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Abstract

This paper presents the R package AdMit which provides flexible functions to ap-
proximate a certain target distribution and it provides an efficient sample of random
draws from it, given only a kernel of the target density function. The core algorithm
consists of the function AdMit which fits an adaptive mixture of Student-t distribu-
tions to the density of interest via its kernel function. Then, importance sampling
or the independence chain Metropolis-Hastings algorithm is used to obtain quanti-
ties of interest for the target density, using the fitted mixture as the importance or
candidate density. The estimation procedure is fully automatic and thus avoids the
time-consuming and difficult task of tuning a sampling algorithm. The relevance of
the package is shown in two examples. The first aims at illustrating in detail the use
of the functions provided by the package in a bivariate bimodal distribution. The
second shows the relevance of the adaptive mixture procedure through the Bayesian
estimation of a mixture of ARCH model fitted to foreign exchange log-returns data.
The methodology is compared to standard cases of importance sampling and the
Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs
approach.

Keywords: adaptive mixture, Student-t distributions, importance sampling, indepen-
dence chain Metropolis-Hasting algorithm, Bayesian, R software.
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1. Introduction

In scientific analysis one is usually interested in the effect of one variable, say, education
(= x), on an other variable, say, earned income (= y). In the standard linear regression
model this effect of x on y is assumed constant, i.e., y = βx, with β a constant. The un-
certainty of many estimators of β is usually represented by a symmetric Student-t density
(see, e.g., Heij, de Boer, Franses, Kloek, and van Dijk 2004, Chap. 3). However, in many
realistic models the parameter β is a function of several deeper structural parameters.
In such cases, the uncertainty of the estimates of β may be rather non symmetric. More
formally, in a Bayesian procedure using diffuse prior, the target or posterior density
may exhibit rather non-elliptical shapes (see, e.g., Hoogerheide, Kaashoek, and van Dijk
2007; Hoogerheide and van Dijk 2008). Hence, in several cases of scientific analysis, one
deals with a target distribution that has very non-elliptical coutours and that it is not a
member of a known class of distributions. Therefore, there exists a need for flexible and
efficient simulation methods to approximate such target distributions.

This article illustrates the adaptive mixture of Student-t distributions (AdMit) procedure
(see Hoogerheide 2006; Hoogerheide et al. 2007; Hoogerheide and van Dijk 2008, for
details) and presents its R implementation (R Development Core Team 2008) with the
package AdMit (Ardia, Hoogerheide, and van Dijk 2008). The AdMit procedure consists
of the construction of a mixture of Student-t distributions which approximates a target
distribution of interest. The fitting procedure relies only on a kernel of the target density,
so that the normalizing constant is not required. In a second step this approximation
is used as an importance function in importance sampling or as a candidate density in
the independence chain Metropolis-Hastings (M-H) algorithm to estimate characteristics
of the target density. The estimation procedure is fully automatic and thus avoids the
difficult task, especially for non-experts, of tuning a sampling algorithm.

In a standard case of importance sampling or the independence chain M-H algorithm, the
candidate density is unimodal. If the target distribution is multimodal then some draws
may have huge weights in the importance sampling approach and a second mode may be
completely missed in the M-H strategy. As a consequence, the convergence behavior of
these Monte Carlo integration methods is rather uncertain. Thus, an important problem
is the choice of the importance or candidate density, especially when little is known a
priori about the shape of the target density. For both importance sampling and the
independence chain M-H, it holds that the candidate density should be close to the
target density, and it is especially important that the tails of the candidate should not
be thinner than those of the target.

Hoogerheide (2006) and Hoogerheide et al. (2007) mention several reasons why mixtures
of Student-t distributions are natural candidate densities. First, they can provide an ac-
curate approximation to a wide variety of target densities, with substantial skewness and
high kurtosis. Furthermore, they can deal with multi-modality and with non-elliptical
shapes due to asymptotes. Second, this approximation can be constructed in a quick,
iterative procedure and a mixture of Student-t distributions is easy to sample from.
Third, the Student-t distribution has fatter tails than the Normal distribution; espe-
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cially if one specify Student-t distributions with few degrees of freedom, the risk is small
that the tails of the candidate are thinner than those of the target distribution. Finally,
Zeevi and Meir (1997) showed that under certain conditions any density function may
be approximated to arbitrary accuracy by a convex combination of basis densities; the
mixture of Student-t distributions falls within their framework.

The R package AdMit consists of three main functions: AdMit, AdMitMH and AdMitIS.
The first one allows the user to fit a mixture of Student-t distributions to a given density
through its kernel function. The next two functions perform importance sampling and
independence chain M-H sampling using the fitted mixture estimated by AdMit as the
importance or candidate density, respectively. To illustrate the use of the package, we
first apply the AdMit methodology to a bivariate bimodal distribution. We describe in
detail the use of the functions provided by the package and document the relevance of
the methodology to reproduce the shape of non-elliptical distributions. Second, we con-
sider an empirical application with the Bayesian estimation of a mixture of ARCH model
applied to foreign exchange log-returns, and show the relevance of the AdMit method-
ology compared to standard procedures such as the unimodal candidate in importance
and M-H sampling or the Griddy-Gibbs algorithm. In particular, we illustrate that it is
worthwhile to invest some computing time in an accurate importance or candidate den-
sity. This investment may become profitable in the sense of much quicker convergence
or more reliable sampling results, especially to depict the parameter uncertainty in the
tails of the joint posterior distribution.

The outline of the paper is as follows: Section 2 presents the principles of the AdMit
algorithm. Section 3 presents the functions provided by the package with an illustration
of a bivariate non-elliptical distribution. Section 4 compares the performance of the
AdMit approach with standard strategies in a mixture of ARCH(1) model. Section 5
concludes.

2. Adaptive mixture of Student-t distributions

The adaptive mixture of Student-t distributions method developed in Hoogerheide (2006)
and Hoogerheide et al. (2007) constructs a mixture of Student-t distributions in order
to approximate a given target density p(θ) where θ ∈ Θ ⊆ Rd. The density of a mixture
of Student-t distributions can be written as:

q(θ) .=
H∑
h=1

ph td(θ | µh,Σh, ν) ,

where ph (h = 1, . . . ,H) are the mixing probabilities of the Student-t components,
0 6 ph 6 1 (h = 1, . . . ,H),

∑H
h=1 ph = 1, and td(θ | µh,Σh, ν) is a d-dimensional
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Student-t density with mode vector µh, scale matrix Σh, and ν degrees of freedom:

td(θ | µh,Σh, ν) .=
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν)d/2

× (det Σh)−1/2

(
1 +

(θ − µh)′Σ−1
h (θ − µh)
ν

)−(ν+d)/2

.

The adaptive mixture approach determines H, ph, µh and Σh (h = 1, . . . ,H) based on
a kernel function k(θ) of the target density p(θ). It consists of the following steps:

Step 0 – Initial step Compute the mode µ1 and scale Σ1 of the first Student-t dis-
tribution in the mixture as µ1

.= arg maxθ∈Θ log k(θ), the mode of the log kernel
function, and Σ1 as minus the Hessian of log k(θ) evaluated at its mode µ1. Then
draw a set of Ns points θ[i] (i = 1, . . . , Ns) from this first stage candidate density
q(θ) .= td(θ | µ1,Σ1, ν), with small ν to allow for fat tails.

