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1 Introduction

Stock market crashes are one of the major risks that investors face. Although such crashes

occur infrequently, their impact on the value of asset portfolios can be substantial. The

October 1987 crash, for example, made stock prices decline by over 20 percent in most

developed markets. In emerging stock markets, crashes can be even more severe. Asian

markets lost over 30 percent in October 1997 during the Asian crisis. As emerging countries

are commonly quite susceptible to macroeconomic shocks, crashes occur more often in their

stock markets. While many of these crashes are “local” and remain confined to individual

countries, some spread to neighboring emerging markets, resulting in regional stock market

crashes. Some may even evolve into global crashes, where developed markets are also

affected. The 1997 Asian crisis, for instance, originated in Thailand, then infected other

developing Asian countries, and finally financial markets in the United States and Western

Europe were affected as well.

For investors as well as policy makers it is important to know whether crashes remain

local, or a “domino pattern” occurs, with local crashes evolving via regional crashes into

global crashes. If crashes remain local, investors could hedge relatively easy. However,

hedging is more difficult, and diversification opportunities diminish rapidly, when local

crashes spread regionally or even globally. In this case, the domino effect may destabilize

several markets and even the entire financial system, calling regulators into action. On the

other hand, if markets tumble like domino tiles, a local or regional crash can be interpreted

as an early warning signal of more turmoil to follow.

This study empirically examines the transmission mechanism of stock market crashes

around the globe, using daily data for the US, Europe and several emerging markets in

Latin America and Asia for the period from July 1996 to July 2007. In particular, we

investigate whether the evolution of crashes exhibits a domino effect. We first identify

periods with local, regional and global crashes (and periods without any crash at all).

We then use an ordered logit model for the probabilities of occurrence of the different

crash types. An ordered logit model is precisely able to capture the natural ordering

of crashes by severity. This setup enables the inclusion of both domino-style contagion

and normal interdependence between financial markets. A domino effect is present when

past occurrences of local, regional or global crashes significantly increase the probability

of more severe crashes. We capture interdependence by including variables that represent

information from the currency market, the bond market, and short-term interest rates.

As our main result we find strong evidence in favor of a domino effect. A crash occurring
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today significantly increases the probability of a more severe crash tomorrow. This result

holds for all different types of crashes. The domino pattern indicates that global crashes,

which can hardly be diversified, do not occur abruptly but rather evolve out of prior

local or regional crashes. Our results confirm that in times of financial distress panic

indeed spreads contagiously, as described in Dornbusch et al. (2000). A local crash is

good predictor of more financial turmoil ahead. Additionally, we find that bond markets

returns, interest rate levels and stock market volatility significantly influence local, regional

and global crash probabilities, though currency changes do not. Higher interest rates and

higher stock market volatility lead to higher probabilities of more severe crashes, while

higher bond returns in emerging markets lead to lower crash probabilities. We do not

find that the relation between the financial variables and crash likelihood depends on the

type of crash that occurred the day before. Finally, we find that our model, allowing for

different types of crashes including local and regional ones, is more successful in detecting

and forecasting global crashes than a binomial model for global stock market crashes only.

We contribute to the literature in various ways. First, our explicit distinction between

local, regional and global crashes, and our model of the evolution of these crashes as a

domino effect sheds new light on the propagation of large negative stock market returns.

This adds to the approach of Bae et al. (2003) and (to a lesser extent) Cumperayot et al.

(2006). Bae et al. (2003) use the number of simultaneous extreme returns in different stock

markets as dependent variable in a multinomial logistic regression model and find signifi-

cant effects of interest rates, changes in currencies and conditional stock market volatility.

However, they analyze only one region at a time, and do not investigate which part of the

dependence between crashes in different countries can be attributed to reactions on shocks

in other financial markets and which part to shocks in other financial variables. We extend

their study by explicitly including global crashes in our analysis. These global crashes are

most important for investors and regulators, because diversification opportunities evapo-

rate in this case.

Second, we add to the ongoing debate on contagion and interdependence, as discussed in

Dornbusch et al. (2000) (see also Pericoli and Sbracia, 2003), by using a framework in which

we allow for both types of transmission mechanisms. Interdependence means spillovers of

shocks resulting from the normal dependence between markets, due to trade links and

geographical position, among others. So, interdependence refers to the dependence that

exists in all states of the world. Contagion, on the other hand, constitutes a form of

dependence that does not exist in tranquil periods but only occurs for large or extreme
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shocks to financial markets. Contrary to interdependence, this dependence cannot be linked

to observed changes in macroeconomic or financial variables. Dornbusch et al. (2000) argue

that this type of dependence is a result of “irrational” phenomena, such as financial panic,

herd behavior and loss of confidence. We define contagion as the dependence that still

exists after correcting for interdependence. Contrary to the common approach, our logistic

framework does not measure contagion as correlation between residuals, but instead we

construct contagion variables based on past extreme events. This enables us to distinguish

between contagion and interdependence in the occurrence and evolution of local, regional

and global crashes.

Most other studies concerning interdependence and contagion are based on bivariate

analyses, and do not investigate dependence at the global level. The most popular approach

is based on correlations between returns in different markets.1 Kleimeier et al. (2008) show

that these correlation based tests may lead to wrong conclusions due to different trading

hours. Using time-aligned data they find contagion during the Asian crisis, contrary to

Forbes and Rigobon (2002). Other authors attempt to model the volatility transmission

mechanism by means of multivariate GARCH models2 or use extreme value theory3 to

avoid the problem that increased correlations in periods of turmoil may be mostly a result

of increased volatility.4 Rodriquez (2007) uses copulas to measure contagion and finds

evidence for contagion based on changes in dependence of extreme returns. Other studies

making the distinction between interdependence and contagion are Connolly and Wang

(2003) and Fazio (2007), where the latter concludes that interdependence exists between

regions and contagion only within regions, and the former reject interdependence between

regions while finding contagion between regions. Recently, Boyer et al. (2006) investigate

the spread of crises through asset holdings of international investors, and find that this is

an additional channel through which crises can spread. Our research is complementary to

these studies.

A small number of previous studies consider crises and contagion in a multicountry

environment. For instance, Dungey and Martin (2007) use factor models with world,

regional and country factors and define contagion as the correlation between the residuals.

This approach, however, is not specifically suited for measuring dependence among extreme

shocks. The logistic approach, as pointed out by Bae et al. (2003), is more suitable to

1See King and Wadhwani (1990); Lee and Kim (1993); Loretan and English (2000) and Forbes and
Rigobon (2002).

2See Hamao et al. (1990), Longin and Solnik (1995), and Ng (2000).
3See Kaminsky and Schmukler (1999), Longin and Solnik (2001), and Hartmann et al. (2004).
4See Boyer et al. (1999), Loretan and English (2000), Forbes and Rigobon (2002).
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deal with extreme values, for the reason that it is closely related with extreme value

theory. Christiansen and Ranaldo (2009) apply the methodology of Bae et al. (2003)

to the stock markets of the EU and its new members and find evidence of a increased

dependence of new EU stock markets to those in Western Europe. Other studies that use

a multicountry environment are Favero and Giavazzi (2002) on exchange rate contagion,

and Kose et al. (1990) who use a Bayesian framework to model output, consumption and

investment. However, these two approaches are also not specifically suited for analyzing

crashes. Kamin (1999) and more recently Dungey et al. (2008) empirically analyze whether

the role of economic fundamentals (linkages) and contagion varies across financial crises.

Although some differences are found, generally all crises seem to have much in common.

For a comprehensive overview on recent developments in the contagion literature we refer

to Dungey et al. (2005).

The paper proceeds as follows. In Section 2 we describe the data set, and provide

our definition of a stock market crash as well as the classification into local, regional and

global crashes. In Section 3 we put forth the methodology for analyzing the domino effect

based on the ordered logit model. In Section 4 we discuss the empirical results concerning

the patterns in the different types of crashes, including several sensitivity tests. Section

5 explores the economic relevance of our model compared to a binomial crash model for

global crashes only. We conclude in Section 6.

2 The dynamics of stock market crashes

In this section we first discuss our data and definitions of local, regional and global stock

market crashes. We then document the dynamic properties of the different crash types, to

examine the appropriateness of modelling contagion as a domino effect.

2.1 Data

We investigate the transmission of stock market crashes for emerging markets in Latin

America and Asia, and developed markets in the US and Europe. We include six countries

from Latin America: Argentina, Brazil, Chile, Colombia, Mexico and Venezuela, as well

as six countries from Asia: India, Korea, Malaysia, Philippines, Taiwan and Thailand.

We obtain country and regional indices from the IFC emerging market database (EMDB),

currently maintained by Standard & Poors. For the US and Europe we use MSCI equity

indices. Although Europe exist of more countries rather than one, we do not consider local
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crashes in Europe for two reasons. First, the stocks markets in Western Europe are highly

integrated. Second, regarding Europe as a region leads to a symmetric treatment of the

US and Europe. We base our analysis on daily returns in US dollars for the period from

July 1, 1996 until July 30, 2007, giving a total of 2839 observations. All the data are taken

from Datastream.

