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Abstract: The main objective of this paper is to stimulate interest in stability analysis for
scheduling problems. In spite of impressive theoretical results in sequencing and scheduling,

up to now the implementation of scheduling algorithms with a rather deep mathematical
background in production planning, scheduling and control, and in other real-life problems
with sequencing aspects is limited. In classical scheduling theory, mainly deterministic sys-
tems are considered and the processing times of all operations are supposed to be given in
advance. Such problems do not often arise in practice: Even if the processing times are
known before applying a scheduling procedure, OR workers are forced to take into account

the precision of equipment, which is used to calculate the processing times, round-o� errors
in the calculation of a schedule, errors within the practical realization of a schedule, machine

breakdowns, additional jobs and so on. This paper is devoted to the calculation of the sta-

bility radius of an optimal or an approximate schedule. We survey some recent results in
this �eld and derive new results in order to make this approach more suitable for practical

use. Computational results on the calculation of the stability radius for randomly generated
job shop scheduling problems are presented. The extreme values of the stability radius are

considered in more detail. The new results are amply illustrated with examples.
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1 Introduction

This paper is devoted to a stability analysis of an optimal or approximate solution of discrete

optimization problems, mainly from the �eld of scheduling theory. It basically consists of

two parts, which are devoted to two di�erent settings of scheduling problems and which are

completed by appropriate calculation methods. The main idea is to combine in one paper

di�erent types of scheduling settings and to show that the same stability analysis may be

suitable for optimization problems of di�erent complexity. Due to this, results derived for

one problem type may also be used for other types (directly or as a possible subject for

additional research).

The �rst part (Sections 2 - 6) deals with the general shop scheduling problem, where a set of

jobs has to be processed on a set of machines. Each maximal non-preemptive processing of a

job on a machine is called an operation and there are given precedence constraints between

certain operations. In the �rst part of the paper, we consider as objective the minimization of

the makespan. A suitable model for representing this scheduling problem is the disjunctive

or mixed graph (see Section 2). We investigate the stability ball of an optimal digraph
representing a semi-active schedule s for a general shop (scheduling) problem, i.e., a ball in
the space of the numerical input data such that within this ball schedule s remains optimal.
In Section 3 we present a formal de�nition of the stability radius (the maximal value of the
radius of such a stability ball) and survey some previous results. An illustrative example
of the job shop problem with the makespan criterion (as a special case of the general shop

problem) is given in Section 4. In Section 5 we improve a known algorithm for calculating
the stability radius for the general shop problem. In Section 6 we discuss computational
results on the calculation of the stability radii for randomly generated job shop problems.

Stability results for simpler (but still NP-hard) scheduling problems, which may be formu-
lated as a linear binary program, are surveyed and improved in the second part of the paper
(Sections 7 { 14). This part is devoted to a stability analysis of an approximate solution of
such types of optimization problems. All results presented in the second part are not only

valid for scheduling problems of this type, but for the general class of linear binary pro-
gramming problems as well. Some basic results on the stability analysis of an approximate
solution are given in Section 7. Section 8 deals with the stability region of an approximate
solution. The derived properties are illustrated on an example in Section 9. An upper bound
on the stability radius is derived in Section 10. Section 11 presents necessary and su�cient

conditions for a zero stability radius of an approximate solution. In Section 12 lower bounds
for the stability radius are derived. The calculation of the stability radius of an approximate

solution is treated in Section 13. In Section 14 we demonstrate the calculation of the stability

radius on the example from Section 9. Finally, some open questions in stability analysis are
formulated in Section 15.

2 The General Shop Problem

Most scheduling problems may be represented as extremal problems on disjunctive (mixed)

graphs [9, 16, 22, 23]. The only requirement for this representation is the prohibition of
preemptions of operations. In the �rst part of the paper we use the disjunctive graph model
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to represent the input data of the so-called general shop problem usually denoted by G==�

and de�ned as follows.

There is a set Q = f1; 2; . . . ; qg of operations that have to be processed on the machines

of a set M = fM1;M2; . . . ;Mmg. Let Qk denote the set of operations that have to be

processed on machine Mk 2 M : Q = [mk=1Qk; Qk 6= ;; Qk \ Ql = ;; k = 1; 2; . . . ;m; l =

1; 2; . . . ;m; k 6= l: At any time each machine can process at most one operation and the

processing time pi � 0 of operation i 2 Qk on machine Mk 2 M is given before scheduling.

Preemptions of operations are not allowed and this implies that a schedule of the operations

Q on the machines M may be de�ned by the completion times ci or by the starting times

ci � pi of all operations i 2 Q. We assume in the following that ci � pi holds for each

i 2 Q. The set of operations Q is supposed to be partially ordered by the given precedence

constraints !: if i! j is given, then

ci � cj � pj (2:1)

must hold for any feasible schedule. Since at any time a machine can process at most one

operation, the conditions i 2 Qk and j 2 Qk imply one of the following inequalities:

ci � cj � pj or cj � ci � pi: (2:2)

The general shop problem G==� is to �nd a feasible schedule (c1; c2; . . . ; cq) in order to min-
imize the value of a given non-decreasing objective function �(c1; c2; . . . ; cq). The problem
data are represented by means of a disjunctive (or mixed) graph G = (Q;C;D) as follows.
The set Q of operations is the set of vertices, a non-negative weight pi being assigned to
each vertex i 2 Q. C is the set of directed (conjunctive) arcs, representing conditions (2.1):

C = f(i; j) j i! j; i 2 Q; j 2 Qg: D is the set of pairs of directed (disjunctive) arcs, repre-
senting conditions (2.2): D = f(i; j); (j; i) j i 2 Qk; j 2 Qk; i 6! j; j 6! i; k = 1; 2; . . . ;mg:

An analogous model may be given in terms of a mixed graph G0 = (Q;C;D0) using an
undirected edge [i; j] instead of a pair of disjunctive arcs f(i; j); (j; i)g: D0 = f[i; j] j i 2
Qk; j 2 Qk; i 6! j; j 6! i; k = 1; 2; . . . ;mg:

One can note that conditions (2.2) may be implied not only by the same machine Mk,
which has to process operations i and j, but also by the same job in the case of a non-�xed
technological route which includes both operations i and j (like in the open shop problem).
We should mention that all known and new results presented in the �rst part of the paper

(i.e. in Sections 2 - 6) remain valid also for such type of the conditions (2.2). However, for
the sake of simplicity we shall restrict our presentation to the case that machine Mk is the

only reason for the occurrence of conditions (2.2).

While solving problem G==�, each pair of disjunctive arcs f(i; j); (j; i)g must be settled, i.e.,
one of these arcs must be added to a subset Ds � D of chosen arcs and the other one must
be rejected [9, 16, 22]. The choice of arc (i; j) ((j; i), respectively) de�nes a precedence of

operation i (operation j) over operation j (operation i) on their common machineMk 2M .

A feasible schedule is de�ned by a subset Ds � D such that

(*) (i; j) 2 Ds if and only if (j; i) 2 DnDs, and

(**) the digraph Gs = (Q;C [Ds; ;) has no circuits.

Since the objective function is non-decreasing in the completion times, we may consider

only semi-active schedules [9, 23]. Let P (G) = fG1; G2; . . . ; G�g be the set of all digraphs
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Gs that satisfy both conditions (*) and (**). On the one hand, each digraph Gs 2 P (G)

de�nes a unique semi-active schedule s = (c1(s); c2(s); . . . ; cq(s)); where ci(s) is the earliest

completion time of operation i 2 Q with respect to the digraph Gs. On the other hand,

each semi-active schedule de�nes a unique digraph Gs 2 P (G). In the following we call the

digraph Gs 2 P (G) optimal if s is an optimal schedule.

The general shop problem (and many of its special cases) is NP-hard in the strong sense for all

criteria considered in classical scheduling theory [9, 23], but one can �nd an optimal schedule

s = (c1(s); c2(s); . . . ; cq(s)) in O(q
2) time after having constructed an optimal digraph Gs. It

follows that the main di�culty of problem G==� consists in constructing an optimal digraph

Gs = (Q;C [Ds; ;), in other words, in constructing the best set Ds of chosen arcs. Because

of its importance, set Ds is called the signature of a schedule s [18, 20, 22].

3 The Stability Radius of an Optimal Digraph

One of the main questions under consideration is as follows. How can one vary the processing
times pi; i 2 Q, in the problem G==� such that an optimal schedule remains optimal? Note
that any variation of the processing times changes an optimal schedule s, however, the
optimal digraph Gs = (Q;C [ Ds; ;) may remain the same and the signature Ds of an
optimal schedule s is more stable. Also, in practice it is often not so important to know

exactly an optimal solution (i.e., the times when the operations have to be started and
have to be completed), but rather the optimal sequences in which the operations have to be
processed on the machines Mk 2 M (this is again due to the fact that optimal sequences
are more stable than an optimal schedule). Therefore, following [8, 17, 18] we investigate
the stability of an optimal digraph Gs, which represents a solution of problem G==� in a

compact form. We concretize the above question: Under which largest independent changes
in the components of the vector of the processing times p = (p1; p2; . . . ; pq) does the digraph
Gs remain optimal? Next, we introduce these notions in a formal way.

Let Rq be the set of all non-negative real vectors p with the maximummetric. The distance
r(p; p0) between the vectors p 2 Rq and p0 2 Rq is equal to maxfjpi � p0ij j i 2 Qg; where
jpi � p0ij denotes the absolute value of the di�erence pi � p0i.

De�nition 1 The closed ball O%(p) with the radius % and the centre p in the space of all

q-dimensional real vectors is called a stability ball of an optimal digraph Gs, if for any vector

p0 2 O%(p) \R
q of processing times the schedule s remains optimal.

Note that a stability ball may include also q-dimensional vectors with negative real compo-

nents.

De�nition 2 The radius % of the largest stability ball O%(p) of the optimal digraph Gs is

called the stability radius of Gs and is denoted by %s(p).

