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Abstract

Regime-switching models, like the smooth transition autoregressive (STAR)
model are typically applied to time series of moderate length. Hence, the
nonlinear features which these models intend to describe may be reflected in
only a few observations. Conversely, neglected outliers in a linear time series
of moderate length may incorrectly suggest STAR type nonlinearity. In this
paper we propose outlier robust tests for STAR type nonlinearity. These tests
are designed such that they have a better level and power behavior than stan-
dard nonrobust tests in situations with outliers. We formally derive local and
global robustness properties of the new tests. Extensive Monte Carlo simu-
lations show the practical usefulness of the robust tests. An application to
several quarterly industrial production indices illustrates that apparent non-
linearity in time series sometimes seems due to only a small number of outliers.
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1 Introduction

Much recent research in both theoretical and applied time series analysis has focused
on nonlinear features of economic variables. Typical nonlinear time series models
which appear useful in practice concern various forms of regime-switches. Examples
are the Markov regime-switching model of Hamilton (1989), the threshold autore-
gressive (TAR) model, discussed in Tong (1990) and Tsay (1989), and the smooth
transition autoregressive (STAR) models, advocated by Terdsvirta (1994), Granger
and Terdsvirta (1993) and others. These models have been applied most frequently
to study possible nonlinearity of business cycles, see Luukkonen and Terésvirta
(1991) and Terdsvirta and Anderson (1992). Most macroeconomic variables which
are thought to measure the business cycle are sampled only quarterly or annually.
Therefore, only series of moderate length are available and, consequently, it may be
that possible nonlinear properties are reflected in only a small number of observa-
tions. One may then be tempted to view these ‘nonlinear data points’ as aberrant
observations and remove them using some of the familiar outlier removal techniques,
see Balke and Fomby (1994), inter alia. This might even be justified by noting
that nonlinear time series models typically involve many additional parameters and
one may want to prevent estimating these parameters for only a few observations.
However, removing outliers too drastically may accidentally destroy intrinsic non-
linearity, which, for example, could have been exploited for forecasting. Conversely,
in case of a linear time series which is contaminated by outliers, nonlinearity tests
may point towards nonlinear structures, which in turn can lead to estimating ‘too’
complicated models. In sum, there seems a need for modelling strategies and tests
which are capable of distinguishing between nonlinearity and outliers.

In the present paper we confine ourselves to proposing tests for smooth transi-
tion nonlinearity in the presence of outliers. We consider outlier robust estimation

techniques, see, e.g., Huber (1981), Martin (1981) and Hampel et al. (1986), to mo-



dify the tests developed by Luukkonen et al. (1988). The outline of this paper is as
follows. In section 2, we briefly review some outlier models which are considered rel-
evant in the time series literature. We also present the effect of outliers on ordinary
least squares estimates of linear time series models. Robust estimation methods for
time series models are considered in section 3. In section 4 we discuss tests for STAR
nonlinearity. At the end of this section, we propose robustified versions of the test
statistics. The effect of outliers on these nonlinearity tests is investigated analytically
in section 5, while the empirical size and power properties are evaluated by means
of Monte Carlo experiments in section 6. We find that our robust testing procedure
works remarkably well. An empirical illustration is provided in section 7, where
the tests are applied to various industrial production series, previously analysed in
Luukkonen and Terdsvirta (1991), Terdsvirta and Anderson (1992) and Terésvirta
et al. (1994). The general outcome is that we find similar nonlinear features as in
those studies, except for three series for which apparent nonlinearity appears to be
due to a small number of observations. Finally, in section 8 we conclude with some

remarks and suggestions for further research.

2 A brief discussion on outliers

Davies and Gather (1993) note that outliers are always defined with respect to a
model. Certain observations might be outliers in one model and at the same time
be perfectly regular observations in another model. Most of the literature on outlier
detection and estimation in the presence of outliers has concentrated on linear time
series models. In this section, we briefly consider some aspects which will prove to
be relevant for nonlinearity testing later on.

A useful starting point for a brief discussion on outliers in time series is the

replacement model of Martin and Yohai (1986),
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where d; is a binary random variable which equals 1 with probability = and 0 oth-
erwise and where 1" denotes the sample size. The observed time series 3, consists
of a core process z; and a contaminating process (;. In the following, we assume
that x, is governed by an autoregressive (AR) process of order p, i.e., ¢(B)x; = &y,
where ¢(B) =1 — ¢ B — ... — ¢,B" is a polynomial in the backshift operator B,
Bfz, = x4y, and where &; ~ 1.i.d.(0,02). Different specifications of the ¢; process
can generate a wide variety of outlier patterns.

Two types of contamination are usually considered to be of special interest in
the analysis of outlier effects on time series. First, an additive outlier (AO) model

is obtained if ¢; = x; + ¢ for some constant ¢, such that (1) reduces to
Yy = oy + (o t=1,...,T. (2)
An innovative outlier (I0) model results if {; = x; + (/¢(B), which yields
Yy =z + C/p(B)oy t=1,...,T. (3)

The AO case gives a one time effect on the level of the time series, as only the current
observation y; is affected. In the IO model, however, a shock at time ¢ also influences
future observations y;,1, Y19, - .., through the same dynamics as the linear part of
the model.

Hoek et al. (1995) investigate the effect of both isolated AO’s and IO’s at time

t = s when the core process x; follows an AR(1) model
a:t:gba:t,l—ket, t:]_,...,T, (4)

with |¢| < 1. It is shown that an AO corresponds with two outliers in the (y; 1, y;)
plane. Using the classification of Rousseeuw and van Zomeren (1990), the point
(ys_1,Ys) is a vertical outlier as y; falls outside the range of the majority of the data.
The next point (ys, ys+1) is a so-called bad leverage point, characterized by an ab-

normal value of the regressor. In case of an IO on the other hand, the vertical outlier



at t = s is followed by a number of good leverage points, which are characterized by
large values for both y,_; and y, that approximately satisfy the linear AR(1) model.

Denby and Martin (1979), Bustos and Yohai (1986) and Martin and Yohai (1986),
among others, consider the estimation of the parameters of AR models in the pres-
ence of outliers. In the presence of 10’s, the ordinary least squares (OLS) estimates
of the autoregressive parameters are consistent, although they are inefficient. AO’s
have a much more disastrous effect on the OLS estimates. If, for example, the
core process x; follows the AR(1) model (4) and the observed time series y; is con-
taminated with an isolated additive outlier of magnitude ¢, the OLS estimator of ¢
calculated with the observed series approaches zero as { tends to inifinity. In general,
if the probability of occurence of an AO of size ( is equal to m, the OLS estimator

of ¢ is biased towards zero with probability limit given by

0
plim ¢ = e ©)

o3
where 02 denotes the variance of x;, 02 = 02/(1 — ¢?).

Over the years, a number of outlier detection and correction procedures have been
developed, see, e.g., Tsay (1986a), Chang et al. (1988) and Chen and Liu (1993). All
these procedures are characterized by an iterative ‘estimation-detection-correction-
estimation’ scheme, which may make them subjective and time-consuming. An

alternative method to cope with outliers is to use robust estimation techniques.

