On the Calculation of the Stability Radius
of an Optimal or an Approximate Schedule

Yuri N. Sotskov!
Institute of Engineering Cybernetics, Surganov St. 6,
220012 Minsk, Belarus

Albert P.M. Wagelmans
Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738,
3000 DR Rotterdam, The Netherlands

Frank Werner!
Otto-von-Guericke-Universitat, Fakultat fiir Mathematik, PSF 4120,
39016 Magdeburg, Germany

Econometric Institute Report 9718 /A

Abstract: The main objective of this paper is to stimulate interest in stability analysis for
scheduling problems. In spite of impressive theoretical results in sequencing and scheduling,
up to now the implementation of scheduling algorithms with a rather deep mathematical
background in production planning, scheduling and control, and in other real-life problems
with sequencing aspects is limited. In classical scheduling theory, mainly deterministic sys-
tems are considered and the processing times of all operations are supposed to be given in
advance. Such problems do not often arise in practice: Even if the processing times are
known before applying a scheduling procedure, OR workers are forced to take into account
the precision of equipment, which is used to calculate the processing times, round-off errors
in the calculation of a schedule, errors within the practical realization of a schedule, machine
breakdowns, additional jobs and so on. This paper is devoted to the calculation of the sta-
bility radius of an optimal or an approximate schedule. We survey some recent results in
this field and derive new results in order to make this approach more suitable for practical
use. Computational results on the calculation of the stability radius for randomly generated
job shop scheduling problems are presented. The extreme values of the stability radius are
considered in more detail. The new results are amply illustrated with examples.

Keywords: Stability, Scheduling, Disjunctive graph, Linear binary programming

!Supported by Deutsche Forschungsgemeinschaft (Project ScheMA) and by INTAS (Project 93-257)



1 Introduction

This paper is devoted to a stability analysis of an optimal or approximate solution of discrete
optimization problems, mainly from the field of scheduling theory. It basically consists of
two parts, which are devoted to two different settings of scheduling problems and which are
completed by appropriate calculation methods. The main idea is to combine in one paper
different types of scheduling settings and to show that the same stability analysis may be
suitable for optimization problems of different complexity. Due to this, results derived for
one problem type may also be used for other types (directly or as a possible subject for
additional research).

The first part (Sections 2 - 6) deals with the general shop scheduling problem, where a set of
jobs has to be processed on a set of machines. Each maximal non-preemptive processing of a
job on a machine is called an operation and there are given precedence constraints between
certain operations. In the first part of the paper, we consider as objective the minimization of
the makespan. A suitable model for representing this scheduling problem is the disjunctive
or mixed graph (see Section 2). We investigate the stability ball of an optimal digraph
representing a semi-active schedule s for a general shop (scheduling) problem, i.e., a ball in
the space of the numerical input data such that within this ball schedule s remains optimal.
In Section 3 we present a formal definition of the stability radius (the maximal value of the
radius of such a stability ball) and survey some previous results. An illustrative example
of the job shop problem with the makespan criterion (as a special case of the general shop
problem) is given in Section 4. In Section 5 we improve a known algorithm for calculating
the stability radius for the general shop problem. In Section 6 we discuss computational
results on the calculation of the stability radii for randomly generated job shop problems.

Stability results for simpler (but still NP-hard) scheduling problems, which may be formu-
lated as a linear binary program, are surveyed and improved in the second part of the paper
(Sections 7 — 14). This part is devoted to a stability analysis of an approximate solution of
such types of optimization problems. All results presented in the second part are not only
valid for scheduling problems of this type, but for the general class of linear binary pro-
gramming problems as well. Some basic results on the stability analysis of an approximate
solution are given in Section 7. Section 8 deals with the stability region of an approximate
solution. The derived properties are illustrated on an example in Section 9. An upper bound
on the stability radius is derived in Section 10. Section 11 presents necessary and sufficient
conditions for a zero stability radius of an approximate solution. In Section 12 lower bounds
for the stability radius are derived. The calculation of the stability radius of an approximate
solution is treated in Section 13. In Section 14 we demonstrate the calculation of the stability
radius on the example from Section 9. Finally, some open questions in stability analysis are
formulated in Section 15.