[Insert Table 1 around here]

Table 1 provides summary statistics of the log daily stock returns for the full sample

period. The regional indices show that emerging markets are riskier than developed mar-

kets, while the average returns are perhaps not as high as might be expected to compensate

for this higher risk. This can be explained by the 1997 Asian crisis and the 1998 Russian

debt crisis, which considerably depressed emerging market returns.5 Within the emerging

market countries the annualized average returns vary widely, ranging from a minimum of

−7% in Thailand to a maximum of 16% in Mexico. The volatilities also show large varia-

tion across countries. For example, the Chilean stock market has a volatility of only 17%

per year, while volatility in Korea is much higher and equal to 42%. Volatility generally

exceeds 25%, indicating the high investment risk typical for emerging markets. Kurtosis is

also substantially higher than for the developed markets, pointing out that extremely large

returns occur more often in emerging markets. Interestingly, skewness is negative for the

Latin American countries, while it is positive for the Asian markets (except India). The

biggest crash in the sample was observed on 29 November 2002, when the Venezuelan index

lost 46% of its value. Maximum returns also vary from moderate (Chile, India, Taiwan)

to very high (Venezuela, Korea, Malaysia, Philippines).

The last three rows of the upper part of Table 1 report the 5th quantile of the empirical

return distribution together with the mean and volatility of returns in the left tail below this

quantile. The extreme returns have the lowest mean and highest volatility for Argentina,

Korea and Venezuela, indicating that in these countries the extreme returns introduce more

risk and vary more than in the other countries. For the regional indices, we observe that

the 5th quantile, and the mean and volatility of returns in the left tail are approximately

equal for Asia, US and Europe, while they are substantially larger (in absolute value) for

Latin America. From this perspective Latin America would be the most risky region to

invest in.

5Average yearly returns computed over the period 1999 – 2007 are equal to 21, 13, 2 and 5 % for Latin
America, Asia, the US and Europe, respectively, which are more in line with their respective volatilities.
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The entries below the main diagonal in the bottom part of Table 1 are linear correlation

coefficients between contemporaneous daily returns. For the regional indices, we observe

that the correlations between the US, Europe and Latin America are of the same order of

magnitude around 0.50. The correlations between Asia and the other regions are lower,

especially the correlation between the US and Asia (0.09). This lower correlation is mainly

a result of different trading hours of stock markets around the globe. As trading on a given

calendar day starts in Asia, then moves to Europe, and ends in the US, information from

the European and (especially) the US stock markets cannot affect the Asian market on the

same day, such that these correlations (mostly) measure the effect of the Asian market on

Europe and the US. The correlations between current returns in Asia and one-day lagged

returns in Europe and the US (0.29 and 0.38, respectively), are more in line with the other

regional correlations.

The correlations between individual emerging markets are somewhat lower on average.

The average correlations between countries within Latin America and Asia are equal to

0.29 and 0.24, respectively, while the average cross-correlation (the correlation between the

countries in Asia and Latin America) is only 0.12. We note, though, that the correlations

between the four largest Latin American markets (Argentina, Brazil, Chile and Mexico)

are considerably higher at around 0.50, comparable to the correlation among developed

markets.

2.2 Crash definition and classification

Following Bae et al. (2003), a stock market crash in a given country occurs when the daily

return lies below the 5th quantile of the empirical return distribution over the complete

sample period. A local crash occurs when one to three individual emerging markets ex-

perience a crash, while the respective regional indices do not.6 A regional crash in Latin

America, Asia, the US or Europe occurs when the respective regional index has a daily

return below the 5th quantile of the empirical return distribution. In addition, for Latin

America and Asia a regional crash occurs when four or more country indices in the region

experience a crash. This additional definition enables us to observe a regional crash in the

emerging markets when only small countries crash. Otherwise, results could be driven by

large countries such as Brazil, Mexico, Korea and Thailand, as the IFC indices are value-

weighted. We define a global crash as the simultaneous occurrence of two or more regional

crashes, of which at least one is in a developed region. Because of the differences in stock

6Results hardly change when we vary this number between three to six markets.
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market trading hours, we also define a global crash when the US or Europe encounters a

crash on day t, followed by a crash in Asia on day t+ 1.7 As stock markets rapidly, possi-

bly instantaneously, adjust to shocks (Kleimeier et al., 2008), we use the highest possible

sampling frequency available, which is daily.8

Based on the definitions given above, no crash occurs on 1810 days, out of a total of

2839 days in the full sample period. Local, regional, and global crashes occur on 616, 271,

and 142 days, respectively. Hence, regional crashes occur slightly more often than once

every two weeks and global crashes about once a month. Although this may seem quite

frequent, it should be noted that crashes are clustered. Typically, several global crashes

occur in short time-periods, alternated by long periods with hardly any global crashes.

To examine whether these numbers are high or low we compute the expected numbers

of crashes assuming all markets are independent. Since the crash probability equals 5%

for all indices by construction, these can be computed analytically. This results in an

expected number of 1228 days without any type of crash, and 1066, 497, 48 days with

a local, regional and global crash, respectively. Comparing these numbers to the actual

numbers of crashes shows that the crash risk involved with investing in equity markets is

indeed rather large. Although the numbers of days with a local or regional crash in our

sample are lower than expected under independence, global stock market crashes, which

are the most troublesome for investors, occur three times more often.

The entries above the main diagonal in the lower part of Table 1 are conditional prob-

abilities of observing a crash in a specific stock market, given the occurrence of a crash

in another market. These probabilities give insight into the dependence of extreme stock

market returns. By construction, the same number of crashes occur for all individual mar-

kets, and therefore these probabilities are also symmetric. For the regional indices we find

that the probability of observing a crash given that another region encounters a crash is

around 0.30 on average. For the individual markets in both Latin America and Asia we

find substantial variation in these conditional probabilities, although most are between 0.10

and 0.20. To put these numbers into perspective, note that if all markets were independent

these conditional probabilities would be equal to 0.05. Hence, the empirical conditional

probabilities show that there is substantial dependence in the occurrence of crashes across

countries and regions.

7We note that differences in trading hours are crucially important when analyzing relations between
daily stock market returns, see Kleimeier et al. (2008), but to a much lesser extent when counting extreme
events, as we do here.

8We also perform our analysis with 2-day returns, which gives qualitatively similar results. Details are
available upon request.
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2.3 Crash dynamics

We continue by documenting some stylized facts on the dynamic properties of the different

types of crashes. Specifically, we introduce a diagnostic measure which sheds light on how

local, regional and global crashes evolve. This measure, which we call the crash transition

matrix, is useful in particular to assess whether modelling contagion as a domino effect is

appropriate. The ij-th entry of this transition matrix is equal to the probability of observ-

ing the state in column j, given that on the previous day the state in row i occurred. The

states correspond with the different types of crashes.

[Insert Table 2 around here]

Table 2A shows the empirical crash transition matrix. Several interesting observations

emerge. First, the probabilities of observing a crash (no matter what type) tomorrow

increases from 0.28 when no crash occurs today via 0.43 and 0.55 to 0.73 when a global

crash occurs today. For both regional and global crashes we find increasing probabilities of

occurrence, conditional on the occurrence of a crash on the previous day. The probabilities

of observing a global crash, for example, increase from 0.03 when no crash occurred on

the previous day, via 0.06 to 0.11 following the occurrence of a local or regional crash,

respectively. Most global crashes do not occur abruptly but rather evolve out of prior local

or regional crashes, which suggests that modelling contagion as a domino effect makes

sense. Second, crashes of a given type are persistent. The probability that a certain crash

continues is much higher than the probability of occurrence of the same type of crash on

two consecutive days if these were independent. For example, the empirical probability

that a global crash continues is 20%, which is more than 80 times as large as the probability

of ( 142
2839

)2 =0.25% of observing two consecutive days with a global crash if these occurrences

were independent. The same holds for local and regional crashes. Third, crashes die out

gradually as indicated by the relatively high probabilities that a regional crash occurs

tomorrow following a global one today, or a local crash following a regional one.

Boyer et al. (1999), Loretan and English (2000), and Forbes and Rigobon (2002) argue

that increased correlations between stock market returns in times of extreme downturns

can be attributed to increased volatility during these periods. To examine whether our

results for the crash dynamics are driven by this volatility effect, we compute the crash

transition matrix using crash definitions based on standardized returns.9 Table 2B shows

9We use the sample volatility over the past year to standardize the returns. For the standardized
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that the transition probabilities are approximately equal to those found for the crashes

based on raw returns. We conclude that the dynamic dependence between crashes is not

affected by time-varying levels of volatility.

Finally, we examine whether the crash dynamics are mainly driven by linear autocor-

relation or higher-order or non-linear effects are at work. For this purpose we employ the

stationary bootstrap of Politis and Romano (1994). Contrary to the standard i.i.d. boot-

strap, this bootstrap method can take autocorrelation into account. Instead of drawing

subsequent observations in the bootstrap sample completely at random, they are drawn

in the natural ordering with a specific probability (p). The optimal value of p can be

determined using the method of Politis and White (2004).10 For our data this turns out to

be p = 0.50.11 Using the stationary bootstrap, we obtain a bootstrapped sample of 2839

observations, corresponding with the length of the empirical return series, and compute

its crash transition matrix. If the transmission mechanism of crashes is mainly driven

by linear autocorrelation, the bootstrapped matrix should be approximately equal to the

empirical crash transition matrix.

Table 2C shows the average transition matrix based on 10,000 bootstrapped samples.