These latter techniques are the subject of the next section.

3 Robust estimation methods for time series mod-
els

In this section we highlight some issues in robust estimation which are needed to
modify tests for STAR nonlinearity in the presence of outliers. For a more general

discussion we refer to Denby and Martin (1979) and Martin (1981). Consider again



the simple AR(1) model for the uncontaminated series x;,
l‘tngl't,l—FEt, t:]_,...,T, (6)

where |¢| < 1 and where the errors ¢, are again assumed to be independent white
noise. Furthermore, assume that the observed time series y; follows the replacement
model (1) for a general contamination process (;. The OLS estimate of the autore-
gressive parameter ¢ based on the observed series minimizes the sum of squared

residuals, which can equivalently be characterized by the first order condition

iytl(yt - ¢?Jt71) =0. (7)

In order to avoid the deficiencies of the OLS estimator discussed in the previous
section, the autoregressive parameter can be estimated robustly using maximum
likelihood type (M) or Generalized M (GM) estimators. The class of GM estimators
is designed to estimate ¢ giving less weight to influential observations such as leverage
points and vertical outliers. Here we consider the Schweppe type of GM estimators
(Handschin et al. (1975)), which solves the alternative first order condition

T

;wy(yt—l)ykl X (73;;18?11)) =0, (8)
where 1(-) is an odd and bounded function and w,(-) is a weight function that assigns
weights between 0 and 1 to the regressor y;_1. The function ¢ (-) must satisfy certain
additional regularity conditions in order for the GM estimator to be consistent and
asymptotically normal, see Hampel et al. (1986).

If the regressors are not weighted, i.e., w,(y;—1) = 1 for all ¢, the GM estimators
reduce to M estimators, while the usual OLS estimator is obtained if, in addition,
t(r) = r. Denby and Martin (1979) show that in the presence of IO’s M estimators
are efficient, while the asymptotic variance of GM estimators is larger due to the
weighting of the regressors. Both M and GM estimators are asymptotically biased

in an AO setting, although, if w,(-) and ¢(-) are chosen properly, the bias of the



GM estimator can be considerably smaller. As AO’s have the most damaging effect
on the OLS estimator, we will focus on the GM estimator only. We further focus on
the Schweppe form of the GM estimator, because this estimator only downweights
vertical outliers and bad leverage points, while it fully exploits the correct signal in
good leverage points, see Hampel et al. (1986).

Defining w,(r) = ¢(r)/r for r # 0 and w,(0) = 1, the first order condition (8)

can be rewritten as

; Yer - wrl (Y = Gyr1)/ (0cwy (Y1) (ye = SY1-1) = 0, (9)

from which it can be inferred that the GM estimator is a type of weighted least
squares estimator. The weight for the ¢-th observation is given by the value of w,(+),
which depends upon the unknown parameter ¢. The functions w,(-) and ¢ (-) now
should be chosen such that the ¢-th observation receives a relatively small weight if
either y; 1 or (y; — ¢ys_1)/0. becomes large (in absolute value).

Common choices for the ¢(-) function in (8) are the Huber function and the
Tukey bisquare function. The Huber ¢ function is given by t(r) = med(—c,¢,r),
where med denotes the median and ¢ > 0. The tuning constant ¢ determines the
robustness of the estimator to outliers and the efficiency of the estimator in the
absence of outliers. The robustness of the estimator is decreasing in ¢, while the
efficiency in the absence of outliers increases with c¢. Therefore, the tuning constant
¢ should be chosen such that these two properties of the estimator are balanced.
Usually, ¢ is taken equal to 1.345 to produce an estimator that has an efficiency of
95% if &, is normally distributed. The weights w,(-) that result from applying the
Huber function have the attractive property that they equal 1 if r € (—¢,¢). Only
observations for which the (standardized) residual is outside this region receive less
weight. A disadvantage is that these weights decline to zero only very slowly. Thus,
subjective judgement is required to decide whether a weight is small or not.

The Tukey bisquare function is given by ¢(r) = r(1 — (r/c)*)? - (1 — H(|r| — ¢),



where H () is the Heaviside function, H(z) = 1if 2 > 0 and H(z) =0 if z < 0. The
same considerations apply with respect to the tuning constant ¢ as for the Huber
function. Usually ¢ is set equal to 4.685, again to achieve 95% efficiency for normally
distributed ;. The Tukey function might be regarded as the mirror-image of the
Huber ¢ in that downweighting occurs for all nonzero values of  and the resulting
weights decline to zero quite rapidly.

In this paper we use the polynomial ¢) function as proposed in Lucas et al. (1996),

given by
p(r) =r(1 = H(|r| = c1))sgn(r) + H(|r[ — c1)(1 = H(|r[ = c2))g(r]),  (10)

where ¢; and ¢y are tuning constants, sgn is the signum function, and g¢(|r|) is
a fifth order polynomial such that ¢(r) is twice continuously differentiable. This
v function combines the attractive properties of the Huber and Tukey functions.
Observations receive a weight equal to 1 if their standardized residuals are within
(—¢1,¢1) and a weight equal to zero if the residuals are larger than ¢, in absolute
value. Partial weighting occurs in-between. The tuning constants ¢; and ¢, are taken
to be the square roots of the 0.99 and 0.999 quantiles of the x*(1) distribution, that
is, ¢; = 2.576 and ¢, = 3.291. The weights w,(+) resulting from the three 1) functions
discussed above are graphed in Figure 1, which clearly reveals the differences and
similarities between the different functions.

The weight function w,(-) for the regressor is specified as

wy(yt—l) = P(d(ye-1)*)/d(ye—1)" (11)

where again ¢(-) is given by (10), d(y; 1) is the Mahalanobis distance of y; i,
ie., d(yi-1) = |yim1 — my|/oy, with m, and o, measures of location and scale of
yi—1, respectively. These measures are estimated robustly by the median and the
median absolute deviation (MAD), respectively, i.e., m, = med(y_;) and o, =

1.483 - med|y;—y — m,|. The constant 1.483 is used to make the MAD a consistent



estimator of the standard deviation in case £; is normally distributed. Finally, fol-
lowing Simpson et al. (1992), the constant « in (11) is set equal to 2 in order to
obtain robustness of standard errors.

The first order condition (9) is nonlinear in ¢ and, therefore, estimation requires
an iterative procedure. In fact, interpreting w,(-) as a function of (¢, o.), w,($, oc),
and denoting the estimates of ¢ and o. at the n-th iteration by qg(") and 6",
respectively, it follows from (9) that ¢(**1) might be computed as the weighted least

squares estimate

50 = (@) (S w0

where the estimate of 0. can be updated at each iteration using the MAD estimator
given above.

