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Abstract

We discuss how prior regression on seasonal dummies leads to singularities in peri-
odogram regression procedures for the detection of long memory. We suggest a modified
procedure. We illustrate the problems using monthly inflation data from Hassler and
Wolters (1995).
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1 A Numerical Problem

In this section we propose a numerical problem which came up when we redid a regression
analysis of simple fractionally integrated models for inflation, where two packages came up
with different answers. In the next sections we propose solutions.

Periodogram regression is by now a standard procedure to start the examination of
long memory in a time series. A popular model with long memory is the ARFIMA (p, d, q)
model: ®(L)(1 — L)%y, = O(L)vy, t = 1,2, ... with ®(L) and @( ) polynomials of orders
p and ¢ in the lag operator L : LFy; = y;_p and (1-L)*=1—dL— (1 dr2 - ., see
e.g. Hosking (1981). In the first stage of the estimation of an ARFIMA(p, d,q) model one
simply regresses the log periodogram on the logarithm of the spectrum of simple fractionally
integrated process to obtain an estimate of the fractional order of integration d. One uses
the following equation:

In/(wj) =Inf, (0)+0R;+¢ j=mi,mi+1,....,m (1)

where the regressand In/ (w;) is the log periodogram at frequency w; = 275 /T, with T'
the number of observations, where the constant In f, (0) is the log of spectrum at zero of
(1 — L)*y; = w;, where the regressor R; is defined by R; = —In4{sin® (w;/2)} and where
the error term €; = In{/ (w;) / f (wj,d)} measures differences between the periodogram and
the model spectrum f (wj,d). Robinson (1995) showed that standard regression results can
be employed to test hypotheses about the fractional integration parameter d using the OLS
estimate § in (1), provided m; and m are chosen appropriately. The only modification in
the inference compared with OLS is that the error variance is fixed at 72/6. For the simple
fractionally integrated process (p = ¢ = 0) one should use as many independent periodogram
points as possible: m; = 1, m = T'/2, in finite samples, see e.g. Hurvich and Beltrao (1994)

Hassler and Wolters (1995) found the simple fractionally integrated process to provide a
good description of 5 post war consumer price inflation series, and compared periodogram
estimates of d with estimates from more efficient procedures.

First they regressed monthly changes in logs of price indices on seasonal dummies to
get rid of seasonal variation. They used the sample period 1969.01-1992.09 (7' = 285).
Both dummy regression and periodogram regression were done in MicroTSP. They fixed
m1 = 1 and presented results for a range of values of m. In the upper panel of Table 1 their
results for U.K. inflation are extended with results for shorter sample periods, obtained by
subsequently deleting observations from the beginning of the sample period.

Tablel around here

We redid their regressions using a different computer package written in Borland Pascal.
We obtained much larger estimates for the integration parameter for some sample periods
for some choices of m, see the lower panel of Table 1 For sample size 283 and 281 the results
of the different panels agree. For sample size 285, 284, 282 and 280 they agree only for low
values of m. How come?

2 Singularities in the log periodogram

Numerical problems are usually do to (near-)singularities. This problem is no exception.
A simple examination of the values of the regressand In/ (wj) shows some large negative



values, pointing to values close to zero for the periodogram ordinate. The singularity of the
periodogram at the seasonal frequencies for seasonally adjusted data is a well known feature
for data series containing full years of data. Depending on the number of observations this
extreme singularity problem can pop up at one or more frequencies. For T' = 283 and
T = 281 it does not occur, but this is not to say that there is no need to worry in that case.

The following theorem states that the periodogram ordinates of a seasonally adjusted
series are zero at frequencies 27i/s, i = 0,...,s where s is the number of observations per
year.

Theorem

Let y;, t =1,...,T, be a time series contained in the 7' x 1 vector y. Let x = Mpy be the
seasonally adjusted time series vector obtained by regression on a complete set of s seasonal
dummy variables with period s contained in the T’ x s matrix D, Mp = It — D(D'D)~'D’.
Then the periodogram I ();) for z equals zero at frequencies \; = 2mi/s, i =0,...,s.

The appendix contains the proof of the theorem, which is based on the regression in-
terpretation of the Discrete Fourier Transform. Consider the case of Hassler and Wolters,
s =12, T' = 285, where the periodogram is computed at frequencies 275 /285,57 = 1,...,142.
The first frequency with a singularity appears for j = 95, since 95/285 = 4/12. Theoreti-
cally In I(wgs) would be minus infinity and the estimate of d using this ordinate would be
ill defined, but in practice using finite precision in the computation finite negative values
will be obtained. The larger the precision, the more negative the log periodogram ordi-
nate, the larger the estimate of d. For T' = 284 one obtains singularities at ;7 = 71, for
T =282 at j = 47, 94 and for T' = 280 at 7 = 70,140. Suppose we would have full years
of data e.g. 24 years: T = 288. Then we get the familiar case with singularities at all the
seasonal frequencies: 2mi/12, 1 = 0,1,...,6, i.e. at 275/288, j = 0,24,...,144. The peri-
odogram regression results in Hassler and Wolters (7" = 285) for m > 95 are artificial, since
they include a singular frequency. This explains why Package 1 and Package 2 differ for
m = 100,120, 140. Please note that no singularities arise for T' = 281 and 7" = 283; that is
why the corresponding columns show no differences in Table 1.