Again we observe higher probabilities for regional and global crashes when a crash occurred

on the previous day. However, the pattern is less clear than for the original data. For the

transitions between regional and global crashes the differences between the original and

the bootstrapped crash transition matrix become particularly large. For instance, the

probability of observing a regional crash today and a global crash tomorrow decreases

from 0.11 to 0.07. The probability that a global crash continues is 0.11, much less than

the 0.20 in panel A. This indicates that there are indeed higher-order dependencies in the

dynamic patterns of crashes, especially concerning the more severe crashes. Again, using

standardized returns has hardly any influence on the results (see Table 2D).

3 Methodological framework

The increasing probabilities of occurrence of regional and global crashes following a crash

on the previous day clearly indicate that stock market crashes gradually disseminate and

returns, we find 1801, 621, 289 and 128 days with no, local, regional and global crash, respectively.
10This method minimizes the mean squared errors of the variances and autocovariances of the stationary

bootstrapped data, given that the first draw is random.
11We computed the optimal values of p for the four regional indices and then took the average. The

individual values of p for the sample returns are 0.73, 0.83, 0 and 0.42, for Latin America, Asia, USA and
Europe respectively. For the standardized returns these are 0.71, 0.82, 0 and 0.46.

9



evolve into more severe crashes. However, it remains to be seen whether this is due to

domino-style contagion or due to normal interdependence between financial markets. We

analyze this formally by modelling the evolution of local, regional and global crashes by an

ordered logit model. The type of crash at time t can be seen as the outcome of a discrete

choice process, and given that the different crash types have a natural ordering by severity,

the ordered logit model is appropriate for our modelling purposes.

We denote the observed crash on day t as yt, taking the values 0, 1, 2 or 3 when no crash,

or a local, regional or global crash occurs, respectively. The observation yt is assumed to

be related with the latent continuous variable y∗t by

yt = j if αj < y∗t < αj+1, for j = 0 . . .m− 1, (1)

where in our case m = 4. The αj for j = 0, . . . ,m are thresholds separating the different

crash categories, where α0 ≡ −∞ and αm ≡ ∞. In the ordered logit model the latent

variable y∗t is linearly related to a vector of covariates xt, that is y∗t = x′tβ + εt, with εt

assumed to follow a standardized logistic distribution. The choice of variables entering

xt, discussed below, will enable us to distinguish between a domino contagion effect and

interdependence as the underlying cause for the propagation of stock market crashes. Using

the link between yt and y∗t as specified above, the probability of observing a crash of type

j at time t is given by:

pjt = P [yt = j] = Λ(αj+1 − x′tβ)− Λ(αj − x′tβ), for j = 0, . . . ,m− 1, (2)

where Λ is a logistic function, and Λ(α0 − x′tβ) ≡ 0 and Λ(αm − x′tβ) ≡ 1.

The coefficients β and the thresholds αj, j = 1, . . . ,m− 1, in the ordered logit model

can be estimated straightforwardly by maximum likelihood, where the log likelihood for a

sample of T observations is given by

`(β, α1, α2, α3) =
T∑
t=1

m−1∑
j=0

I[yt = j] log(pjt) (3)

where I[yt = j] = 1 if observation t was of type j and zero otherwise. We use White

misspecification robust standard errors. In line with other studies using models with limited

dependent variables, we use the pseudo-R2 of McFadden (1974) as a measure of fit of the

model. If the loglikelihood of the full, unrestricted model is denoted by `1 and the log-

likelihood of a restricted model which only includes the threshold parameters by `0, the
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pseudo-R2 is given by

R2 = 1− `1

`0

(4)

We perform likelihood ratio tests on the individual and joint significance of the coefficients

in our model.

Though the coefficient estimates in ordered logit regressions can be interpreted based

on their significance and signs, they cannot be used to assess the marginal effects of the

covariates on the crash probabilities as the model is highly nonlinear. Hence, we examine

these marginal effects by means of probability response curves, as in Bae et al. (2003).

These curves show the probabilities of observing a crash of type j at time t as a function of

a specific covariate xit. Varying the value of this variable from its minimum to maximum,

we compute the average probabilities of observing the different types of crashes across all

T observations of the remaining variables xt/i. This also allows us to assess the economic

significance of our ordered logit regressions, in the sense that the probability response

curves provide an indication of the magnitude of the changes in the crash probabilities due

to variation in the regressors.

3.1 Covariates

We choose the covariates in order to discriminate between a contagious domino effect and

interdependence as the underlying reason for the observed dynamics of local, regional and

global stock market crashes. To allow for the presence of a domino effect in the evolution of

crashes, we include dummy variables for local, regional and global crashes on the previous

day. Positive effects of these dummies induce higher probabilities of observing a crash

today, if a certain type of crash has occurred in the previous period.

Interdependence effects are incorporated by including several variables that represent

information from the currency market, the fixed income market, and short-term interest

rates. In our choice of variables, we follow the existing literature, and select to a large

extent the same variables as Bae et al. (2003). For the currency markets we use the

insight of Cumperayot et al. (2006) that extremes in currency markets and equity markets

are related. While the inclusion of economic fundamentals could be useful as shown by

Kaminsky and Reinhart (1999), the frequency of marco-economic data does not correspond

with the frequency of our observations, and we cannot use them.

For the currency market we follow Bae et al. (2003) and take the average exchange

rate returns in Latin America and in Asia. These variables are constructed by taking the
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equally weighted average of the daily log changes in the currencies of all six countries in the

region against the US Dollar. We expect a positive effect on the probability of more severe

crashes as depreciations lead to a lower value of the stock index. Moreover, depreciations

signal net capital outflow, potentially due to a loss of confidence in the emerging markets.

The Asian crises serves as a typical example, where the Asian currencies depreciated first,

followed by tumbling stock markets.

To investigate whether shocks in the bond market lead to increased crash likelihood

we include daily returns (in US dollars) on well diversified regional bond portfolios. These

portfolios consist of bonds with long and short maturities, issued by sovereign and quasi-

sovereign entities. We expect a negative effect of emerging market bond returns on crash

probabilities. A fall in the prices of government bonds issued by an emerging country may

point at a decrease in its creditworthiness and an increase in its default probability. Higher

financing costs for the national government will harm economic growth, and a fall of the

stock market can be expected. The default of Argentina in 2001 is an example of such

a pattern. The US government bond market (and to a lesser extent the European bond

market) serves as an international safe haven. So, positive returns on a US government

bond portfolio may indicate a flight to quality due to international distress. Therefore, we

expect a positive relation between US government bond returns and crash likelihood.

We also include two variables associated with extreme events in the currency and bond

markets. Extreme currency depreciations are defined as those depreciations above the 95th

quantile of the empirical distribution of currency returns. For the bond market the extreme

observations are those below the 5th quantile. The variables are constructed by counting

the number of extreme events in the past five days and over the regions. We add these two

variables to capture possible overreaction to bad news, not captured by the other currency

and bond variables.

The third group of variables consist of three-month interbank interest rates.12 Interest

rates are on average negatively correlated with stock market returns, as they imply higher

costs of capital. For emerging markets, higher interest rates can also be a sign of exchange

rate pressure. Higher interest rates are therefore expected to increase crash probabilities.

Finally we include volatility of the stock market itself. We follow the RiskMetrics

approach and compute volatility for day t as σ2
t = λσ2

t−1 + (1 − λ)u2
t−1, where ut−1 is

the demeaned stock market return on the previous day and the decay parameter λ =

0.94, (see JPMorgan and Reuters, 1994). We compute the daily volatility on each of the

12For some emerging market countries we use the one-month interbank interest rate, as the three month
interbank interest was not available
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four regional stock market indices. Higher volatility increases the probability of extreme

negative returns, and therefore we expect a positive relation between volatility and the

crash probabilities.

The data is provided by JP Morgan for the fixed income related variables, and by

Reuters for the currencies. All the data are obtained from Datastream. All variables are

included in the ordered logit model with a lag of one day, such that our models are pre-

dictive in nature.

[Insert Table 3 around here]

Table 3 shows that the correlations between the different groups of covariates are low

and often insignificant.13 This indicates that the various types of variables provide different

and complementary information. Within the different groups some correlations are higher,

for instance among the interest rates and stock market volatilities.

4 Empirical Results

4.1 Base Model

Table 4 reports the estimation results of the ordered logit model for local, regional and

global stock market crashes. Panel a shows the coefficient estimates, the log-likelihood and

the pseudo-R2 of the regression. Panel b provides results on likelihood ratio tests for the

joint significance of specific groups of covariates.

[Insert Table 4 around here]

The first and most important result is that we find strong evidence for the presence of

a domino effect. The positive and highly significant coefficients of the previous crash dum-

mies show that crises spread according to a domino effect. This supports our hypothesis

that local crashes have a tendency to evolve into more severe crashes through contagion.

To gauge the economic relevance of the domino effect Table 5 reports the crash transi-

tion matrix implied by the estimated model. For each combination of current crash type

13The 5 percent critical values for significance of the correlation coefficients based on a sample of N =
2839, are -0.04 and 0.04.
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j and previous crash type i, we calculate the transition probabilities for all observed val-

ues of the other explanatory variables. Table 5 gives the corresponding sample averages.