2 The General Shop Problem

Most scheduling problems may be represented as extremal problems on disjunctive (mixed)
graphs [9, 16, 22, 23]. The only requirement for this representation is the prohibition of
preemptions of operations. In the first part of the paper we use the disjunctive graph model



to represent the input data of the so-called general shop problem usually denoted by G//®
and defined as follows.

There is a set @@ = {1,2,...,¢} of operations that have to be processed on the machines
of a set M = {My, M,,...,M,}. Let @ denote the set of operations that have to be
processed on machine My € M: Q = UL, Qy, Qr #0, QxNQ =0, k=1,2,...,m, | =
1,2,....,m, k # [. At any time each machine can process at most one operation and the
processing time p; > 0 of operation ¢ € (J; on machine M} € M is given before scheduling.
Preemptions of operations are not allowed and this implies that a schedule of the operations
() on the machines M may be defined by the completion times ¢; or by the starting times
¢; — p; of all operations ¢ € (). We assume in the following that ¢; > p; holds for each
1 € (). The set of operations () is supposed to be partially ordered by the given precedence
constraints —: if ¢+ — 7 is given, then

C; S C;i — Py (2'1)

must hold for any feasible schedule. Since at any time a machine can process at most one
operation, the conditions ¢ € (), and j € Q) imply one of the following inequalities:

¢ <ej—p; or ¢ <¢—pi. (2.2)

The general shop problem G//® is to find a feasible schedule (¢1, ¢, ..., ¢;) in order to min-
imize the value of a given non-decreasing objective function ®(¢q,¢s,...,¢,). The problem
data are represented by means of a disjunctive (or mixed) graph G' = (Q,C, D) as follows.
The set ) of operations is the set of vertices, a non-negative weight p; being assigned to
each vertex 1 € (). C is the set of directed (conjunctive) arcs, representing conditions (2.1):
C=A{(,5)]|i—7,1€Q, 7€ Q} D is the set of pairs of directed (disjunctive) arcs, repre-
senting conditions (2.2): D = {(¢,7),(J,1) |1 € Qr; JE Qus 1 A 73 J 05 k=1,2,...,m}.
An analogous model may be given in terms of a mixed graph G° = (Q,C, D°) using an
undirected edge [¢, j] instead of a pair of disjunctive arcs {(i,7),(j,7)}: D° = {[i,j] | i €
Qr JEQr 14555415 k=12, m}

One can note that conditions (2.2) may be implied not only by the same machine M,
which has to process operations 7 and 7, but also by the same job in the case of a non-fixed
technological route which includes both operations ¢ and j (like in the open shop problem).
We should mention that all known and new results presented in the first part of the paper
(i.e. in Sections 2 - 6) remain valid also for such type of the conditions (2.2). However, for
the sake of simplicity we shall restrict our presentation to the case that machine My is the
only reason for the occurrence of conditions (2.2).

While solving problem G'//®, each pair of disjunctive arcs {(, j), (J,7)} must be settled, i.e.,
one of these arcs must be added to a subset D, C D of chosen arcs and the other one must
be rejected [9, 16, 22]. The choice of arc (i,7) ((J,7), respectively) defines a precedence of
operation i (operation j) over operation j (operation ¢) on their common machine My € M.

A feasible schedule is defined by a subset D, C D such that
(*) (4,7) € Dy if and only if (j,2) € D\ Dy, and
(**) the digraph G5 = (Q,C U Dy, D) has no circuits.

Since the objective function is non-decreasing in the completion times, we may consider

only semi-active schedules [9, 23]. Let P(G) = {G1,Gs,...,G\} be the set of all digraphs



(/s that satisfy both conditions (*) and (**). On the one hand, each digraph G € P(G)
defines a unique semi-active schedule s = (¢1(s),ca(s),...,¢,(s)), where ¢;(s) is the earliest
completion time of operation ¢ € () with respect to the digraph G,. On the other hand,
each semi-active schedule defines a unique digraph G5 € P(G). In the following we call the
digraph G5y € P(G) optimal if s is an optimal schedule.

The general shop problem (and many of its special cases) is NP-hard in the strong sense for all
criteria considered in classical scheduling theory [9, 23], but one can find an optimal schedule
s = (c1(s),e2(s),...,¢4(s)) in O(g*) time after having constructed an optimal digraph G. It
follows that the main difficulty of problem G//® consists in constructing an optimal digraph
G5 = (Q,C U Dy, D), in other words, in constructing the best set D of chosen arcs. Because
of its importance, set Dy is called the signature of a schedule s [18, 20, 22].

