoregressive (STAR) models, advocated by Ter�asvirta (1994), Grangerand Ter�asvirta (1993) and others. These models have been applied most frequentlyto study possible nonlinearity of business cycles, see Luukkonen and Ter�asvirta(1991) and Ter�asvirta and Anderson (1992). Most macroeconomic variables whichare thought to measure the business cycle are sampled only quarterly or annually.Therefore, only series of moderate length are available and, consequently, it may bethat possible nonlinear properties are re
ected in only a small number of observa-tions. One may then be tempted to view these `nonlinear data points' as aberrantobservations and remove them using some of the familiar outlier removal techniques,see Balke and Fomby (1994), inter alia. This might even be justi�ed by notingthat nonlinear time series models typically involve many additional parameters andone may want to prevent estimating these parameters for only a few observations.However, removing outliers too drastically may accidentally destroy intrinsic non-linearity, which, for example, could have been exploited for forecasting. Conversely,in case of a linear time series which is contaminated by outliers, nonlinearity testsmay point towards nonlinear structures, which in turn can lead to estimating `too'complicated models. In sum, there seems a need for modelling strategies and testswhich are capable of distinguishing between nonlinearity and outliers.In the present paper we con�ne ourselves to proposing tests for smooth transi-tion nonlinearity in the presence of outliers. We consider outlier robust estimationtechniques, see, e.g., Huber (1981), Martin (1981) and Hampel et al. (1986), to mo-1



dify the tests developed by Luukkonen et al. (1988). The outline of this paper is asfollows. In section 2, we brie
y review some outlier models which are considered rel-evant in the time series literature. We also present the e�ect of outliers on ordinaryleast squares estimates of linear time series models. Robust estimation methods fortime series models are considered in section 3. In section 4 we discuss tests for STARnonlinearity. At the end of this section, we propose robusti�ed versions of the teststatistics. The e�ect of outliers on these nonlinearity tests is investigated analyticallyin section 5, while the empirical size and power properties are evaluated by meansof Monte Carlo experiments in section 6. We �nd that our robust testing procedureworks remarkably well. An empirical illustration is provided in section 7, wherethe tests are applied to various industrial production series, previously analysed inLuukkonen and Ter�asvirta (1991), Ter�asvirta and Anderson (1992) and Ter�asvirtaet al. (1994). The general outcome is that we �nd similar nonlinear features as inthose studies, except for three series for which apparent nonlinearity appears to bedue to a small number of observations. Finally, in section 8 we conclude with someremarks and suggestions for further research.2 A brief discussion on outliersDavies and Gather (1993) note that outliers are always de�ned with respect to amodel. Certain observations might be outliers in one model and at the same timebe perfectly regular observations in another model. Most of the literature on outlierdetection and estimation in the presence of outliers has concentrated on linear timeseries models. In this section, we brie
y consider some aspects which will prove tobe relevant for nonlinearity testing later on.A useful starting point for a brief discussion on outliers in time series is thereplacement model of Martin and Yohai (1986),yt = xt(1� �t) + �t�t ; t = 1; : : : ; T ; (1)2



where �t is a binary random variable which equals 1 with probability � and 0 oth-erwise and where T denotes the sample size. The observed time series yt consistsof a core process xt and a contaminating process �t. In the following, we assumethat xt is governed by an autoregressive (AR) process of order p, i.e., �(B)xt = "t,where �(B) = 1 � �1B � : : : � �pBp is a polynomial in the backshift operator B,Bkxt = xt�k, and where "t � i.i.d.(0; �2"). Di�erent speci�cations of the �t processcan generate a wide variety of outlier patterns.Two types of contamination are usually considered to be of special interest inthe analysis of outlier e�ects on time series. First, an additive outlier (AO) modelis obtained if �t = xt + � for some constant �, such that (1) reduces toyt = xt + ��t ; t = 1; : : : ; T : (2)An innovative outlier (IO) model results if �t = xt + �=�(B), which yieldsyt = xt + �=�(B)�t ; t = 1; : : : ; T : (3)The AO case gives a one time e�ect on the level of the time series, as only the currentobservation yt is a�ected. In the IO model, however, a shock at time t also in
uencesfuture observations yt+1; yt+2; : : :, through the same dynamics as the linear part ofthe model.Hoek et al. (1995) investigate the e�ect of both isolated AO's and IO's at timet = s when the core process xt follows an AR(1) modelxt = �xt�1 + "t ; t = 1; : : : ; T ; (4)with j�j < 1. It is shown that an AO corresponds with two outliers in the (yt�1; yt)plane. Using the classi�cation of Rousseeuw and van Zomeren (1990), the point(ys�1; ys) is a vertical outlier as ys falls outside the range of the majority of the data.The next point (ys; ys+1) is a so-called bad leverage point, characterized by an ab-normal value of the regressor. In case of an IO on the other hand, the vertical outlier3



at t = s is followed by a number of good leverage points, which are characterized bylarge values for both yt�1 and yt that approximately satisfy the linear AR(1) model.Denby and Martin (1979), Bustos and Yohai (1986) and Martin and Yohai (1986),among others, consider the estimation of the parameters of AR models in the pres-ence of outliers. In the presence of IO's, the ordinary least squares (OLS) estimatesof the autoregressive parameters are consistent, although they are ine�cient. AO'shave a much more disastrous e�ect on the OLS estimates. If, for example, thecore process xt follows the AR(1) model (4) and the observed time series yt is con-taminated with an isolated additive outlier of magnitude �, the OLS estimator of �calculated with the observed series approaches zero as � tends to ini�nity. In general,if the probability of occurence of an AO of size � is equal to �, the OLS estimatorof � is biased towards zero with probability limit given byplimT!1 �̂ = �1 + � �2�2x ; (5)where �2x denotes the variance of xt, �2x = �2"=(1� �2).Over the years, a number of outlier detection and correction procedures have beendeveloped, see, e.g., Tsay (1986a), Chang et al. (1988) and Chen and Liu (1993). Allthese procedures are characterized by an iterative `estimation-detection-correction-estimation' scheme, which may make them subjective and time-consuming. Analternative method to cope with outliers is to use robust estimation techniques.These latter techniques are the subject of the next section.3 Robust estimation methods for time series mod-elsIn this section we highlight some issues in robust estimation which are needed tomodify tests for STAR nonlinearity in the presence of outliers. For a more generaldiscussion we refer to Denby and Martin (1979) and Martin (1981). Consider again4