In order to have maximum protection against outliers, the breakdown point of
the estimator, that is, the maximum fraction of contaminated observations the es-
timator can cope with, should be as high as possible. We follow Simpson et al.
(1992) and Coakley and Hettmansperger (1993), who show that if a high breakdown
point (HBP) estimator is used to construct starting values and if only one iteration
according to (12) is performed, an efficient estimator is obtained which retains the
high breakpoint of the initial estimator. We use the least median of squares (LMS)
estimator of Rousseeuw (1984) to obtain a starting value for the autoregressive pa-
rameter, (5(0)7 and we apply the MAD estimator to the corresponding residuals to
obtain an initial scale estimate, 5(°). The resulting HBP-GM estimator for ¢ has a
breakdown point of approximately 0.5. In the next section we will use this robust

estimator to modify tests for STAR nonlinearity.



4 Smooth transition nonlinearity

Consider the general STAR model of order p [STAR(p)] for a univariate time series

Yt,
Y = ¢’y§p)+f(g§p)777a7 C)glylgp)_th ) = 17"'7T ) (13)

Where yzgp) - (17 gép))l, gép) - (ytfla s 7ytfp),7 ¢ = (¢07 ¢17 ety ¢p), and 9 - (007 917 ey ep),'
For a logistic STAR (LSTAR) model, the transition function f(g,ﬁ“; v, a, c) is taken

to be the logistic function

F@”57,a,¢) = 1+ exp{—y(d'g" —e)}) 7t v>0, (14)

', while v and ¢ are scalars. The LSTAR model is member

where a = (a4,...,a,)
of the class of regime-switching models in that the time series can move between
two extreme regimes, associated with the values 0 and 1 for the transition function
f (g,ﬁ” ), 7, a,¢), where the transition between these two regimes is smooth and gov-

erned by lagged values of the time series itself. For an extensive discussion of STAR

models we refer to Terdsvirta (1994) and Granger and Terésvirta (1993).

4.1 Nonrobust tests for smooth transition nonlinearity

In this paper we consider the Lagrange Multiplier (LM) tests to identify LSTAR-
type nonlinearity developed by Luukkonen et al. (1988). The null hypothesis of
linearity can be taken as Hy : # = 0 in (13). This hypothesis is tested against the
alternative Hy : 6 # 0. It is immediately seen from (13) with (14) that the model is
not identified under the null hypothesis, because if Hy holds, 7, a and ¢ can take any
value. Consequently, the usual asymptotic theory cannot be applied to derive LM
tests, see Davies (1977,1987) for a general discussion of this identification problem.
Luukkonen et al. (1988) suggest to remedy this problem by replacing the transition
function f(gjt(p); v, a, ¢) in (13) by a suitable approximation. In the resulting auxiliary
model, the identification problem is no longer present and linearity can easily be

tested by so-called LM-type tests.



In general, the reparameterized model that is used for linearity testing can be
written as

Yt = ¢'?J§p) +60"q + e, (15)

where ¢ and yt(p ) are defined above, ¢; is an m x 1 vector of auxiliary regressors
containing higher-order and cross-product terms of the regressors in gj,gp ), and 0* is
a parameter vector of corresponding length. The exact contents of the vector ¢
depend on the approximation of the transition function chosen. Luukkonen et al.
(1988) first propose to replace f(g]t(p); v, a,¢) by a first-order Taylor approximation
around the point 'y(a’gjgp) —¢) = 0. The corresponding statistic, denoted LM, is
the general linearity test of Tsay (1986b), where the vector ¢; consists of terms y?2 ,
and vy yi—j,%,7 =1,...,p,1 < j. As this test might lack power against alternatives
where only the intercept is changing (i.e. only 6y # 0 in (13)), two alternative test
statistics are put forward. The LM, statistic uses a third-order Taylor approximation
for the transition function. The vector of auxiliary regressors in this case contains
additional terms v} ;, y ;, yiiy; ; and y, gyp ; for i,5 = 1,...,p,i # j. The last
test, L Ms, is obtained from the LM, test by augmenting the relevant vector ¢; with
only the cubic terms y> ;, as only these terms from the third-order approximation
depend on the intercept 6.

For all three tests, the original null hypothesis of linearity, Hy : # = 0, can
be shown to be equivalent to the hypothesis that all coefficients of the auxiliary
regressors gathered in ¢; in (15) are zero, i.e. Hj : 0* = 0. The general form of the
LM-type tests is then given by

SVAVA YA

LM; = — 16
gejrT (16)
ey - 2(2'2)\ 7))z
B g2/T ’
i =1,2,3, where £ = (&1,...,£r)" contains residuals estimated under the null hy-

pothesis of linearity, z; = (y,ﬁ”)', q)'s Z = (#),...,%), and Iy is the identity matrix

of order 7. Under a number of conditions, the LM; statistic has an asymptotic x?(m)
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distribution, see Tsay (1986b) and Saikkonen and Luukkonen (1988). In small sam-
ples it is usually recommended to use an F' version of the test. This version of the

test can be computed as follows:

1. Estimate the model under the null hypothesis of linearity by regressing ¥, on

yt(p ), Compute the residuals ¢; and the sum of squared residuals SSRy = 3 £7.

2. Perform the auxiliary regression of &; on yt(p ) and ¢; and compute the sum of

squared residuals from this regression, SSR;.

3. The LM-type test statistic can now be computed as

LM; =
" SSR/(T-m—-p—1)"

(17)

1 = 1,2, 3, which is approximately F' distributed under the null hypothesis with m

and T'— m — p — 1 degrees of freedom, respectively.

4.2 Robust tests for smooth transition nonlinearity

Because of the properties of the OLS estimator in the presence of AO’s as discussed
in section 2, one can expect that the LM, tests can be severely affected by additive
outliers. In the next section, we formally show that this is indeed the case. The
robust estimators discussed in section 3 can be used to construct robust versions
of the LM, test statistics. In particular, we obtain a robust test by using a robust
estimator to estimate the model under the null hypothesis. Hampel et al. (1986) and
Peracchi (1991) show that the robustness properties of estimators carry over to test
statistics based on these estimators. Moreover, under conventional assumptions, the
L M; tests retain their standard limiting x? distributions. Thus, it might be expected
that if the Schweppe form of the GM estimator is used for constructing LM-type
test statistics, the resulting statistics are protected against the influence of (additive)

outliers.

11



If we want to allow higher order models, i.e., p > 1, the robust HBP-GM esti-
mator derived for the AR(1) case in section 3 needs to be generalized. This is fairly
straightforward, except that now HBP estimators for multivariate location and scat-
ter are required to compute the Mahalanobis distances in (11) for the regressors yt(p).
For this purpose, we use the minimum volume ellipsoid (MVE) estimator proposed
by Rousseeuw (1985). The projection algorithm of Rousseeuw and van Zomeren
(1990) is used to approximate this estimator.