3 The Stability Radius of an Optimal Digraph

One of the main questions under consideration is as follows. How can one vary the processing
times p;,1 € @, in the problem G//® such that an optimal schedule remains optimal? Note
that any variation of the processing times changes an optimal schedule s, however, the
optimal digraph G5 = (Q,C U Ds, ) may remain the same and the signature Dy of an
optimal schedule s is more stable. Also, in practice it is often not so important to know
exactly an optimal solution (i.e., the times when the operations have to be started and
have to be completed), but rather the optimal sequences in which the operations have to be
processed on the machines My, € M (this is again due to the fact that optimal sequences
are more stable than an optimal schedule). Therefore, following [8, 17, 18] we investigate
the stability of an optimal digraph G, which represents a solution of problem G///® in a
compact form. We concretize the above question: Under which largest independent changes
in the components of the vector of the processing times p = (p1, p2,...,p,) does the digraph
(s remain optimal? Next, we introduce these notions in a formal way.

Let R? be the set of all non-negative real vectors p with the maximum metric. The distance
r(p,p’) between the vectors p € R? and p’ € R? is equal to max{|p; — p!| | + € @}, where
|p; — pl| denotes the absolute value of the difference p; — pl.

Definition 1 The closed ball O,(p) with the radius o and the centre p in the space of all
g-dimensional real vectors is called a stability ball of an optimal digraph Gy, if for any vector
p' € O,(p) N R of processing times the schedule s remains optimal.

Note that a stability ball may include also g-dimensional vectors with negative real compo-
nents.

Definition 2 The radius o of the largest stability ball O,(p) of the optimal digraph G is
called the stability radius of G5 and is denoted by os(p).

In the remainder of this section we survey recent results on stability analysis and in Section 5
we derive some results for problem G'//Cy,q, with the makespan criterion: ®(¢q,¢a,...,¢,) =
max{c; | i € Q} = Cpuw. Let < g > denote the set of vertices which form a path p in the



digraph (/s and let [P(y1) be the length of this path: ("(u) = 7, - pi- Obviously, the value
of max{c;(s) | i € Q} of a schedule s is equal to the length of a critical (longest) path in G
and, hence, in the case of the makespan criterion we have to determine a feasible schedule s
such that the length of a critical path in G is minimized:
[P(p) = mi i 3.1

max [*(;) = min max (v), (3.1)
where H} denotes the set of all paths in the digraph (/. Since the processing times are
non-negative, we can consider in (3.1) only dominant paths. The path p € Hj is called
dominant [8, 18, 20], if there is no other path v € Hj such that < g > C < v >. Otherwise,

we write that path p is dominated by path v. Let Hy and H denote the sets of all dominant
paths in the digraphs Gy = (Q,C U Dy, 0) and (Q, C, 1), respectively.

It has been shown in [17, 18] that, if s is an optimal schedule of problem G//C,,., the value
0s(p) either satisfies the inequalities

0 < os(p) <max{p; [i=1,2,...,q} = p. (3.2)
or it is infinitely large: o,(p) = oc.

Let H; denote the set of all dominant critical paths in the digraph Gj € P(G) with the
vector p € R? of weights. Obviously, H; C Hj, holds for each k = 1,2,..., . We denote the
set of all optimal schedules by ¢(p). The following theorems (see [17, 18]) characterize the
extreme values of the stability radius.

Theorem 1 For an optimal schedule s € ¢(p) of problem G[/Ciar, the strict inequality
0s(p) > 0 holds if and only if for any path n € HP\H and any other optimal schedule
k € &(p) (provided that |p(p)| > 1) there exists a path v € H} such that < p > C <wv >.

Theorem 2 For problem G/ /Cpaz, we have p5(p) = oo if and only if for any path p € H\H
and any digraph Gy, € P(G) there exists a path v € Hy such that < p> C <wv >.