the simple AR(1) model for the uncontaminated series xt,xt = �xt�1 + "t ; t = 1; : : : ; T ; (6)where j�j < 1 and where the errors "t are again assumed to be independent whitenoise. Furthermore, assume that the observed time series yt follows the replacementmodel (1) for a general contamination process �t. The OLS estimate of the autore-gressive parameter � based on the observed series minimizes the sum of squaredresiduals, which can equivalently be characterized by the �rst order conditionTXt=1 yt�1(yt � �yt�1) = 0 : (7)In order to avoid the de�ciencies of the OLS estimator discussed in the previoussection, the autoregressive parameter can be estimated robustly using maximumlikelihood type (M) or Generalized M (GM) estimators. The class of GM estimatorsis designed to estimate � giving less weight to in
uential observations such as leveragepoints and vertical outliers. Here we consider the Schweppe type of GM estimators(Handschin et al. (1975)), which solves the alternative �rst order conditionTXt=1wy(yt�1)yt�1 �   yt � �yt�1�"wy(yt�1)! = 0 ; (8)where  (�) is an odd and bounded function and wy(�) is a weight function that assignsweights between 0 and 1 to the regressor yt�1. The function  (�) must satisfy certainadditional regularity conditions in order for the GM estimator to be consistent andasymptotically normal, see Hampel et al. (1986).If the regressors are not weighted, i.e., wy(yt�1) = 1 for all t, the GM estimatorsreduce to M estimators, while the usual OLS estimator is obtained if, in addition, (r) = r. Denby and Martin (1979) show that in the presence of IO's M estimatorsare e�cient, while the asymptotic variance of GM estimators is larger due to theweighting of the regressors. Both M and GM estimators are asymptotically biasedin an AO setting, although, if wy(�) and  (�) are chosen properly, the bias of the5



GM estimator can be considerably smaller. As AO's have the most damaging e�ecton the OLS estimator, we will focus on the GM estimator only. We further focus onthe Schweppe form of the GM estimator, because this estimator only downweightsvertical outliers and bad leverage points, while it fully exploits the correct signal ingood leverage points, see Hampel et al. (1986).De�ning wr(r) =  (r)=r for r 6= 0 and wr(0) = 1, the �rst order condition (8)can be rewritten asTXt=1 yt�1 � wr[(yt � �yt�1)=(�"wy(yt�1))](yt � �yt�1) = 0 ; (9)from which it can be inferred that the GM estimator is a type of weighted leastsquares estimator. The weight for the t-th observation is given by the value of wr(�),which depends upon the unknown parameter �. The functions wy(�) and  (�) nowshould be chosen such that the t-th observation receives a relatively small weight ifeither yt�1 or (yt � �yt�1)=�" becomes large (in absolute value).Common choices for the  (�) function in (8) are the Huber function and theTukey bisquare function. The Huber  function is given by  (r) = med(�c; c; r),where med denotes the median and c > 0. The tuning constant c determines therobustness of the estimator to outliers and the e�ciency of the estimator in theabsence of outliers. The robustness of the estimator is decreasing in c, while thee�ciency in the absence of outliers increases with c. Therefore, the tuning constantc should be chosen such that these two properties of the estimator are balanced.Usually, c is taken equal to 1.345 to produce an estimator that has an e�ciency of95% if "t is normally distributed. The weights wr(�) that result from applying theHuber function have the attractive property that they equal 1 if r 2 (�c; c). Onlyobservations for which the (standardized) residual is outside this region receive lessweight. A disadvantage is that these weights decline to zero only very slowly. Thus,subjective judgement is required to decide whether a weight is small or not.The Tukey bisquare function is given by  (r) = r(1� (r=c)2)2 � (1�H(jrj � c),6



where H(�) is the Heaviside function, H(z) = 1 if z > 0 and H(z) = 0 if z � 0. Thesame considerations apply with respect to the tuning constant c as for the Huberfunction. Usually c is set equal to 4.685, again to achieve 95% e�ciency for normallydistributed "t. The Tukey function might be regarded as the mirror-image of theHuber  in that downweighting occurs for all nonzero values of r and the resultingweights decline to zero quite rapidly.In this paper we use the polynomial  function as proposed in Lucas et al. (1996),given by (r) = r(1�H(jrj � c1))sgn(r) +H(jrj � c1)(1�H(jrj � c2))g(jrj) ; (10)where c1 and c2 are tuning constants, sgn is the signum function, and g(jrj) isa �fth order polynomial such that  (r) is twice continuously di�erentiable. This function combines the attractive properties of the Huber and Tukey functions.Observations receive a weight equal to 1 if their standardized residuals are within(�c1; c1) and a weight equal to zero if the residuals are larger than c2 in absolutevalue. Partial weighting occurs in-between. The tuning constants c1 and c2 are takento be the square roots of the 0.99 and 0.999 quantiles of the �2(1) distribution, thatis, c1 = 2:576 and c2 = 3:291. The weights wr(�) resulting from the three  functionsdiscussed above are graphed in Figure 1, which clearly reveals the di�erences andsimilarities between the di�erent functions.The weight function wy(�) for the regressor is speci�ed aswy(yt�1) =  (d(yt�1)�)=d(yt�1)� ; (11)where again  (�) is given by (10), d(yt�1) is the Mahalanobis distance of yt�1,i.e., d(yt�1) = jyt�1 � myj=�y, with my and �y measures of location and scale ofyt�1, respectively. These measures are estimated robustly by the median and themedian absolute deviation (MAD), respectively, i.e., my = med(yt�1) and �y =1:483 �medjyt�1 �myj. The constant 1.483 is used to make the MAD a consistent7



estimator of the standard deviation in case "t is normally distributed. Finally, fol-lowing Simpson et al. (1992), the constant � in (11) is set equal to 2 in order toobtain robustness of standard errors.The �rst order condition (9) is nonlinear in � and, therefore, estimation requiresan iterative procedure. In fact, interpreting wr(�) as a function of (�; �"), wr(�; �"),and denoting the estimates of � and �" at the n-th iteration by �̂(n) and �̂(n)" ,respectively, it follows from (9) that �̂(n+1) might be computed as the weighted leastsquares estimate�̂(n+1) =  TXt=1wr(�̂(n); �̂(n)" )yt�1yt! = TXt=1wr(�̂(n); �̂(n)" )y2t�1! ; (12)where the estimate of �" can be updated at each iteration using the MAD estimatorgiven above.In order to have maximum protection against outliers, the breakdown point ofthe estimator, that is, the maximum fraction of contaminated observations the es-timator can cope with, should be as high as possible. We follow Simpson et al.(1992) and Coakley and Hettmansperger (1993), who show that if a high breakdownpoint (HBP) estimator is used to construct starting values and if only one iterationaccording to (12) is performed, an e�cient estimator is obtained which retains thehigh breakpoint of the initial estimator. We use the least median of squares (LMS)estimator of Rousseeuw (1984) to obtain a starting value for the autoregressive pa-rameter, �̂(0), and we apply the MAD estimator to the corresponding residuals toobtain an initial scale estimate, �̂(0). The resulting HBP-GM estimator for � has abreakdown point of approximately 0.5. In the next section we will use this robustestimator to modify tests for STAR nonlinearity.
8