By interpreting the first order condition for the AR-model given in (8) as a
pseudo-score, an LM test can easily be constructed. Let z; = (y,ﬁp",qg)', 7 =
(21, ..., 2pr), W, = diag(i,(y"), ...,y (4$)) and W = (. (ry), . .., (r¢))', where
Wy and U are computed under the null hypothesis, and where r denotes the ¢-th
standardized residual, r, = (y; — ¢yi—1)/(0-wy(yi—1)). The robust version of the
LM-test statistics to test Hy : 0* = 0 in (15), to be denoted as RLM;,i = 1,2,3, can

be computed as

VW, Z(ZW,W,Z)" Z'W, ¥

RLM,; = .
U /T
W (] - W Z(ZW W, Z) T ZW, ) a8)
B U /T ’

i =1,2,3. Because (r) = w,(r) - r, the term W& = ST (i, (7)) 6.0, (yT)))?
might be interpreted as a weighted sum of squared residuals under the null hypothe-
sis, where the weights decline for large standardized residuals. As (18) shows, the F
version of the test, corresponding to (17), can be computed by running an auxiliary

OLS regression of the weighted residuals () on the weighted regressors wy(yt(” ))zt.

5 Outliers and tests for smooth transition nonlin-
earity

In this section we formally investigate the effect of outliers on the LM-type test

statistics. We restrict our attention to the simple LM, and RLM; statistics when

12



used to test an AR(1) model against an LSTAR(1) alternative. The qualitative
results derived below remain the same for higher order models and for the other LM-
type tests. We show that the presence of additive outliers leads to higher rejection
rates for both the robust and nonrobust tests. The distortion for the nonrobust test,
however, is much larger. If the outliers become extremely large or if the fraction of
contamination becomes relatively high, the level of the nonrobust test is recovered,
but the power of the test drops to its size. The power of the robust test, in contrast,
is significantly higher.

In the following theorem we derive both a global and a local (non)robustness
result for the RLM, test, based on an M estimator, i.e., w,(-) = 1 in (8). The global
result states that in the presence of AO’s, the RLM; statistic retains its asymptotic
x? distribution, only multiplied with a constant of proportionality. This constant
actually is a function of the autoregressive parameter ¢, the probability of occurrence
of AO’s 7 and the (absolute) magnitude of the outliers (. The second result is
called local, because it describes the behavior of the RLM; test for = | 0, i.e., for
(infinitesimally) small fractions of outliers. In this way, the result can be compared to
the derivation of an influence curve, see Hampel et al. (1986) for influence functions of
estimators in the regression context, Martin and Yohai (1986) for influence functions
of estimators in the time series context, and Peracchi (1991) for influence functions
of test statistics in the regression context. The present result complements the
results in these articles by presenting the influence of infinitesimally small fractions
of contamination on the distribution of a test statistic in the time series context. A

proof of the theorem is given in the appendix.

Theorem 1 Consider the AR(1) model without a constant under symmetric ad-
ditive outlier contamination and standard Gaussian innovations. If 1 is odd and
wy(-) =1, then

lim RLM; % cq -2,

T—o0

13



where x3 denotes a random variate with a chi-squared distribution with one degree
of freedom, and where cg is equal to the ratio of (25) and (26).

Furthermore, for m sufficiently small,

lim RLM; % (14 ¢ -7+ 0(1%) - X2,

T—o0

and where ¢y, is a function of ¢ that is equal to the sum of the right-hand sides of

(34) and (35), respectively.
Corollary 1 For the OLS-based LM, test, the value of ¢y in Theorem 1 reduces to

1
o = g7 (64" +(1+66%%)C" + (36%0% + 6o+ 301)C%) +

-1
351 (C+ (T+6%)00) +
2 66t - - 3%, (19)

with 02 = (1 — ¢?)7L. As a result, c;, = (1 — ¢*)?¢*C%/3 + O(¢?).

Remark 1: Theorem 1 treats the case of M estimators. If GM estimators are used,
the qualitative result remains the same, only now the influence curve of the scale
estimator of y;_; enters into the formulas. This illustrates that this function must be
bounded in order for the influence function of the test to be bounded. Note that the
influence function of the location of y;_; does not enter, as this function is identically
equal to zero because of the symmetry of the additive outliers.

Remark 2: The type of standard errors that is used in the computation of the
LM, test is crucial for the local robustness properties of the test. If we use ordinary
standard errors such as in Theorem 1, the constant ¢; for the OLS-based test is
an unbounded function of ¢. This function increases to plus infinity for ( — 4o0.
In other words, for local contamination the OLS-based test has a level above the
nominal level. In contrast, we can use heteroskedasticity consistent (HCC) standard
errors as in White (1980). This amounts to replacing the specification of ks in

the proof of Theorem 1 by ko = E(y} 1(g;)?). Consequently, (27) in the appendix
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reduces to 1 and is independent of . Therefore, the first two lines in the expression
for ¢;, in (19) vanish and the dominant term in the expression for ¢, for the OLS-
based test becomes —2¢¢*/3. This is an unbounded function of ¢ that tends to minus
infinity for ( — 4-co. In other words, the OLS-based test with HCC standard errors
has a level below the nominal level under local contamination. Also, the order of ¢y,
as a function of ¢ is smaller if HCC standard errors are used, which signifies that the
use of such standard errors alleviates part of the nonrobustness of the OLS-based
LM, test.

For the OLS-based test, a closed expression for the constant of proportionality cq
is available, but too lengthy to present here. This constant actually is a function of
the other parameters of the model, ¢ = c¢g (¢, ¢, 7), which satisfies (i) cg(¢,0,7) =1
for all combinations of ¢ and =, (ii) dcg/0¢ > 0 for ¢ € (0,q(¢, )], with ¢ some
function of ¢ and 7, (iii) Ocg/0¢ < 0 for ¢ € (q(¢, ), 00) and (iv) cg(¢,(,m) — 1
as ( — oo. These properties of the function cg(¢,(,m) show that the presence
of AO’s makes the LM, test biased towards the alternative, i.e. one finds spurious
nonlinearity when neglecting AO’s. Only if the size of the outliers becomes very large,
the asymptotic distribution returns to the standard x*(1) distribution. Figure 2
graphs ¢ for ¢ € [0,0.9], ¢ € [0,20] and 7 = 0.01,0.05,0.10 and 0.25. Apart from
the properties stated above, it is seen that for these fractions of contamination, cq
increases as ¢ gets larger. Furthermore, for fixed ¢ and (, the constant is smaller for
larger values of 7. This suggests that as the fraction of contaminated observations
increases, the distribution of the test statistic is distorted to a lesser extent. This,
however, is not true. The null distribution of the test is less affected under large AO’s,
but the power of the test is severely distorted. This is easily seen by considering the
nature of AO contamination. Given a time series x;, we clutter the signal of this series
using a white noise process (d;, see (2). If ¢ is large, the white noise component in
the contaminated series y; dominates the signal of the original series x;. Therefore,

for large ¢ the observed contaminated time series looks like the (imposed) white
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noise process, which results in a x? distribution for the LM test, irrespective of
whether the original z; process follows a STAR or an AR process. Put differently,
under dominant AO contamination, the distribution of LM, collapses to the null
distribution, even if the alternative holds true.