In the remainder of this section we survey recent results on stability analysis and in Section 5
we derive some results for problem G==Cmax with the makespan criterion: �(c1; c2; . . . ; cq) =

maxfci j i 2 Qg = Cmax: Let < � > denote the set of vertices which form a path � in the
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digraph Gs and let lp(�) be the length of this path: lp(�) =
P

i2<�> pi: Obviously, the value

of maxfci(s) j i 2 Qg of a schedule s is equal to the length of a critical (longest) path in Gs

and, hence, in the case of the makespan criterion we have to determine a feasible schedule s

such that the length of a critical path in Gs is minimized:

max
�2H 0

s

lp(�) = min
k=1;...;�

max
�2H 0

k

lp(�); (3:1)

where H 0
k denotes the set of all paths in the digraph Gk. Since the processing times are

non-negative, we can consider in (3.1) only dominant paths. The path � 2 H 0
k is called

dominant [8, 18, 20], if there is no other path � 2 H 0
k such that < � > � < � >. Otherwise,

we write that path � is dominated by path �. Let Hk and H denote the sets of all dominant

paths in the digraphs Gk = (Q;C [Dk; ;) and (Q;C; ;), respectively.

It has been shown in [17, 18] that, if s is an optimal schedule of problem G==Cmax, the value

%s(p) either satis�es the inequalities

0 � %s(p) � maxfpi j i = 1; 2; . . . ; qg = p� (3:2)

or it is in�nitely large: %s(p) =1:

Let Hp

k denote the set of all dominant critical paths in the digraph Gk 2 P (G) with the
vector p 2 Rq of weights. Obviously, Hp

k � Hk holds for each k = 1; 2; . . . ; �. We denote the
set of all optimal schedules by �(p). The following theorems (see [17, 18]) characterize the
extreme values of the stability radius.

Theorem 1 For an optimal schedule s 2 �(p) of problem G==Cmax, the strict inequality

%s(p) > 0 holds if and only if for any path � 2 Hp
s nH and any other optimal schedule

k 2 �(p) (provided that j�(p)j > 1) there exists a path � 2 Hp

k such that < � > � < � >.

Theorem 2 For problem G==Cmax, we have %s(p) =1 if and only if for any path � 2 HsnH

and any digraph Gk 2 P (G) there exists a path � 2 Hk such that < � > � < � >.

Unfortunately, for problem G==Cmax it is di�cult to verify the conditions of Theorems 1 and
2. In [8], simpler (in the computational sense) necessary and su�cient conditions have been

derived for a given job shop problem J==Cmax to have at least one optimal digraph with an
in�nitely large stability radius. It has been shown that the latter conditions can be veri�ed
in O(q2) time and this is also the complexity of actually constructing an optimal makespan
schedule s with %s(p) = 1. Similar results have been obtained for problem J==Lmax of

minimizing maximum lateness. It has also been proven in [8] that for a problem J==� with

any other classical criterion �(c1; c2; . . . ; cq), presented e.g. in [9], there does not exist an
optimal schedule s with an in�nitely large stability radius. Note also that for the 
ow shop

problem F==Cmax and the open shop problem O==Cmax, there exists an optimal schedule s
with %s(p) = 1 only for very small examples. More precisely, if jJ�j > 1 and m > 1, we

have %s(p) � p� for problem O==Cmax, and if jJ�j � 2 and m � 2, we have %s(p) � p� for

problem F==Cmax (jJ
�j denotes the cardinality of the set of jobs J� = (J1; J2; . . . ; JjJ�j).

A general formula for calculating %s(p) for problem G==Cmax has been given in [17, 18]. In

Section 5 we slightly simplify this formula in order to reduce the required time for calculating
the stability radius and to include the case %s(p) =1: To illustrate the above notions and

Theorems 1 and 2, we consider in the following section an example of problem J==Cmax with

two jobs and two machines.
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4 Example 1

Let a job shop problem be speci�ed by the mixed graph G0 = (Q;C;D0) given in Fig. 1.

The �rst job consists of operations 1 and 2, and the second job consists of operations 3, 4,

and 5. So we have the precedence constraints 1 ! 2; 3 ! 4 and 4 ! 5. The assignment

of the operations to the machines is as follows: Q1 = f1; 4g; Q2 = f2; 3; 5g. The vector

p = (10; 20; 30; 40; 20) de�nes the processing times of the operations Q = f1; 2; 3; 4; 5g.

Hereafter we shall refer to this example as Example 1.

F i g u r e 1

For Example 1 we get P (G) = fG1; G2; G3; G4; G5g with the following signatures of all semi-

active schedules: D1 = f(1; 4); (3; 2); (2; 5)g; D2 = f(1; 4); (3; 2); (5; 2)g, D3 = f(1; 4); (2; 3),

(2; 5)g, D4 = f(4; 1), (3; 2), (2; 5)g and D5 = f(4; 1); (3; 2); (5; 2)g. The corresponding sets of

dominant paths are the following: H1 = f(1; 2; 5); (3; 2; 5); (1; 4; 5), (3; 4; 5)g; H2 = f(1; 4; 5; 2),

(3; 4; 5; 2)g, H3 = f(1; 2; 3; 4; 5)g; H4 = f(3; 4; 1; 2; 5)g; H5 = f(3; 4; 1; 2), (3; 4; 5; 2)g. The

(makespan) optimal digraph G1 = (Q;C [D1; ;) is shown in Fig. 2 and it de�nes the unique
optimal semi-active schedule (10; 50; 30; 70; 90).

F i g u r e 2

Since there exists only one optimal digraph G1, we conclude that %1(p) > 0 due to Theorem

1. On the other hand, the value %1(p) cannot be in�nitely large, since there exist the
path � = (1; 2; 5) in the set H1nH and the digraph G5 2 P (G) such that for any path
� 2 H5 the inclusion < � > � < � > does not hold. Indeed f1; 2; 5g 6� f1; 2; 3; 4g and
f1; 2; 5g 6� f2; 3; 4; 5g: Therefore due to Theorem 2, we have %1(p) <1 and, as a result, the
inequalities 0 < %1(p) � 40 = p� hold (see (3.2)).

5 The Calculation of %s(p) for Problem G==Cmax

Next, we derive a formula for calculating the stability radius which, similar to that proven

in [18], is based on the enumeration and comparison of the dominant paths of an optimal
and other feasible digraphs. However, using the dominance relation between the set of paths
of an optimal and that of a feasible digraph, we shall reduce the set of paths which have to

be compared (see set Hsk in the following proof) while calculating the stability radius. Due

to this, the new formula often leads to a smaller running time for some scheduling problems
(see calculation for Example 1 at the end of this section). Moreover, while the formula from

[18] is valid only for �nite values %s(p) and it does not identify the case when the stability
radius is in�nitely large, the new formula holds for the general case. More precisely, the

calculation of %s(p) in accordance with the new formula indicates the case %s(p) =1 (if it

occurs).

First, assume that %s(p) < 1 holds for the given optimal schedule s 2 �(p) of problem

G==Cmax. Using De�nition 2 and equality (3.1), we can conclude that

%s(p) = inffr(p; p0) j p0 2 Rq; max
�2Hs

lp
0

(�) > min
k=1;...;�

max
�2Hk

lp
0

(�)g:
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Therefore, to �nd the stability radius %s(p) it is su�cient to construct a vector p0 2 Rq which

satis�es the following three conditions:

1) there exists a digraph Gk 2 P (G) such that

max
�2Hs

lp
0

(�) = max
�2Hk

lp
0

(�); (5:1)

2) for any given real � > 0 which is close to zero, there exists a vector p� such that r(p0; p�) = �

and the inequality

max
�2Hs

lp
�

(�) > max
�2Hk

lp
�

(�) (5:2)

is satis�ed for at least one digraph Gk 2 P (G);

3) the distance r(p; p0) achieves its minimal value among the distances between vector p and

the other vectors in the space Rq which satisfy both conditions 1 and 2 above.

After having constructed such a vector p0 2 Rq, one can de�ne the stability radius of the

digraph Gs: %s(p) = r(p; p0); since the critical path in the digraph Gs becomes larger than

that of the digraph Gk for any p
� 2 Rq with positive real �, which may be as small as possible

(see condition 2), and so the digraph Gs is no longer optimal, while in the ball Or(p;p0)(p)
digraph Gs remains optimal (see condition 3).

Thus, the calculation of the stability radius is reduced to an extremal problem on a given set
of weighted digraphs P (G) = fG1; G2; . . . ; G�g with a variable vector p of weights assigned to
the vertices of each digraph Gi 2 P (G). As it follows from equality (5.1) and inequality (5.2),
the main objects for such a calculation are the sets of dominant paths Hk; k = 1; 2; . . . ; �.
Similarly to [18], we look next for a vector p0 = p(r) = (p1(r); p2(r); . . . ; pq(r)) 2 Rq with

the components pi(r) 2 fpi; pi + r; pi � rg on the basis of a direct comparison of the paths
from the set Hs and the paths from the sets Hk, where k = 1; 2; . . . ; � and k 6= s.

Let the value lp(�) be greater than the length of a critical path in an optimal digraph Gs.
To satisfy equality (5.1), the length of a path � 2 Hk may not be greater than that of at
least one path � 2 Hs and there is a path � 2 Hk with a length equal to the length of a
critical path in Gs. Thus, if we have calculated

r� = min
�2Hs

lp(�)� lp(�)

j < � > [ < � > j � j < � > \ < � > j
; (5:3)

we obtain the equality max�2Hs
lp(r)(�) = lp(r)(�) for the vector p(r) = p(r�) with the

components

pi(r) =

8<
:

pi + r� ; if i 2 < � >;

pi � r�; if i 2 < � > n < � >;

pi; if i 62 < � > [ < � > :

(5:4)

On the other hand, to reach equality (5.1) for the whole digraph Gk, we have to repeat

the calculation (5.3) for each path � 2 Hk with lp(�) > lps , where lps denotes the length

of a critical path in Gs. Thus, instead of the vector p(r�) we have to consider the vector
p(r) = p(rGk

) calculated according to formula (5.4), where

rGk
= min

�2Hs

max
�2Hk; lp(�)>l

p
s

lp(�) � lp(�)

j < � > [ < � > j � j < � > \ < � > j
: (5:5)

Let us now consider inequality (5.2). Since the processing times are non-negative, this

inequality may not be valid for a vector p� 2 Rq if path � is dominated by path �: < � > �
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< � >. Thus we can restrict our consideration to the subset Hsk of the set Hs of all paths,

which are not dominated by paths from Hk:

Hsk =
n
� 2 Hs j there is no path � 2 Hk such that < � > � < � >

o
:

Thus, we can replace Hs in equality (5.5) by Hsk. To obtain the desired vector p0 2 Rq, we

have to use equality (5.5) for each digraph Gk 2 P (G); k 6= s. Let r denote the minimum of

such a value rGk
: r = rG�

k
= minfrGk

j Gk 2 P (G); k 6= sg, and let v� 2 Hk� and �� 2 Hsk�

be paths at which the value rG� has been reached:

rGk�
= r�� =

lp(��)� lp(��)

j < �� > [ < �� > j � j < �� > \ < �� > j
:

Taking into account (5.4), we note that, if r�� � pi for each i 2< �� > n < �� >, the vector

p(r) = p(r��) does not contain negative components, i.e., p(r) 2 Rq. For the general case we

have obtained only a lower bound for the stability radius:

%s(p) � r = min
k=1;...;�; k 6=s

min
�2Hsk

max
�2Hk; lp(�)>l

p
s

lp(�)� lp(�)

j < � > [ < � > j � j < � > \ < � > j
: (5:6)

This bound is tight. Indeed, if %s(p) � pi for each i 2< �� > n < �� >, then %s(p) = r due
to the above remark. For practical use, we note that %s(p) = r in (5.6) if %s(p) � minfpi j

i 2 Qg.