4 Smooth transition nonlinearityConsider the general STAR model of order p [STAR(p)] for a univariate time seriesyt, yt = �0y(p)t + f(~y(p)t ; 
; a; c)�0y(p)t + "t ; t = 1; : : : ; T ; (13)where y(p)t = (1; ~y(p)t )0; ~y(p)t = (yt�1; : : : ; yt�p)0, � = (�0; �1; : : : ; �p)0 and � = (�0; �1; : : : ; �p)0.For a logistic STAR (LSTAR) model, the transition function f(~y(p)t ; 
; a; c) is takento be the logistic functionf(~y(p)t ; 
; a; c) = (1 + expf�
(a0~y(p)t � c)g)�1; 
 > 0 ; (14)where a = (a1; : : : ; ap)0, while 
 and c are scalars. The LSTAR model is memberof the class of regime-switching models in that the time series can move betweentwo extreme regimes, associated with the values 0 and 1 for the transition functionf(~y(p)t ; 
; a; c), where the transition between these two regimes is smooth and gov-erned by lagged values of the time series itself. For an extensive discussion of STARmodels we refer to Ter�asvirta (1994) and Granger and Ter�asvirta (1993).4.1 Nonrobust tests for smooth transition nonlinearityIn this paper we consider the Lagrange Multiplier (LM) tests to identify LSTAR-type nonlinearity developed by Luukkonen et al. (1988). The null hypothesis oflinearity can be taken as H0 : � = 0 in (13). This hypothesis is tested against thealternative H1 : � 6= 0. It is immediately seen from (13) with (14) that the model isnot identi�ed under the null hypothesis, because if H0 holds, 
; a and c can take anyvalue. Consequently, the usual asymptotic theory cannot be applied to derive LMtests, see Davies (1977,1987) for a general discussion of this identi�cation problem.Luukkonen et al. (1988) suggest to remedy this problem by replacing the transitionfunction f(~y(p)t ; 
; a; c) in (13) by a suitable approximation. In the resulting auxiliarymodel, the identi�cation problem is no longer present and linearity can easily betested by so-called LM-type tests. 9



In general, the reparameterized model that is used for linearity testing can bewritten as yt = �0y(p)t + ��0qt + "t ; (15)where � and y(p)t are de�ned above, qt is an m � 1 vector of auxiliary regressorscontaining higher-order and cross-product terms of the regressors in ~y(p)t , and �� isa parameter vector of corresponding length. The exact contents of the vector qtdepend on the approximation of the transition function chosen. Luukkonen et al.(1988) �rst propose to replace f(~y(p)t ; 
; a; c) by a �rst-order Taylor approximationaround the point 
(a0~y(p)t � c) = 0. The corresponding statistic, denoted LM1, isthe general linearity test of Tsay (1986b), where the vector qt consists of terms y2t�iand yt�iyt�j; i; j = 1; : : : ; p; i < j. As this test might lack power against alternativeswhere only the intercept is changing (i.e. only �0 6= 0 in (13)), two alternative teststatistics are put forward. The LM2 statistic uses a third-order Taylor approximationfor the transition function. The vector of auxiliary regressors in this case containsadditional terms y3t�i, y4t�i, yt�iy2t�j and yt�iy3t�j for i; j = 1; : : : ; p; i 6= j. The lasttest, LM3, is obtained from the LM1 test by augmenting the relevant vector qt withonly the cubic terms y3t�i, as only these terms from the third-order approximationdepend on the intercept �0.For all three tests, the original null hypothesis of linearity, H0 : � = 0, canbe shown to be equivalent to the hypothesis that all coe�cients of the auxiliaryregressors gathered in qt in (15) are zero, i.e. H�0 : �� = 0. The general form of theLM-type tests is then given byLMi = "̂0Z(Z 0Z)�1Z 0"̂"̂0"̂=T (16)= "̂0"̂� "̂0(IT � Z(Z 0Z)�1Z 0)"̂"̂0"̂=T ;i = 1; 2; 3, where "̂ = ("̂1; : : : ; "̂T )0 contains residuals estimated under the null hy-pothesis of linearity, zt = (y(p)t 0; q0t)0, Z = (z01; : : : ; z0T )0, and IT is the identity matrixof order T . Under a number of conditions, the LMi statistic has an asymptotic �2(m)10



distribution, see Tsay (1986b) and Saikkonen and Luukkonen (1988). In small sam-ples it is usually recommended to use an F version of the test. This version of thetest can be computed as follows:1. Estimate the model under the null hypothesis of linearity by regressing yt ony(p)t . Compute the residuals "̂t and the sum of squared residuals SSR0 = P "̂2t .2. Perform the auxiliary regression of "̂t on y(p)t and qt and compute the sum ofsquared residuals from this regression, SSR1.3. The LM-type test statistic can now be computed asLMi = (SSR0 � SSR1)=mSSR1=(T �m� p� 1) ; (17)i = 1; 2; 3, which is approximately F distributed under the null hypothesis with mand T �m� p� 1 degrees of freedom, respectively.4.2 Robust tests for smooth transition nonlinearityBecause of the properties of the OLS estimator in the presence of AO's as discussedin section 2, one can expect that the LMi tests can be severely a�ected by additiveoutliers. In the next section, we formally show that this is indeed the case. Therobust estimators discussed in section 3 can be used to construct robust versionsof the LMi test statistics. In particular, we obtain a robust test by using a robustestimator to estimate the model under the null hypothesis. Hampel et al. (1986) andPeracchi (1991) show that the robustness properties of estimators carry over to teststatistics based on these estimators. Moreover, under conventional assumptions, theLMi tests retain their standard limiting �2 distributions. Thus, it might be expectedthat if the Schweppe form of the GM estimator is used for constructing LM-typetest statistics, the resulting statistics are protected against the in
uence of (additive)outliers. 11



If we want to allow higher order models, i.e., p > 1, the robust HBP-GM esti-mator derived for the AR(1) case in section 3 needs to be generalized. This is fairlystraightforward, except that now HBP estimators for multivariate location and scat-ter are required to compute the Mahalanobis distances in (11) for the regressors y(p)t .For this purpose, we use the minimum volume ellipsoid (MVE) estimator proposedby Rousseeuw (1985). The projection algorithm of Rousseeuw and van Zomeren(1990) is used to approximate this estimator.By interpreting the �rst order condition for the AR-model given in (8) as apseudo-score, an LM test can easily be constructed. Let zt = (y(p)t 0; q0t)0, Z =(z1; : : : ; zT )0, Ŵy = diag(ŵy(y(p)1 ); : : : ; ŵy(y(p)T ))0 and 	̂ = ( ̂r(r1); : : : ;  ̂r(rT ))0, whereŴy and 	̂ are computed under the null hypothesis, and where r denotes the t-thstandardized residual, rt � (yt � �yt�1)=(�"wy(yt�1)). The robust version of theLM-test statistics to test H0 : �� = 0 in (15), to be denoted as RLMi; i = 1; 2; 3; canbe computed asRLMi = 	̂0ŴyZ(Z 0ŴyŴyZ)�1Z 0Ŵy	̂	̂0	̂=T= 	̂0	̂� 	̂0(I � ŴyZ(Z 0ŴyŴyZ)�1Z 0Ŵy)	̂	̂0	̂=T ; (18)i = 1; 2; 3. Because  (r) = wr(r) � r, the term 	̂0	̂ = PTt=1(ŵr(r̂t)"̂t=�̂"ŵy(y(p)t�1))2might be interpreted as a weighted sum of squared residuals under the null hypothe-sis, where the weights decline for large standardized residuals. As (18) shows, the Fversion of the test, corresponding to (17), can be computed by running an auxiliaryOLS regression of the weighted residuals  ̂(r̂t) on the weighted regressors ŵy(y(p)t )zt.5 Outliers and tests for smooth transition nonlin-earityIn this section we formally investigate the e�ect of outliers on the LM-type teststatistics. We restrict our attention to the simple LM1 and RLM1 statistics when12