In practice, one usually includes a constant in the linear model under the null
hypothesis. Its effect on the constant cq is investigated by means of simulation. For
several combinations of (¢, (, ), 1000 series of 100 observations are generated from
a contaminated AR(1) model and for each series the LM, test statistic is computed.
Next, the percentiles of the x? distribution are regressed on the corresponding test
outcomes to obtain an estimate of ¢g. These estimates are shown in the upper
graphs of Figure 3, where a bivariate kernel is used to obtain a relatively smooth
surface. Comparing these graphs with Figure 2, the major difference seems to be
that, for fixed ¢ and 7, ¢¢ attains its maximum for higher values of (, while the
return to 1 after this point proceeds much slower. Apart from this, for 7 = 0.05, the
maximum value of ¢ is much higher when a constant is included.

The Monte Carlo experiment described above is repeated for the HBP-GM based
test statistic, to obtain some insight in the behavior of the robust RLM; test. The
estimates of cg, set out in the lower graphs of Figure 3, are remarkably different
from the corresponding estimates for the OLS-based test. It is easily seen that, at
least for 7 = 0.05, the maximum value of ¢4 is much lower for the robust test, while
the decrease following this maximum is much faster as well. In fact, for large values
of ¢ and ¢, the constant drops below 1, resulting in the test statistic being slightly
biased toward the null. Notably, for the robust test cq is larger for 7 = 0.10 than

for m = 0.05. This contrasts to the findings for the OLS-based test.

6 Monte Carlo experiments

Before applying our RLM; tests to several empirical time series, we evaluate the

performance of the tests by means of Monte Carlo simulations. We focus on two
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effects which arise due to robustifying the test statistics. First, we consider the effect
of using a robust test in a setting where robustness is not required, i.e., in a setting
without outliers. Second, we investigate the (relative) performance of the tests in the
presence of additive outliers. In the Monte Carlo experiments, we restrict attention
to the behavior of the (R)LM; test and to a probability of occurrence of outliers
of 0.05. Results for the (R)LM, and (R)LM; statistics, as well as results for other

contamination fractions are available on request from the corresponding author.

6.1 Monte Carlo design

In the Monte Carlo experiments, 1000 series of 7" = 100 observations of the core
process z; are generated either from the AR(1) model (4) or from a relatively simple

LSTAR(1) model,
xy=¢ry 1+ (1 +exp{zy 1}) 02, 1 +e, t=1,...,T, (20)

where £; ~ n.i.d.(0,02), 0. = 1. The starting value z, is set equal to zero. In order
to eliminate possible dependencies of the results on this initial condition, the first
100 observations are discarded. Contaminated series y,; are obtained by adding AO’s
to x; according to the replacement model (1) with {; = z; + (d;. Following Franses
and Haldrup (1994), the variable ¢, takes the values —1, 0 and 1 with probability
/2, 1 — 7 and /2, respectively. Thus, both positive and negative AO’s occur with
equal probability. The standard and robust nonlinearity tests are applied to both

the clean and the contaminated series z; and y;, respectively.

6.2 Simulation results

In our experiments, we consider the effects of varying the autoregressive parameters
in the AR and STAR models and the magnitude of the AO’s. In practice, one
has to decide on the order of the linear AR model assumed to hold under the null
hypothesis. In our simulation study, we fix this order a priori. The upper panel of

Table 1 shows rejection frequencies of the null hypothesis by the standard LM, and

17



robust RLM, tests, using 5% critical values. The results in this part of the table
are based on an AR(1) model with autoregressive parameter ¢. AO’s of magnitude
¢ = 3, 4 5 are added to the model with probability 7 = 0.05. In addition, the
columns under ¢ = 0 show estimates of the size when the test is applied to the series
without outliers.

It is seen for the clean series x; that the rejection frequencies of both the standard
and the robust test approximate the 5% signifance level quite well. However, in the
presence of outliers, marked differences appear. For the standard test, the rejection
frequencies increase to rather high levels for ( = 5 and large (absolute) values of
¢. The distortions in the level of the robust test are much smaller: the rejection
frequencies stay below 10%.

The bottom panel of Table 1 shows rejection frequencies for series generated by
the LSTAR model (20) for various combinations of ¢ and §. The probability and
magnitudes of AO’s are the same as above. Note that, since the transition function is
symmetric around zero, ¢ and ¢ + 6 can be interchanged. The columns under { = 0
again show estimates of the power of the tests applied to the core series. These
figures show that the difference between the autoregressive parameters for the two
extreme cases f = 0 and f = 1, i.e., 0, has to be considerable for the tests to be able
to detect the nonlinearity. As expected, the power of the robust test is slightly lower
than that of the nonrobust test, as the robust test downweights observations that
are not outliers. The maximum difference, however, is below 10%, which is quite
encouraging. The results when the tests are applied to the contaminated series y;
show that it pays off to use the robust test. Although the power of both the standard
and the robust tests decreases for most choices of (¢, 0), the resulting drop is far
larger for the standard tests (up to 40%). The robust version of the test performs
better in 17 out of 21 cases.

The Monte Carlo results in this section suggest that the empirical performance

of the tests is satisfactory. If applied to time series without outliers, the performance
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of the robust tests is similar to that of the more familiar OLS-based tests, with an
expected slight power advantage for the OLS-based tests. Furthermore, in case of
linear or nonlinear time series with not too many outliers, the robust tests point
at the correct model more often than the standard test. Unreported results for
other contamination fractions and the (R)LM, and (R)LMj3 tests concur with these

findings.

7 Nonlinearity in industrial production

As stated in the introduction, regime-switching models have been applied in par-
ticular to study possible nonlinearity in business cycles. In this spirit Luukkonen
and Terésvirta (1991) , Terfisvirta and Anderson (1992) and Terdsvirta et al. (1994)
consider modelling industrial production indices for a number of OECD countries
by STAR models. In this section, we apply the standard and robust tests for non-

linearity to these series.

7.1 The sequence of tests

In general, specification of STAR models is done using the procedure of Terdsvirta
(1994), see also Granger and Terdsvirta (1993) for an extensive discussion. This
specification procedure consists of three stages. First, a linear AR model is specified
to form the basis for further analysis. Secondly, the LM test is carried out to test
linearity against STAR. Although this test statistic was designed against a logistic
alternative, Terdsvirta (1994) argues that it should have power against exponential
STAR (ESTAR) models as well. To determine which variable(s) should be included
in the transition function, one can consider special cases of the LM, test as follows.
If the vector a in (14) is restricted to a = (0,...,0,1,0,...,0), i.e. ag = 1 for some
de{l,...,p} and a; = 0 for all j # d, the vector ¢, of auxiliary regressors in (15)

only contains terms §”y;_q, 57y2 , and §Py? ;. Thus, the auxiliary regression
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used to compute the simplified LM, statistic is
2 — Hu® g ) 07 P),,2 0 7 P)3 21
Ee=0yr T 050 Yr—a+ 0305 Y q + 0.9y g+ U, (21)

where £; are the residuals from the regression y; = qﬁ’yt(p) +e,6; = (0i,...,0;) for
1t = 2,...,4. The null hypothesis to be tested is Hy : 6 = 03 = 6, = 0. The test
is carried out for different values of d. If linearity is rejected for several values of
d, the one with the smallest p-value is selected as transition variable. This rule is
motivated by the notion that the test might be expected to have maximum power
if the true transition variable is used.