The probabilities in the columns for local, regional and global crashes show the increase

in crash likelihood when more severe crashes have occurred. For instance, given that no

crash occurred on the previous day, the crash probabilities are equal to 0.21 for a local

crash, 0.09 for a regional crash and 0.05 for a global crash. If a local crash occurred on

the previous day, crash probabilities become 0.25, 0.12 and 0.06, respectively. So, a crash

in a single emerging market provides an important signal of an overall increase in crash

risk. A domino of crashing markets may well hit even well-diversified global investors. The

domino effect is more pronounced for regional crashes. In this case the regional and global

crash probabilities almost double to 0.13 and 0.08, respectively. After a global crash the

probability of a consecutive global crash even triples to 0.13. Regional and local crash

probabilities also increase substantially to 0.19 and 0.30, respectively. The domino effect

in the ordered logit model is less prevalent than in the transition matrix in Table 2A. This

may be due to the inclusion of the other financial variables in the model to control for

interdependence. However, it is clear that the other financial variables do not subsume

the domino effect. Consequently, investors and policy makers should take domino-style

contagion into account, as only monitoring financial linkages is not enough.

The significance of the past crash dummies is particularly noteworthy in light of the

fact that we include stock market volatility measures in the model. By definition there are

more crashes in times of high volatility. As volatilities are persistent and highly correlated

across regions, regional and global crashes will occur more frequently when volatilities are

high. The patterns in the crash transition matrix in Table 2 could therefore result from

global comovement in volatilities. The significance of the crash dummies in the ordered

logit model clearly demonstrates the presence of a domino effect.

Second, we detect interdependence by the significant coefficients on the different groups

of explanatory variables in Table 4. Part of the occurrence of crashes can be attributed

to dependencies with other financial variables that hold in all states of the markets. In-

terdependence occurs through different channels, since the variables within the group of

bond returns, interest rate levels and volatilities are all jointly significant at the 5 per-

cent significance level.14 The positive coefficient estimates of the interest rate level and

14We also considered two relative interest rates: the day-on-day change between two interest rate levels
and the difference of the current interest rate level from its three month moving average. For both these
variables we do not find significant coefficient estimates. The same holds for extreme changes in interest
rates. Results are not shown here to save space, but are available upon request.
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volatility variables are in line with our expectations. Higher interest rates significantly

increase the probabilities of stock market crashes. Increased stock market volatilities also

make extreme returns, and thus crashes, more probable. The coefficient estimates for the

variables in these two groups all show the same sign, confirming our hypotheses about

these variables. For the bond portfolio returns, we also find the expected signs, negative

for Latin America and, Asia and positive for the US. Contrary to the US, the European

bond market does not show up as a safe haven. The insignificance may reflect the changing

role of the European bond market after the monetary unification. Extreme events in bond

markets do not influence crash probabilities significantly.

The currency variables are both insignificant, and a relation between crash probabilities

and normal exchange rate movements in the emerging market seems absent. This finding

is in contrast to other studies, such as Bae et al. (2003) and Dungey and Martin (2007).

Contrary to Bae et al. (2003) we use lagged values for the explanatory variables because our

aim is to predict crashes.15 Moreover, we want to measure the effect of currency changes

on local, regional and global crashes simultaneously, while Bae et al. (2003) examine Asia

and Latin America separately. Possibly the extreme currency indicator subsumes all effects

of exchange rates on stock market crashes, as its coefficient estimate is highly significant.

When we exclude this variable, however, the estimated coefficients for average currency

changes remain insignificant. This implies that stock markets only react to substantial

depreciations of emerging market currencies. We interpret this finding as another form of

contagion, from the currency market to stock markets. As this relation only occurs during

crisis periods it cannot qualify as interdependence.

[Insert Figure 1 around here]

We construct probability response curves to examine the marginal effects of the different

regressors in the ordered logit model and to assess their economic significance for the crash

probabilities. Figure 1 reports the probability response curves for all individual variables.

Additionally, it shows a selected number of joint effects for the interest rate and equity

volatility variables. The graphs show that the effects of the different variables on the crash

probabilities are economically important. The effects seem larger for the bond market and

equity volatility variables than for the currency and interest related variables. For the bond

market, except for the US, lower returns lead to higher probabilities of regional and global

15Using contemporaneous currency changes results in highly significant correctly signed estimates. Re-
sults are not reported here but are available upon request.

15



crashes. For the lowest return on the Latin American bond market this even results in a

probability of a global crash equal to 0.25. The interest rate variables seem to have less

influence on stock markets, although the effects are not negligible. The volatilities show a

slightly stronger effect than the interest rate variables.

Interest rate levels as well as stock market volatilities are persistent and tend to move

together across the different regions (see also the correlations within groups in Table 3).

That is, we would expect the US and European equity volatility to move together, for

instance. Because the coefficient estimates for these variables also have the same sign,

it may be more realistic to assess their effect on the crash probabilities by taking these

cross-correlations into account. We therefore show “joint” probability response curves for

these variables in Figure 1. The joint volatility response curve is computed by varying

the volatilities of the four regions simultaneously between their respective minimums and

maximums. For the joint interest response curve we do the same. Here the economic rel-

evance of interest rates and stock market volatilities becomes clear. When all volatilities

are high the probability of observing no crash is equal to 0.23, while there is a probability

of 0.44 that a regional or global crash occurs. The joint interest rate curve also shows sub-

stantial probabilities of crashes when the interest rates are at a high level simultaneously,

as opposed to the marginal effects of individual interest rates.

Knowing to which extent financial variables contribute to severe crashes is important

for policy makers as well as investors, as both types of economic agents can benefit from

anticipating crashes before they occur. Although this is not directly related to contagion

in the sense of crashes spreading from local to regional and even global, our results suggest

that instability of exchange rates and bond markets as well as high levels of interest rates

and stock market volatility provide important “early warning signals” that may be used

to avoid more severe crashes.

The extreme currency and bond market graphs indicate the presence of contagion from

other markets to the stock market. For the extreme currency depreciations this effect is

stronger than for the bond market. The probability of a global crash increases from 0.03 to

0.08 as the number of extreme depreciations increase from 0 to 6, indicating the influence

of emerging currencies on global stock markets.

Finally, for the estimates of the threshold parameters αj we use a Wald test to determine

whether each αj is significantly different from its adjacent thresholds αj−1 and αj+1. We

find that this is indeed the case and therefore the distinction between the four crash

types seems appropriate. The pseudo-R2 is equal to 0.07, which is comparable to other
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studies that consider forecasting models for crashes. This indicates that the explanatory

variables have some predictive power with respect to crashes. We also examine whether

there is autocorrelation in the residuals and we find that there is hardly any left, which is

important as the estimation of the ordered logit model assumes conditional independence.

4.2 Conditional effects

Our base model provides evidence for both interdependence and contagion. In this section

we explore whether the effects of the financial variables on the crash probabilities are

dependent on the occurrence of a particular type of crash on the previous day. If, for

example, the relations between the financial variables and the crash probabilities are found

to be stronger in times of turmoil, this can be interpreted as excessive dependence in

financial markets. This may be then be considered as a mixed form of contagion and

interdependence.

From the results of this analysis (discussed in Appendix A) we conclude that there

is no evidence for such conditional effects. The relations between the financial variables

and the crash probabilities are stable, in the sense that they do not depend on the prior

occurrence of crashes. There is, however, one exception: average currency depreciations

in Latin American, which are insignificant in the base model, have a significant positive

effect on crash likelihood when a global crash occurred on the previous day.

4.3 Robustness checks

We perform several checks to assess the robustness of the substantial role that the domino

effect plays in the transmission of stock market crashes.

4.3.1 Multinomial logit

We check the appropriateness of using an ordered logit model by formally testing it against

a multinomial logit model. We perform the likelihood ratio test for non-nested model

selection of Vuong (1989) as well as an alternative distribution-free test introduced by

Clarke (2007). Both tests are based on the Kullback-Leibler information criterion (KLIC),

which measures the distance from the true, unknown specification. The difference in KLIC

is the expected value of the (log) likelihood ratio,

E0

[
log

fo(yt|xt;θo)

fm(yt|xt;θm)

]
,
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taken with respect to the true distribution, where fo(yt|xt;θo) and fm(yt|xt;θm) denote

the likelihood functions of the ordered and multinomial models, respectively, and θo and

θm their respective parameter vectors. The Vuong test for the null hypothesis H0 :

E0

[
log
(
fo(yt|xt;θo)/fm(yt|xt;θm)

)]
= 0 is given by

LRT (θ̂o, θ̂m)− 1
2
(ko − km) lnT

√
T ω̂2

, (5)

where LRT (θ̂o, θ̂m) is the summed log-likehood ratio for the sample of T observations based

on parameter estimates θ̂o and θ̂m, ω̂2 is an estimate of the variance given by

ω̂2 =
1

T

T∑
t=1

[
log

fo(yt|xt; θ̂o)

fm(yt|xt; θ̂m)

]2

−

[
1

T

T∑
t=1

log
fo(yt|xt; θ̂o)

fm(yt|xt; θ̂m)

]2

.

The second term in the denominator in (5) is a correction term for the different numbers

of parameters in the in the ordered and multinomial models, where in our case ko = 22

and km = 60. The Vuong statistic converges in distribution to N(0, 1).

Clarke (2007)’s distribution-free test is based on the null hypothesis that,

Pr

[
log

fo(yt|xt;θo)

fm(yt|xt;θm)
> 0

]
= 0.5, (6)

which reflects the fact that if both models are equally close to the true specification, the

likelihood function of the ordered logit model should exceed that of the multinomial model

for half of the observations. The corresponding test statistic is given by

B =
T∑
t=1

I

[
log

fo(yt|xt;θo)

fm(yt|xt;θm)
− 1

2
(ko − km) lnT > 0

]
,

where I[] is an indicator function taking the value one if its argument is true. Asymptoti-

cally, the B-statistic has a binomial distribution with parameters T and p = 0.5.