Unfortunately, for problem G//C,,.. it is difficult to verify the conditions of Theorems 1 and
2. In [8], simpler (in the computational sense) necessary and sufficient conditions have been
derived for a given job shop problem J//C,,.. to have at least one optimal digraph with an
infinitely large stability radius. It has been shown that the latter conditions can be verified
in O(q?) time and this is also the complexity of actually constructing an optimal makespan
schedule s with ps(p) = oco. Similar results have been obtained for problem J//L,., of
minimizing maximum lateness. It has also been proven in [8] that for a problem .J//® with
any other classical criterion ®(cq,ca,...,¢,), presented e.g. in [9], there does not exist an
optimal schedule s with an infinitely large stability radius. Note also that for the flow shop
problem F'//C,,.. and the open shop problem O//C,,.., there exists an optimal schedule s
with 0s(p) = oo only for very small examples. More precisely, if |J*| > 1 and m > 1, we
have g5(p) < p. for problem O//C\4z, and if |J*| > 2 and m > 2, we have g,(p) < p. for
problem F//C... (|J7| denotes the cardinality of the set of jobs J* = (Ji, Ja,. .., Jjj+)).

A general formula for calculating os(p) for problem G//C,,,. has been given in [17, 18]. In
Section 5 we slightly simplify this formula in order to reduce the required time for calculating
the stability radius and to include the case p5(p) = oco. To illustrate the above notions and
Theorems 1 and 2, we consider in the following section an example of problem J//C,, ., with
two jobs and two machines.



4 Example 1

Let a job shop problem be specified by the mixed graph G° = (Q,C, D°) given in Fig. 1.
The first job consists of operations 1 and 2, and the second job consists of operations 3, 4,
and 5. So we have the precedence constraints 1 — 2, 3 — 4 and 4 — 5. The assignment
of the operations to the machines is as follows: @, = {1,4}, Q2 = {2,3,5}. The vector
p = (10,20,30,40,20) defines the processing times of the operations @@ = {1,2,3,4,5}.
Hereafter we shall refer to this example as Example 1.

Figure 1

For Example 1 we get P(G) = {G1, Gy, Gs, G4, G5} with the following signatures of all semi-
active schedules: Dy = {(1,4),(3,2),(2,5)}, D2 ={(1,4),(3,2),(5,2)}, Ds ={(1,4),(2,3),
(2,5)}, Da={(4,1),(3,2), (2,5)} and Ds ={(4,1),(3,2),(5,2)}. The corresponding sets of
dominant paths are the following: Hy = {(1,2,5),(3,2,5),(1,4,5), (3,4,5)}, Hy ={(1,4,5,2),
(3,4,5,2)}, Hy = {(1,2,3,4,5)}, Hy = {(3,4,1,2,5)}, Hy = {(3,4,1,2), (3,4,5,2)}. The
(makespan) optimal digraph Gy = (Q,C U Dy, ) is shown in Fig. 2 and it defines the unique
optimal semi-active schedule (10, 50,30, 70,90).

Figure 2

Since there exists only one optimal digraph (1, we conclude that g1(p) > 0 due to Theorem
1. On the other hand, the value g;(p) cannot be infinitely large, since there exist the
path 1 = (1,2,5) in the set Hi\H and the digraph G5 € P(G) such that for any path
v € Hj the inclusion < p > C < v > does not hold. Indeed {1,2,5} < {1,2,3,4} and
{1,2,5} € {2,3,4,5}. Therefore due to Theorem 2, we have p;(p) < oo and, as a result, the
inequalities 0 < p1(p) < 40 = p, hold (see (3.2)).

5 The Calculation of p,(p) for Problem G//C,,..

Next, we derive a formula for calculating the stability radius which, similar to that proven
in [18], is based on the enumeration and comparison of the dominant paths of an optimal
and other feasible digraphs. However, using the dominance relation between the set of paths
of an optimal and that of a feasible digraph, we shall reduce the set of paths which have to
be compared (see set Hg in the following proof) while calculating the stability radius. Due
to this, the new formula often leads to a smaller running time for some scheduling problems
(see calculation for Example 1 at the end of this section). Moreover, while the formula from
[18] is valid only for finite values ps(p) and it does not identify the case when the stability
radius is infinitely large, the new formula holds for the general case. More precisely, the
calculation of gs(p) in accordance with the new formula indicates the case gs(p) = oo (if it
oceurs).

First, assume that os(p) < oo holds for the given optimal schedule s € ¢(p) of problem
(] /Cpmaz- Using Definition 2 and equality (3.1), we can conclude that

o / / q p’ . p/
0s(p) = inf{r(p,p') | p’ € B', max{(p) > min =~ max!”(v)}.