Comment: In the rest of this paper, we use Student-t distributions with one degrees
of freedom ( i.e., ν = 1) since:

1. it enables the method to deal with fat-tailed target distributions;

2. it makes it easier for the iterative procedure to detect modes that are far apart.

After that add components to the mixture, iteratively, by performing the following
steps:

Step 1 – Evaluate the distribution of weights Compute the importance sampling
weights w(θ[i]) .= k(θ[i])/q(θ[i]) for i = 1, . . . , Ns. In order to determine the number
of components H of the mixture we make use of a simple diagnostic criterion: the
coefficient of variation, i.e., the standard deviation divided by the mean, of the
importance sampling weights {w(θ[i]) | i = 1, . . . , Ns}. If the relative change in
the coefficient of variation of the importance sampling weights caused by adding
one new Student-t component to the candidate mixture is small, e.g., less than
10%, then the algorithm stops and the current mixture q(θ) is the approximation.
Otherwise, the algorithm goes to step 2.

Comment: Notice that q(θ) is a proper density, whereas k(θ) is a density kernel.
So, the procedure does not provide an approximation to the kernel k(θ) but provides
an approximation to the density of which k(θ) is a kernel.

Step 2a – Iterate on the number of components Add another Student-t distribu-
tion with density td(θ | µh,Σh, ν) to the mixture with µh

.= arg maxθ∈Θ logw(θ)
and Σh equal to minus the inverse Hessian of logw(θ). Here, q(θ) denotes the
density of the mixture of (h− 1) Student-t distributions obtained in the previous
iteration of the procedure. An obvious initial value for the maximization pro-
cedure for computing µh is the point θ[i] with the highest weight in the sample
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{w(θ[i]) | i = 1, . . . , Ns}. The idea behind this choice is that the new Student-t
component should cover a region where the weights w(θ) are relatively large. The
point where the weight function w(θ) attains its maximum is an obvious choice
for µh, while the scale matrix Σh is the covariance matrix of the local Normal
approximation to the distribution with density kernel w(θ) around the point µh.

Comment: To improve the algorithm’s ability to detect distant modes of a multi-
modal target density we consider one additional initial value for the optimization
and we use the point corresponding to the highest value of the weight function
among the optima as the mode µh of the new component in the candidate mixture.
The second starting value is obtained by taking the draw with the highest impor-
tance sampling weight in a set of Ns draws from a Cauchy distribution with mode
and scale equal to the estimated mean and covariance of the target density using
the latest candidate mixture. The idea behind this alternative starting value is that
the scale of the candidate mixture may be too small as compared to the target den-
sity. Sequentially adapting the mode and scale of a Cauchy candidate density may
enable one to properly augment the scale and thereby find (possibly distant) regions
with target probability mass that were not yet covered by the candidate mixture.

Step 2b – Optimize the mixing probabilities Choose the probabilities ph (h = 1, . . . ,H)
in the mixture q(θ) .=

∑H
h=1 ph td(θ | µh,Σh, ν) by minimizing the (squared) co-

efficient of variation of the importance sampling weights. First, draw Np points
θ

[i]
h (i = 1, . . . , Np) from each component td(θ | µh,Σh, ν) (h = 1 . . . , H). Then,

minimize:

E[w(θ)2]/E[w(θ)]2 (1)

with respect to ph (h = 1, . . . ,H), where:

E[w(θ)m] .=
1
Np

Np∑
i=1

H∑
h=1

phw(θ[i]
h )m (m = 1, 2) ,

and:

w(θ[i]
h ) .=

k(θ[i]
h )∑H

l=1 pl td(θ
[i]
h | µl,Σl, ν)

.

Comment: Minimization of (1) is time consuming. The reason is that this concerns
the optimization of a non-linear function of ph (h = 1, . . . ,H) where H takes
the values 2, 3, . . . in the consecutive iterations of the algorithm. Evaluating the
function itself requires already NH evaluations of the kernel and NH2 evaluations
of the Student-t densities. The computation of (analytically evaluated) derivatives
of the function with respect to ph (h = 1, . . . ,H) takes even more time. One
way to reduce the amount of computing time required for the construction of the
approximation is to use different numbers of draws in different steps. One can use a
relatively small sample of Np draws for the optimization of the mixing probabilities
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and a large sample of Ns draws in order to evaluate the quality of the current
candidate mixture at each iteration (in the sense of the coefficient of variation of
the corresponding importance sampling weights) and in order to obtain an initial
value for the algorithm that is used to optimize the weight function (that yields the
mode of a new Student-t component in the mixture). Note that it is not necessary to
find the globally optimal values of the mixing probabilities; a good approximation
to the target density is all that is required.

Step 2c – Draw from the mixture Draw a sample of Ns points θ[i] (i = 1, . . . , Ns)
from the new mixture of Student-t distributions, q(θ) .=

∑H
h=1 ph td(θ | µh,Σh, ν),

and go to step 1; in order to draw a point from the density q(θ) first use a draw from
the uniform distribution U(0, 1) to determine which component td(θ | µh,Σh, ν) is
chosen, and then draw from this d-dimensional Student-t distribution.

Comment: It may occur that one is dissatisfied with diagnostics like the coefficient of
variation of the importance sampling weights corresponding to the final candidate density
resulting from the procedure above. In that case the user may start all over again the
procedure with a larger number of points Ns. The idea behind this strategy is that the
larger Ns, the easier it is for the method to feel the shape of the target density kernel,
and to specify the Student-t distributions of the mixture adequately.

If the region of integration Θ ⊆ Rd is bounded, it may occur in step 2 that w(θ) attains
its maximum at the boundary integration region. In this case minus the inverse Hessian
of logw(θ) evaluated at its mode µh may be a very poor scale matrix; in fact this
matrix may not even be positive definite. In such situations, µh is chosen as the point
θ[i] with the highest weight in the sample {w(θ[i]) | i = 1, . . . , Ns} and Σh is obtained as
the matrix of estimates second moments around µh for a certain percentage of largest
weights. More precisely, Σh is obtained using the sample {θ[i] | i = 1, . . . , Ns} from q(θ)
we already have:

Σh
.=
∑
j∈Jc

w(θ[j])∑
j∈Jc

w(θ[j])
(θ[j] − µh)(θ[j] − µh)′ , (2)

where Jc denotes the set of indices corresponding to the c percents of the largest weights
in the sample {w(θ[i]) | i = 1, . . . , Ns}. Since our aim is to detect regions with too little
candidate probability mass (e.g., a distant mode), the percentage c is typically a low
value, i.e., 5%, 15% or 30%. Moreover, the estimated Σh can be scaled by a given factor
for robustness. Different percentages and scaling factors could be used together, leading
to different coefficients of variation at each step of the adaptive procedure. The matrix
leading to the smallest coefficient of variation could then be selected as the scale matrix
Σh for the new mixture component.