3 Proper Estimation

How do we avoid using the spurious estimates involving the singularities? One way would be
to omit only the singular ordinates from the regression. This could lead to the situation of
using a decreasing number of periodogram points with an increasing number of observations,
e.g. 143 points for T = 287 and 138 points for T" = 288. A preferable way is to extend
the original data set to full years by adding zeros at the end, i.e. by "zero padding” as
it is called in the popular econometric software package RATS. The periodogram of this
extended series will contain ordinates for all the seasonal frequencies. These ordinates are
then omitted in the subsequent periodogram regression. This has the additional advantage
that the subsequent estimator of d does no longer depend on the regression estimates for
the seasonal means. These means are hard to estimate in models with long memory. See
e.g. Samarov and Taqqu (1988), who discussed the efficiency of regression estimation of the
mean for fractionally integrated processes in detail. Note that our procedure makes prior
regression on seasonal dummies obsolete. In sum: instead of seasonal adjustment in the



time domain by prior regression, we suggest seasonal adjustment in the frequency domain
by omitting all periodogram ordinates at the seasonal frequencies.

In Table 2 we present the results of this estimation procedure for the four “seasonal”
inflation series analyzed in Hassler and Wolters (1995), which are now also reliable for
m > 95 as well. We also show outcomes for the asymptotically efficient approximate
frequency domain ML estimator for the simple fractionally integrated process applied in
Boes et al. (1989), which minimizes

27 I (w))
Ing (w;,0) +Tln | — — 2
over &, where g (wj,6) = Z f (w;,6) = {4 sin® (wj/Z)}ﬂS. Here periodogram ordinates with

zero values do not lead to numerical problems. Seasonal adjustment is again done by
zero padding and omission of the contribution of the seasonal frequencies in the objective
function (2). Note that minimizing only the second term of (2) leads to the “simple” Whittle
estimator suggested by Fox and Taqqu (1986), which Hassler and Wolters applied to check
their periodogram regression results. Robinson (1994) provided an overview of different
frequency domain estimators of the fractional integration parameter. The results of the
periodogram regression and the two approximate ML estimators are now close, see the last
rows of Table 2.

Table 2 around here

One might be tempted to use seasonal adjustment for ”stochastic seasonality” like Cen-
sus X-11 or ARIMA model based methods as an alternative way to avoid the singularities.
That is not an option. These seasonal adjustment methods introduce ”seasonal moving av-
erage unit roots” in the adjusted series. See Maravall (1993, p.23) for a theoretical account.
This leads to singularities in the log of the model spectrum for the adjusted series. The use
of sample spectrum ordinates around the seasonal frequencies in the periodogram regression
for the seasonally adjusted series will therefore lead to artificial results as well. See Ooms
(1994, p. 274) for an empirical illustration of this phenomenon using a seasonal extension
of the periodogram regression.

4 Conclusions

Prior regression on seasonal dummies can lead to artifacts in subsequent periodogram re-
gressions for the detection of long memory. We suggest a combination of zero padding and
seasonal adjustment in the frequency domain to avoid this problem. This method can also
be applied to approximate frequency domain ML estimators. The problems are illustrated
using data from Hassler and Wolters (1995). Our modified periodogram regression confirms
their fractional specification and provides an even closer agreement between periodogram
regression and frequency domain ML estimation.

This example clearly shows the benefit of checking empirical results across computer
programs to reveal hidden numerical problems. It also shows the benefit of influence analysis
as a standard procedure in empirical regressions, even in auxiliary regressions.



References

[1] Boes, D.C., Davis, R.A., and Gupta, S.N. (1989). Parameter estimation in low order
fractionally differenced ARMA processes. Stochastic Hydrology and Hydraulics, 3:97-110.

[2] Fox, R., and Taqqu, M.S. (1986). Large-Sample properties of Parameter estimates for
Strongly Dependent Stationary Gaussian Time Series. The Annals of Statistics, 14:517—
532.

[3] Harvey, A.C. (1993). Time Series Models, second edition. Harvest Wheatsheaf, New
York, London.

[4] Hassler, U. and Wolters, J. (1995). Long Memory in Inflation Rates: International
Evidence. Journal of Business and Economic Statistics, 13:37-46.

[5] Hosking, J.R.M. (1981). Fractional Differencing. Biometrika, 68:165-176.

[6] Hurvich, C.M., and Beltrao, K.I. (1994). Automatic Semiparametric Estimation of
the Memory Parameter of a Long-Memory Process. Journal of Time Series Analysis,
15:285-302.

[7] Maravall, A. (1993). Stochastic Linear Trends. Journal of Econometrics, 56:5-37.

[8] Ooms, M. (1994). Empirical Vector Autoregressive Modeling, volume 407 of Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany.

[9] Robinson, P. (1994). Time Series with Strong Dependence. In Sims, C.A., editor,
Advances in Econometrics, sizth World Congress, pages 47-95. Cambridge University
Press, Cambridge.