The next step is to decide between the logistic and exponential transition func-
tions. This can be done by a short sequence of tests nested within (21). The
null hypotheses to be tested are Hyy : 60y = 0, Ho3 : 63 = 0| 6y = 0, and
Hyp : 05 =0| 63 =60, =0. If §; = 0, the model can only be an ESTAR model,
see Terdsvirta (1994). Similarly, if #3 = 0, the model can only be an LSTAR model.
Granger and Terdsvirta (1993) suggest to carry out all three tests, independent of
rejection or acceptance of the first or second test. The decision rule used to select the
transition function then is: select an ESTAR model only if the p-value corresponding

to Hys is smallest, choose an LSTAR model in all other cases.

7.2 Testing for nonlinearity in industrial production

The series studied by Luukkonen and Terdsvirta (1991), Terdsvirta and Ander-
son (1992) and Terdsvirta et al. (1994) are quarterly, seasonally unadjusted indices
of industrial production for 11 OECD countries, covering the period 1960(i)-1986(iv).
The data are made approximately stationary by taking seasonal differences of the
logarithms.

First of all, we apply the LM, tests, as discussed in section 4. The orders of the
linear AR models under the null are taken from Terdsvirta and Anderson (1992),
which have been selected using the Akaike Information Criterion. The p-values

corresponding to the different tests are shown in Table 3.
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Table 4 shows the results from applying both the standard and robust tests used
to specify STAR models. Although the AR orders are taken from Terdsvirta and
Anderson (1992), a number of differences are observed for the standard tests. For
the series of France and Italy these arise due to corrections Terésvirta and Anderson
(1992) apply to correct for the effect of strikes that occurred in these countries. The
sources of the different outcomes for Finland and Sweden are not clear.

Comparing the models which are selected by the standard and robust tests, it
is seen that for the majority of countries different conclusions can be drawn. Only
for Finland, Italy, Japan and the Netherlands exactly the same results are obtained.
Inspection of the weights resulting from the HBP-GM estimator (not shown here)
reveals that outliers seem to be present around the oil crises of 1973 and 1979 for
all series, although the number and timing varies considerably across the different
countries.

For Germany, Norway and Sweden, the results partially coincide. For Germany,
the standard tests indicate a logistic model, while the robust tests seem to prefer
an exponential model, although the p-values for the test sequence are quite close to
each other (0.027, 0.016, and 0.023, respectively). Therefore, it would be sensible to
estimate both types of models and compare them on, for example, forecasting ability.
For Norway and Sweden, all tests select an LSTAR model, only the appropriate delay
parameter differs.

The standard tests do not indicate the presence of STAR-type nonlinearity for
the industrial production series of France, while the robust tests strongly suggest
an ESTAR model, the p-values corresponding to Hyy, Hy3, and Hy, are 0.227, 0.000,
and 0.803, respectively.

Finally, for Austria, Belgium and the USA, the standard tests indicate that an
LSTAR model might be appropriate for these series, whereas the robust tests are
unable to reject linearity. Figures 4, 5, and 6 show the weights w, () that are assigned

to the observations by the HBP-GM estimation procedure as well as the values of
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the transition function f(y;—4;7,a,c) (taken from Terdsvirta and Anderson (1992)
for Belgium and the USA and from Terésvirta et al. (1994) for Austria). Inspection
of these figures shows that the apparent nonlinearity is due to only a few outlying
observations. Especially for Belgium and the USA, the observations which receive
weight (close to) zero are located around the points where transitions from one
regime to the other regime in the LSTAR model occur. These regime-shifts, which
are seen to be very quick, are caused by the transition variable taking values opposite
from the threshold ¢ at consecutive points in time. Apparently, this coincides with
yi—q taking rather extreme values, which results in vertical outliers or bad leverage
points, as suggested by the zero weights. For Belgium, these aberrant observations
explain all regime-shifts, while for the USA the remaining ones which cannot be

ascribed to outliers do not produce enough evidence for STAR-type nonlinearity.

8 Concluding remarks

In this paper we proposed robust LM-type tests for STAR nonlinearity. The tests,
which are straightforward to compute, use a HBP-GM estimator to estimate the
linear AR model under the null hypothesis. The Monte Carlo evidence suggests
that the empirical performance of the tests is satisfactory. If applied to time series
without outliers, they do not suffer from large size distortions or much loss of power.
Furthermore, in case of linear or nonlinear time series with outliers, the robust tests
point at the correct model more often than the standard tests. The application to a
selection of the industrial production series indicates that one should carefully inter-
pret evidence from standard tests, as the presence of only a few aberrant observations
may cause spurious nonlinearity.

The results obtained in this paper point towards several directions for further re-
search. The robust estimation techniques might be applied to construct robust tests
for other types of nonlinearity. Motivated by the discussion on outliers and nonlin-

earity, an obvious possibility would be to consider robust testing for (G)ARCH. The
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clustering of large residuals typical in GARCH models might well be mimicked by an
10 or a sequence of AO’s. Alternatively, robust estimation of STAR models might be
considered worthwhile, elaborating on results from Chan and Cheung (1994). These

issues will be taken up in our subsequent research.

Appendix: proof of Theorem 1

Proof: We have the replacement model

Ty = QT+, (22)

v = x(1—0;) + (6, (23)
where 17, is i.i.d. standard Gaussian distributed, |¢| < 1, 2o = 1o/ (1 — ¢*)*/2, and §;
is Lid. with P(6, = 1) = P(6, = —1) = 7/2, P(6, =0) =1 — 7, and 0 < 7 < 1.
Furthermore, we have that

Tt ( tT:1 yt2—1¢(5t))2
(Tfl E?:l y?—l) (Tfl Zle Zb(ft)Q) .

We first prove that the terms in the square in the numerator have expectation zero

LM, = (24)

independent of the values of 7, (, and ¢. In order to see this, note that

E(yg—ﬂ/)(&)) = E(?J?—ﬂ/)(ﬁt + (o — éC(Stfl + (¢ — é)xtfl)) =0,

where ¢ denotes the GM estimator and where the last equality follows from the

conditions stated in the theorem. Therefore, T2 "L | 42 11(e,) satisfies a central

limit theorem and converges in distribution to a normal with mean zero and variance

ky, with
by = B ()?) +2 5 Bt s bl b(E ). (25)

Define .
ks = B ) E@(=)?), (26)

then using the central limit theorem, LA, tends in distribution to



Defining c¢g = ki /ko, this proves the first part of the theorem. Note that for 7 = 0
we have that k; = ky. Therefore, the second part of the theorem is proved if we
can show that ¢, = d(ki/ks)/dp evaluated in 7 = 0. This is similar to deriving the
influence function of a statistic, see, e.g., Hampel et al. (1986).