We calculate both statistics for comparing the ordered logit model discussed in the

previous section to a multinomial model with the same covariates xt. The Vuong test

statistic attains a value of 10.55 with a p-value of 0.00, which means that the multinomial

logit model is strongly rejected. The distribution free test statistic equals 0.73 (meaning

that for 73 percent of the observations the likelihood for the ordered model is larger than

that of the multinomial model), with a p-value of 0.00. Based on these test results we
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conclude that our ordered model is better able to describe the occurrence of stock market

crashes than the multinomial model.

4.3.2 Alternative ordered regression specifications

To test the robustness of our specification we implement four alternative regressions. First,

our results may be influenced by time-varying volatility, as we work with raw daily returns.

We redo the crash classification and then estimate the ordered logit model using standard-

ized returns. Table 6 shows that, except for the volatility coefficients, the results do not

change substantially. This is in line with the preliminary results from the crash transition

matrices in Table 2. In particular, the coefficients of the previous day crash dummies re-

main highly significant. We conclude that the domino effect is not driven by time-varying

volatility in the stock market.

[Insert Table 6 around here]

As a second robustness check we use the 2.5th quantile instead of the 5th quantile

to define crashes. Obviously, this leads to less crashes for each individual market and,

consequently, also less local, regional and global crashes. Table 6 shows that the ordered

logit results are not sensitive to this alternative crash definition. For the domino effect,

we find that the coefficients of the dummies for local and global crashes on the previous

day remain virtually the same as in the base model. The coefficient for regional crashes

declines from 0.62 to 0.33 while its p-value increases from 0.00 to 0.08.

Our final two robustness checks are based on variations in the definitions of regional

and global crashes as explained in Section 2.2. In the first alternative classification we do

not identify a global crash in case a regional crash occurs in Asia on day t + 1 following

a regional crash in the US or Europe on day t. Furthermore, we also abandon the occur-

rence of regional emerging market crashes when four or more individual emerging markets

in a particular region crash. In the second alternative classification a global crash occurs

when three or four regions crash instead of two (from which one has to be developed).

Though both settings are stricter, the estimation results using these alternative classifica-

tions hardly differ from the original one, see Table 6. In both cases, the coefficients of the

previous day crash dummies remain highly significant, with magnitudes comparable to the

base model. Hence, our conclusions regarding the domino effect are not affected.

In sum, the various robustness checks in this section demonstrate that our results are
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not due to the effects of time-varying volatility, and are not driven by arbitrary choices for

the crash definitions and crash classifications.

5 Comparison with binomial model for global crashes

In this section we assess the economic relevance of the domino effect and our modelling

approach. If relevant, including local and regional crashes should help forecasting global

crashes. We address this issue by comparing our ordered logit model with a binomial logit

model for global crashes only. For the latter model we combine the days with no crash,

local crash or regional crash into a single “no global crash” state. Redefining the variable

yt to be equal to one when a global crash occurs and zero otherwise, the probability of a

global crash in the binomial logit model is given by

pt = Pr(yt = 1) =
e(x̃′

tβb)

1 + e(x̃′
tβb)

, (7)

where the vector x̃t includes the same financial variables as used in the ordered logit model

plus a constant, but not the dummy variables for local and regional crashes occurring on

the previous day.

5.1 In-sample comparison

The estimation results for the binomial model in Table 7

reveal several advantages of using the refined crash classification instead of a binomial

approach. First, the coefficients in the ordered logit model as shown in Table 4 are esti-

mated with considerably more precision, with standard errors being only half as large on

average. For instance, the standard errors of the two extreme event coefficient estimates

are 0.05 and 0.03 for the ordered model against 0.10 and 0.06 for the binomial model.

Second, the ordered model shows more consistency concerning the signs of the coefficient

estimates across different regions. For the interest rate and the equity volatility variables,

we find that the estimated coefficients have the same sign for all four regions in the ordered

model, while in the binomial model signs differ within these groups of variables. Including

separate states for local and regional crashes thus increases the precision and the inter-

pretability of the coefficient estimates for the explanatory variables.
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[Insert Table 7 around here]

The ordered logit model explicitly uses the local and regional crashes in the parameter

estimation, which obviously increases the total number of observed crashes. In this way

it avoids a weakness of binomial crash models, namely that crashes occur too infrequently

to estimate contagion and interdependence effects with sufficient precision. On the other

hand the results in Section 4 show that the ordered model is still capable of distinguishing

global crashes from less severe crashes.

[Insert Figure 2 around here]

Figure 2 shows the implied probabilities of observing a global crash obtained from

the binomial model and the ordered logit model, as well as the observed global crashes.

The ordered model for local, regional and global crashes leads to a better performance in

detecting global crashes than only accounting for global crashes in the model. Especially

periods in which global crashes are clustered are better detected, see for example the effects

of the 1997 Asian crisis and the 1998 Russian debt crisis. Furthermore, around the burst of

the internet bubble (March, 2000) the ordered model clearly shows increased global crash

probabilities, while the binomial model hardly indicates any turmoil in financial markets.

During the turbulent period between 2001 and 2003 the binomial model produces somewhat

higher global crash probabilities than the ordered model. However, in those periods the

ordered model’s crash probabilities are also relatively high. After 2003 less global crashes

occurred, but for the crashes that did occur, the ordered model is more successful in

detecting them than the binomial model. This holds in particular for the period between

December 2003 and December 2005.

5.2 Out-of-sample comparison

Next we examine the out-of-sample predictive accuracy of the ordered logit model, relative

to the binomial model. We use the period July 1996 till December 2001 for specifying

and estimating both models, and leave the period January 2002 till July 2007 for forecast

evaluation.16 Based on the conventional wisdom that large models with many insignifi-

16We avoid using information from the out-of-sample period in the specification and estimation of the
models by recomputing our dependent variable based on the 5th quantile of the empirical return distribu-
tion over the period till December 2001. The same applies to the regressors representing extreme events
in the currency and bond markets.
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cant parameters often lead to bad forecasting performance, we apply a variable selection

procedure to reduce the number of covariates.17 For both the ordered and binomial mod-

els we start with the full model and eliminate the least significant variable. Then the

model is re-estimated and again the least significant variable is removed. This process is

continued until the coefficients for all remaining variables are significant at the 10% level.18

[Insert Table 8 around here]

Table 8 reports the results from this general-to-specific model selection procedure for

both models. We observe that for both models the number of regressors is drastically

reduced, though the ordered model contains somewhat more variables. Besides the previous

crash dummies, which are all significant in both models, the ordered model contains six

financial variables, while in the binomial model only four variables are included. This could

be expected as the ordered model’s estimates are more precise, as discussed in the previous

section.

Forecasts of the probability of a global crash for the period January 2002 - July 2007

are displayed in Figure 3. The ordered model is clearly more successful than the binomial

model in forecasting global crashes. The period May 2002 till June 2003 contains many

global crashes. At the beginning of this period our ordered model already correctly warns

for the occurrence of global crashes, while the binomial model’s crash probabilities hardly

increase. Then, during the period between July and October 2002, for both models the

global crash probability forecasts strongly increase, taking values above 0.4. In this period

both models are able to forecast the global crashes that occurred. After October 2002 the

turmoil in the global financial markets continues, as indicated by the substantial number of

global crashes that occur. During this period, the ordered model again forecasts the global

crashes better than the binomial model. Finally, after 2003 some shorter periods with

global crashes occurred and in all these cases the ordered model indicates this correctly,

contrary to the binomial model.

[Insert Figure 3 around here]

17Coefficient estimates in the full model over the sample July 1996 till December 2001 are comparable
to Table 4, but standard errors are substantially larger. These results are available on request.

18Stricter significance levels would result in models with too few explanatory variables to make a fair
comparison between the ordered and binary models.
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To further analyze the differences in forecasting performance we compute the quadratic

probability score (QPS), hit rates, false alarm rates and the Kuipers score, (see for example

Granger and Pesaran, 2000). The QPS is defined as

QPS =
1

P

T∑
t=R+1

(ft − yt)2, (8)

where ft is the probability forecast for time t and yt ∈ {0, 1} is the corresponding realiza-

tion, R and P are the number of observations in the in-sample and out-of-sample periods,

with R+P = T . The QPS varies between zero and one, indicating perfect and no forecast-

ing performance, respectively. For the binomial and ordered models, the QPS attains the

value 0.0262 and 0.0260, indicating a slightly better forecast performance for the ordered

logit model, although the difference seems negligible. Since global crashes are rare, the

QPS is dominated by the frequent observations of no global crash. To focus on the ability

of the models to forecast global crashes, we examine their hit rates and false alarm rates.

The hit rate is defined as the fraction of crashes that were correctly predicted, while the

false alarm rate is defined as the fraction of days without a global crash for which a crash

was predicted to occur. Obviously, computing the hit rate and false alarm rate requires a

cut-off level w, such that probability forecasts larger than w are taken to be predictions of

a crash. We vary w between 0 and 0.20 with increments of 0.01, to examine the sensitivity

of the forecast performance to this cut-off level.