Once the adaptive mixture of Student-t distributions has been fitted to the target density
p(θ) through the kernel function k(θ), the approximation q(θ) is used in importance
sampling or in the independence chain Metropolis-Hastings (M-H) algorithm to obtain
quantities of interest for the target density p(θ) itself.
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2.1. Background on Importance sampling

Importance sampling, due to Hammersley and Handscomb (1965), was introduced in
econometrics and statistics by Kloek and van Dijk (1978). It is based on the following
relationship:

Ep
[
g(θ)

]
=
∫
g(θ)p(θ)dθ∫
p(θ)dθ

=
∫
g(θ)w(θ)q(θ)dθ∫
w(θ)q(θ)dθ

=
Eq
[
g(θ)w(θ)

]
Eq
[
w(θ)

] , (3)

where g(θ) is a given (integrable with respect to p) function, w(θ) .= k(θ)/q(θ), Ep
denotes the expectation with respect to the target density p(θ) and Eq denotes the
expectation with respect to the (importance) approximation q(θ). The importance sam-
pling estimator of Ep

[
g(θ)

]
is then obtained as the sample counter-part of the right-hand

side of (3):

ĝ
.=
∑N

i=1 g(θ[i])w(θ[i])∑N
i=1w(θ[i])

, (4)

where {θ[i] | 1, . . . , N} is a sample of draws from the importance density q(θ). Under
certain conditions (see Geweke 1989), ĝ is a consistent estimator of Ep

[
g(θ)

]
. The choice

of the function g(θ) allows to obtain different quantities of interest for p(θ). For instance,
the mean estimate of p(θ), denoted by θ, is obtained with g(θ) .= θ; the covariance
matrix estimate is obtained using g(θ) .= (θ−θ)(θ−θ)′; the estimated probability that
θ belongs to a domain D ⊆ Θ using g(θ) .= I{θ∈D}, where I{•} denotes the indicator
function which is equal to one if the constraint holds and zero otherwise.

2.2. Background on the Independence chain Metropolis-Hastings algo-
rithm

The Metropolis-Hastings (M-H) algorithm is a Markov chain Monte Carlo (MCMC) ap-
proach that has been introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953) and generalized by Hastings (1970). MCMC methods construct a Markov
chain converging to a target distribution p(θ). After a burn-in period, which is re-
quired to make the influence of initial values negligible, draws from the Markov chain
are considered as (correlated) draws from the target distribution itself.
In the independence chain M-H algorithm, a Markov chain of length N is constructed by
the following procedure. First, one chooses a feasible initial state θ[0]. Then, on repeats
the following steps N times (for i = 1, . . . , N). A candidate value θ? is drawn from the
candidate density q(θ?) and a random variable U is drawn from the uniform distribution
U(0, 1). Then the acceptance probability:

ξ(θ[i−1],θ?) = min

{
w(θ?)
w(θ[i−1])

, 1

}
is computed, where w(θ) .= k(θ)/q(θ), k(θ) being a kernel of the target density p(θ).
If U < ξ(θ[i−1],θ?), the transition to the candidate value is accepted, i.e., θ[i] .= θ?.
Otherwise the transition is rejected, and the next state is again θ[i] .= θ[i−1].
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3. Illustration I: The Gelman-Meng distribution

This section presents the functions provided by the R package AdMit with an illustration
of a bivariate bimodal distribution. This distribution belongs to the class of conditionally
Normal distributions proposed by Gelman and Meng (1991) with the property that the
joint density is not Normal. In the notation of the previous section, we have θ

.=
(X1 X2)′.

Let X1 and X2 be two random variables, for which X1 is Normally distributed given X2

and vice versa. Then, the joint distribution, after location and scale transformations in
each variable, can be written as (see Gelman and Meng 1991):

p(x1, x2) ∝ exp
(
−1

2 [Ax2
1x2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2]

)
, (5)

where A, B, C1 and C2 are constants. Equation (5) can be rewritten as:

p(x1, x2) ∝ exp
(
−1

2

[
Ax2

1x
2
2 + (x− µ)′Σ−1(x− µ)

])
,

with:

µ
.=
(
BC2 + C1

1−B2

BC1 + C2

1−B2

)′
and Σ−1 .=

(
1 −B
−B 1

)
,

so the term Ax2
1x

2
2 causes deviations from the bivariate Normal distribution. In what

follows, we consider the symmetric case in which A = 1, B = 0, C1 = C2 = 3.

The core function provided by the R package AdMit is the function AdMit. The argu-
ments of the function are the following:

> args(AdMit)

function (KERNEL, mu0, Sigma0 = NULL, control = list(), ...)
NULL

KERNEL is a kernel function k(θ) of the target density p(θ) on which the approximation
is constructed. This function must contain the logical argument log. When log=TRUE,
the function KERNEL returns the (natural) logarithm value of the kernel function; this
is used for numerical stability. mu0 is the starting value of the first stage optimization
µ1

.= arg maxθ∈Θ log k(θ); it is a vector whose length corresponds to the length of the
first argument in KERNEL. If you experience misconvergence of the first stage optimiza-
tion, you could first use an alternative (robust) optimization algorithm and use its output
for mu0. For instance, the DEoptim function provided by the R package DEoptim (Ar-
dia 2007) performs the optimization (minimization) of a function using an evolutionary
(genetic) approach. Sigma0 is the (symmetric positive definite) scale matrix of the first
component. If a matrix is provided by the user, then it is used as the scale matrix of
the first component and mu0 is used as the mode of the first component. control is
a list of tuning parameters. The most important parameters are: Ns (default: 1e+05),
the number of draws used for evaluating the importance sampling weights; Np (default:
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1e+03), the number of draws used for optimizing the mixing probabilities; CVtol (de-
fault: 0.1), the tolerance of the relative change of the coefficient of variation; df (default:
1), the degrees of freedom of the mixture components; Hmax (default: 10), the maximum
number of components of the mixture; IS (default: FALSE), indicates if the scale ma-
trices Σh should be estimated by importance sampling as in (2); ISpercent (default:
c(0.05,0.15,0.30)), a vector of percentage(s) of largest weights used in the importance
sampling approach; ISscale (default: c(1,0.25,4)), a vector of scaling factor(s) used
to rescale the scale matrix obtained by importance sampling. Hence, when the argument
IS=TRUE, nine scale matrices are constructed by default and the matrix leading to the
smallest coefficient of variation is selected by the adaptive mixture procedure as Σh. For
details on the other control parameters, the reader is referred to the documentation file
of AdMit (by typing ?AdMit). Finally, the last argument of AdMit is ... which allows
the user to pass additional arguments to the function KERNEL. In econometric models for
instance, the kernel may depend on a vector of observations y .= (y1 · · · yT )′ which can
be passed to the function KERNEL via this argument.

For the numerical optimization of the mode µh and the estimation of the scale matrix
Σh (i.e., when the control parameter IS=FALSE), the function optim is used with the
option BFGS (the function nlminb cannot be used since it does not estimate the Hessian
matrix at optimum). If the optimization procedure does not converge, the algorithm
automatically switches to the Nelder-Mead approach which is more robust but slower. If
still misconvergence occurs or if the Hessian matrix at optimum is not symmetric positive
definite, the algorithm automatically switches to the importance sampling approach for
this component.