To obtain the exact value of %s(p) in the general case, we follow [18]: Let p0�� be equal to

zero and let (p1��; p
2
��; . . . ; p

w��

�� ) denote a non-decreasing sequence of the processing times of
the operations from the set < � > n < � >, where w�� = j < � > n < � > j. We obtain the
following assertion.

Theorem 3 If s 2 �(p) holds for problem G==Cmax, then

%s(p) = min
k=1;...;�;k 6=s

min
�2Hsk

max
�2Hk;lp(�)>l

p
s

max
�=0;...;w��

lp(�)� lp(�) �
P�

�=0 p
�
��

j < � > [ < � > j � j < � > \ < � > j � �
:

(5:7)

Now we can reject the above assumption that %s(p) < 1 : When coding formula (5.7), we
start with setting %s(p) =1. If Hsk = ; for any k = 1; 2; . . . ; �; k 6= s (see Theorem 2), we

do not change the initial value of %s(p) which indicates that the stability radius is in�nitely
large. Thus formula (5.7) gives the exact value of the stability radius for any optimal digraph

Gs 2 P (G); including the extreme values 0 and1 of %s(p): Note also that, if only a subset of
the processing times (say, P � fp1; p2; . . . ; pqg) can be changed, but the other ones cannot,

formulas (5.6) and (5.7) remain valid provided that the di�erence j < � > [ < � > j � j <

� > \ < � > j is replaced by the di�erence jf< � > [ < � >g\ P j� j < � > \ < � > \ P j.

On the basis of Example 1 (see Section 4), we show that the calculation of %s(p) may be

simpli�ed considerably due to the use of Hsk instead of Hs. First we compare the setsH1 and
H2 (see Section 3). Obviously, the paths (1; 2; 5) 2 H1 and (1; 4; 5) 2 H1 are dominated by

the path (1; 4; 5; 2) 2 H2. The paths (3; 2; 5) 2 H1 and (3; 4; 5) 2 H1 are dominated by the
path (3; 4; 5; 2) 2 H2. Thus, we haveH1;2 = ;. Similarly, one can verify that H1;3 = H1;4 = ;.
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So for Example 1 only the set H1;5 is nonempty: H1;5 = f(1; 2; 5); (1; 4; 5)g, and we have to

compare the lengths of four pairs of paths. For path �1 = (3; 4; 1; 2) 2 H5 and for the two

paths from H1;5, we have

r�1 = min
n100 � 50

3
;
100 � 70

3

o
= 10:

For path �2 = (3; 4; 5; 2) 2 H5 and for the two paths from H1;5, we have

r�2 = min
n110 � 50

3
;
110 � 70

3

o
= 13

1

3
:

Thus, we can calculate r = rG5
= maxf10; 131

3
g = 131

3
; �� = �2 = (3; 4; 5; 2) and �� =

(1; 4; 5). Since r � pi holds for each i 2 f2; 3g = < �� > n < �� >, we conclude that

%1(p) = r = 131
3
. While the calculation of %1(p) on the basis of formula (5.7) requires to

compare the lengths of four pairs of paths, the calculation of %1(p) on the basis of formula

(13) in [18] requires to consider the lengths of 24 pairs of paths. Moreover, in fact, we use

here the simpler formula (5.6) as equality %s(p) = r on the basis of our earlier remark about

the tightness of (5.6). According to (5.4), we can calculate vector p0 = p(r):

p0 = (10 + 13
1

3
; 20 � 13

1

3
; 30� 13

1

3
; 40 + 13

1

3
; 20 + 13

1

3
) = (23

1

3
; 6
2

3
; 16

2

3
; 53

1

3
; 33

1

3
);

for which we have l
p0

1 = l
p0

5 = 110; l
p0

2 = 1162
3
; l

p0

3 = l
p0

4 = 1331
3
. Thus, �(p0) = f1; 5g

holds (see condition 1) and for any given small � > 0 we can construct the vector p� =
(231

3
+ �; 62

3
; 162

3
; 531

3
; 331

3
) for which �(p�) = f5g. Due to H1;2 = H1;3 = H1;4 = ;, it is easy

to see that condition 3 is satis�ed, too.

6 Computational Results

In this section we give some computational results of the program for calculating the stability
radii for all optimal schedules �(p) of a problem G==Cmax. The input and output data of
the program are as follows.

Input data: The mixed graph G0 = (Q;C;D0) with the weights p = (p1; p2; . . . ; pq).

Output data: The number jP (G)j of feasible semi-active schedules; the number j�(p)j of
semi-active optimal schedules. For each optimal schedule s 2 �(p), the output data include

the stability radius %s(p), its signature Ds and all signatures Dk, paths �
� 2 Hsk and �

� 2 Hk

at which the stability radius %s(p) has been reached (see Section 5). If there was more than

one optimal schedule, we calculated the minimal, average and maximal di�erences of their

stability radii.

We coded an algorithm based on the formulas (5.6) and (5.7) in FORTRAN. To restrict the

number of digraphs Gk 2 P (G), with which an optimal digraph Gs has to be compared,
we use the simple bounds from [21]. To this end, we compare digraph Gs consecutively

with the digraphs Gk from P (G) in non-decreasing order of the objective function values
(the makespans). The bound from [21] is used as stopping rule, since, due to this rule, the

digraphs with large makespan value need not be considered.
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When randomly generating the test instances, we distributed the operations evenly over the

machines and then the operations assigned to the same machine have been evenly distributed

over the jobs. We considered the following 15 types of job shop problems J==Cmax.

1: jJ�j = 3; n1 = n2 = n3 = 3;m = 3.

2: jJ�j = 3; n1 = 3; n2 = 2; n3 = 4;m = 3.

3: jJ�j = 3; n1 = n2 = n3 = 4;m = 4.

4: jJ�j = 4; n1 = n2 = n3 = n4 = 3;m = 6.

5: jJ�j = 4; n1 = n2 = 3; n3 = n4 = 2;m = 4.

6: jJ�j = 4; n1 = 4; n2 = 3; n3 = n4 = 2;m = 6.

7: jJ�j = 5; n1 = n2 = 4; n3 = n4 = 3; n5 = 2;m = 7.

8: jJ�j = 5; n1 = n2 = 3; n3 = n4 = n5 = 2;m = 6.

9: jJ�j = 6; n1 = n2 = n3 = n4 = 3; n5 = n6 = 2;m = 7.

10: jJ�j = 6; n1 = n2 = 4; n3 = n4 = 3; n5 = n6 = 2;m = 8.

11: jJ�j = 5; n1 = 5; n2 = n3 = 4; n4 = n5 = 3;m = 9.

12: jJ�j = 6; n1 = n2 = n3 = n4 = n5 = n6 = 3;m = 8.

13: jJ�j = 6; n1 = n2 = 5; n3 = n4 = 3; n5 = n6 = 2;m = 10.

14: jJ�j = 7; n1 = n2 = n3 = n4 = 3; n5 = n6 = n7 = 2;m = 9.
15: jJ�j = 7; n1 = n2 = n3 = n4 = n5 = 3; n6 = n7 = 2;m = 9.

Here ni denotes the number of operations per job Ji 2 J� = fJ1; J2; . . . ; JjJ�jg. First we
generated 100 (pseudo)random instances of each of the types 1 - 10, where the processing
times are uniformly distributed real numbers in the segment [pmin; pmax] = [10; 1000]. The
results are given in Table 1. For each type of problems (column 1 in Table 1) we calculated the
stability radii of all makespan optimal semi-active schedules of all 100 randomly generated

instances. The minimal, average and maximal values of %s(p) among all 100 instances are
presented in columns 2, 3 and 4, respectively. Moreover, each calculated stability radius
has been divided by pAV E = (

P
i2Q pi)=q, and the obtained minimal, average and maximal

values for the whole series of instances are presented in columns 5, 6 and 7, respectively. If
there was more than one makespan optimal schedule for the same instance, we calculated

the minimal, average and maximal di�erences between them. The average and maximal
di�erences among all 100 instances of a series are presented in columns 8 and 9. Note
that the minimum of these values was equal to zero for each type of problems 1 - 10. The
minimal, average and maximal numbers of feasible semi-active schedules among 100 instances
of a series are presented in columns 10, 11 and 12. The average and maximal numbers of

optimal schedules are presented in columns 13 and 14. For each of these 10 types, there

was at least one instance with only one makespan optimal schedule. Column 15 contains the
numbers NPO of instances (among 100 considered in each series) with two or more makespan
optimal schedules. For each instance the CPU time, which was necessary for constructing the

whole set of feasible semi-active schedules and calculating the stability radii for all optimal

schedules, has been measured. The average value of this CPU time (in seconds on a PC 486,

33 MHz) for each type of problems is given in column 16.

T a b l e 1

We can observe that (at least for the considered types of problems) the optimal digraph is

often not unique. Only for the problems of types 1 and 3 we obtained a value of NPO less

than 50 %. The largest numbers of optimal schedules were obtained for the problems of
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type 10: On average, each of these instances has more than 16 makespan optimal schedules,

and there was an instance even with 66 makespan optimal schedules. So, one can conclude

that from a practical point of view, it makes sense to look for a makespan optimal schedule

with the largest value of the stability radius. The di�erence of the stability radii of the

optimal schedules of the same problem type may be rather large (see columns 8 and 9). This

di�erence reached the value 301 for an instance of type 8, and on average, for all problem

types 1 { 10, this di�erence was between 30.09 and 56.73.