used to test an AR(1) model against an LSTAR(1) alternative. The qualitativeresults derived below remain the same for higher order models and for the other LM-type tests. We show that the presence of additive outliers leads to higher rejectionrates for both the robust and nonrobust tests. The distortion for the nonrobust test,however, is much larger. If the outliers become extremely large or if the fraction ofcontamination becomes relatively high, the level of the nonrobust test is recovered,but the power of the test drops to its size. The power of the robust test, in contrast,is signi�cantly higher.In the following theorem we derive both a global and a local (non)robustnessresult for the RLM1 test, based on an M estimator, i.e., wy(�) � 1 in (8). The globalresult states that in the presence of AO's, the RLM1 statistic retains its asymptotic�2 distribution, only multiplied with a constant of proportionality. This constantactually is a function of the autoregressive parameter �, the probability of occurrenceof AO's � and the (absolute) magnitude of the outliers �. The second result iscalled local, because it describes the behavior of the RLM1 test for � # 0, i.e., for(in�nitesimally) small fractions of outliers. In this way, the result can be compared tothe derivation of an in
uence curve, see Hampel et al. (1986) for in
uence functions ofestimators in the regression context, Martin and Yohai (1986) for in
uence functionsof estimators in the time series context, and Peracchi (1991) for in
uence functionsof test statistics in the regression context. The present result complements theresults in these articles by presenting the in
uence of in�nitesimally small fractionsof contamination on the distribution of a test statistic in the time series context. Aproof of the theorem is given in the appendix.Theorem 1 Consider the AR(1) model without a constant under symmetric ad-ditive outlier contamination and standard Gaussian innovations. If  is odd andwy(�) � 1, then limT!1RLM1 d! cG � �21 ;13



where �21 denotes a random variate with a chi-squared distribution with one degreeof freedom, and where cG is equal to the ratio of (25) and (26).Furthermore, for � su�ciently small,limT!1RLM1 d! (1 + cL � � +O(�2)) � �21 ;and where cL is a function of � that is equal to the sum of the right-hand sides of(34) and (35), respectively.Corollary 1 For the OLS-based LM1 test, the value of cL in Theorem 1 reduces tocL = 13�4x ��2�6 + (1 + 6�2�2x)�4 + (3�2�4x + 6�2x + 3�4x)�2�+�13�4x �2(�2 + (7 + �2)�2x) +2��23 (6�2 � �2 � 3�2�2x); (19)with �2x = (1� �2)�1. As a result, cL = (1� �2)2�2�6=3 + O(�4).Remark 1: Theorem 1 treats the case of M estimators. If GM estimators are used,the qualitative result remains the same, only now the in
uence curve of the scaleestimator of yt�1 enters into the formulas. This illustrates that this function must bebounded in order for the in
uence function of the test to be bounded. Note that thein
uence function of the location of yt�1 does not enter, as this function is identicallyequal to zero because of the symmetry of the additive outliers.Remark 2: The type of standard errors that is used in the computation of theLM1 test is crucial for the local robustness properties of the test. If we use ordinarystandard errors such as in Theorem 1, the constant cL for the OLS-based test isan unbounded function of �. This function increases to plus in�nity for � ! �1.In other words, for local contamination the OLS-based test has a level above thenominal level. In contrast, we can use heteroskedasticity consistent (HCC) standarderrors as in White (1980). This amounts to replacing the speci�cation of k2 inthe proof of Theorem 1 by k2 = E(y4t�1 ("t)2): Consequently, (27) in the appendix14



reduces to 1 and is independent of �. Therefore, the �rst two lines in the expressionfor cL in (19) vanish and the dominant term in the expression for cL for the OLS-based test becomes �2��4=3. This is an unbounded function of � that tends to minusin�nity for � ! �1. In other words, the OLS-based test with HCC standard errorshas a level below the nominal level under local contamination. Also, the order of cLas a function of � is smaller if HCC standard errors are used, which signi�es that theuse of such standard errors alleviates part of the nonrobustness of the OLS-basedLM1 test.For the OLS-based test, a closed expression for the constant of proportionality cGis available, but too lengthy to present here. This constant actually is a function ofthe other parameters of the model, cG = cG(�; �; �), which satis�es (i) cG(�; 0; �) = 1for all combinations of � and �, (ii) @cG=@� > 0 for � 2 (0; q(�; �)], with q somefunction of � and �, (iii) @cG=@� < 0 for � 2 (q(�; �);1) and (iv) cG(�; �; �) ! 1as � ! 1. These properties of the function cG(�; �; �) show that the presenceof AO's makes the LM1 test biased towards the alternative, i.e. one �nds spuriousnonlinearity when neglecting AO's. Only if the size of the outliers becomes very large,the asymptotic distribution returns to the standard �2(1) distribution. Figure 2graphs cG for � 2 [0; 0:9], � 2 [0; 20] and � = 0:01; 0:05; 0:10 and 0:25. Apart fromthe properties stated above, it is seen that for these fractions of contamination, cGincreases as � gets larger. Furthermore, for �xed � and �, the constant is smaller forlarger values of �. This suggests that as the fraction of contaminated observationsincreases, the distribution of the test statistic is distorted to a lesser extent. This,however, is not true. The null distribution of the test is less a�ected under large AO's,but the power of the test is severely distorted. This is easily seen by considering thenature of AO contamination. Given a time series xt, we clutter the signal of this seriesusing a white noise process ��t, see (2). If � is large, the white noise component inthe contaminated series yt dominates the signal of the original series xt. Therefore,for large � the observed contaminated time series looks like the (imposed) white15