For the numerical optimization of the mixing probabilities ph (h = 1, . . . ,H), we rely on
the function nlminb (for speed purposes) and apply the optimization on a reparametrized
domain. More precisely, we optimize (H − 1) components in R(H−1) instead of H com-
ponents in [0, 1]H with the summability constraint

∑H
h=1 ph. If the optimization process

does not converge, then the algorithm uses the function optim with method Nelder-Mead
(or method BFGS for univariate optimization) which is more robust but slower. If still
misconvergence occurs, the starting value is kept as the output of the procedure. The
starting value corresponds to a mixing probability weightNC for pH while the probabil-
ities p1, . . . , pH−1 are the probabilities of the previous mixture scaled by (1-weightNC).
The control parameter weightNC is set to 0.1 by default, i.e., a 10% probability is
assigned to the new mixture component as a starting value. Finally, note that AdMit
uses C and analytically evaluated derivatives to speed up the numerical optimization.

Let us come back to our bivariate conditionally Normal distribution. First, we need to
define the kernel function in (5). This is achieved as follows:

> 'GelmanMeng' <- function(x, A=1, B=0, C1=3, C2=3, log=TRUE)

+ {

+ if (is.vector(x))

+ x <- matrix(x, nrow=1)

+ r <- -.5 * (A*x[,1]^2*x[,2]^2 + x[,1]^2 + x[,2]^2
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+ - 2*B*x[,1]*x[,2] - 2*C1*x[,1] - 2*C2*x[,2])

+ if (!log)

+ r <- exp(r)

+ as.vector(r)

+ }

Note that the argument log is set to TRUE by default so that the function outputs the
(natural) logarithm of the kernel function. Moreover, the function is vectorized to speed
up the computations. The argument x is therefore a matrix and the function outputs a
vector. We strongly advise the user to implement the kernel function in this fashion. A
contour plot of GelmanMeng may be obtained as follows:

> 'PlotGelmanMeng' <- function(x1, x2)

+ {

+ GelmanMeng(cbind(x1,x2), log=FALSE)

+ }

> x1 <- x2 <- seq(from=-1, to=6, by=0.1)

> z <- outer(x1, x2, FUN=PlotGelmanMeng)

> contour(x1, x2, z, nlevel=20, las=1, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

> abline(a=0, b=1, lty='dotted')

The contour plot of GelmanMeng is displayed in the left-hand side of Figure 1. We notice
the bimodal banana shape of the kernel function.
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Figure 1: Left: contour plot of the Gelman and Meng (1991) kernel function. Right:
contour plot of the four-component Student-t mixture approximation estimated by the
function AdMit.
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Let us now use the function AdMit to find a suitable approximation for the density func-
tion p(θ) whose kernel is (5). We set the seed of the pseudo-random number generator to
a given number and use the starting value mu0=c(0,0.1) for the first stage optimization.
The result of the function is assigned to the object outAdMit and printed out:

> set.seed(1234)

> outAdMit <- AdMit(GelmanMeng, mu0=c(0,0.1))

> print(outAdMit)

$CV
[1] 4.8224 1.3441 0.8892 0.8315

$mit
$mit$p
cmp1 cmp2 cmp3 cmp4

0.4464 0.1308 0.2633 0.1595

$mit$mu
k1 k2

cmp1 0.382 2.61803
cmp2 3.828 0.20337
cmp3 1.762 1.08830
cmp4 2.592 0.06723

$mit$Sigma
k1k1 k1k2 k2k1 k2k2

cmp1 0.2292 -0.40000 -0.40000 1.57082
cmp2 0.8477 -0.08619 -0.08619 0.07277
cmp3 0.2832 -0.10489 -0.10489 0.22971
cmp4 0.7063 -0.18383 -0.18383 0.23474

$mit$df
[1] 1

$summary
H METHOD.mu TIME.mu METHOD.p TIME.p CV

1 1 BFGS 0.01 NONE 0.00 4.8224
2 2 BFGS 0.04 NLMINB 0.05 1.3441
3 3 BFGS 0.09 NLMINB 0.11 0.8892
4 4 BFGS 0.11 NLMINB 0.24 0.8315

The output of the function AdMit is a list. The first component is CV, a vector of length
H which gives the value of the coefficient of variation at each step of the adaptive fitting
procedure. The second component is mit, a list which consists of four components
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giving information on the fitted mixture of Student-t distributions: p is a vector of
length H of mixing probabilities, mu is a H × d matrix whose rows give the modes of
the mixture components, Sigma is a H × d2 matrix whose rows give the scale matrices
(in vector form) of the mixture components and df is the degrees of freedom of the
Student-t components. The third component of the list returned by AdMit is summary.
This is a data frame containing information on the adaptive fitting procedure: H is the
component’s number; METHOD.mu indicates which algorithm is used to estimate the mode
and the scale matrix of the component (i.e., USER, BFGS, Nelder-Mead or IS); TIME.mu
gives the computing time required for this optimization; METHOD.p gives the method
used to optimize the mixing probabilities (i.e., NONE, NLMINB, BFGS or Nelder-Mead);
TIME.p gives the computing time required for this optimization; CV gives the coefficient
of variation of the importance sampling weights. When importance sampling is used
(i.e., IS=TRUE), METHOD.mu is of the type IS 0.05-0.25 indicating in this particular
case, that importance sampling is used with the 5% largest weights and with a scaling
factor of 0.25. Hence, if the control parameters ISpercent and ISscale are vectors of
sizes d1 and d2, then d1d2 matrices are considered for each component H, and the matrix
leading to the smallest coefficient of variation is kept as the scale matrix Σh for this
component.

For the kernel function GelmanMeng, the approximation constructs a mixture of four
components. The computing time required for the construction of the approximation
is 4.4 seconds (see Section 6 for computational details). The value of the coefficient
of variation decreases from 4.8224 to 0.8315. A contour plot of the four-component
approximation is displayed in the right-hand side of Figure 1. This graph is produced
using the function dMit which returns the density of the mixture given by the output
outAdMit$mit:

> 'PlotMit' <- function(x1, x2, mit)

+ {

+ dMit(cbind(x1, x2), mit=mit, log=FALSE)

+ }

> z <- outer(x1, x2, FUN=PlotMit, mit=outAdMit$mit)

> contour(x1, x2, z, nlevel=20, las=1, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

> abline(a=0, b=1, lty='dotted')

The contour plot suggests that the four-component mixture provides a good approxima-
tion of the density function whose kernel is (5). We can also use the mixture information
outAdMit$mit to display each of the mixture components separately:

> par(mfrow=c(2,2))

> for (h in 1:4)

+ {

+ mith <- list(p=1,

+ mu=outAdMit$mit$mu[h,,drop=FALSE],
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+ Sigma=outAdMit$mit$Sigma[h,,drop=FALSE],

+ df=outAdMit$mit$df)

+ z <- outer(x1, x2, FUN=PlotMit, mit=mith)

+ contour(x1, x2, z, las=1, nlevel=20, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

+ abline(a=0, b=1, lty='dotted')
+ title(main=paste("component nr.", h))

+ }

Contour plots of the four components are displayed in Figure 2.