From columns 2 { 7 it follows that makespan optimal schedules are stable (i.e. they have

a strictly positive stability radius), and therefore %s(p) may be used as a good measure of

stability of makespan optimal schedules. It is worth to note that in this simulation study, we

never obtained an unstable makespan optimal schedule, i.e., one with zero stability radius.

However, in series of types 4, 5 and 9, there were optimal schedules with very small relative

values of %s(p) : %s(p)=pAV E = 0:01.

T a b l e 2

On the basis of problems of types 11 { 15, we investigated the in
uence of di�erent ranges

of the variations of the processing times: [10; 100]; [10; 1000] and [100; 1000]. To this end we
generated 10 problems of each of the types 11 { 15. The results are given in Table 2. Of
course, larger processing times imply larger values of the stability radii (see columns 2, 3
and 4 in Table 2), but the relative values of the stability radii do not di�er very much for
di�erent ranges of the processing times (see columns 5, 6 and 7). Indeed, we have obtained
the following segments for the average values of %(p)=pAV E: [4.39, 10.05], [4.96, 13.28] and

[3.76, 8.16].

F i g u r e 3

In conclusion of the �rst part of the paper we present in Fig. 3 one randomly generated
instance of type 10 (see Table 1), where the processing times pi are given near the vertices
i 2 f1; 2; . . . ; 18g and operations 0 (start) and � (�nish) are �ctitious. To give an impression

on the above simulation study, we present the following additional information for the mixed
graph which is drawn in Fig. 3. This instance has 1728 feasible semi-active schedules, 12
of them are makespan optimal: 4 optimal schedules have the smallest stability radius 9.99,

4 other optimal schedules have the stability radius 14.86, and the other optimal schedules
have the stability radii 25.67, 31.08, 58.16 and 63.57, respectively. The optimal value of the

objective function (makespan) for this instance is equal to 2886.47. The largest value of
the objective function among all feasible semi-active schedules is equal to 6750.76. While

calculating all 12 stability radii for this instance, we considered about 29 % of all feasible
semi-active schedules due to the mentioned bounds from [21]. However, it is worth to note

that to �nd the exact values of the stability radii (without guarantee that these are indeed

the exact values of the stability radii), it was su�cient to consider only 0.52 % of all feasible

semi-active schedules. The construction of the whole set of feasible semi-active schedules

and the calculation of the stability radii for all optimal schedules for this instance took 9.78
seconds.

We can note that the time needed to calculate the stability radii for all optimal schedules

for an instance increases exponentially with the number of edges in the corresponding mixed

11



graph. In our experiments, for di�erent types of problems the average CPU time on a PC

486 (33 MHz) for such a calculation varied from 0.11 seconds for instances of type 6 up

to 46.92 seconds for instances of type 11. However, the bottleneck for considering problem

types of larger size (using only internal memory) is connected with the required number of

dominant paths to be considered, i.e., with the required internal memory of the computer.

A possible way to overcome this memory restriction is to generate the dominant paths of

the feasible digraphs systematically and to consider them one by one, without storing them.

7 Stability Analysis of an �-Approximate Solution

As follows from the above theoretical and computational results (see also [21]), it is possible to

�nd the exact value of %s(p) for general shop problems only with very small dimensions since

the used formulas (5.6) and (5.7) are based on a direct comparison of dominant paths in the

set (or in the subset) of feasible digraphs P (G). To avoid such an enormous enumeration, we

shall now consider rather simple scheduling problems (essentially simpler than G==Cmax, but

still NP-hard in the general case), for which the set of dominant paths Hs of each solution
s consists of a unique path. Moreover, instead of the 'min-max' criterion, considered in

Sections 1 { 6, we shall consider the `min-sum' criterion.

More precisely, in the remainder of the paper we restrict our attention to those scheduling

problems, which may be represented in terms of linear binary programming [3, 6, 11] (or,
similarly, in terms of a linear trajectory problem [4, 5, 19]). A concept of stability analysis
for the latter problem has been developed in [4, 5, 10, 11, 12, 24] and in some other papers
(see [20] for the extensive survey). It should be noted that most results have been obtained
for the stability radius of the whole set of optimal trajectories, i.e., for the largest radius of

an open ball in the space of the numerical input data such that a new optimal trajectory
does not arise. Unfortunately, the set of all optimal trajectories is often unknown since its
cardinality may be large. Even if the optimal trajectory is unique for the problem, this
information is usually inaccessible for OR workers. On the other hand, the investigation of
the stability radius of one optimal trajectory of such a problem has the following drawback:

The stability radius of an optimal solution of a linear trajectory problem is equal to zero,
if at least one alternative optimal solution exists. Therefore, in [3, 6, 19] the stability of an
�-approximate solution has been investigated.

In Sections 7 - 14 we survey known stability results for �-approximate solutions, and prove
some new ones. For simplicity, we use here the notations from [3, 6, 19, 20] which are more
suitable for linear binary programming. However, we try to keep most notations (for the

criterion, the stability radius and the variable data) close to those used in the �rst part of

the paper. We hope that this will not imply any ambiguity for the reader since we do not

use cross-references between the �rst and second parts (with the exception of Section 15,

which contains some concluding remarks).

Let N = f1; 2; . . . ; ng and X � f0; 1gn be the set of all feasible vectors (feasible solutions).

For a given vector p 2 Rn and a feasible solution x 2 X, let �(p; x) =
P

i2N pixi be the

objective function. We assume that the set X of feasible solutions is �nite and does not
depend on the vector p = (p1; p2; . . . ; pn) of objective coe�cients. For brevity, we shall call

p the objective vector.
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The linear binary programming problem under consideration is to �nd an optimal vector

(optimal solution) xp = (xp1; x
p
2; . . . ; x

p
n) 2 X with

�(p; xp) = minf�(p; x) j x 2 Xg: (7:1)

We investigate problem (7.1) under the assumption that all or a subset of the objective

coe�cients p1; p2; . . . ; pn can change their values in comparison with the initial ones. We �rst

consider the stability region and the stability ball of an �-approximate solution of problem

(7.1), where � � 0. Let x 2 X be an �-approximate solution of the problem (7.1), i.e., the

condition

�(p; x) � (1 + �) � �(p; xp) (7:2)

holds. We investigate the situation when w given components of the objective vector p,

1 � w � n, can be changed after solving problem (7.1) but the remaining n�w components

of p cannot be changed. Without loss of generality we assume that the �rst w compo-

nents p1; p2; . . . ; pw of the objective vector p can be changed (unstable components). Hence,

the values of the objective coe�cients pw+1; pw+2; . . . ; pn are reliable, but the values of the

objective coe�cients p1; p2; . . . ; pw can change after solving problem (7.1).

From now on, we shall consider only objective vectors p 2 Rn, where the last n�w compo-
nents are equal to given values, say pw+1 = �pw+1; pw+2 = �pw+2; . . . ; pn = �pn, and for such
objective vectors we de�ne ~p = (p1; p2; . . . ; pw) 2 Rw as the vector of its �rst w components.

De�nition 3 The set of all objective vectors ~p 2 Rw, for which x 2 X is an �-approximate

solution, is called the stability region of x and it is denoted by Kw
� (x) :

Kw
� (x) = f~p 2 Rw

j �(p; x) � (1 + �) � �(p; xp)g: (7:3)

De�nition 4 The closed ball Ow
% (p) with radius % and vector ~p as centre is called a stability

ball of �-approximate solution x 2 X if Ow
% (p) \R

w � Kw
� (x):

De�nition 5 Let x 2 X be an �-approximate solution with respect to the objective vector p.

The radius % of the largest stability ball Ow
% (p) of x is called the stability radius of x and it

is denoted by %w� (x; p).

In the next section we prove some simple properties of the set Kw
� (x).

8 The Stability Region

For every x 2 X, de�ne ~x = (x1; x2; . . . ; xw) as the vector of its �rst w components. Further-

more, de�ne ~X = f~x 2 Xw j x 2 Xg; and let U be a re
exive binary relation on the set ~X

with maximal cardinality such that (~x; ~x0) 2 U if and only if for all i 2 f1; 2; . . . ; wg from the
equality xi = 1 the equality x0i = 1 follows. In other words, we have (x; x0) 2 U if and only

if the set of indices of the variables having the value 1 in x is a subset of those in x0. Due

to the maximal cardinality, the relation U is uniquely determined for each ~X � f0; 1gw. In
the following, we use the vectors ~x0 = (x01; x

0
2; . . . ; x

0
w) and x

0 = (x01; x
0
2; . . . ; x

0
w; x

0
w+1; . . . ; x

0
n).
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De�ne Kw
� =

T
x2X Kw

� (x): Obviously, K
w
� contains all objective vectors p that are con-

tained in the stability region of every feasible solution x 2 X. Using the above notations,

we can formulate and then prove the following assertions about the stability region Kw
� (x)

with x 2 X;w � n and � � 0.

Property 1: The stability region Kw
� (x) and the set Kw

� are polyhedra.

Property 2: If �1 < �2, then Kw
�1
(x) � Kw

�2
(x).

Property 3: If the inclusion (~x; ~x0) 2 U and the inequality

nX
i=w+1

tixi �

nX
i=w+1

tix
0
i (8:1)

hold, then Kw
� (x

0) � Kw
� (x).

Property 4: We have
S

x2XK
w
� (x) = Rw:

Property 5: At least one of the regions Kw
� (x); x 2 X, is unbounded.