[Insert table 9 around here]

Table 9 shows the hit rates and false alarm rates for the different values of w. Also

shown is the Kuipers score, defined as the difference between the hit rate and the false

alarm rate. Both models attain the highest Kuipers score for w = 0.03, with values equal

to 0.546 for the ordered model and 0.535 for the binomial model. Again, the ordered

model has slightly better predictive accuracy. It is useful to note that the underlying hit

rates and false alarm rates differ substantially though, and are equal to 0.732 and 0.197 for

the binomial model, and 0.927 and 0.381 for the ordered model. This means that for the

optimal Kuipers score the ordered model predicts almost all global crashes (93 percent)

correctly, which comes at the expense of a substantial number of false alarms (38 percent).

The binomial model predicts only 73 percent of the crashes correctly, with 20 percent false

alarms. If missing a global crash is more costly than a false alarm, which is likely to be
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the case in practice, the ordered logit approach is clearly to be preferred. This conclusion

actually also holds if false alarm rates were relatively expensive. In that case, we could

choose, for instance, a cutoff level of 0.08 for the ordered logit model, giving a false alarm

rate of only 7.2 percent and a hit rate of 59 percent. To compare this with the binomial

model we might take w = 0.06, which results in a comparable false alarm rate (7.6 percent),

at the cost of a 10 percent (58.5-48.8) lower hit rate.

6 Conclusions

In this paper we have investigated whether stock market crashes propagate from local to

regional and global levels through a domino effect. Using daily returns for a sample of

emerging and developed stock markets for the period July 1996 - July 2007, we classified

crashes as local, regional or global. This classification was used in an ordered logit regres-

sion framework to examine the propagation of stock market crashes, and the relevance of

interdependence and contagion effects. Our approach differs from other studies by explic-

itly defining different types of crashes, and modelling their transmission mechanism as a

domino effect.

We report evidence that less severe crashes tend to be followed by more severe crashes.

The probabilities of a regional or global crash occurring tomorrow increase significantly and

substantially when a local (or regional) crash occurs today. In explaining the occurrence

and evolution of crashes we also find evidence for interdependence between stock markets

and other asset markets. Information from the currency, stock and bond markets are

important determinants of the probabilities to end up in a local, regional or global crash.

Our out-of-sample analysis confirms the superiority of the ordered model that includes

local and regional crashes in forecasting global crashes to a standard binomial model.

The domino effect that we report holds an important lesson for investors and regulators.

On the one hand, it stresses again the danger of contagion in financial markets, as it exists

beyond dependencies and linear autocorrelation that dominate normal periods. On the

other hand, the domino effect can be used to improve early-warning systems. Besides the

statistical evidence for incorporating the domino effect, we also document its economic

relevance. If failing to forecast global crashes is more costly than giving a false alarm,

the ordered model with the domino effect outperforms the binomial model without it.

If the false alarm rate should be kept at reasonable levels, to limit reputational damage

for example, the ordered model does a better job as well. Concluding, because of their
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susceptibility to macroeconomic shocks, emerging markets can be the point of origin of an

eventually global crash. Therefore, all investors and regulators should keep an eye on what

happens in these markets, whether they are directly exposed to it or not.
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Appendix A: Conditional Effects

In this appendix we discuss the results obtained from the ordered logit model with condi-
tional effects, that is, the effects of financial variables on the crash probabilities are allowed
to be dependent on past crashes. To test for the presence of this mixed type of interde-
pendence and contagion, we proceed as follows. We interact one of the financial variables
xit in the model with the different past crash dummy variables. Thus we obtain four state
dependent variables xitDjt ≡ xit|j , where Djt is a dummy variable taking the value one if
crash type j occurs at time t− 1 and zero otherwise. We estimate an ordered logit model
including these four new conditional variables and the other variables in their original form.
We repeat this procedure for each of the financial variables included in the model, resulting
in sixteen separate ordered logit regressions. The reason for not estimating a model which
has coefficients varying with the crash type for all financial variables simultaneously is the
large number (16× 4 + 3 + 3 + 1 = 71) of coefficients.

If this intermediate form of interdependence and contagion were relevant, we would
expect to find clear patterns in the estimates of the state-dependent coefficients. For
instance, for the average currency change variables we expect the coefficients to become
more negative conditional on more severe crashes, as this implies that the higher the
turmoil, the stronger the relation between stock market crashes and currency changes.

To formally examine whether this extension of the model leads to better description of
the observed crashes, we perform likelihood ratio (LR) tests for the null hypothesis that
the coefficients βi|j, j = 0, 1, 2, 3, of the state-dependent variables are equal. This test
statistic is χ2 distributed with three degrees of freedom, corresponding to three parameter
restrictions βi|0 = βi|1 = βi|2 = βi|3.

[Insert Table 10 around here]
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Table 10 reports the estimates of the state-dependent parameters for the sixteen esti-
mated regression models together with the p-value of the LR test for their equality. To save
space we do not report the estimates of the other coefficients in these models.19 In gen-
eral we do not observe clear patterns in the estimates of the state-dependent coefficients.
In fact, for almost all variables the conditional estimates fluctuate around the coefficient
estimate in the base model in a seemingly random fashion. In addition, except for the
bond returns and the volatility variable in Asia, the LR tests do not reject the null of
equality of the conditional coefficients, confirming that the relations between crashes and
the financial variables are not dependent on past crashes. Put differently, the effects of
the financial variables on the crash probabilities do not depend on the degree of turmoil
in the financial markets. Thus we find no evidence of this intermediate type of contagion
and interdependence.

However, there are some interesting but also counterintuitive results in Table 10. First,
while the average currency depreciation in Latin America was not significant in the base
model, this relation becomes significant when a global crash has occurred on the previous
day. For the average currency depreciation in Asia we observe the same pattern, but here
the coefficients are not significant. It seems that normal currency depreciations increase
the crash probabilities only if a global crash occurred on the previous day. Thus, in times
of high turmoil investors also seem to take into account normal depreciations.

In the conditional regressions for the interest rates some past crash dummies become
insignificant, while the interest rate variables remain insignificant. To a lesser extent this
occurs for equity volatility too. This has a more statistical than economic cause: as the
interest rates and volatilities are strictly positive, the dummy variables and their respective
conditional variables attain the value zero or a value larger than zero simultaneously. This
results in very high correlations of around 0.95 between the past crash dummies and the
conditional variables.

19The estimates of the other coefficients hardly change compared to the base model in Table 4.
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Figure 1: Probability response curves
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Figure 1: Probability response curves, continued
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Figure 1: Probability response curves, continued

The graphs show the probability response curves in the ordered logit regression model reported in Table
4. The areas are the probabilities of observing a specific type of crash. The probabilities are computed by
varying one specific variable xit from its minimum to maximum. Then for each point on the probability
response curve, we compute the probabilities of observing a type of crash for all T observations of the
remaining variables xt/i. The joint response graphs for interest rates and equity volatility are computed
by varying all four variables between their respective minimum and maximum simultaneously.

33



Table 2: Crash transition probabilities

A: Raw returns B: Standardized returns
N L R G N L R G

N 0.72 0.19 0.07 0.03 N 0.71 0.19 0.08 0.02
L 0.57 0.27 0.10 0.06 L 0.56 0.29 0.10 0.05
R 0.45 0.27 0.17 0.11 R 0.51 0.24 0.16 0.09
G 0.27 0.23 0.29 0.20 G 0.23 0.24 0.30 0.22

C: Bootstrapped raw returns D: Bootstrapped standardized
returns

N L R G N L R G

N 0.68 0.20 0.08 0.04 N 0.68 0.20 0.09 0.03
L 0.61 0.24 0.10 0.05 L 0.60 0.25 0.10 0.05
R 0.55 0.25 0.13 0.07 R 0.58 0.23 0.13 0.06
G 0.44 0.22 0.21 0.13 G 0.41 0.23 0.23 0.13

The four panels in this table contain crash transition probabilities, where the ij-th element is the probability
of observing the state in column j, given that on the previous day the state in row i occurred. The row and
column labels N, L, R, and G correspond to no crash, local, regional and global crash, respectively. Panels
A and B are based on the crashes identified in the series of raw and standardized returns, respectively, of
the twelve emerging market country indices and four regional indices over the sample period July 1, 1996
– July 30, 2007 (T = 2839 observations), using the classification rules explained in Section 2.2. Panels C
and D show the average transition matrices computed from 10,000 bootstrap samples of length T obtained
by the stationary bootstrap for the raw and standardized returns, respectively.
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Table 4: Estimation results ordered logit model

A: Coefficient estimates
Coefficient St. error t-stat. p-value

Currency change LA −4.08 8.07 −0.51 0.61
Currency change Asia 6.55 7.68 0.85 0.39
Bond returns LA −24.48 6.40 −3.82 0.00
Bond returns Asia −13.81 15.44 −0.89 0.37
Bond returns US 35.40 15.92 2.22 0.03
Bond Returns Europe −10.33 6.80 −1.52 0.13
Interest level LA 0.00 0.00 0.44 0.66
Interest level Asia 0.04 0.02 2.40 0.02
Interest level US 0.05 0.08 0.61 0.54
Interest level Europe 0.04 0.04 0.89 0.37
Volatility LA 0.52 0.72 0.72 0.47
Volatility Asia 1.88 0.85 2.20 0.03
Volatility US 1.42 1.07 1.33 0.18
Volatility Europe 2.44 1.24 1.97 0.05
Extreme FX count 0.15 0.05 2.90 0.00
Extreme bond count 0.03 0.03 0.85 0.39
Local crash dummy 0.40 0.10 4.06 0.00
Regional crash dummy 0.62 0.14 4.30 0.00
Global crash dummy 1.21 0.21 5.83 0.00