X1

X
2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 
 0.12 

 0.14 

 0.16 

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

component nr. 1

X1

X
2

 0.05 

 0.1 

 0.15 

 0.2 

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

component nr. 2

X1

X
2

 0.05 

 0.1 

 0.15 

 0.2 

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

component nr. 3

X1

X
2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1  0.3 

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

component nr. 4

Figure 2: Student-t components of the four-component mixture approximation estimated
by the function AdMit.

Once the adaptive mixture of Student-t distributions is fitted to the density p(θ) using
a kernel k(θ), the approximation q(θ) provided by AdMit is used as the importance
sampling density in importance sampling or as the candidate density in the independence
chain M-H algorithm.

The first function provided by the R package AdMit which allows to find quantities of
interest for the density p(θ) using the output outAdMit$mit of AdMit is the function
AdMitIS. This function performs importance sampling using the mixture approximation
as the importance density (see Section 2.1). The arguments of the function AdMitIS are
the following:

> args(AdMitIS)
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function (N = 1e+05, KERNEL, G = function(theta){theta}, mit = list(), ...)
NULL

N is the number of draws used in importance sampling; KERNEL is a kernel function k(θ)
of the target density p(θ); G is the function g(θ) in (3); mit is a list providing information
on the mixture approximation (i.e., typically the component mit in the output of the
AdMit function); ... allows additional parameters to be passed to the function KERNEL
and/or G.
Let us apply the function AdMitIS to the kernel GelmanMeng using the approximation
outAdMit$mit:

> set.seed(1234)

> outAdMitIS <- AdMitIS(KERNEL=GelmanMeng, mit=outAdMit$mit)

> print(outAdMitIS)

$ghat
[1] 1.458 1.460

$NSE
[1] 0.004892 0.004912

$RNE
[1] 0.6388 0.6309

The output of the function AdMitIS is a list. The first component is ghat, the importance
sampling estimator of Ep

[
g(θ)

]
in (4). This is a vector whose length corresponds to the

length of the output of the function G. The second component is NSE, a vector containing
the numerical standard errors (i.e., the variation of the estimates that can be expected if
the simulations were to be repeated) of the components of ghat. The third component is
RNE, a vector containing the relative numerical efficiencies of the components of ghat (i.e.,
the ratio between an estimate of the variance of an estimator based on direct sampling
and the importance sampling estimator’s estimated variance with the same number of
draws). RNE is an indicator of the efficiency of the chosen importance function; if target
and importance densities coincide, RNE equals one, whereas a very poor importance
density will have a RNE close to zero. Both NSE and RNE are estimated by the method
given in Geweke (1989).
The computing time required to perform importance sampling on GelmanMeng using the
four-component mixture outAdMit$mit is 0.7 seconds, where most part of the comput-
ing time comes from the N evaluations of the function KERNEL at the sampled values
{θ[i] | i = 1, . . . , N}. The true value for Ep(X1) and Ep(X2) is 1.459. We note the the
importance sampling estimates are close to the true values and the good efficiency of the
estimation.
By default, the function G is function(theta){theta} so that the function outputs a
vector containing the mean estimates for the components of θ. Alternative functions
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may be provided by the user to obtain other quantities of interest for p(θ). The only re-
quirement is that the function outputs a matrix. For instance, to estimate the covariance
matrix of θ, we could define the following function:

> 'G.cov' <- function(theta, mu)

+ {

+ 'G.cov_sub' <- function(x)

+ (x-mu) %*% t(x-mu)

+ theta <- as.matrix(theta)

+ tmp <- apply(theta, 1, G.cov_sub)

+ if (length(mu)>1)

+ t(tmp)

+ else

+ as.matrix(tmp)

+ }

Applying the function AdMitIS with G.cov leads to:

> set.seed(1234)

> outAdMitIS <- AdMitIS(KERNEL=GelmanMeng, G=G.cov, mit=outAdMit$mit,

+ mu=c(1.459,1.459))

> print(outAdMitIS)

$ghat
[1] 1.536 -1.166 -1.166 1.531

$NSE
[1] 0.006507 0.004644 0.004644 0.007391

$RNE
[1] 0.9128 0.7532 0.7532 0.7033

V <- matrix(outAdMitIS$ghat,2,2)

print(V)

[,1] [,2]
[1,] 1.536 -1.166
[2,] -1.166 1.531

V is the covariance matrix estimate. For this estimation, we have used the real mean
values, i.e., mu=c(1.459,1.459), so that NSE and RNE of the covariance matrix elements
are correct. In general, those mean values are unknown and we have to resort to the im-
portance sampling estimates. In this case, the numerical standard errors of the estimates
are (generally slightly) downward biased.
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The function cov2cor can be used to obtain the correlation matrix corresponding to the
covariance matrix:

> cov2cor(V)

[,1] [,2]
[1,] 1.0000 -0.7607
[2,] -0.7607 1.0000

The second function provided by the R package AdMit which allows to find quantities
of interest for the target density p(θ) using the output outAdMit$mit of AdMit is the
function AdMitMH. This function uses the mixture approximation as the candidate density
in the independence chain M-H algorithm (see Section 2.2). The arguments of the
function AdMitMH are the following:

> args(AdMitMH)

function (N = 1e+05, KERNEL, mit = list(), ...)
NULL

N is the length of the MCMC sequence of draws; KERNEL is a kernel function k(θ) of the
target density p(θ); mit is a list providing information on the mixture approximation
(i.e., traditionally the component mit in the output of the function AdMit); ... allows
additional parameters to be passed to the function KERNEL.

Let us apply the function AdMitMH to the kernel GelmanMeng using the approximation
outAdMit$mit:

> set.seed(1234)

> outAdMitMH <- AdMitMH(KERNEL=GelmanMeng, mit=outAdMit$mit)

> print(outAdMitMH)

$draws
k1 k2

1 1.283e+00 1.669e+00
2 1.603e+00 9.873e-01
3 1.223e+00 1.872e+00
4 1.223e+00 1.872e+00
5 1.030e+00 2.306e+00
6 1.030e+00 2.306e+00
7 2.767e+00 5.180e-02
8 2.767e+00 5.180e-02
9 1.857e+00 7.651e-01
10 1.857e+00 7.651e-01
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11 1.857e+00 7.651e-01
12 1.857e+00 7.651e-01
13 1.857e+00 7.651e-01
14 1.857e+00 7.651e-01
15 5.118e-01 1.941e+00
16 2.992e+00 7.749e-01
17 2.992e+00 7.749e-01
18 2.992e+00 7.749e-01
19 3.158e+00 2.375e-01
20 3.158e+00 2.375e-01
[ reached getOption("max.print") -- omitted 99980 rows ]]

$accept
[1] 0.5272

The output of the function AdMitMH is a list of two components. The first component
is draws, a N × d matrix containing draws from the target density p(θ) in its rows.
The second component is accept, the acceptance rate of the independence chain M-H
algorithm.

In our example, the computing time required to generate a MCMC chain of size N=1e+05
(i.e., the default value) takes 0.8 seconds. Note that as for the function AdMitIS, the most
important part of the computing time comes from evaluations of the KERNEL function.
Part of the AdMitMH function is implemented in C in order to accelerate the generation
of the MCMC output. The rather high acceptance rate above 50% suggests that the
mixture approximates the target density quite well.