Proof: First we show that Kw
� (x) can be represented as the set of solutions of a system of

linear inequalities. From (7.1) and (7.3) it follows that the set Kw
� (x) contains all objective

vectors p which satisfy the inequality

X
i2N

pixi � (1 + �) �min

(X
i2N

pix
0
i j x

0
2 X

)
: (8:2)

Consequently, inequality (8.2) can be written as

wX
i=1

pi[xi � (1 + �)x0i] � b0; x0 2 X;

pi � 0; i = 1; 2; . . . ; w;

(8.3)

where

b0 = (1 + �) �

nX
i=w+1

�pix
0
i �

nX
i=w+1

�pixi:

Hence, the stability region Kw
� (x) is given as the set of solutions of system (8.3) of linear in-

equalities with the variable objective coe�cients p1; p2; . . . ; pw. Thus, K
w
� (x) is a polyhedron

(note that Kw
� (x) = ; is possible). Kw

� is also a polyhedron because it is the intersection of

polyhedra. Thus, Property 1 holds.

The validity of Property 2 immediately follows from the de�nition of Kw
� (x). Indeed, if the

inequality �(p; x) � (1 + �) ��(p; xp) holds for � = �1, then it is also satis�ed for each � = �2
with �1 < �2.
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Let the conditions of Property 3 be satis�ed, objective vector ~p0 2 Kw
� (x

0) be arbitrary and

p0 be equal to (p01; p
0
2; . . . ; p

0
w; �pw+1; . . . ; �pn): We consider the value

�(p0; x) =

wX
i=1

p0ixi +

nX
i=w+1

�pixi:

Because of (~x; ~x0) 2 U , the inequality

wX
i=1

p0ixi �

wX
i=1

p0ix
0
i

holds. Considering (8.1), we obtain �(p0; x) � �(p0; x0) � (1 + �) ��(p0; xp
0

); i.e., the vector

x is an �-approximate solution of problem (7.1) for any objective vector ~p0 from the region

Kw
� (x

0). Hence, Kw
� (x

0) � Kw
� (x) holds which proves Property 3.

For the proof of Property 4 we note that, since the set X is �nite, there exists an �-

approximate solution of problem (7.1) for any given p 2 Rw and any given � � 0. Especially,

we can take the vector xp, automatically satisfying inequality (7.2), as �-approximate solution
of problem (7.1).

Property 4 means that for any � � 0, there exists a �nite covering of the space Rw by stability
regions Kw

� (x). Because we have a �nite number of regions in the set fKw
� (x) j x 2 Xg but

Rw is unbounded, at least one stability region must be unbounded, i.e., Property 5 holds.

Property 1 can be strengthened for the important special case when w = n (considered in [6]).

Property 6: The set Kn
� (x) is a closed convex cone with the origin in (p1 = 0; p2 =

0; . . . ; pn = 0) 2 Rn.

Proof: Indeed, for any � � 0 we obtain from (7.2), �(�p; x) = ��(p; x) � (1+�)���(p; xp) �

(1 + �) � �(�p; x�p): Hence, we have �p 2 Kn
� (x) for � � 0 which proves Property 6.

As we shall illustrate in the following example, the set Kw
� (x) (and, consequently, in general

the set Kw
� ) can be empty. However, in the case w = n, due to Property 6 any set Kw

� (x)

is non-empty: In fact, the set Kn
� is not ; because the n-dimensional vector (p1 = 0; p2 =

0; . . . ; pn = 0) belongs to Kn
� for any � � 0.

9 Example 2

A broad class of discrete optimization problems can be formulated as a linear binary program-
ming problem, e.g., a one-machine scheduling problem with sequence dependent setup times

between the processing of the jobs which is equivalent to the traveling salesman problem

that was, by the way, the �rst linear trajectory problem for which a formula for calculating

the stability radius of the whole set of optimal trajectories has been derived [10].
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Here we consider as an illustrative example the scheduling problem of minimizing the sum of

processing times of the jobs on parallel (but not identical) machines. Assume that we have

m machines that have to process l jobs, where the processing times do not depend on the

jobs but on the machine and on the processing order. The matrix P gives the processing

times pij � 0 if a job is the j-th job in the job order of machine i. The problem is to assign

all l jobs to the machines such that the sum of processing times becomes minimal.

Let m = 2; l = 3 and the matrix P = [pij](m;l) of the initial data be as follows:

P =

�
10 5 5

7 7 7

�
=

�
p1 p2 p3
p4 p5 p6

�
:

We set p = (p1; p2; . . . ; p6) and n = m � l. Let xij = 1 if at least j jobs are processed on

machine i and xij = 0 otherwise. Analogously, we denote�
x11 x12 x13
x21 x22 x23

�
=

�
x1 x2 x3
x4 x5 x6

�
:

The set X of feasible vectors for this problem can be described as follows:

X =
n
x 2 Xn

j

nX
i=1

xi = l; [xi = 1; lu < i � l(u+ 1); u � 0; u is integer]

) [xlu+1 = xlu+2 = . . . = xi�1 = 1]
o
:

For the given values of m and l, we have four feasible vectors:

X = fx1 = (1; 1; 1; 0; 0; 0); x2 = (1; 1; 0; 1; 0; 0);

x3 = (1; 0; 0; 1; 1; 0); x4 = (0; 0; 0; 1; 1; 1)g:

First, we determine the stability regions K2
� (x

i) for i 2 f1; 2; 3; 4g with p = (p1; p2; 5; 7; 7; 7)
and � = 0. For x = x1, system (7.3) is as follows:

p1 + p2 + 5 � p1 + p2 + 7

p1 + p2 + 5 � p1 + 14

p1 + p2 + 5 � 21

p1 � 0

p2 � 0

The above system is equivalent to

p2 � 9

p1 + p2 � 16

p1 � 0

p2 � 0

For x = x2, system (7.3) is inconsistent:

p1 + p2 + 7 � p1 + p2 + 5

p1 + p2 + 7 � p1 + 14

p1 + p2 + 7 � 21

p1 � 0

p2 � 0
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For x = x3, system (7.3) is equivalent to:

p2 � 9

p1 � 7

p1 � 0

For x = x4, system (7.3) is equivalent to:

p1 + p2 � 16

p1 � 7

p2 � 0

The above stability regions are given in Fig. 4. They form a covering of the space Rw with

w = 2. Note that K2
0(x

2) = ; and, consequently, K2
0 = ;. Both regions K2

0 (x
3) and K2

0(x
4)

are unbounded.

F i g u r e 4

Analogously, we determine the stability regionsK2
� (x

i) for i 2 f1; 2; 3; 4g with p = (p1; p2; 5; 7; 7; 7)
and � = 0:5. It is easy to see that the regions K2

0:5(x
1);K2

0:5(x
2);K2

0:5(x
3) and K2

0:5(x
4), re-

spectively, are polyhedra given by the solutions of the following systems of linear inequalities:

1) p1 � 0:5p2 � 16
p1 + p2 � 26:5

p1 � 0
p2 � 0

2) �0:5p1 + p2 � 14
p1 + p2 � 24:5

p1 � 0
p2 � 0

3) p1 + 3p2 � 13
p1 � 17:5
p1 � 0

p2 � 0

4) p1 + p2 � 9

p1 � 0
p2 � 0

These stability regions are shown in Fig. 5. The bounds of these regions are shaded in the

same way as in Fig. 4, only the stability region of x2 additionally occurs in a new form
of shading. For the regions K2

0:5(x
0) = K2

0:5(x
2) and K2

0:5(x) = K2
0:5(x

1) the conditions of

Property 3 are satis�ed. Hence, K2
0:5(x

0) � K2
0:5(x) holds.

F i g u r e 5
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We note that the polyhedron K2
0:5 (where each feasible solution is an �-approximate solution

with � = 0:5) is given by the set of solutions of the following system:

�0:5p1 + p2 � 14

p1 + p2 � 24:5

p1 + p2 � 9

p1 + 3p2 � 13

p1 � 17:5

p1 � 0

p2 � 0

Fig. 6 illustrates Property 2 if p = (p1; p2; 5; 7; 7; 7); w = 2; x = x1 and � 2 f0; 0:5; 1g.

F i g u r e 6

Obviously, the determination of the stability regions is possible only for special problems of
the type (7.1) with a very small number of variables. Moreover, for w > 3 we need a special
form even to draw the stability region in the plane.

10 An Upper Bound on %w� (x; p)

Similarly to Section 3, if the ball Ow
% (p) is a stability ball of an �-approximate solution x for

any positive %, then we write %w� (x; p) =1: In the following we strengthen an upper bound

for the stability radius given in [19] by using the following result about the existence of an
in�nitely large stability radius of an �-approximate solution.

Theorem 4 The stability radius %w� (x; p) equals 1 if and only if for any vector x0 2 X the

condition (~x; ~x0) 2 U and the inequality

nX
i=w+1

pixi � (1 + �) �

nX
i=w+1

pix
0
i (10:1)

hold.

The proof of Theorem 4 can be found in [3] and [19]. Applying this theorem, we obtain the

following bound on %w� (x; p).

Theorem 5 If %w� (x; p) <1, then we have %w� (x; p) � p�, where

p� = max

(
maxfpi j 1 � i � wg; (1 + �) �

nX
i=w+1

pi �

nX
i=w+1

pixi

)
: (10:2)
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Proof: Due to Theorem 4, one of the following conditions must be satis�ed because of

%w� (x; p) <1:

(i) there exists a vector x0 2 X such that (~x; ~x0) 62 U or

(ii) inequality (10.1) does not hold.

First we consider the case (i), i.e., there exists an index j with 1 � j � w such that xj = 1

and x0j = 0. We consider the following vector p0 = (p01; p
0
2; . . . ; p

0
n) 2 Rn. Here we set

p0j = p0� > p�, where p� is given by (10.2). For each i with 1 � i � w and i 6= j, we set p0i = 0.

For the stable components of the vector p0 we have, of course, p0i = pi (w + 1 � i � n).