6



Therefore, to find the stability radius p,(p) it is sufficient to construct a vector p’ € R? which
satisfies the following three conditions:
1) there exists a digraph G, € P(G) such that
max [” (1) = max ¥ (v); 5.1
max [ (1) = max [" (v); (5.1)
2) for any given real € > 0 which is close to zero, there exists a vector p° such that r(p/, p°) = €

and the inequality

I I 5.2
max [ () > max i (v) (5.2)

is satisfied for at least one digraph G/ € P(G);
3) the distance r(p, p') achieves its minimal value among the distances between vector p and
the other vectors in the space R? which satisfy both conditions 1 and 2 above.

After having constructed such a vector p’ € R?, one can define the stability radius of the
digraph Gy ps(p) = r(p,p’), since the critical path in the digraph G5 becomes larger than
that of the digraph G for any p* € R? with positive real €, which may be as small as possible
(see condition 2), and so the digraph G is no longer optimal, while in the ball O, (p)
digraph (5 remains optimal (see condition 3).

Thus, the calculation of the stability radius is reduced to an extremal problem on a given set
of weighted digraphs P(G) = {G1, Gy, ..., G\ } with a variable vector p of weights assigned to
the vertices of each digraph Gi; € P((G). As it follows from equality (5.1) and inequality (5.2),
the main objects for such a calculation are the sets of dominant paths Hy, k = 1,2,..., .
Similarly to [18], we look next for a vector p’ = p(r) = (p1(r), p2(r),...,ps(r)) € R? with
the components p;(r) € {p;,pi + r,p; —r} on the basis of a direct comparison of the paths
from the set H; and the paths from the sets Hy, where k =1,2,..., X and k # s.

Let the value {P(v) be greater than the length of a critical path in an optimal digraph G.
To satisfy equality (5.1), the length of a path v € H; may not be greater than that of at
least one path p € H, and there is a path v € Hj with a length equal to the length of a
critical path in GG;. Thus, if we have calculated

[P(v) — [P
r, = min ) (1) ) (5.3)
peH. | <p>U<v>|—|<pu>N<v>|

we obtain the equality max,ep. (P7)(u) = PU)(v) for the vector p(r) = p(r,) with the
components

pi+r, ifie<pu>,

pi(r)=<¢ pi—r,, fie<v>\<pu>, (5.4)

P ifigd<pu>U<rv>.
On the other hand, to reach equality (5.1) for the whole digraph G, we have to repeat
the calculation (5.3) for each path v € Hy with [?(v) > [2, where [ denotes the length
of a critical path in G5. Thus, instead of the vector p(r,) we have to consider the vector
p(r) = p(rq,) calculated according to formula (5.4), where

P(v) —1"(p)

rg, = min max . (5.5)
pEH.  veH;r)>E | <p>U<r>|—|<pu>N<v>|

Let us now consider inequality (5.2). Since the processing times are non-negative, this
inequality may not be valid for a vector p* € R? if path p is dominated by path v: < p > C

7



< v >. Thus we can restrict our consideration to the subset H,; of the set H, of all paths,
which are not dominated by paths from Hy:

Hsk:{MEH5| there is no path v € Hy such that </,L>§<I/>}.

Thus, we can replace H; in equality (5.5) by Hg. To obtain the desired vector p’ € R?, we
have to use equality (5.5) for each digraph Gy € P(G), k # s. Let r denote the minimum of
such a value rg,: r =rgr = min{rg, | Gx € P(G),k # s}, and let v* € Hps and g™ € Hgpr
be paths at which the value rg« has been reached:

_ [P(v) — IP(p”)
< sU<rr s | —l<p>n<r >

TGx = Tyx

Taking into account (5.4), we note that, if r,» < p; for each 1 €< v* >\ < p* >, the vector
p(r) = p(r,«) does not contain negative components, i.e., p(r) € R?. For the general case we
have obtained only a lower bound for the stability radius:

[P(v) = 1" (p)

os(p) >r=_ min min max . (5.6)
k=1, ks wEHog  veH r()>E | <pu>U<v>|—|<p>N<rv>|

This bound is tight. Indeed, if os(p) < p; for each i €< v* >\ < p* >, then ps(p) = r due
to the above remark. For practical use, we note that os(p) = r in (5.6) if o5(p) < min{p; |
i€ Q}.