The R package coda (Plummer, Best, Cowles, and Vines 2008) can be used to check the
convergence of the MCMC chain and obtain quantities of interest for p(θ); the package
is automatically loaded with the R package AdMit. Here, for simplicity, we discard the
first 1’000 draws as a burn-in sample and transform the output outAdMitMH$draws in a
mcmc object using the function as.mcmc provided by coda. A summary of the MCMC
chain can be obtained using summary:

> draws <- as.mcmc(outAdMitMH$draws[1001:1e5,])

> colnames(draws) <- c("X1","X2")

> summary(draws)$stat

Mean SD Naive SE Time-series SE
X1 1.466 1.239 0.003937 0.006903
X2 1.461 1.242 0.003948 0.005751

We note that the mean estimates are close to the values obtained with the function
AdMitIS. The relative numerical efficiency can be computed from the output of the
function summary by dividing the square of the (robust) numerical standard error of
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the mean estimates (i.e., Time-series SE) by the square of the naive estimator of the
numerical standard error (i.e., Naive SE):

> summary(draws)$stat[,3]^2 / summary(draws)$stat[,4]^2

X1 X2
0.3253 0.4714

These relative numerical efficiencies reflect the good quality of the candidate density in
the independence chain M-H algorithm.

Finally, note that for more flexibility, the functions AdMitIS and AdMitMH require the
arguments N and KERNEL. Therefore, the number of sampled values N in importance
sampling or in the independence chain M-H algorithm can be different from the number
of draws Ns used to fit the Student-t mixture approximation. In addition, the same
mixture approximation can be used for different kernel functions. This can be useful,
typically in Bayesian times series econometrics, to update a joint posterior distribution
with the arrival of new observations. In this case, the previous mixture approximation
(i.e., fitted on a kernel function which is based on T observations) can be used as the
candidate density to approximate the updated joint posterior density which accounts for
the new observations (i.e., whose kernel function is based on T + k observations where
k > 1).

4. Illustration II: Bayesian estimation of a mixture of ARCH(1) model

In this section, we consider the Bayesian estimation of a mixture of ARCH models. We
use this example model in order to compare candidate distributions in case of a non-
elliptical, four-dimensional posterior distribution in a parameter space with a restricted
domain. In particular, we compare the performance of importance sampling and the
independence chain M-H algorithm using a candidate density constructed by the function
AdMit with a naive (standard) Cauchy distribution. We also consider the Griddy-Gibbs
sampler of Ritter and Tanner (1992) as a benchmark.

In this application, we set the control parameter IS=TRUE in the function AdMit. The
reason is that the (default) optimization step would quite possibly lead to non reliable
scale matrices due to the pronounced restrictions on the parameter space (i.e., in the
sense that most of the candidate mass might be outside of the allowed parameter region).
Also, note that for a high dimensional distribution, avoiding the optimization step can
substantially speed up the algorithm. The results for the four-dimensional highly non-
elliptical posterior suggest the method’s useful applicability in higher dimensions.

Mixture of ARCH and GARCH models have received a lot of attention in recent years
as they provide an explanation for the high persistence in volatility observed with single-
regime GARCH models (see, e.g., Lamoureux and Lastrapes 1990). Furthermore, these
models allow for a sudden change in the (unconditional) volatility level which may lead
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to significant improvements in volatility forecasts (see, e.g., Dueker 1997; Klaassen 2002;
Marcucci 2005).

A two-component mixture of ARCH(1) model for log-returns {yt} may be written as:

yt = εth
1/2
t for t = 1, . . . , T

εt
iid∼ N (0, 1)

ht
.=

{
ω1 + αy2

t−1 with probability p
ω2 + αy2

t−1 with probability (1− p) ,

(6)

where ω1, ω2 > 0, α > 0 to ensure a positive conditional variance in each regime; N (0, 1)
is the standard Normal distribution. Model specification (6) allows to reproduce the so-
called volatility clustering observed in financial returns, i.e., the fact that large changes
tend to be followed by large changes (of either sign) and small changes tend to be followed
by small changes. Moreover, it allows for sudden changes in the unconditional variance
of the process; in the first regime, the unconditional variance is ω1/(1 − α) while it is
ω2/(1− α) in the second regime, provided that α < 1. We emphasize that model (6) is
used for illustrative purposes only. The assumption that the state (high/low volatility)
is independent over time is unrealistic and the number of regimes should be investigated.
However, checking for possible misspecification of model (6) is beyond the scope of the
present paper.

In order to write the likelihood function, we define the vector of observations y .=
(y1 · · · yT )′ and we regroup the model parameters into the vector θ

.= (ω1 ω2 α p)′

for notational purposes. The likelihood function of θ is then given by:

L(θ | y) ∝
T∏
t=2

{
p

(ω1 + αy2
t−1)1/2

exp
[
−1

2
y2
t

(ω1 + αy2
t−1)

]

+
1− p

(ω2 + αy2
t−1)1/2

exp
[
−1

2
y2
t

(ω2 + αy2
t−1)

]}
.

(7)

We use the following proper prior densities on the model parameters:

p(ω•) ∝ φ(ω• | 0, 2)I{ω•>0}

p(α) ∝ φ(α | 0.2, 0.5)I{06α<1}

p(p) ∝ I{06p61} ,

(8)

where φ(• | µ, σ) denotes the Normal density with mean µ and standard deviation σ
and where we recall that I{•} is the indicator function which equals one if the constraint
holds and zero otherwise. In addition, we require ω1 < ω2 for identification and assume
prior independence between the model parameters. The prior constraint on α1 ensures
that the model (6) is covariance-stationary in each regime. A kernel function of the joint
posterior distribution is then constructed by combining the likelihood function and the
joint prior via Bayes’s rule.
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It is important to note that we have a lack of conjugacy between the likelihood function
and the joint prior density so that the joint posterior is of unknown form. Moreover, the
simple Gibbs sampler cannot be used for this model since the full conditionals are also
of unknown form. Alternative estimation techniques are thus required. In what follows,
we consider the following strategies:

AdMit IS importance sampling using an adaptive mixture of Student-t distributions as the
importance density. First use the function AdMit with control parameter IS=TRUE
(i.e., the mode and the scale matrix of the Student-t components are estimated with
the importance sampling weights, as in (2)). Then perform importance sampling
using the function AdMitIS with N=50000 draws.

AdMit MH independence chain M-H using an adaptive mixture of Student-t distributions as
the candidate density. Use the same mixture approximation as for AdMit IS, but
instead of using the function AdMitIS, perform independence chain M-H sampling
using the function AdMitMH with N=51000 draws. The first 1’000 draws are dis-
carded as a burn-in sample.

t1 IS importance sampling using a Student-t distribution with one degree of freedom
(i.e., Cauchy) as the importance density. First use the function AdMit with
control parameter Hmax=1. Then perform importance sampling using the function
AdMitIS with N=50000 draws.

t1 MH independence chain M-H using a Student-t distribution with one degree of freedom
(i.e., Cauchy) as the candidate density. Use the same approximation as for t1
IS, but instead of using the function AdMitIS, perform independence chain M-H
sampling using the function AdMitMH with N=51000 draws. The first 1’000 draws
are discarded as a burn-in sample.