Now we evaluate �(p0; x) for the vector p0:

�(p0; x) =
X
i2N

p0ixi

=

mX
i=1

p0ixi +

nX
i=w+1

p0ixi

= p0� +

nX
i=w+1

p0ixi

= p0� +

nX
i=w+1

pixi

> (1 + �) �

nX
i=w+1

pi

= (1 + �) �

nX
i=w+1

p0i

� (1 + �) �

wX
i=1

p0ix
0
i + (1 + �) �

nX
i=w+1

p0ix
0
i

= (1 + �) �

nX
i=1

p0ix
0
i

� (1 + �) � �(p0; xp
0

):

The �rst of the above inequalities holds because of p0� > p� and the second inequality follows

from
wX
i=1

p0ix
0
i = 0 and

nX
i=w+1

pi �

nX
i=w+1

pix
0
i:

Consequently, the vector x is not an �-approximate solution of problem (7.1) for objective
vector p = p0. Therefore, we have %w� (x; p) < r(p; p0) � p0�. Obviously, the value of p

0
� can be

arbitrarily close to p� with p� < p0� and the inequality %w� (x; p) < r(p; p0) is satis�ed. Thus, if

condition (i) holds, we have the inequality %w� (x; p) � p�.
Let condition (ii) be satis�ed, i.e., there exists a vector x0 2 X for which the inequality

nX
i=w+1

pixi > (1 + �) �

nX
i=w+1

pix
0
i
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holds. Then we consider the objective vector p00 = (p001; p
00
2; . . . ; p

00
n) with the components

p00i =

�
0 for i = 1; 2; . . . ; w;

pi for i = w + 1; w + 2; . . . ; n:

Now we evaluate �(p00; x):

�(p00; x) =
X
i2N

p00i xi

=

nX
i=w+1

pixi

> (1 + �) �

nX
i=w+1

pix
0
i

= (1 + �) �

nX
i=1

p00i x
0
i

� (1 + �) �min

(
nX
i=1

p00i x
00
i j (x

00
1; x

00
2; . . . ; x

00
w; x

00
w+1; . . . ; x

00
n) 2 X

)

= (1 + �) ��(p00; xp
00

):

Hence, the vector x 2 X is not an �-approximate solution of the problem (7.1) for objective
vector p = p00 and %w� (x; p) � r(p; p00) � maxfpi j 1 � i � wg: Thus, the theorem has been
proved.

From Theorem 5 we immediately obtain the following corollary.

Corollary 1 If %n� (x; p) <1, then %n� (x; p) � p� = maxfpi j 1 � i � ng:

It is easy to see that the upper bound %n� (x; p) � p� is tight and that the bound

%n� (x; p) � (1 + �) �

nX
i=w+1

pi �

nX
i=w+1

pixi

is tight under the condition that the vector (x1; x2; . . . ; xw; 1; 1; . . . ; 1) is feasible.

While the upper bound of %w� (x; p) is implied from Theorem 4 about an in�nite stability ra-

dius, a lower bound will be implied from the claims about the zero stability radius considered

in the next section.

11 A Zero Value of %w� (x; p)

Necessary and su�cient conditions for %w� (x; p) = 0 have been given in [19], which are valid

only for ~x 6= ~0, where ~0 is the zero vector in Rw. Here we prove separately criteria for the
case ~x 6= ~0 as well as ~x = ~0.
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Theorem 6 Let ~p 2 Kw
� (x), ~x 6= ~0, w � n, � > 0 and pi > 0 for each i = 1; 2; . . . ; w. Then

we have %w� (x; p) = 0 if and only if condition (7.2) is satis�ed as equality.

Proof: a) Su�ciency: Let the condition (7.2) be satis�ed as equality, i.e.,

�(p; x) = (1 + �) � �(p; xp): (11:1)

Since ~x 6= ~0 and pi > 0 for each i = 1; 2; . . . ; w, the value �(p; x) is not equal to zero.

Because we have � > 0 in (7.1), we conclude that vector x is not a solution of the problem

(7.1). Then we take any nonzero component of ~x, say ~xi = 1, i 2 f1; 2; . . . ; wg, and consider

the following two possible cases:

Case (i): x
p
i = 0. Let the positive real number 
 > 0 be arbitrarily small. Then the

objective vector p
 = (p1; p2; . . . ; pi�1; pi + 
; pi+1; . . . ; pw; pw+1; . . . ; pn) 2 Rn satis�es the

following conditions:

�(p
 ; x) = 
 + �(p; x)

= 
 + (1 + �) ��(p; xp)

= 
 + (1 + �) ��(p
 ; xp)

� 
 + (1 + �) ��(p
 ; xp



)

> (1 + �) � �(p
 ; xp



):

Thus, we have ~p
 62 Kw
� (x) and, because of r(~p; ~p


) = 
, the set Ow

 (p) \ Rw is not a subset

of Kw
� (x). Consequently, the ball O

w

 (p) is not a stability ball of the �-approximate solution

x. Since this holds for any arbitrarily small 
 > 0, we have %w� (x; p) = 0.
Case (ii): xpi = 1. Let us consider the objective vector p(
) = (p1; . . . ; pi�1; pi � 
; pi+1; . . . ;
pw; pw+1; . . . ; pn). If 0 < 
 � pi, then p(
) 2 Rw due to pi > 0. Since � > 0, the objective
vector p(
) satis�es the following relations:

�(p(
); x) = �(p; x)� 


= (1 + �) � �(p; xp)� 


> (1 + �) � �(p; xp)� (1 + �) � 


= (1 + �) � �(p(
); xp)

� (1 + �) � �(p(
); xp
(
)

):

Thus, we have p(
) 62 Kw
� (x) and the ball Ow


 (p) is not a stability ball of the �-approximate
solution x. Because this holds for any arbitrarily small 
 > 0, we conclude again that

%w� (x; p) = 0.

b) Necessity will be proved by contradiction: Assume that %w� (x; p) = 0 and that condition
(7.2) is satis�ed as a strict inequality, i.e., we have

(1 + �) � �(p; xp)� �(p; x) = �p > 0: (11:2)

We show that there exists a real number % > 0 such that inequality (11.2) remains valid

for any objective vector p0 2 Rn with ~p0 2 Ow
% (p) \ Rw. We set % = � = �p=(3 + �)w > 0.

Because of r(~p; ~p0) � �, we obtain

�(p0; x)� �(p; x) � w � � = �p=(3 + �) (11:3)
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and

(1 + �) � �(p; xp)� (1 + �) � �(p0; xp
0

) � (1 + �) � �(p; xp
0

)� (1 + �) � �(p0; xp
0

)

� w � � � (1 + �) = �p � (1 + �)=(3 + �):
(11.4)

We summarize the left and the right terms of the inequalities (11.3) and (11.4):

�(p0; x)��(p; x) + (1 + �) � �(p; xp)� (1 + �) � �(p0; xp
0

)

� �p=(3 + �) + �p � (1 + �)=(3 + �)

= �p � (2 + �)=(3 + �):

From this we get

(1 + �) � �(p0; xp
0

)� �(p0; x) � (1 + �) � �(p; xp)� �(p; x)��p � (2 + �)=(3 + �)

= �p ��p � (2 + �)=(3 + �)

= �p=(3 + �) > 0:

Thus, ~p0 2 Ow
� (p) \ Rw implies ~p0 2 Kw

� (x), i.e. the ball Ow
� (p) is a stability ball of the

�-approximate solution x. We obtain a contradiction to the assumption: %w� (x; p) � � =
�p=(3 + �)w > 0:

Next we prove the analogy to Theorem 6 for the case ~x = ~0.

Theorem 7 Let ~p 2 Kw
� (x), ~x = ~0, w � n, � > 0 and ~pi > 0 for each i = 1; 2; . . . ; w. Then

we have %w� (x; p) = 0 if and only if condition (7.2) is satis�ed as an equality and there exists

an optimal solution xp of problem (7.1) for which ~xp 6= 0.

Proof: a) Su�ciency: Since ~xp 6= 0, there exists a nonzero component x
p

i = 1, i 2
f1; 2; . . . ; wg. As in case (ii) in the proof of Theorem 6, we consider the objective vec-
tor p(
) and by using arguments quite similar as before we obtain %w� (x; p) = 0.

b) Necessity: Let %w� (x; p) = 0. The case when condition (7.2) is satis�ed as a strict inequality

can be considered similarly as in the proof of the necessity of Theorem 6. To complete the
proof, we still have to consider the situation when �p = 0 holds (where �p is as de�ned in

(11.2)) but for any solution xp of problem (7.1) we have ~xp = 0. Since xi = x
p

i = 0 for any

i 2 f1; 2; . . . ; wg, due to the equality

�(p; x) = (1 + �) � �(p; xp); (11:5)

we have

�(p; x) =

nX
i=w+1

pixi = (1 + �)

nX
i=w+1

pix
p
i < (1 + �) �

nX
i=1

pix
0
i = (1 + �) � �(p; x0):

for any vector x0 2 X which is not a solution of problem (7.1). Now we calculate the value

�0 = minf(1 + �) � �(p; x0)� �(p; x) j x0 2 Xnfxg; �(p; x0) > �(p; xp)g > 0:

22



Setting � = �0 = �0=(3 + �)w > 0 and repeating the steps performed for the case �p > 0 in

the proof of the necessity of Theorem 6, we obtain the inequality

(1 + �) � �(p0; x0)� �(p0; x) > 0 (11:6)

which holds for any objective vector ~p0 2 Ow
� (p) \R

w:

Due to ~x = ~0 and xp = 0 for any solution xp of problem (7.1), any variation of the objective

vector ~p does not a�ect the validity of equation (11.5). Thus, for any objective vector ~p0

both inequality (11.6) for any vector x0 2 X which is not a solution of problem (7.1) and

inequality (11.5) (with p replaced by p0) for any solution xp of problem (7.1) are valid. We

can conclude that Ow
� (p) is a stability ball of the �-approximate solution x which contradicts

to the assumption that the stability radius of x is equal to zero.

In the above proofs we have actually derived a lower bound on the stability radius of an

�-approximate solution. It is presented in the next section, along with a lower bound on the

stability radius of an optimal solution.

12 Lower Bounds on %w� (x; p)

While proving the necessity of Theorem 6 and the necessity of Theorem 7 for the case �p > 0,
we obtained the following lower bound for the value %w� (x; p):

Corollary 2 Let ~p 2 Kw
� (x), w � n, � � 0. If condition (7.2) is satis�ed as a strict

inequality, then we have %w� (x; p) � �p=(3 + �)w > 0:

Note that any strictly positive lower bound can be used as a conservative estimate of the
stability radius, i.e., Ow

% (p) is a stability ball if % > 0 is equal to a lower bound on %w� (x; p).
In particular, one may be interested in lower bounds on the stability radius of an optimal
solution xp. For optimal solutions we have the following lower bound, which is better than

the one given in Corollary 2.