In order to derive the local result, we split k;/ks in two parts, namely

E(?Jiﬂ/)(gty)

B (27)

and

9 Ii E(ygly?k}{;‘f(at)"/)(atk» . (28)

In order to put together the result, we first present the necessary individual deriva-
tives with respect to m. We make heavy use of the techniques for deriving influence

functions in the time series context as presented in Martin and Yohai (1986). We

obtain
LEWE)| = B+ - ) +
E((ne — ¢¢)° = ¢(m)*), (29)
LEGL)| = ¢ HOCEGE), (30)
LB = B+ Ol - 607 — ot () +
Baa (0 -+ )7 — v ())) 31
B En))| | = Bl gl (v Fy+
E((w1-1 + Oyt (m — 6O (1h-1 + €)), (32)
and

d
%E(yf_lyf_k_lw(st)w(ﬁt—k))

=0

for £ > 1, where

IF; = CE(W(n — 6¢))/E(xi_y¢' (mh))
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is the (time series) influence function of the estimator for the autoregressive pa-

rameter under AO contamination and ¢'(-) is the first order derivative of ¢(-) with

respect to its argument. The result now follows by observing that

d (E(yflw(at)2)>

_ 4By ¥(e))/dr = E(yy,)AE( () /dr

% k2 =0 k2
—E(y(e)*)dE (y;_y) /dm
k2 =0
and
4 (2 3 E@?—wf—k—liﬁ(@)iﬁ(et—w>) _ B b)) dn
dr \ = ks L ks
(|
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Figure 1: Weights for different 1 functions
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Note: Weights w,(r) = ¢(r)/r resulting from (i) polynomial ¢ func-
tion, ¥(r) = r(1— H(|r| — e ))sgn(r) + H (|| —e1)(1— H(|r| —c2)g(|r),
c1 = 2.576, ¢ca = 3.291 and g¢(|r|) a fifth order polynomial such that
() is twice continuously differentiable (solid line), (ii) Huber ¢ func-
tion, ¥(r) = med(—c,c,r), ¢ = 1.345 (dotted line) and (iii) Tukey’s
bisquare function, ¥(r) = r(1 — (r/c)?)? - (1 — H(|r| — ¢), ¢ = 4.685
(dashed line)
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Table 1: Size and power of LM, and RLM, tests

LM, RLM,;
¢ o+90 (=0 ¢=3 (=4 ¢=5 ¢=0 ¢=3 (=4 (=
-0.9 -0.9 4.9 11.4 17.6 23.2 6.1 8.7 9.3 7.8
-0.7 0.7 4.3 10.0 15.6 19.7 5.0 6.6 8.5 9.3
-0.5 -0.5 2.9 8.2 10.8 12.8 3.8 5.7 7.6 8.5
-0.3 -0.3 3.4 5.8 6.5 7.7 3.8 5.8 6.3 5.9
-0.1 -0.1 3.7 4.8 4.9 4.9 4.1 4.5 9.5 4.7
0.0 0.0 4.1 5.1 4.2 4.4 3.9 4.6 5.3 5.2
0.1 0.1 4.2 5.6 4.5 4.4 4.2 4.9 0.4 5.3
0.3 0.3 3.6 6.5 6.6 6.7 3.9 6.1 6.0 6.4
0.5 0.5 3.6 8.0 10.7 11.8 4.4 7.4 9.5 7.8
0.7 0.7 2.7 10.0 16.2 20.2 4.2 8.8 10.2 10.4
0.9 0.9 1.5 10.6 19.0 26.0 3.4 8.9 9.3 7.2
-0.9 -0.7 16.2 16.2 18.8 21.8 14.5 12.3 13.9 15.2
-0.9 -0.5 32.7 19.4 20.1 20.8 29.7 19.2 24.3 26.7
-0.9 0.0 68.9 27.1 17.5 13.4 64.1 38.5 46.8 07.1
-0.9 0.5 90.2 40.7 22.0 13.4 85.5 99.9 69.6 79.4
-0.9 0.7 97.4 49.7 29.2 17.9 94.0 67.8 78.0 89.7
-0.9 0.9 98.3 66.5 46.2 29.6 96.6 79.6 81.9 87.7
-0.7  -0.5 9.9 12.3 15.4 17.6 8.7 9.8 13.2 14.1
-0.7 0.0 44.6 15.1 11.0 9.7 39.8 23.0 294 36.6
-0.7 0.5 79.7 30.0 16.0 9.3 73.9 45.8 54.1 69.4
-0.7 0.7 90.4 39.8 22.7 14.1 85.9 08.4 66.1 79.2
-0.7 0.9 96.3 55.2 36.4 26.5 93.3 71.3 74.8 82.2
-0.5 0.0 23.6 11.3 8.4 8.3 21.7 15.4 17.5 22.6
-0.5 0.5 64.6 25.0 14.1 8.4 58.8 36.7 48.7 54.7
-0.5 0.7 81.2 36.9 18.4 12.0 75.7 50.3 96.5 68.5
-0.5 0.9 92.3 54.1 34.3 23.6 87.1 62.0 65.3 74.3
0.0 0.5 20.6 9.9 8.4 7.5 18.4 12.5 16.8 18.9
0.0 0.7 42.8 17.9 12.6 10.5 39.1 24.1 30.5 33.8
0.0 0.9 62.5 38.0 30.1 26.0 60.9 44.3 45.3 49.4
0.5 0.7 7.0 12.0 16.1 17.9 7.5 12.6 14.9 11.5
0.5 0.9 18.7 21.6 23.9 24.9 20.9 23.3 25.1 21.7
0.7 0.9 6.2 17.1 24.2 27.5 8.4 15.2 16.4 14.9

Note: Rejection frequencies of LM test (17) and RLM; test (18) at 5% significance level using F critical values
for series generated by (20) with 02 = 1. Additive outliers are added with probability = = 0.05. The table is
based on 1000 replications, 7" = 100.
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Table 2: Size and power of LM, and RLM, tests