noise process, which results in a �21 distribution for the LM1 test, irrespective ofwhether the original xt process follows a STAR or an AR process. Put di�erently,under dominant AO contamination, the distribution of LM1 collapses to the nulldistribution, even if the alternative holds true.In practice, one usually includes a constant in the linear model under the nullhypothesis. Its e�ect on the constant cG is investigated by means of simulation. Forseveral combinations of (�; �; �), 1000 series of 100 observations are generated froma contaminated AR(1) model and for each series the LM1 test statistic is computed.Next, the percentiles of the �21 distribution are regressed on the corresponding testoutcomes to obtain an estimate of cG. These estimates are shown in the uppergraphs of Figure 3, where a bivariate kernel is used to obtain a relatively smoothsurface. Comparing these graphs with Figure 2, the major di�erence seems to bethat, for �xed � and �, cG attains its maximum for higher values of �, while thereturn to 1 after this point proceeds much slower. Apart from this, for � = 0:05, themaximum value of cG is much higher when a constant is included.The Monte Carlo experiment described above is repeated for the HBP-GM basedtest statistic, to obtain some insight in the behavior of the robust RLM1 test. Theestimates of cG, set out in the lower graphs of Figure 3, are remarkably di�erentfrom the corresponding estimates for the OLS-based test. It is easily seen that, atleast for � = 0:05, the maximum value of cG is much lower for the robust test, whilethe decrease following this maximum is much faster as well. In fact, for large valuesof � and �, the constant drops below 1, resulting in the test statistic being slightlybiased toward the null. Notably, for the robust test cG is larger for � = 0:10 thanfor � = 0:05. This contrasts to the �ndings for the OLS-based test.6 Monte Carlo experimentsBefore applying our RLMi tests to several empirical time series, we evaluate theperformance of the tests by means of Monte Carlo simulations. We focus on two16



e�ects which arise due to robustifying the test statistics. First, we consider the e�ectof using a robust test in a setting where robustness is not required, i.e., in a settingwithout outliers. Second, we investigate the (relative) performance of the tests in thepresence of additive outliers. In the Monte Carlo experiments, we restrict attentionto the behavior of the (R)LM1 test and to a probability of occurrence of outliersof 0.05. Results for the (R)LM2 and (R)LM3 statistics, as well as results for othercontamination fractions are available on request from the corresponding author.6.1 Monte Carlo designIn the Monte Carlo experiments, 1000 series of T = 100 observations of the coreprocess xt are generated either from the AR(1) model (4) or from a relatively simpleLSTAR(1) model,xt = �xt�1 + (1 + expfxt�1g)�1�xt�1 + "t; t = 1; : : : ; T; (20)where "t � n.i.d.(0; �2"), �" = 1. The starting value x0 is set equal to zero. In orderto eliminate possible dependencies of the results on this initial condition, the �rst100 observations are discarded. Contaminated series yt are obtained by adding AO'sto xt according to the replacement model (1) with �t = xt + ��t. Following Fransesand Haldrup (1994), the variable �t takes the values �1, 0 and 1 with probability�=2, 1� � and �=2, respectively. Thus, both positive and negative AO's occur withequal probability. The standard and robust nonlinearity tests are applied to boththe clean and the contaminated series xt and yt, respectively.6.2 Simulation resultsIn our experiments, we consider the e�ects of varying the autoregressive parametersin the AR and STAR models and the magnitude of the AO's. In practice, onehas to decide on the order of the linear AR model assumed to hold under the nullhypothesis. In our simulation study, we �x this order a priori. The upper panel ofTable 1 shows rejection frequencies of the null hypothesis by the standard LM1 and17



robust RLM1 tests, using 5% critical values. The results in this part of the tableare based on an AR(1) model with autoregressive parameter �. AO's of magnitude� = 3, 4 5 are added to the model with probability � = 0:05. In addition, thecolumns under � = 0 show estimates of the size when the test is applied to the serieswithout outliers.It is seen for the clean series xt that the rejection frequencies of both the standardand the robust test approximate the 5% signifance level quite well. However, in thepresence of outliers, marked di�erences appear. For the standard test, the rejectionfrequencies increase to rather high levels for � = 5 and large (absolute) values of�. The distortions in the level of the robust test are much smaller: the rejectionfrequencies stay below 10%.The bottom panel of Table 1 shows rejection frequencies for series generated bythe LSTAR model (20) for various combinations of � and �. The probability andmagnitudes of AO's are the same as above. Note that, since the transition function issymmetric around zero, � and �+ � can be interchanged. The columns under � = 0again show estimates of the power of the tests applied to the core series. These�gures show that the di�erence between the autoregressive parameters for the twoextreme cases f = 0 and f = 1, i.e., �, has to be considerable for the tests to be ableto detect the nonlinearity. As expected, the power of the robust test is slightly lowerthan that of the nonrobust test, as the robust test downweights observations thatare not outliers. The maximum di�erence, however, is below 10%, which is quiteencouraging. The results when the tests are applied to the contaminated series ytshow that it pays o� to use the robust test. Although the power of both the standardand the robust tests decreases for most choices of (�; �), the resulting drop is farlarger for the standard tests (up to 40%). The robust version of the test performsbetter in 17 out of 21 cases.The Monte Carlo results in this section suggest that the empirical performanceof the tests is satisfactory. If applied to time series without outliers, the performance18



of the robust tests is similar to that of the more familiar OLS-based tests, with anexpected slight power advantage for the OLS-based tests. Furthermore, in case oflinear or nonlinear time series with not too many outliers, the robust tests pointat the correct model more often than the standard test. Unreported results forother contamination fractions and the (R)LM2 and (R)LM3 tests concur with these�ndings.7 Nonlinearity in industrial productionAs stated in the introduction, regime-switching models have been applied in par-ticular to study possible nonlinearity in business cycles. In this spirit Luukkonenand Ter�asvirta (1991) , Ter�asvirta and Anderson (1992) and Ter�asvirta et al. (1994)consider modelling industrial production indices for a number of OECD countriesby STAR models. In this section, we apply the standard and robust tests for non-linearity to these series.7.1 The sequence of testsIn general, speci�cation of STAR models is done using the procedure of Ter�asvirta(1994), see also Granger and Ter�asvirta (1993) for an extensive discussion. Thisspeci�cation procedure consists of three stages. First, a linear AR model is speci�edto form the basis for further analysis. Secondly, the LM2 test is carried out to testlinearity against STAR. Although this test statistic was designed against a logisticalternative, Ter�asvirta (1994) argues that it should have power against exponentialSTAR (ESTAR) models as well. To determine which variable(s) should be includedin the transition function, one can consider special cases of the LM2 test as follows.If the vector a in (14) is restricted to a = (0; : : : ; 0; 1; 0; : : : ; 0)0, i.e. ad = 1 for somed 2 f1; : : : ; pg and aj = 0 for all j 6= d, the vector qt of auxiliary regressors in (15)only contains terms ~y(p)t yt�d, ~y(p)t y2t�d and ~y(p)t y3t�d. Thus, the auxiliary regression19