Theorem 8 Let xp be an optimal solution of problem (7.1) and let v(xp) denote the number

of 1's in vector ~xp, then

%w� (x
p; p) � min

n �p

(1 + �) � w � � � v(xp)
;

�p

(1 + �) � w � v(xp)

o
:

Proof: For any pair of feasible solutions y; z 2 X, let D(y; z) denote the set of components
which are equal to 1 in ~y and 0 in ~z, and let E(y; z) denote the set of components which are

equal to 1 in both vectors ~y and ~z.

Let L be equal to min
n

�p

(1+�)�w��v�(xp)
;

�p

(1+�)�w�v(xp)

o
and suppose r(p; p0) � L. For an arbitrary

feasible solution x0 we have
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nX
i=1

p0ix
p

i � (1 + �) �

nX
i=1

p0ix
0
i =

nX
i=1

pix
p

i +

wX
i=1

(p0i � pi)x
p

i � (1 + �) �

nX
i=1

pix
0
i � (1 + �) �

wX
i=1

(p0i � pi)x
0
i =

nX
i=1

pix
p

i � (1 + �) �

nX
i=1

pix
0
i +

X
i2D(xp;x0)

(p0i � pi) � � �
X

i2E(xp;x0)

(p0i � pi) � (1 + �) �
X

i2D(x0;xp)

(p0i � pi) �

nX
i=1

pix
p

i � (1 + �) �

nX
i=1

pix
p

i +

X
i2D(xp;x0)

L � � �
X

i2E(xp;x0)

(�L) � (1 + �) �
X

i2D(x0;xp)

(�L) =

��p +
X

i2D(xp;x0)

L + � �
X

i2E(xp;x0)

L + (1 + �) �
X

i2D(x0;xp)

L

Now if � � 1, then this is at most

��p +
X

i2D(xp;x0)

L +
X

i2E(xp;x0)

L + (1 + �) �
X

i2D(x0;xp)

L �

��p + v(xp) � L + (1 + �) � (w � v(xp)) � L =

��p + [(1 + �) � w � � � v(xp)]L = 0:

Hence, xp is an �-approximate solution for p0.

For the case � > 1 the proof is similar.

Next, we present a new algorithm for calculating the stability radius.

13 The Calculation of the Stability Radius

In [19] the following theorem has been proved.
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Theorem 9 The closed ball Ow
% (p) with % > 0 is a stability ball of an �-approximate solution

x of problem (7.1) if and only if the condition (~p+ �) 2 Kw
� (x) is satis�ed for all 2w vectors

� = (�1; �2; . . . ; �w) 2 Rw with the components �i 2 f%;maxf�pi;�%gg for i = 1; 2; . . . ; w.

We �rst show that the above characterization of a stability ball may be simpli�ed.

Theorem 10 The closed ball Ow
% (p) with % > 0 is a stability ball of an �-approximate solution

x of problem (7.1) if and only if the condition (~p+ �) 2 Kw
� (x) is satis�ed for all vectors � =

(�1; �2; . . . ; �w) 2 Rw which have �i 2 f%;maxf�pi;�%gg if xi = 1, and �i = maxf�pi;�%g

if xi = 0, i = 1; 2; . . . ; w.

Proof: It su�ces to show that the condition of Theorem 10 implies the seemingly stronger

condition of Theorem 9. Suppose the condition of Theorem 10 is satis�ed and consider any

vector �0 with components �0i 2 f%;maxf�pi;�%gg, i = 1; 2; . . . ; w. We de�ne the vector �00

by �00i = �0i if xi = 1 and �00i = maxf�pi;�%g if xi = 0, i = 1; 2; . . . ; w. We have

nX
i=1

(pi + �0i)xi =

nX
i=1

(pi + �00i )xi � (1 + �) �

nX
i=1

(pi + �00i )x
0
i � (1 + �) �

nX
i=1

(pi + �0i)x
0
i;

where the equality holds because �00 and �0 di�er only in components for which the corre-

sponding component of x is equal to 0, the �rst inequality is true because the condition of
Theorem 10 is satis�ed, and the last inequality follows from the fact that �00 � � and all com-
ponents of x0 are non-negative. Since x0 2 X is arbitrary, it now follows that (~p+�0) 2 Kw

� (x),
which completes the proof.

Let us return to Example 2 (see Section 9). We shall show that for objective vector p =
(10; 5; 5; 7; 7; 7) the ball O2

3(p) with the centre ~p = (10; 5) is not a stability ball for the
optimal solution x1 (i.e., if � = 0). Indeed, the point (10 + 3; 5 + 3) = (13; 8) does not
belong to the set K2

0 (x
1) since inequality (7.2) is not satis�ed with � = 0: 13 + 8 + 5 >

(1 + 0) �minf13 + 8 + 7; 13 + 7 + 7; 7 + 7 + 7g: On the other hand, it is not di�cult to show
that this ball is a stability ball of the �-approximate solution x1 with p = (10; 5; 5; 7; 7; 7);
~p = (10; 5) and � = 0:5. Indeed, checking inequality (7.2), we obtain that the vectors

(13; 8); (13; 2); (7; 8) and (7; 2) belong to the set K2
0:5(x

1). It follows from Theorem 10 that
the ball O2

3(p) is a stability ball of the �-approximate solution x1 with � = 0:5. In Fig. 6 this

ball is shaded.

From Fig. 6 it follows that the radius of this ball is not the largest possible one for � = 0:5:

We have the strict inequality %20:5(x
1; p) > 3. The exact value of the above stability radius

will be calculated in Section 14.

Now let us consider x4. None of the components of ~x4 is equal to 1. Therefore, to check
whether O2

3(p) is a stability ball of the �-approximate solution x4 with � = 0:5, it su�ces to

check only whether (7; 2) belongs to the set K2
0:5(x

4). It is left to the reader to verify that

this is indeed the case, and that %20:5(x
4; p) = 3.

Theorem 10 allows us to calculate the stability radius, as is shown in the proof of the next

theorem.
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Theorem 11 Let x be an �-approximate solution and let v(x) denote the number of 1's in ~x.

If the calculation of �(p0; xp0) can be done in O(g(n)) time for any objective vector p0 2 Rn,

then the stability radius %w� (x; p) can be calculated in O(2v(x) � w � g(n)) time.

Proof: The proof is constructive. We denote the set of indices of 1's in the vector ~x by V :

V = fi j xi = 1; i = 1; 2; . . . ; wg. For every subset I � V and for every % � 0, we de�ne the

vector �[I; %] 2 Rw by �i = % if i 2 I, and �i = maxf�pi;�%g if i 2 f1; 2; . . . ; wgnI. Let %I
denote the largest value of % for which ~p + �[I; %] 2 Kw

� (x). We propose to calculate %I for

every I � V . It follows from Theorem 10 that the stability radius is equal to the minimum

of these 2v(x) values.

Let us consider a �xed subset I � V . For any % � 0, we de�ne p[I; %] 2 Rn by ~p[I; %] =

~p + �[I; %] and p[I; %]i = pi for i = w + 1; w + 2; . . . ; n. Now we consider �(p[I; %]; x), the

value of solution x, as a function of % � 0. If % increases from 0, then initially this function

is linear with slope equal to jIj � jV nIj. When % becomes equal to minfpi j i 2 V nIg,

the slope of the function changes into jIj � jfi 2 V nI j % < pigj, and so on. It follows that

�(p[I; %]; x) is a continuous and piecewise linear function of %, with breakpoints occuring
exactly at the values % = pi, i 2 V nI.

From the observations above, it also follows that for every x0 2 X, the function �(p[I; %]; x0)
is continuous and piecewise linear, with breakpoints occuring at some subset of the values
% = pi, i 2 f1; 2; . . . ; wgnI. Let us therefore refer to the values pi; i 2 f1; 2; . . . ; wgnI, as
critical points. For convenience, we also de�ne 0 and1 to be critical points. Hence, between

two consecutive critical points, the functions �(p[I; %]; x0), x0 2 X, are all linear. Moreover,
the slope of each of these functions is an integer in the range from jIj � w to jIj, with the
extreme values occuring when x0i = 1 if and only if i =2 I, and when x0i = 1 if and only if
i 2 I, respectively.

Furthermore, we de�ne for % � 0 the functionHI(%) asHI (%) = (1+�)�minx02Xf�(p[I; %]; x
0)g:

Since between two consecutive critical points, the functions (1 + �) � �(p[I; %]; x0), x0 2 X,
are all linear, it follows that on such an interval the function HI(%) is the minimum of

a �nite number of linear functions. It is well-known that this implies that HI(%) is con-
tinuous, piecewise linear and concave on these intervals (see [2]). Since between consec-
utive critical points the functions �(p[I; %]; x0), x0 2 X, each have an integer slope in
the range from jIj � w to jIj, it follows that the slope of HI(%) is always in the set
f(1 + �)(jIj � w); (1 + �)(jIj � w + 1); . . . ; (1 + �)(jIj)g. Because of concavity, the slope

of HI(%) is non-increasing, which implies that HI(%) has at most w breakpoints on any in-
terval between two consecutive critical points. Also note that the continuity of the functions

(1 + �) � �(p[I; %]; x0), x 2 X, implies that HI (%) is continuous for % � 0.

The shapes of the functions �(p[I; %]; x) and HI(%) between two consecutive critical points %1
and %2, imply that if �(p[I; %]; x) � HI(%) for both % = %1 and % = %2; then �(p[I; %]; x) �

HI(%) for all % 2 [%1; %2]; i.e., x is an �-approximate solution on the complete interval. By
evaluating the functions �(p[I; %]; x) and HI (%) at the critical points, we can �nd the largest

�nite critical point, say %0, for which x is an �-approximate solution. This takes O(w � g(n))
time, because there are at most w + 1 �nite critical points and calculating HI(%) at each of

them boils down to calculating �(p0; xp0) for a given p0 2 Rn, which requires O(g(n)) time.