LM, RLM,;
¢ o+90 (=0 ¢=3 (=4 ¢=5 ¢=0 ¢= (= (=
-0.9 -0.9 4.9 11.2 11.5 11.9 6.1 9.1 11.4 14.6
-0.7 0.7 4.3 7.6 8.7 9.4 5.0 7.4 12.7 16.7
-0.5 -0.5 2.9 7.2 7.6 6.9 3.8 8.2 11.3 14.4
-0.3 -0.3 3.4 5.1 6.2 5.5 3.8 6.3 8.3 8.7
-0.1 -0.1 3.7 4.7 0.6 4.7 4.1 4.7 6.3 4.7
0.0 0.0 4.1 5.1 4.9 4.8 3.9 4.3 6.6 4.0
0.1 0.1 4.2 4.8 4.7 4.4 4.2 5.0 5.6 4.3
0.3 0.3 3.6 4.7 4.6 4.6 3.9 5.6 8.5 6.7
0.5 0.5 3.6 5.5 5.7 5.8 4.4 9.2 12.1 12.0
0.7 0.7 2.7 7.9 8.4 8.5 4.2 11.6 15.8 16.5
0.9 0.9 1.5 11.4 14.2 17.7 3.4 13.2 17.7 16.4
-0.9 -0.7 16.2 10.6 10.1 10.1 14.5 9.2 12.5 16.8
-0.9 -0.5 32.7 13.0 10.1 9.5 29.7 14.3 16.5 25.7
-0.9 0.0 68.9 14.1 8.5 6.6 64.1 20.5 32.6 46.5
-0.9 0.5 90.2 21.6 10.9 6.0 85.5 32.4 46.0 67.8
-0.9 0.7 97.4 29.0 14.4 9.5 94.0 39.7 50.2 74.6
-0.9 0.9 98.3 45.6 25.5 14.8 96.6 54.2 56.9 71.6
-0.7  -0.5 9.9 7.7 8.3 7.8 8.7 9.2 13.2 18.0
-0.7 0.0 44.6 8.4 5.7 5.6 39.8 13.3 20.8 30.7
-0.7 0.5 79.7 14.3 8.8 7.2 73.9 224 35.6 55.7
-0.7 0.7 90.4 21.0 12.0 8.4 85.9 30.6 41.0 65.7
-0.7 0.9 96.3 36.1 21.6 13.5 93.3 474 47.9 64.4
-0.5 0.0 23.6 7.8 7.1 6.4 21.7 8.5 14.8 19.0
-0.5 0.5 64.6 14.5 8.0 7.8 58.8 20.4 29.8 46.9
-0.5 0.7 81.2 18.6 9.4 6.6 75.7 30.6 36.9 93.9
-0.5 0.9 92.3 35.8 19.4 12.4 87.1 41.1 46.0 59.8
0.0 0.5 20.6 8.1 5.9 9.5 18.4 9.6 13.5 18.3
0.0 0.7 42.8 10.7 6.2 5.1 39.1 16.4 22.7 31.7
0.0 0.9 62.5 27.1 17.3 13.5 60.9 33.1 33.6 40.6
0.5 0.7 7.0 8.6 8.7 7.3 7.5 13.0 15.1 18.5
0.5 0.9 18.7 16.0 14.6 11.8 20.9 21.2 25.1 26.0
0.7 0.9 6.2 16.4 15.8 14.5 8.4 17.0 21.2 21.0

Note: Rejection frequencies of LM, test (17) and RLM; test (18) at 5% significance level using F critical values
for series generated by (20) with ¢Z = 1. Additive outliers are added with probability = = 0.10. The table is
based on 1000 replications, 7" = 100.
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Table 3: p-values of LM-type tests for seasonal differences of quarterly industrial
production data from 11 OECD countries 1961(i)-1986(iv)

OLS Robust
Country AR order LM, LMy LM; RLM, RLMy; RLMs;
Austria 5 0.056 0.209 0.082 0.845  0.341  0.801
Belgium 5 0.062 0.163 0.076 0.083  0.213  0.058
FR Germany 9 0.429 - 0.519 0.252 - 0.296
Finland 1 0.810 0.418 0.849 0.780  0.483  0.362
France 9 0.041 - 0.079 0.028 - 0.023
Italy 5) 0.145 0.215 0.052 0.629 0.381 0.121
Japan 5 0.033 0.069 0.081 0.115  0.192  0.247
The Netherlands 1 0.209 0.123 0.128 0.954 0.994  0.991
Norway 8 0.363 - 0.521 0.076 - 0.150
Sweden 5 0.667 0.005 0.433 0.670  0.030  0.558
USA 6 0.014 - 0.072 0.191 - 0.228

Note: AR orders have been taken from Terdsvirta and Anderson (1992). The standard and robust tests
are F' tests as discussed in sections 4 and 3. For Germany, France, Norway and USA the LMy test
could not be computed due to multicollinearity problems.

Table 4: Model selection for seasonal differences of quarterly industrial production
data from 11 OECD countries 1961(i)-1986(iv)

Minimum p-value

Type of model(delay parameter)

Country AR order TA  OLS Robust TA OLS Robust
Austria 5 0.010 0.010 0.260 LSTAR(1) LSTAR(1) Linear
Belgium 5 0.050 0.050  0.058 LSTAR(1) LSTAR(1) Linear

FR Germany 9 0.004 0.004 0.000 LSTAR(4) LSTAR(4) ESTAR(4)
Finland 1 0.547 0.393 0.376 Linear Linear Linear
France 9 0.156 0.099  0.007 Linear Linear ESTAR(2)
Italy 5 0.029 0.041  0.007 LSTAR(3) LSTAR(1) LSTAR(3)
Japan 5 0.000 0.000 0.038 L/ESTAR(1) L/ESTAR(1) LSTAR(1)
The Netherlands 1 0.123 0.123  0.153 Linear Linear Linear
Norway 8 0.031 0.031 0.012 LSTAR(5) LSTAR(5) LSTAR(3)
Sweden 5 0.016 0.011  0.050 LSTAR(3) LSTAR(3) LSTAR(4)
USA 6 0.006 0.006 0.061 LSTAR(3) ESTAR(3) Linear

Note: AR orders have been taken from Terdsvirta and Anderson (1992). Their test results are given in the columns
headed TA. The standard and robust tests are F' tests based on (21). Minimum p-values are computed over 1 < d < 5.
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Figure 2: Constant cg for LM test
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Note: Values of the constant c¢g in Theorem 1 for the OLS-based LM test statistic.

32



Figure 3: Constant cg for LM, and RLM; tests, constant included

LMy test, m=0.05 LMy test, m=0.10
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Note: Values of the constant ¢ in Theorem 1 for LM (upper two graphs) and RLM; (lower two graphs)
test statistics if a constant is included in the estimation of the linear model under the null hypothesis. The
figure is based on 1000 replications of a contaminated AR(1) model, T" = 100.
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Figure 4: Weights and transition function - Austria
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Note: Weights from robust estimation of AR(5) model used to com-
pute nonlinearity tests (solid line) and transition function in fitted
LSTAR model f(z;_q;7,a,¢) = (1 + exp{—y(z—a — 0)})~", d =
1,7 = 2.2 x 24, ¢ = 0.063 (dotted line)

Figure 5: Weights and transition function - Belgium
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Note: Weights from robust estimation of AR(5) model used to com-
pute nonlinearity tests (solid line) and transition function in fitted
LSTAR model f(CL’t,d;"/,a, C) = (1 + exp{iry(mtfd - C)})717 d =
1,7 =173 x21.6,c = —0.015 (dotted line)
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Figure 6: Weights and transition function - United States
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Note: Weights from robust estimation of AR(6) model used to com-
pute nonlinearity tests (solid line) and transition function in fitted
LSTAR model f(d}t,d;"/,a, C) = (1 + exp{iv(mtfd - C)})_lz d =
3,7y =49 x 17.5,¢ = 0.0061 (dotted line)
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