used to compute the simpli�ed LM2 statistic is"̂t = �0y(p)t + �02~y(p)t yt�d + �03~y(p)t y2t�d + �04~y(p)t y3t�d + ut ; (21)where "̂t are the residuals from the regression yt = �0y(p)t + "t; �i = (�i1; : : : ; �ip)0 fori = 2; : : : ; 4. The null hypothesis to be tested is H0 : �2 = �3 = �4 = 0. The testis carried out for di�erent values of d. If linearity is rejected for several values ofd, the one with the smallest p-value is selected as transition variable. This rule ismotivated by the notion that the test might be expected to have maximum powerif the true transition variable is used.The next step is to decide between the logistic and exponential transition func-tions. This can be done by a short sequence of tests nested within (21). Thenull hypotheses to be tested are H04 : �4 = 0, H03 : �3 = 0j �4 = 0, andH02 : �2 = 0j �3 = �4 = 0. If �4 = 0, the model can only be an ESTAR model,see Ter�asvirta (1994). Similarly, if �3 = 0, the model can only be an LSTAR model.Granger and Ter�asvirta (1993) suggest to carry out all three tests, independent ofrejection or acceptance of the �rst or second test. The decision rule used to select thetransition function then is: select an ESTAR model only if the p-value correspondingto H03 is smallest, choose an LSTAR model in all other cases.7.2 Testing for nonlinearity in industrial productionThe series studied by Luukkonen and Ter�asvirta (1991), Ter�asvirta and Ander-son (1992) and Ter�asvirta et al. (1994) are quarterly, seasonally unadjusted indicesof industrial production for 11 OECD countries, covering the period 1960(i)-1986(iv).The data are made approximately stationary by taking seasonal di�erences of thelogarithms.First of all, we apply the LMi tests, as discussed in section 4. The orders of thelinear AR models under the null are taken from Ter�asvirta and Anderson (1992),which have been selected using the Akaike Information Criterion. The p-valuescorresponding to the di�erent tests are shown in Table 3.20



Table 4 shows the results from applying both the standard and robust tests usedto specify STAR models. Although the AR orders are taken from Ter�asvirta andAnderson (1992), a number of di�erences are observed for the standard tests. Forthe series of France and Italy these arise due to corrections Ter�asvirta and Anderson(1992) apply to correct for the e�ect of strikes that occurred in these countries. Thesources of the di�erent outcomes for Finland and Sweden are not clear.Comparing the models which are selected by the standard and robust tests, itis seen that for the majority of countries di�erent conclusions can be drawn. Onlyfor Finland, Italy, Japan and the Netherlands exactly the same results are obtained.Inspection of the weights resulting from the HBP-GM estimator (not shown here)reveals that outliers seem to be present around the oil crises of 1973 and 1979 forall series, although the number and timing varies considerably across the di�erentcountries.For Germany, Norway and Sweden, the results partially coincide. For Germany,the standard tests indicate a logistic model, while the robust tests seem to preferan exponential model, although the p-values for the test sequence are quite close toeach other (0.027, 0.016, and 0.023, respectively). Therefore, it would be sensible toestimate both types of models and compare them on, for example, forecasting ability.For Norway and Sweden, all tests select an LSTAR model, only the appropriate delayparameter di�ers.The standard tests do not indicate the presence of STAR-type nonlinearity forthe industrial production series of France, while the robust tests strongly suggestan ESTAR model, the p-values corresponding to H04; H03, and H02 are 0.227, 0.000,and 0.803, respectively.Finally, for Austria, Belgium and the USA, the standard tests indicate that anLSTAR model might be appropriate for these series, whereas the robust tests areunable to reject linearity. Figures 4, 5, and 6 show the weights wr(r) that are assignedto the observations by the HBP-GM estimation procedure as well as the values of21



the transition function f(yt�d; 
; a; c) (taken from Ter�asvirta and Anderson (1992)for Belgium and the USA and from Ter�asvirta et al. (1994) for Austria). Inspectionof these �gures shows that the apparent nonlinearity is due to only a few outlyingobservations. Especially for Belgium and the USA, the observations which receiveweight (close to) zero are located around the points where transitions from oneregime to the other regime in the LSTAR model occur. These regime-shifts, whichare seen to be very quick, are caused by the transition variable taking values oppositefrom the threshold c at consecutive points in time. Apparently, this coincides withyt�d taking rather extreme values, which results in vertical outliers or bad leveragepoints, as suggested by the zero weights. For Belgium, these aberrant observationsexplain all regime-shifts, while for the USA the remaining ones which cannot beascribed to outliers do not produce enough evidence for STAR-type nonlinearity.8 Concluding remarksIn this paper we proposed robust LM-type tests for STAR nonlinearity. The tests,which are straightforward to compute, use a HBP-GM estimator to estimate thelinear AR model under the null hypothesis. The Monte Carlo evidence suggeststhat the empirical performance of the tests is satisfactory. If applied to time serieswithout outliers, they do not su�er from large size distortions or much loss of power.Furthermore, in case of linear or nonlinear time series with outliers, the robust testspoint at the correct model more often than the standard tests. The application to aselection of the industrial production series indicates that one should carefully inter-pret evidence from standard tests, as the presence of only a few aberrant observationsmay cause spurious nonlinearity.The results obtained in this paper point towards several directions for further re-search. The robust estimation techniques might be applied to construct robust testsfor other types of nonlinearity. Motivated by the discussion on outliers and nonlin-earity, an obvious possibility would be to consider robust testing for (G)ARCH. The22



clustering of large residuals typical in GARCH models might well be mimicked by anIO or a sequence of AO's. Alternatively, robust estimation of STAR models might beconsidered worthwhile, elaborating on results from Chan and Cheung (1994). Theseissues will be taken up in our subsequent research.Appendix: proof of Theorem 1Proof: We have the replacement modelxt = �xt�1 + �t; (22)yt = xt(1� �t) + ��t; (23)where �t is i.i.d. standard Gaussian distributed, j�j < 1, x0 = �0=(1� �2)1=2, and �tis i.i.d. with P (�t = 1) = P (�t = �1) = �=2, P (�t = 0) = 1 � �, and 0 � � � 1.Furthermore, we have thatLM1 = T�1 �PTt=1 y2t�1 ("t)�2�T�1PTt=1 y4t�1� �T�1PTt=1  ("t)2� : (24)We �rst prove that the terms in the square in the numerator have expectation zeroindependent of the values of �, �, and �. In order to see this, note thatE(y2t�1 ("t)) = E(y2t�1 (�t + ��t � ~���t�1 + (�� ~�)xt�1)) = 0;where ~� denotes the GM estimator and where the last equality follows from theconditions stated in the theorem. Therefore, T�1=2PTt=1 y2t�1 ("t) satis�es a centrallimit theorem and converges in distribution to a normal with mean zero and variancek1, with k1 = E(y4t�1 ("t)2) + 2 1Xk=1E(y2t�1y2t�k�1 ("t) ("t�k)): (25)De�ne k2 = E(y4t�1)E( ("t)2); (26)then using the central limit theorem, LM1 tends in distribution toLM1 d! k1k2�21:23