[10] Robinson, P.M. (1995). Log-Periodogram Regression of Time Series with Long Range
Dependence. Annals of Statistics, 23:1048-1072.

[11] Samarov, A., and Taqqu, M.S. (1988). On the Efficiency of the Sample Mean in Long-
Memory Noise. Journal of Time Series Analysis, 9:191-210.

Appendix: Proof of Theorem

Proof of Theorem 1

We prove the theorem for even 7" and even s. The proof for odd T" and/or odd s proceeds
along similar lines. We use the regression interpretation of the Fourier Transform. Define
the Discrete Fourier representation for y; as, see e.g. Harvey (1993, sect. 6.2)

n—1
g =T %ag+(T/2) 2 Y (aj coswjt + b sinw;t) + T~ 2a, (1), (3)
j=1

t=1,...T, T even, n=T/2. The last term in the summation drops out if 7" is odd. Define
the periodogram ordinates for y; at the standard frequencies as:

2
, wj=2mj/T, j=0,...,n, n="T/2.

T
Z m eztwj
t=1

1
Iy (wj) = T



These can also be written, see Harvey (1993, sect. 6.2), as:

T\
Iy(wj) = E (Cl]"—bj), ] :0,...,n
with by = b, = 0. For odd T one has n = (T'—1)/2.

For matrix notation we define the orthogonal T' x T matrix Z and the 7" x 1 vector
Yy = (a0, a1,b1,0a9,... ,an) , according to the definition of a; and f3; in (3), so that we can
rewrite (3) as y = Zv,. Consequently one has v, = Z'y.

Look then at the corresponding representation for the seasonally adjusted vector z.

Define v, = (co,c1,d1, o, ..., ¢p) = Z'x, so that

1 .
Iw(wj):E(C?—i-d?),jZO,...,n (4)

with dyp = d,, = 0. Let Z; be the T' x 2 sub matrix of Z that corresponds to the parameters
¢j andd; ,7=1,...,mn—1 so that
Cj _ ol
( d; ) =Zjx.

Let S(D) be the space spanned by seasonal dummy columns in the matrix D. Let Z;

correspond to parameters ¢; and d; for the frequencies A\; = 27i/s, i =1,...,s/2 — 1. Let
Zij,t = 1,...,T, denote the rows of Z;. Z; lies in S (D), since Z;; = Zy; for ‘t — t,‘ = ks,
k=0,1,...,[T/s]. The vector z lies in the orthogonal complement of S (D) by construction.

Thus Zjz = 0 for i = 1,...,s/2. Therefore ¢; = d;j = 0 for j =i/s, i =1,2,...,s — L.
Analogously we have ¢ = Zjz = 0 and ¢, = Z}x = 0, corresponding to Ay and As/29
respectively. Consequently I, (A;) = 0 for \; = 27wi/s, i = 0,1,...,[s/2]. Finally one has
I, (N\;)) = I, (2 — )\;), which completes the proof.



Table 1: Results of Periodogram Regressions for Seasonally Adjusted U.K. Inflation Rate
With Increasing Range m for varying sample sizes T' and two computer packages. Estimates

of d.

Package 1 (Hassler and Wolters (1995))
m SE T =285 284 283 282 281 280

20 .182 .59 .60 .63 .65 .65 .64
40 .119 .57 b6 b4 52 B3 .54
60 .095 .39 39 43 .64F 41 42
80 .081 .45 .69* .44 53" .45  .65*
100 .073 .55* .b6* .42 .60% .41 .52
120 .068 .54* b3* 46 57" 46 507
140 .064 .51* b0* 44 51F 43 .59*
Package 2
m SE T =285 284 283 282 281 280
20 .182 .59 .60 .63 .65 .65 .64
40 .119 .57 b6 b4 52 B3 .54
60 .095 .39 39 43 83 41 42
80 .081 .45 84 44 61% 45 .80*
100 .073 .69* 65" .42 76" .41  .61*
120 .068 .63* BH9* 46 677 46 567
140 .064 .58* 54* 44 57T 43 697

NOTE: Estimation period for 1969.01 + &, k = 0,1,2,3,4,5 until 1992.09. Changes in log
consumer price index, from the OECD Main Economic Indicators. SE denotes
approximate standard error for T" = 285. Asterisks indicate differences between packages.

Table 2: Adjusted Periodogram Regression for four countries. Results for increasing range,
with zero padding and frequency domain seasonal adjustment. Estimates of d.

m UK. France Germany Italy

20 57 74 71 55

40 .53 60 36 .52

60 .42 49 34 44

80 .47 48 33 51

100 .42 46 30 .51

120 .45 46 30 .52

140 .45 A7 33 51
FDML .40 50 36 51
SE (.045) (.042) (.045)  (.045)
Whittle .39 48 35 50

NOTE: FDML: approximate Frequency Domain Maximum Likelihood, see objective
function (2). SE: corresponding standard error. Whittle: Whittle Estimates from Hassler
and Wolters (1995), computed using only the second term of objective function (2).