GG Griddy-Gibbs sampler. Update each parameter by inversion from the full condi-
tional distribution computed on a grid of the parameter space. Use the following
grids for the model parameters:

ω1 seq(from=0.001, to=0.25, by=0.002)
ω2 seq(from=0.001, to=2, by=0.01)
α seq(from=0, to=0.99, by=0.008)
p seq(from=0, to=1, by=0.008)

The kernel function is evaluated for each parameter in turn for the different values
on the grid, and then a new draw is generated using the function sample with the
corresponding probabilities (i.e., the normalized kernel values on the grid). There-
fore, the approach is not strictly speaking the Griddy-Gibbs of Ritter and Tanner
(1992) which consists in updating each parameter by inversion from the full condi-
tional distribution computed by a deterministic integration rule since we generate
new draws from a discrete distribution. However, an additional interpolation step
would have slowed down even more the generation of the model parameters (which
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is already very slow as shown later in this section). We generate a chain of length
51’000 and discard the first 1’000 draws as a burn-in sample.

More advanced approaches have been proposed to perform an efficient Bayesian estima-
tion of regime-switching GARCH type models. However, their implementation costs are
far from negligible. The interested reader is referred to Ardia (2008) for further detail.
Finally, we point out that the permutation sampler of Frühwirth-Schnatter (2001) or
the permutation-augmented sampler of Geweke (2007) may be used in the context of
mixture models. They are partly used to explore the unconstrained joint posterior dis-
tribution in order to find suitable identification constraints. This is not necessary here
as we required ω1 < ω2.

We apply our Bayesian estimation methods to daily observations of the Deutschmark
vs British Pound (DEM/GBP) foreign exchange log-returns. The sample period is from
January 3, 1985, to December 31, 1991, for a total of 1’974 observations. The nominal
returns are expressed in percent as in Bollerslev and Ghysels (1996). This data set has
been proposed as an informal benchmark for GARCH time series software validation
(see, e.g., McCullough and Renfro 1998) and is available from the R package fEcofin
(Wuertz 2008) using data(dem2gbp). From this time series, the first 250 observations
are used to illustrate the Bayesian approach. The time series is shown in Figure 3.
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Figure 3: DEM/GBP foreign exchange log-returns (in percent, first 250 observations of
the dem2gbp data set).

The five estimation strategies are initialized with the mode of the kernel function: ω1 =
0.0350, ω2 = 0.2782, α = 0.2129 and p = 0.5826. The function AdMit finds a four-
component mixture approximation; the coefficient of variation at each iteration is 3.618
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1.776 1.435 and 1.430.
Table 1 reports the estimation results for the five strategies. From this table, we note that
the posterior mean estimates given by the five methodologies are very similar. This is
also the case for the posterior standard deviations, except for parameter ω2. The smaller
values obtained with the t1 approach may suggest that the tails of the marginal posterior
for ω2 is not fully covered by the Student-t candidate. The Griddy-Gibbs sampler is
extremely slow (i.e., 3 hours) compared to the adaptive approach (i.e., 7.1 minutes) and
the naive approach (i.e., 30 seconds). This illustrates that for complex problems the
Griddy-Gibbs is hardly usable as a real-time method. AdMit clearly requires more time
than the naive approach (i.e., 14 times slower) because of the time required for fitting
the adaptive mixture candidate (i.e., 7 minutes). However, its efficiency is far much
better, where the largest differences between the strategies are observed for parameter
ω2. In the importance sampling case, RNE is more than 14 times larger for the AdMit
approach. Figure 4 illustrates the differences between both methods. AdMit requires
422 seconds for fitting the mixture candidate but after 40 seconds it already outperforms
(in the sense of a higher precision) the naive approach in estimating the posterior mean
of ω2.
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Figure 4: Precision of the importance sampling estimator of posterior mean for parameter
ω2, i.e., 1/VAR

[
E(ω2 | y)

]
, for the four-component mixture candidate (in solid line) and

for the t1 candidate (in dotted line).

Regarding the M-H strategy for these candidates, we also notice the better efficiency
for AdMit. The autocorrelation in the MCMC output for the naive approach are much
higher than for AdMit, especially for parameter ω2, as illustrated in Figure 5 and Fig-
ure 6. We note that both acceptance rates are rather high. Apparently, the high auto-



David Ardia, Lennart F. Hoogerheide, Herman K. van Dijk 23

Table 1: Posterior results for the five estimation strategies.F

AdMit t1

IS MH IS MH GG

E(ω1 | y) 0.0452 0.0457 0.0454 0.0454 0.0450
NSE (×100) 0.0159 0.0272 0.0435 0.0469 0.0189

RNE 0.2636 0.0925 0.0361 0.0311 0.1869√
VAR(ω1 | y) 0.0182 0.0185 0.0185 0.0185 0.0182
ρ1(ω1) – 0.731 – 0.780 0.641
ρ10(ω1) – 0.094 – 0.229 0.070

E(ω2 | y) 0.3488 0.3519 0.3415 0.3390 0.3457
NSE (×100) 0.1503 0.2170 0.4843 0.4766 0.1501

RNE 0.1908 0.0885 0.0135 0.0119 0.1671√
VAR(ω2 | y) 0.1468 0.1443 0.1259 0.1160 0.1372
ρ1(ω2) – 0.731 – 0.877 0.610
ρ10(ω2) – 0.133 – 0.471 0.054

E(α | y) 0.2324 0.2316 0.2320 0.2310 0.2330
NSE (×100) 0.0787 0.1179 0.1159 0.1613 0.0571

RNE 0.2998 0.1326 0.1392 0.0699 0.5754√
VAR(α | y) 0.0964 0.0960 0.0967 0.0953 0.0969
ρ1(α) – 0.701 – 0.727 0.235
ρ10(α) – 0.056 – 0.111 0.009

E(p | y) 0.6361 0.6389 0.6337 0.6344 0.6347
NSE (×100) 0.1103 0.1736 0.2741 0.3143 0.1546

RNE 0.2893 0.1186 0.0465 0.0345 0.1471√
VAR(p | y) 0.1326 0.1336 0.1321 0.1306 0.1326
ρ1(p) — 0.710 – 0.751 0.785
ρ10(p) – 0.082 – 0.188 0.083

acceptance rate – 0.309 – 0.284 –
total time (sec.) 432 432 30 30 10’885
time estimation (sec.) 422 20 –
time sampling (sec.) 10 10 10 10 10’885

F AdMit: four-component mixture approximation; t1: Student-t distribution
with one degree of freedom; IS: importance sampling (i.e., using the func-
tion AdMitIS); M-H: independence chain Metropolis-Hastings algorithm (i.e.,
using the function AdMitMH); GG: Griddy-Gibbs sampler; E(• | y): poste-
rior mean estimate; NSE: numerical standard error of the posterior mean es-
timate; RNE: relative numerical efficiency of the posterior mean estimate;√

VAR(• | y): posterior standard deviation estimate; ρk(•): autocorrelation at
lag k in the MCMC output. The number of draws is 50’000 for the five esti-
mation strategies.
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correlation observed for the t1 M-H approach is caused by a too small candidate scale
matrix; a lot of draws are generated in small area of the parameter space which are gen-
erally accepted. Incidentally, the t1 M-H sequence gets stuck to a point far away from
the posterior model (i.e., it occurs a long sequence of rejections) which implies slowly
decaying autocorrelations.
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Figure 5: Autocorrelation function of the model parameters in the AdMit MH approach
(i.e., using a four-component mixture approximation as the candidate density in the
independence chain M-H algorithm).