We have already observed that on the interval between %0 and its next critical point %00,

�(p[I; %]; x) is linear, whileHI (%) is concave and piecewise linear with at most w breakpoints.
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There exists a method (see [2]) which determines all the linear pieces of HI(%) on this interval

in O(B � g(n)) time, where B is the number of breakpoints of HI(%) on the interval. Hence,

it takes O(w � g(n)) time to determine the linear pieces. Once this has been done, the value

%I is found by calculating the largest intersection point of �(p[I; %]; x) and HI(%) on the

interval. Note that there always exists an intersection point, if %00 is �nite. Hence, if the

functions do not intersect, %00 =1 and also %I =1. If there is more than one intersection

point, the set of intersection points is a complete linear piece of HI(%). In any case, the

largest intersection point can be found in time bounded by the number of linear pieces of

HI(%).

Thus, for each subset I � V , it is possible to calculate %I in O(w � g(n)) time. Since we need

to consider 2v(x) subsets, the result now follows.

The value v(x) may be signi�cantly less than w. In particular, if the number of unstable

components increases when n grows, the problem structure may prevent v(x) from growing

as fast as w. For instance, in the traveling salesman problem, if the unstable components

are the distances with respect to one speci�c city, then w is of the same order as the number
of cities, but v(x) = 2 for every feasible solution x.

On the one hand, note that even for �xed w, the asymptotic bound O(2v(x) � w � g(x)) in
Theorem 11 is exponential if g(n) is an exponential function. This is no surprise, since it has
been shown in [15] and [25] that, even if w = 1, computing the stability radius exactly for
any � � 0, is NP-hard if the original optimization problem is NP-hard. On the other hand,
we obtain the following `positive result'.

Corollary 3 Let problem (7.1) be polynomially solvable. We consider the maximum number

of decision variables corresponding to unstable components of objective vector p which can

be chosen equal to 1 in any feasible solution. If, when n increases, this number grows as

O(log n), then the stability radius %w� (x; p) of any �-approximate solution x can be calculated

in polynomial time.

Proof: The function g(n) in Theorem 11 is now polynomial in n, and the growth of v(x)
is O(log n). Hence, the running time O(2v(x) � w � g(n)) of the above algorithm becomes
O(n � w � g(n)), which is clearly polynomial in n.

The next section illustrates the algorithm for calculating %w� (x; p), presented implicitly in the
proof of Theorem 11.

14 The Calculation of %w� (x; p) for Example 2

For Example 2 (see Section 9), we calculate %20:5(x
1; p) with p = (10; 5; 5; 7; 7; 7): Since ~x1 =

(1; 1), we have V = f1; 2g, which means that the subsets I are ;, f1g, f2g and f1; 2g. For

each of these subsets we have to calculate %I .

Let us consider the calculation of %f2g in detail. The vector p[f2g; %] is equal to (maxf0; 10�

%g; 5+%; 5; 7; 7; 7). Therefore, the values of �(p[f2g; %]; xi) =
P6

j=1 p[f2g; %]jx
i
j, i 2 f1; 2; 3; 4g,
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are as shown in Fig. 7.

F i g u r e 7

Note that some of the functions have a breakpoint at % = 10, which corresponds to p1. There

are no other breakpoints, since 1 is the only element of V nI. Hence, the critical points are

0, 10 and 1. From Fig. 7 we see that Hf2g(%), which is de�ned as 1:5 �minf�(p[f2g; %]; xi) j

i 2 f1; 2; 3; 4gg, is given by the following piecewise linear function:

Hf2g(%) =

8<
:

1:5 � (20); if 0 � % < 4;

1:5 � (24 � %); if 4 � % < 10;

1:5 � (14); if 10 � %:

Note that this function is indeed concave between consecutive critical points.

F i g u r e 8

In Fig. 8, the function is drawn together with �(p[f2g; %]; x1). The largest value of % for which
�(p[f2g; %]; x1) � Hf2g(%) is equal to 11. Hence, this is the value of %f2g. Our algorithm,

however, does not construct the two functions completely, before it determines %f2g. What
the algorithm does, is the following. It �rst considers the smallest positive critical point,
% = 10. The values �(p[f2g; 10]; x1) and Hf2g(10) are calculated. The �rst calculation is
trivial, since x1 is a �xed solution. For the second calculation we need to solve an instance
of the scheduling problem (see the proof of Theorem 11, where this takes g(n) time). Since

�(p[f2g; 10]; x1) � Hf2g(10), the algorithm proceeds with the next critical point. This point
is 1, and therefore the functions �(p[f2g; %]; x1) and Hf2g(%) are considered for arbitrarily
large values of %. Because �(p[f2g; %]; x1) > Hf2g(%) for such values, we conclude that
%f2g 2 [10;1). To �nd the value of %f2g, we �rst construct Hf2g(%) on the interval, which is
easy in this case since the function is linear on the interval. (How the construction is done in

general will be described below.) Subsequently %f2g is calculated as the (largest) intersection
point of Hf2g(%) and �(p[f2g; %]; x1).

F i g u r e 9

In Fig. 9, we have illustrated the calculation of %f1;2g. (It is left to the reader to verify

that the functions have indeed the shown shape.) In this case the only critical points are

0 and 1. Note again that Hf1;2g(%) is indeed concave between these two values. The
method to construct this function can brie
y be described as follows. First we determine

optimal solutions corresponding to the endpoints of the interval. These solutions de�ne linear
functions, which are possible pieces of the function to be constructed. Next the intersection

point of the two linear functions is calculated. In our case, this is % = 0:5, and therefore

Hf1;2g(0:5) is calculated. Since this does not yield a new solution (linear function), it can
be concluded that all the linear parts of Hf1;2g(%) have been found. In general, we continue

this procedure by calculating the intersection points of the newly found linear function with
the concave lower envelope of the linear functions found earlier. The procedure stops if no

new intersection points are generated. We refer to [2] for a proof of the correctness of this

28



procedure, which requires solving O(B) instances of the scheduling problem, where B is the

number of breakpoints of the function to be constructed.

From Fig. 9, we see that %f1;2g = 5:75. It is now left to the reader to verify that %; =1 and

%f1g = 16:5. Hence, we calculate the stability radius: %20:5(x
1; p) = minf11; 5:75; 16:5; 1g =

5:75. The correctness of this result can be checked in Fig. 6, where the ball with this radius

is drawn.

15 Concluding Remarks

In deterministic scheduling theory the processing times are supposed to be given in advance,

i.e., before applying a scheduling procedure. More general cases have been considered in

stochastic scheduling (see [14]), where pi is a random variable with a known distribution

of probabilities. However, in practice such functions may also be unknown. The results

surveyed and developed in this paper may be considered as an attempt to initialize further

investigations of scheduling problems under conditions of uncertainty.

We have applied the same stability analysis for a large class of scheduling problems: Those

which may be represented as linear binary programming problems and more general schedul-
ing problems which may be represented as extremal problems on a disjunctive (mixed) graph.
Of course, the complexity of the problems has to be taken into account: The stability results
which seems to be appropriate for the general shop problems (see Sections 2 { 6) are rather
rough for the linear binary programming problems which allow the deriviation of deeper

mathematical results and more e�cient algorithms.

In turn, stability properties of an optimization problem may be used to characterize its

complexity. We can illustrate this on the job shop problem from the �rst part, and on the
traveling salesman and assignment problem from the second part. (The latter corresponds
to an optimal distribution of n jobs to m parallel non-identical machines in a single-stage
system). The stability radius of an optimal schedule for problem J==Cmax is usually strictly
positive, even if the optimal schedule is not unique (see Theorem 1 and the computational

results in Section 6). On the other hand, it is easy to show that %!0 (x; p) = 0 if there exist at
least two optimal solutions for a traveling salesman problem (or for an assignment problem).
For this reason, the main focus in the second part of the paper was on a stability analysis of
�-approximate solutions (see Theorems 6 and 7). Such a di�erence of the complexity of the

considered problems is not implied by the di�erent type of objective functions (`min-max'

for problem G==Cmax and `min-sum' for problem (7.1)): As follows from [1], a general shop
problem with mean 
ow time criterion (i.e., of type `min-sum') becomes even more di�cult

for a stability analysis than problem G==Cmax:

Possible trends for future research may be the investigation of connections between the

complexity of scheduling problems and the complexity of calculating the stability radius of
an optimal schedule (see [15, 20, 25]). Recall that in [15, 25] it was shown that the existence

of a polynomial algorithm for calculating %10(x; p) implies a polynomial algorithm for problem

(7.1). In [25] a similar implication was also proven for the case � > 0. Moreover, in [15] it
was shown that if problem (7.1) is polynomially solvable, then %10(x; p) may be calculated in

polynomial time. Thus the value %10(x; p) may be calculated in polynomial time for a given

optimal solution x of the assignment problem, while a similar calculation for the traveling

29



salesman problem requires exponential time, unless P = NP . An interesting subject for

research may be connected with a generalization of the result from [15]: Is it possible to �nd

the stability radius %s(p) of an optimal schedule s in polynomial time, if smay be constructed

in polynomial time?

The setting of scheduling problems in the �rst part of the paper is so general that it is

unlikely to �nd simple answers to those questions, which are usual for deterministic schedul-

ing problems. So, future research may also focus on determining classes of rather simple

scheduling problems for which it is possible to �nd the stability radius of an optimal or

an approximate solution in a reasonable time, e.g., if the stability region for such a class

will be convex, an algorithm similar to that developed in the proof of Theorem 11 may be

applied. Therefore, another interesting topic of research is to establish that for some types

of scheduling problems the stability region of an optimal schedule is a convex set.

An important question is connected with the determination of simple conditions (preferably

conditions which can be veri�ed in polynomial time) for the validity of %s(p) = 0 similar

to those derived in [8] for %s(p) = 1 for the problems J==Cmax and J==Lmax. It is also of

interest to develop simple bounds for %s(p) and %
w
� (x; p) (see e.g. (2.2), Theorem 5, Corollary

2 and Theorem 8). An interesting question is how a branch-and-bound algorithm, which is
often used for NP-hard scheduling problems, can be combined with calculating (bounds on)

the stability radius of an optimal or �-approximate schedule (see [13, 21]).

Finally, we note that the above approach to stability analysis is not the only possible one (see

survey [20]). For example, a completely di�erent approach to stability analysis is discussed
in [7], where the sensitivity of a heuristic algorithm with respect to the variation of the
processing time of one job is investigated. Note also that stability analysis is a well-studied
topic in linear programming. For instance, in [26] a tolerance approach is presented. A
similar concept could be applied to some scheduling problems.
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