α1 2.53 0.19
α2 3.90 0.19
α3 5.19 0.20

Log likelihood −2613.26
R2 0.07

B: Joint significance tests on groups of variables
Log likelihood d. f. p-value

Currencies −2613.61 2 0.70
Bonds −2628.64 4 0.00
Interest −2623.23 4 0.00
Volatilities −2640.72 4 0.00
Extreme events −2618.41 2 0.01
Past crashes −2637.23 3 0.00

The table reports estimation results for the ordered logistic regression model for the four different crash
categories (no, local, regional, global), with covariates as shown in the table. The variables ‘Local’,
‘Regional’ and ‘Global’ are dummy variables taking the value one if this type of crash occurred on the
previous day. The sample period runs from July 1, 1996 to July 30, 2007 (2839 observations). Panel B
reports likelihood ratio tests on the joint significance of the coefficients for different groups of covariates.
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Table 5: Marginal effects of prior crashes

N L R G

N 0.65 0.21 0.09 0.05
L 0.57 0.25 0.12 0.06
R 0.52 0.27 0.13 0.08
G 0.38 0.30 0.19 0.13

The table contains the crash transition matrix as implied by the estimates of the ordered logit regression
model in Table 4. The ij-th element is the probability of observing the state in column j, given that
on the previous day the state in row i occurred. The row and column labels N, L, R, and G correspond
to no crash, local, regional and global crash, respectively. The reported probabilities are averages of the
probabilities computed over all the possible values of the other covariates in the model.
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Table 6: Robustness checks

Check 1 Check 2 Check 3 Check 4
Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Currency change LA −4.70 0.58 0.28 0.98 −2.27 0.79 −5.13 0.55
Currency change Asia −3.02 0.77 17.48 0.13 1.85 0.85 8.38 0.39
Bond returns LA −15.22 0.01 −14.22 0.03 −28.89 0.00 −25.40 0.00
Bond returns Asia −22.02 0.15 −21.44 0.18 −16.62 0.26 −15.81 0.29
Bond returns US 34.46 0.03 51.37 0.00 40.97 0.01 40.87 0.01
Bond Returns Europe −8.12 0.22 −1.92 0.81 −7.04 0.29 −8.38 0.21
Interest level LA 0.00 0.80 0.01 0.24 0.00 0.43 0.00 0.35
Interest level Asia 0.06 0.00 0.03 0.12 0.04 0.03 0.04 0.02
Interest level US 0.01 0.88 0.13 0.18 0.07 0.36 0.05 0.52
Interest level Europe 0.01 0.74 0.03 0.56 0.03 0.50 0.03 0.38
Volatility LA 0.16 0.81 0.73 0.33 0.95 0.16 0.68 0.31
Volatility Asia −0.93 0.29 1.75 0.09 1.19 0.17 1.59 0.07
Volatility US −0.19 0.86 0.65 0.60 1.48 0.16 1.50 0.15
Volatility Europe 1.68 0.16 3.75 0.00 2.54 0.03 2.39 0.04
Extreme FX count 0.16 0.00 0.26 0.00 0.15 0.00 0.15 0.00
Extreme bond count 0.02 0.41 0.04 0.29 0.03 0.26 0.04 0.18
Local crash dummy 0.54 0.00 0.42 0.00 0.40 0.00 0.40 0.00
Regional crash dummy 0.71 0.00 0.33 0.08 0.74 0.00 0.70 0.00
Global crash dummy 1.77 0.00 1.29 0.00 0.85 0.00 1.64 0.00

α1 1.50 3.62 2.49 2.49
α2 2.82 4.88 3.90 3.85
α3 4.21 6.44 5.30 6.38

Log likelihood -2677.35 -1868.91 -2664.57 -2555.44
R2 0.05 0.09 0.07 0.08

The table reports estimation results for different variations of the ordered logistic regression model for the
four crash categories (no, local, regional, global), with covariates as shown in the table. The variables
‘Local’, ‘Regional’ and ‘Global’ are dummy variables taking the value one if this type of crash occurred
on the previous day. The sample period runs from July 1, 1996 to July 30, 2007 (2839 observations). In
check 1, crashes are defined using standardized returns. In check 2, the 2.5th quantile of the empirical
distribution of the raw returns is used as the threshold to identify a crash. In check 3, a regional crash
on day t + 1 in Asia does not induce a global crash if the US or Europe encountered a crash on day
t, while regional emerging market crashes are not said to occur when four or more individual emerging
market countries in the region experience a crash. In check 4, global crashes only occur when three or
more regions crash simultaneously.
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Table 7: Estimation results binomial logit model

Coeff. St. error t-stat. p-value

Currency change LA 9.96 18.58 0.54 0.59
Currency change Asia −20.21 23.31 −0.87 0.39
Bond returns LA −19.35 10.52 −1.84 0.07
Bond returns Asia 12.89 26.49 0.49 0.63
Bond returns US 35.43 32.68 1.08 0.28
Bond Returns Europe −6.56 13.92 −0.47 0.64
Interest level LA −0.02 0.01 −1.15 0.25
Interest level Asia −0.02 0.05 −0.34 0.73
Interest level US 0.60 0.18 3.29 0.00
Interest level Europe −0.06 0.09 −0.62 0.54
Volatility LA 1.20 1.28 0.94 0.35
Volatility Asia 2.02 2.02 1.00 0.32
Volatility US −1.30 2.22 −0.59 0.56
Volatility Europe 7.03 2.21 3.19 0.00
Extreme FX count 0.21 0.10 2.15 0.03
Extreme bond count 0.03 0.06 0.44 0.66
Global crash dummy 0.74 0.27 2.73 0.01

Constant −6.40 0.51 −12.42 0.00

Log likelihood −491.83
R2 0.13

The table reports estimation results for the binomial logistic regression model for global crashes, with
covariates as shown in the table. The variable ‘Global’ is a dummy variable taking the value one if a global
crash occurred on the previous day. The sample period runs from July 1, 1996 to July 30, 2007 (2839
observations).
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Table 8: Estimation results from the general-to-specific model selection.

A: Ordered logit model
Coeff. St. error t-stat. p-value

Bond returns LA −23.98 5.91 −4.06 0.00
Bond returns US 43.93 19.70 2.23 0.03
Interest level Latin America −0.01 0.01 −1.87 0.06
Volatility Asia 4.23 0.99 4.28 0.00
Volatility Europe 4.15 1.08 3.84 0.00
Extreme FX count 0.16 0.06 2.55 0.01
Local crash dummy 0.27 0.14 1.91 0.06
Regional crash dummy 0.68 0.18 3.76 0.00
Global crash dummy 0.92 0.28 3.27 0.00

α1 2.19 0.22
α2 3.46 0.23
α3 4.92 0.26

Log likelihood −1290.05
R2 0.07

B: Binomial model
Coeff. St. error t-stat. p-value

Bond returns LA −25.04 9.93 −2.52 0.01
Interest level US 0.39 0.21 1.88 0.06
Volatility Asia 3.74 2.20 1.70 0.09
Volatility Europe 7.17 2.11 3.41 0.00
Global 0.72 0.43 1.67 0.09

constant −6.76 0.92 −7.36 0.00

Log likelihood −229.69
R2 0.13

The table reports the estimation results for the ordered and binomial logistic regressions, after the removal
of insignificant coefficients. An iterative general-to-specific procedure is used where in each iteration
the variable with the least significant coefficient estimate is removed, until all remaining coefficients are
significant at the 10% level results. The remaining covariates in the final models are as shown in the table.
The variables ‘Local’, ‘Regional’ and ‘Global’ are dummy variables taking the value one if this type of
crash occurred on the previous day. The sample period runs from July 1, 1996 to December 31, 2001 (1421
observations).
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Table 9: Forecast performance evaluation

Ordered Binomial
w H F KS s.e. H F KS s.e.