De�ning cG � k1=k2, this proves the �rst part of the theorem. Note that for � = 0we have that k1 = k2. Therefore, the second part of the theorem is proved if wecan show that cL = d(k1=k2)=dp evaluated in � = 0. This is similar to deriving thein
uence function of a statistic, see, e.g., Hampel et al. (1986).In order to derive the local result, we split k1=k2 in two parts, namelyE(y4t�1 ("t)2)k2 (27)and 2 1Xk=1 E(y2t�1y2t�k�1 ("t) ("t�k))k2 : (28)In order to put together the result, we �rst present the necessary individual deriva-tives with respect to �. We make heavy use of the techniques for deriving in
uencefunctions in the time series context as presented in Martin and Yohai (1986). Weobtain dd�E( ("2t ))������=0 = E( (�t + �)2 �  (�t)2) +E( (�t � ��)2 �  (�t)2); (29)dd�E(y4t�1)������=0 = �4 + 6�2E(x2t�1); (30)dd�E(y4t�1 ("t)2)������=0 = E((xt�1 + �)4 (�t � ��)2 � x4t�1 (�t)2) +E(x4t�1( (�t + �)2 �  (�t)2)); (31)dd�E(y2t�1y2t�2 ("t) ("t�1))������=0 = �E(x3t�1x2t�2 0(�t) (�t�1))IF~�+E((xt�1 + �)2x2t�2 (�t � ��) (�t�1 + �)); (32)and dd�E(y2t�1y2t�k�1 ("t) ("t�k))������=0 = 0; (33)for k > 1, where IF~� = �E( (� � ��))=E(x2t�1 0(�t))24



is the (time series) in
uence function of the estimator for the autoregressive pa-rameter under AO contamination and  0(�) is the �rst order derivative of  (�) withrespect to its argument. The result now follows by observing thatdd�  E(y4t�1 ("t)2)k2 !������=0 = dE(y4t�1 ("t)2)=d� � E(y4t�1)dE( ("t)2)=d�k2 +�E( ("t)2)dE(y4t�1)=d�k2 ������=0 (34)anddd�  2 1Xk=1 E(y2t�1y2t�k�1 ("t) ("t�k))k2 !������=0 = 2dE(y2t�1y2t�2 ("t) ("t�1))=d�k2 : (35)2
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Figure 1: Weights for di�erent  functions

Note: Weights wr(r) =  (r)=r resulting from (i) polynomial  func-tion,  (r) = r(1�H(jrj�c1))sgn(r)+H(jrj�c1)(1�H(jrj�c2)g(jrj),c1 = 2:576, c2 = 3:291 and g(jrj) a �fth order polynomial such that (r) is twice continuously di�erentiable (solid line), (ii) Huber  func-tion,  (r) = med(�c; c; r), c = 1:345 (dotted line) and (iii) Tukey'sbisquare function,  (r) = r(1 � (r=c)2)2 � (1 �H(jrj � c), c = 4:685(dashed line)