The improvement of the AdMit approach over the naive approach is even more clear
when focusing on the tails of the joint posterior distribution. On the left-hand side of
Figure 7, we present the (natural) logarithm of the four-component mixture density.
We note the non-elliptical shape for high values of p where some components of the
mixture drag some of the candidate probability mass to the right-hand side of the plot.
The right-hand side of the figure displays 50’000 draws for (ω2 p)′ generated by the
independence chain M-H using the four-component mixture as the candidate density.
We notice the banana shape of the marginal distribution of (ω2 p)′. For large values of
p, the likelihood has a small information content for parameter ω2 so that the posterior
of ω2 tends to its diffuse prior. In particular, we can notice a non-negligible number of
draws in the quadrant [ω2 > 1; p > 0.8]. Figure 8 presents the same type of graphs for
the t1 candidate. The left-hand side clearly shows the elliptical shape of the (natural)
logarithm candidate density. On the right-hand side, only two draws are located in the
quadrant [ω2 > 1; p > 0.8]. In this case, the naive approach is not able to detect the mass
of the joint posterior in this region. Also, far to few draws are drawn in the quadrant
[0.8 < ω2 6 1; p > 0.8] compared to the AdMit approach. The marginal distribution
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Figure 6: Autocorrelation function of the model parameters in the t1 MH approach
(i.e., using a t1 approximation as the candidate density in the independence chain M-H
algorithm).
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Figure 7: Left: contour plot of the (natural) logarithm of the four-component mixture
density. Right: 50’000 draws from the marginal distribution of (ω2 p)′ obtained with
the AdMit MH strategy (i.e., using a four-component mixture approximation as the
candidate density in the independence chain M-H algorithm).
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Figure 8: Left: contour plot of the (natural) logarithm of the t1 candidate density. Right:
50’000 draws from the marginal distribution of (ω2 p)′ obtained with the t1 MH strategy
(i.e., using a t1 approximation as the candidate density in the independence chain M-H
algorithm).

obtained with the Griddy-Gibbs displayed in Figure 9 underlines the importance of the
additional components in reproducing the non-elliptical shapes of the joint posterior.
The additional time required by AdMit compared to the naive approach is therefore
useful and acts as a way to robustify the Bayesian estimation of this model.

In Table 2, we report the estimated probability P(ω2 > ω∗2 | p > p∗,y) for different
values of ω∗2 and p∗ in the upper-right tail of the marginal distribution for (ω2 p)′.
The probabilities are estimated using the 50’000 draws generated by the AdMit MH, t1
MH and Griddy-Gibbs strategies. The 95% confidence intervals (CI) of the estimated
probabilities are obtained using a robust estimate of the numerical standard error (i.e.,
using Time-series SE of the summary function provided by the R package coda). From
this table, we notice that the t1 approximation completely underestimates the probability
compared to the Griddy-Gibbs approach. Most of the CI given by this approach are the
same due to the small amount of draws in the upper-right quadrant of the marginal
distribution. These should obviously be smaller for larger ω∗2. On the other hand, the
CI provided by AdMit MH overlap the CI of the Griddy-Gibbs in every cases. The
probability estimates in the extreme tail are therefore not significantly different between
the AdMit MH approach and the Griddy-Gibbs sampler.

5. Concluding remarks

This paper presented the R package AdMit which provides functions to approximate and
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Figure 9: 50’000 draws from the marginal distribution of (ω2 p)′ using the Griddy-Gibbs
sampler.

Table 2: Estimation of the probability P(ω2 > ω∗2 | p > p∗,y) for different
values of ω∗2 and p∗.F

ω∗2 = 0.8 ω∗2 = 1.0 ω∗2 = 1.2
p∗ [ 95% CI ] [ 95% CI ] [ 95% CI ]

AdMit MH 0.8 0.0934 0.1502 0.0259 0.0807 -0.0010 0.0393
0.9 0.4055 0.6697 0.2119 0.4679 0.0395 0.2677

t1 MH 0.8 -0.0008 0.0262 -0.0042 0.0132 -0.0042 0.0132
0.9 -0.0024 0.1231 -0.0024 0.1231 -0.0024 0.1231

GG 0.8 0.1087 0.1308 0.0400 0.0561 0.0168 0.0263
0.9 0.4013 0.4816 0.2206 0.2977 0.1093 0.1786

F AdMit MH: independence chain M-H algorithm using a four-component
mixture approximation as the candidate density; t1: independence chain
M-H algorithm using a Student-t distribution with one degree of freedom
as the candidate density; GG: Griddy-Gibbs sampler; 95% CI: 95% confi-
dence intervals of the estimated probability P(ω2 > ω∗2 | p > p∗,y) obtained
using robust standard errors (i.e., using Time-series SE of the summary
function provided by the R package coda). The number of draws in the
joint posterior sample is 50’000 for the three estimation strategies.
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sample from a certain target distribution given only a kernel of the target density func-
tion. The estimation procedure is fully automatic and thus avoids the time-consuming
and difficult task of tuning a sampling algorithm. The relevance of the package has been
shown in two examples. The first illustrated in detail the use of the functions provided by
the package in a bivariate bimodal distribution. The second showed the relevance of the
AdMit procedure through the Bayesian estimation of a mixture of ARCH model fitted
to foreign exchange log-returns data. The methodology was compared to standard cases
of importance sampling and the Metropolis-Hastings algorithm using a naive candidate
and with the Griddy-Gibbs approach. Both for investigating means and tails of the joint
posterior distribution the adaptive approach is preferable.

In a recent paper, Hoogerheide and van Dijk (2008) illustrate the usefulness of the
AdMit approach both in a bivariate posterior in an instrumental variable model and in
a eight-dimensional posterior in a mixture model. We believe that this approach may be
applicable in many fields of research and hope that the R package AdMit will be fruitful
for many researchers like econometricians or applied statisticians.

Finally, if you use R or AdMit, please cite the software in publications. Use:

> citation()

and:

> citation("AdMit")

6. Computational details

The results in this paper were obtained using R 2.7.0 (R Development Core Team 2008)
with the packages AdMit 1.00-02 (Ardia et al. 2008), coda 0.13-2 (Plummer et al. 2008),
fEcofin 270.73 (Wuertz 2008) and mvtnorm 0.9-0 (Genz, Bretz, and Hothorn 2008). R
itself and all packages used are available from CRAN at http://CRAN.R-project.org/.
Computations were performed on a Genuine Intel® dual core CPU T2400 1.83Ghz pro-
cessor. Code outputs were obtained using options(digits=4, max.print=40). Since
the functions AdMit, AdMitIS and AdMitMH highly rely on evaluations of the function
KERNEL, we strongly advise the users to implement this function in a vectorized fash-
ion. Also, implementation in lower-level languages like C or Fortran is possible using the
functions .C and .Fortran.
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