0.00 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000
0.01 1.000 0.999 0.001 0.001 1.000 0.727 0.273 0.012
0.02 1.000 0.715 0.285 0.012 0.878 0.360 0.518 0.053
0.03 0.927 0.381 0.546 0.043 0.732 0.197 0.535 0.070
0.04 0.756 0.230 0.526 0.068 0.634 0.120 0.514 0.076
0.05 0.683 0.151 0.532 0.073 0.561 0.097 0.464 0.078
0.06 0.634 0.120 0.514 0.076 0.488 0.076 0.412 0.078
0.07 0.585 0.092 0.493 0.077 0.439 0.062 0.377 0.078
0.08 0.585 0.072 0.514 0.077 0.366 0.053 0.313 0.075
0.09 0.512 0.064 0.448 0.078 0.293 0.044 0.248 0.071
0.10 0.488 0.051 0.437 0.078 0.244 0.036 0.208 0.067
0.11 0.366 0.041 0.325 0.075 0.244 0.031 0.213 0.067
0.12 0.342 0.035 0.307 0.074 0.220 0.025 0.194 0.065
0.13 0.268 0.029 0.239 0.069 0.220 0.020 0.199 0.065
0.14 0.244 0.026 0.218 0.067 0.220 0.016 0.204 0.065
0.15 0.244 0.024 0.220 0.067 0.220 0.014 0.206 0.065
0.16 0.244 0.020 0.224 0.067 0.195 0.013 0.182 0.062
0.17 0.220 0.019 0.201 0.065 0.195 0.013 0.182 0.062
0.18 0.195 0.018 0.177 0.062 0.195 0.012 0.184 0.062
0.19 0.171 0.017 0.154 0.059 0.195 0.011 0.184 0.062
0.20 0.171 0.015 0.155 0.059 0.171 0.010 0.161 0.059

The table reports the hit rate (H), the false alarm rate (F ), and the Kuipers score (KS = H − F ) and
its standard error, for probability forecasts of global crashes obtained from the ordered and the binomial
logit models, for the period January 1, 2002 - July 30, 2007 (1417 observations). Probability forecasts
exceeding the cut-off level w are taken to be predictions of a global crash.
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Table 10: Regression results with crash dependent effects

Coefficient St. error t-statistic p-value

Currency change LA (N) 0.08 14.78 0.01 1.00
Currency change LA (L) 5.06 11.70 0.43 0.67
Currency change LA (R) −6.48 28.25 −0.23 0.82
Currency change LA (G) −62.20 27.00 −2.30 0.02
Local 0.38 0.10 3.72 0.00
Regional 0.60 0.15 4.05 0.00
Global 1.37 0.20 6.77 0.00
Log likelihood −2610.48
χ(3) 0.13

Currency change Asia (N) 8.21 14.14 0.58 0.56
Currency change Asia (L) 26.37 20.22 1.30 0.19
Currency change Asia (R) −5.93 19.13 −0.31 0.76
Currency change Asia (G) −44.27 46.35 −0.96 0.34
Local 0.38 0.10 3.74 0.00
Regional 0.64 0.14 4.46 0.00
Global 1.28 0.20 6.44 0.00
Log likelihood −2611.92
χ(3) 0.44

Bond returns LA (N) −38.56 10.11 −3.81 0.00
Bond returns LA (L) −34.50 11.06 −3.12 0.00
Bond returns LA (R) −20.37 11.74 −1.73 0.08
Bond returns LA (G) 1.79 10.61 0.17 0.87
Local 0.37 0.10 3.66 0.00
Regional 0.58 0.14 4.10 0.00
Global 1.37 0.20 6.90 0.00
Log likelihood −2608.59
χ2(3) 0.07

Bond returns Asia (N) −54.95 23.96 −2.29 0.02
Bond returns Asia (L) −26.92 21.50 −1.25 0.21
Bond returns Asia (R) −7.49 29.42 −0.25 0.80
Bond returns Asia (G) 41.90 23.49 1.78 0.07
Local 0.37 0.10 3.61 0.00
Regional 0.57 0.14 4.03 0.00
Global 1.23 0.19 6.48 0.00
Log likelihood −2608.41
χ2(3) 0.02

Bond returns US (N) 28.90 19.93 1.45 0.15
Bond returns US (L) 53.31 29.58 1.80 0.07
Bond returns US (R) 32.28 38.47 0.84 0.40
Bond returns US (G) 33.10 57.41 0.58 0.56
Local 0.40 0.10 4.04 0.00
Regional 0.62 0.14 4.43 0.00
Global 1.22 0.21 5.91 0.00
Log likelihood −2613.00
χ2(3) 0.91

Bond returns Europe (N) −20.64 9.43 −2.19 0.03
Bond returns Europe (L) 16.12 13.06 1.23 0.22
Bond returns Europe (R) −30.28 16.38 −1.85 0.06
Bond returns Europe (G) 4.00 19.12 0.21 0.83
Local 0.40 0.10 3.98 0.00
Regional 0.63 0.14 4.55 0.00
Global 1.19 0.19 6.23 0.00
Log likelihood −2609.50
χ2(3) 0.06
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Table 10: Regression results with crash dependent effects, continued

Coefficient St. error t-statistic p-value

Interest level LA (N) 0.00 0.01 0.55 0.58
Interest level LA (L) 0.01 0.01 0.97 0.33
Interest level LA (R) −0.01 0.01 −1.07 0.28
Interest level LA (G) −0.03 0.03 −1.05 0.30
Local 0.33 0.16 2.07 0.04
Regional 0.85 0.24 3.57 0.00
Global 1.70 0.47 3.58 0.00
Log likelihood −2611.53
χ2(3) 0.32
Interest level Asia (N) 0.03 0.02 1.23 0.22
Interest level Asia (L) 0.05 0.02 2.24 0.03
Interest level Asia (R) 0.06 0.04 1.53 0.13
Interest level Asia (G) −0.05 0.07 −0.78 0.44
Local 0.23 0.22 1.07 0.29
Regional 0.42 0.30 1.40 0.16
Global 1.69 0.44 3.81 0.00
Log likelihood −2611.748
χ2(3) 0.39
Interest level US (N) 0.05 0.09 0.53 0.60
Interest level US (L) 0.13 0.12 1.03 0.30
Interest level US (R) −0.14 0.17 −0.79 0.43
Interest level US (G) 0.13 0.23 0.55 0.58
Local 0.14 0.42 0.35 0.73
Regional 1.23 0.60 2.06 0.04
Global 0.93 0.84 1.11 0.27
Log likelihood −2612.28
χ2(3) 0.58
Interest level Europe (N) 0.03 0.04 0.77 0.44
Interest level Europe (L) 0.04 0.06 0.72 0.47
Interest level Europe (R) 0.07 0.07 0.91 0.36
Interest level Europe (G) 0.00 0.09 0.00 1.00
Local 0.37 0.27 1.39 0.16
Regional 0.47 0.34 1.38 0.17
Global 1.35 0.42 3.21 0.00
Log likelihood −2613.04
χ2(3) 0.93

Volatility LA (N) 1.04 0.85 1.22 0.22
Volatility LA (L) 0.32 1.02 0.31 0.75
Volatility LA (R) 1.26 1.17 1.08 0.28
Volatility LA (G) −1.62 1.45 −1.11 0.27
Local 0.55 0.26 2.16 0.03
Regional 0.53 0.34 1.55 0.12
Global 1.93 0.46 4.15 0.00
Log likelihood −2611.58
χ2(3) 0.34

Volatility Asia (N) 2.74 1.05 2.60 0.01
Volatility Asia (L) 1.86 1.32 1.41 0.16
Volatility Asia (R) 1.26 1.82 0.69 0.49
Volatility Asia (G) −6.99 3.10 −2.26 0.02
Local 0.54 0.28 1.94 0.05
Regional 0.88 0.42 2.11 0.04
Global 3.25 0.69 4.69 0.00
Log likelihood −2608.58
χ2(3) 0.02
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Table 10: Regression results with crash dependent effects, continued

Coefficient St. error t-statistic p-value

Volatility US (N) 2.42 1.21 1.99 0.05
Volatility US (L) 0.84 1.54 0.55 0.58
Volatility US (R) 0.10 1.80 0.06 0.95
Volatility US (G) −0.23 2.29 −0.10 0.92
Local 0.66 0.27 2.44 0.01
Regional 1.05 0.37 2.82 0.00
Global 1.75 0.54 3.24 0.00
Log likelihood −2611.83
χ2(3) 0.41

Volatility Europe (N) 2.97 1.30 2.29 0.02
Volatility Europe (L) 3.38 1.70 1.99 0.05
Volatility Europe (R) 0.57 1.93 0.29 0.77
Volatility Europe (G) 0.62 2.34 0.26 0.79
Local 0.34 0.27 1.23 0.22
Regional 1.06 0.37 2.86 0.00
Global 1.71 0.54 3.15 0.00
Log likelihood −2611.88
χ2(3) 0.43

Extreme FX (N) 0.13 0.08 1.70 0.09
Extreme FX (L) 0.19 0.09 2.21 0.03
Extreme FX (R) 0.17 0.10 1.72 0.09
Extreme FX (G) 0.09 0.14 0.67 0.50
Local 0.37 0.12 3.10 0.00
Regional 0.59 0.16 3.58 0.00
Global 1.26 0.23 5.51 0.00
Log likelihood −2613.00
χ2(3) 0.91

Extreme bond (N) 0.08 0.04 1.81 0.07
Extreme bond (L) 0.02 0.05 0.46 0.64
Extreme bond (R) 0.00 0.07 −0.03 0.97
Extreme bond (G) −0.15 0.09 −1.79 0.07
Local 0.44 0.12 3.71 0.00
Regional 0.69 0.17 3.94 0.00
Global 1.53 0.23 6.59 0.00
Log likelihood −2610.18
χ2(3) 0.10

The table reports estimation results for the ordered logistic regression model for the four different crash
categories (no, local, regional, global), with covariates as shown in Table 4., but in each regression one
original variable is conditioned on the occurrence of a crash on the previous day. Thus, in each case we
multiply the variable under consideration with the past crash dummies (including a no crash dummy),
which gives rise to four variables. For convenience we only report coefficient estimates for the crash
dummies and for the crash conditioned variable, where the labels (N), (L), (R) and (G) refer to no crash,
and local, regional and global crash, respectively. The χ2(3)-statistic tests whether conditioning a variable
significantly improves the model. The sample period runs from July 1, 1996 to July 30, 2007 (2839
observations).
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