28



Table 1: Size and power of LM1 and RLM1 testsLM1 RLM1� �+ � � = 0 � = 3 � = 4 � = 5 � = 0 � = 3 � = 4 � = 5-0.9 -0.9 4.9 11.4 17.6 23.2 6.1 8.7 9.3 7.8-0.7 -0.7 4.3 10.0 15.6 19.7 5.0 6.6 8.5 9.3-0.5 -0.5 2.9 8.2 10.8 12.8 3.8 5.7 7.6 8.5-0.3 -0.3 3.4 5.8 6.5 7.7 3.8 5.8 6.3 5.9-0.1 -0.1 3.7 4.8 4.9 4.9 4.1 4.5 5.5 4.70.0 0.0 4.1 5.1 4.2 4.4 3.9 4.6 5.3 5.20.1 0.1 4.2 5.6 4.5 4.4 4.2 4.9 5.4 5.30.3 0.3 3.6 6.5 6.6 6.7 3.9 6.1 6.0 6.40.5 0.5 3.6 8.0 10.7 11.8 4.4 7.4 9.5 7.80.7 0.7 2.7 10.0 16.2 20.2 4.2 8.8 10.2 10.40.9 0.9 1.5 10.6 19.0 26.0 3.4 8.9 9.3 7.2-0.9 -0.7 16.2 16.2 18.8 21.8 14.5 12.3 13.9 15.2-0.9 -0.5 32.7 19.4 20.1 20.8 29.7 19.2 24.3 26.7-0.9 0.0 68.9 27.1 17.5 13.4 64.1 38.5 46.8 57.1-0.9 0.5 90.2 40.7 22.0 13.4 85.5 59.9 69.6 79.4-0.9 0.7 97.4 49.7 29.2 17.9 94.0 67.8 78.0 89.7-0.9 0.9 98.3 66.5 46.2 29.6 96.6 79.6 81.9 87.7-0.7 -0.5 9.9 12.3 15.4 17.6 8.7 9.8 13.2 14.1-0.7 0.0 44.6 15.1 11.0 9.7 39.8 23.0 29.4 36.6-0.7 0.5 79.7 30.0 16.0 9.3 73.9 45.8 54.1 69.4-0.7 0.7 90.4 39.8 22.7 14.1 85.9 58.4 66.1 79.2-0.7 0.9 96.3 55.2 36.4 26.5 93.3 71.3 74.8 82.2-0.5 0.0 23.6 11.3 8.4 8.3 21.7 15.4 17.5 22.6-0.5 0.5 64.6 25.0 14.1 8.4 58.8 36.7 48.7 54.7-0.5 0.7 81.2 36.9 18.4 12.0 75.7 50.3 56.5 68.5-0.5 0.9 92.3 54.1 34.3 23.6 87.1 62.0 65.3 74.30.0 0.5 20.6 9.9 8.4 7.5 18.4 12.5 16.8 18.90.0 0.7 42.8 17.9 12.6 10.5 39.1 24.1 30.5 33.80.0 0.9 62.5 38.0 30.1 26.0 60.9 44.3 45.3 49.40.5 0.7 7.0 12.0 16.1 17.9 7.5 12.6 14.9 11.50.5 0.9 18.7 21.6 23.9 24.9 20.9 23.3 25.1 21.70.7 0.9 6.2 17.1 24.2 27.5 8.4 15.2 16.4 14.9Note: Rejection frequencies of LM1 test (17) and RLM1 test (18) at 5% signi�cance level using F critical valuesfor series generated by (20) with �2� = 1. Additive outliers are added with probability � = 0:05. The table isbased on 1000 replications, T = 100.
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Table 2: Size and power of LM1 and RLM1 testsLM1 RLM1� �+ � � = 0 � = 3 � = 4 � = 5 � = 0 � = 3 � = 4 � = 5-0.9 -0.9 4.9 11.2 11.5 11.9 6.1 9.1 11.4 14.6-0.7 -0.7 4.3 7.6 8.7 9.4 5.0 7.4 12.7 16.7-0.5 -0.5 2.9 7.2 7.6 6.9 3.8 8.2 11.3 14.4-0.3 -0.3 3.4 5.1 6.2 5.5 3.8 6.3 8.3 8.7-0.1 -0.1 3.7 4.7 5.6 4.7 4.1 4.7 6.3 4.70.0 0.0 4.1 5.1 4.9 4.8 3.9 4.3 6.6 4.00.1 0.1 4.2 4.8 4.7 4.4 4.2 5.0 5.6 4.30.3 0.3 3.6 4.7 4.6 4.6 3.9 5.6 8.5 6.70.5 0.5 3.6 5.5 5.7 5.8 4.4 9.2 12.1 12.00.7 0.7 2.7 7.9 8.4 8.5 4.2 11.6 15.8 16.50.9 0.9 1.5 11.4 14.2 17.7 3.4 13.2 17.7 16.4-0.9 -0.7 16.2 10.6 10.1 10.1 14.5 9.2 12.5 16.8-0.9 -0.5 32.7 13.0 10.1 9.5 29.7 14.3 16.5 25.7-0.9 0.0 68.9 14.1 8.5 6.6 64.1 20.5 32.6 46.5-0.9 0.5 90.2 21.6 10.9 6.0 85.5 32.4 46.0 67.8-0.9 0.7 97.4 29.0 14.4 9.5 94.0 39.7 50.2 74.6-0.9 0.9 98.3 45.6 25.5 14.8 96.6 54.2 56.9 71.6-0.7 -0.5 9.9 7.7 8.3 7.8 8.7 9.2 13.2 18.0-0.7 0.0 44.6 8.4 5.7 5.6 39.8 13.3 20.8 30.7-0.7 0.5 79.7 14.3 8.8 7.2 73.9 22.4 35.6 55.7-0.7 0.7 90.4 21.0 12.0 8.4 85.9 30.6 41.0 65.7-0.7 0.9 96.3 36.1 21.6 13.5 93.3 47.4 47.9 64.4-0.5 0.0 23.6 7.8 7.1 6.4 21.7 8.5 14.8 19.0-0.5 0.5 64.6 14.5 8.0 7.8 58.8 20.4 29.8 46.9-0.5 0.7 81.2 18.6 9.4 6.6 75.7 30.6 36.9 53.9-0.5 0.9 92.3 35.8 19.4 12.4 87.1 41.1 46.0 59.80.0 0.5 20.6 8.1 5.9 5.5 18.4 9.6 13.5 18.30.0 0.7 42.8 10.7 6.2 5.1 39.1 16.4 22.7 31.70.0 0.9 62.5 27.1 17.3 13.5 60.9 33.1 33.6 40.60.5 0.7 7.0 8.6 8.7 7.3 7.5 13.0 15.1 18.50.5 0.9 18.7 16.0 14.6 11.8 20.9 21.2 25.1 26.00.7 0.9 6.2 16.4 15.8 14.5 8.4 17.0 21.2 21.0Note: Rejection frequencies of LM! test (17) and RLM1 test (18) at 5% signi�cance level using F critical valuesfor series generated by (20) with �2� = 1. Additive outliers are added with probability � = 0:10. The table isbased on 1000 replications, T = 100.
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Table 3: p-values of LM-type tests for seasonal di�erences of quarterly industrialproduction data from 11 OECD countries 1961(i)-1986(iv)OLS RobustCountry AR order LM1 LM2 LM3 RLM1 RLM2 RLM3Austria 5 0.056 0.209 0.082 0.845 0.341 0.801Belgium 5 0.062 0.163 0.076 0.083 0.213 0.058FR Germany 9 0.429 - 0.519 0.252 - 0.296Finland 1 0.810 0.418 0.849 0.780 0.483 0.362France 9 0.041 - 0.079 0.028 - 0.023Italy 5 0.145 0.215 0.052 0.629 0.381 0.121Japan 5 0.033 0.069 0.081 0.115 0.192 0.247The Netherlands 1 0.209 0.123 0.128 0.954 0.994 0.991Norway 8 0.363 - 0.521 0.076 - 0.150Sweden 5 0.667 0.005 0.433 0.670 0.030 0.558USA 6 0.014 - 0.072 0.191 - 0.228Note: AR orders have been taken from Ter�asvirta and Anderson (1992). The standard and robust testsare F tests as discussed in sections 4 and 3. For Germany, France, Norway and USA the LM2 testcould not be computed due to multicollinearity problems.
Table 4: Model selection for seasonal di�erences of quarterly industrial productiondata from 11 OECD countries 1961(i)-1986(iv)Minimum p-value Type of model(delay parameter)Country AR order TA OLS Robust TA OLS RobustAustria 5 0.010 0.010 0.260 LSTAR(1) LSTAR(1) LinearBelgium 5 0.050 0.050 0.058 LSTAR(1) LSTAR(1) LinearFR Germany 9 0.004 0.004 0.000 LSTAR(4) LSTAR(4) ESTAR(4)Finland 1 0.547 0.393 0.376 Linear Linear LinearFrance 9 0.156 0.099 0.007 Linear Linear ESTAR(2)Italy 5 0.029 0.041 0.007 LSTAR(3) LSTAR(1) LSTAR(3)Japan 5 0.000 0.000 0.038 L/ESTAR(1) L/ESTAR(1) LSTAR(1)The Netherlands 1 0.123 0.123 0.153 Linear Linear LinearNorway 8 0.031 0.031 0.012 LSTAR(5) LSTAR(5) LSTAR(3)Sweden 5 0.016 0.011 0.050 LSTAR(3) LSTAR(3) LSTAR(4)USA 6 0.006 0.006 0.061 LSTAR(3) ESTAR(3) LinearNote: AR orders have been taken from Ter�asvirta and Anderson (1992). Their test results are given in the columnsheaded TA. The standard and robust tests are F tests based on (21). Minimum p-values are computed over 1 � d � 5.
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Figure 2: Constant cG for LM1 test

Note: Values of the constant cG in Theorem 1 for the OLS-based LM1 test statistic.
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Figure 3: Constant cG for LM1 and RLM1 tests, constant included

Note: Values of the constant cG in Theorem 1 for LM1 (upper two graphs) and RLM1 (lower two graphs)test statistics if a constant is included in the estimation of the linear model under the null hypothesis. The�gure is based on 1000 replications of a contaminated AR(1) model, T = 100.
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Figure 4: Weights and transition function - Austria

Note: Weights from robust estimation of AR(5) model used to com-pute nonlinearity tests (solid line) and transition function in �ttedLSTAR model f(xt�d; 
; a; c) = (1 + expf�
(xt�d � c)g)�1; d =1; 
 = 2:2� 24; c = 0:063 (dotted line)
Figure 5: Weights and transition function - Belgium

Note: Weights from robust estimation of AR(5) model used to com-pute nonlinearity tests (solid line) and transition function in �ttedLSTAR model f(xt�d; 
; a; c) = (1 + expf�
(xt�d � c)g)�1; d =1; 
 = 7:3� 21:6; c = �0:015 (dotted line)34



Figure 6: Weights and transition function - United States

Note: Weights from robust estimation of AR(6) model used to com-pute nonlinearity tests (solid line) and transition function in �ttedLSTAR model f(xt�d; 
; a; c) = (1 + expf�
(xt�d � c)g)�1; d =3; 
 = 49� 17:5; c = 0:0061 (dotted line)
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