To obtain the exact value of o (p) in the general case, we follow [18]: Let p) be equal to
zero and let (pll,wp?,w ..., pui”) denote a non-decreasing sequence of the processing times of

the operations from the set < v >\ <y >, where w,, = | <v >\ < g > |. We obtain the
following assertion.

Theorem 3 [f s € ¢(p) holds for problem G/]/C oz, then

: : () = 17(n) = 30 _o Pt
0s(p) = min min max max )
k=1, hk#s w€Ha, veHpp(n)>12 =0, | < pu>U<v>|—|<pu>N<v>|—f
(5.7)

Now we can reject the above assumption that gs(p) < oo : When coding formula (5.7), we
start with setting os(p) = oo. If Hyg, = 0 for any k =1,2,..., X, k # s (see Theorem 2), we
do not change the initial value of p (p) which indicates that the stability radius is infinitely
large. Thus formula (5.7) gives the exact value of the stability radius for any optimal digraph
G5 € P(G), including the extreme values 0 and oo of p5(p). Note also that, if only a subset of
the processing times (say, P C {p1,pa,...,p,}) can be changed, but the other ones cannot,
formulas (5.6) and (5.7) remain valid provided that the difference | < pu>U<v > | -] <
>N < v >|isreplaced by the difference {< py >U < v >}N Pl—|<pu>nN<v>nNP|.

On the basis of Example 1 (see Section 4), we show that the calculation of p4(p) may be
simplified considerably due to the use of Hyj instead of H,. First we compare the sets H; and
H; (see Section 3). Obviously, the paths (1,2,5) € Hy and (1,4,5) € H; are dominated by
the path (1,4,5,2) € H,. The paths (3,2,5) € Hy and (3,4,5) € H; are dominated by the
path (3,4,5,2) € Hy. Thus, we have H; ; = (). Similarly, one can verify that Hy 3 = Hy 4 = 0.

8



So for Example 1 only the set Hj 5 is nonempty: Hys = {(1,2,5),(1,4,5)}, and we have to
compare the lengths of four pairs of paths. For path 14 = (3,4,1,2) € Hs and for the two
paths from H, 5, we have

100 — 50 100 — 70
: } — 10.
3 3

Ty, = min{

For path vy = (3,4,5,2) € Hs and for the two paths from H; 5, we have

110 =50 110—70} 1

=13-.
3 ’ 3 3

Ty, = min{

Thus, we can calculate r = rg, = max{10,131} = 131, v* = 1, = (3,4,5,2) and p* =
(1,4,5). Since r < p; holds for each ¢ € {2,3} = < v* > \ < p* >, we conclude that
o1(p) = r = 135. While the calculation of g;(p) on the basis of formula (5.7) requires to
compare the lengths of four pairs of paths, the calculation of p1(p) on the basis of formula
(13) in [18] requires to consider the lengths of 24 pairs of paths. Moreover, in fact, we use
here the simpler formula (5.6) as equality ps(p) = r on the basis of our earlier remark about
the tightness of (5.6). According to (5.4), we can calculate vector p’ = p(r):

’—(10—|—131 20 131 30 131 40—|—131 20—|—131)—(231 62 162 531 331)
b= 3 37 3 3 3/ 7\ Py 0y
for which we have ' = [£' = 110, [} = 1162, Bo= = 1332, Thus, ¢(p') = {1,5}
holds (see condition 1) and for any given small ¢ > 0 we can construct the vector p* =

(231 4 ¢,62,162,53%,331) for which ¢(p°) = {5}. Due to Hyy = Hy3 = Hy 4 =0, it is easy

s V3,
to see that condition 3 is satisfied, too.

6 Computational Results

In this section we give some computational results of the program for calculating the stability
radii for all optimal schedules ¢(p) of a problem G//Cy4r. The input and output data of
the program are as follows.

Input data: The mixed graph G° = (Q,C, D°) with the weights p = (p1,p2,...,py)-

Output data: The number |P(G)| of feasible semi-active schedules; the number |¢(p)| of
semi-active optimal schedules. For each optimal schedule s € ¢(p), the output data include
the stability radius gs(p), its signature Dy and all signatures Dy, paths p* € Hg, and v* € Hy,
at which the stability radius gs(p) has been reached (see Section 5). If there was more than
one optimal schedule, we calculated the minimal, average and maximal differences of their
stability radii.

We coded an algorithm based on the formulas (5.6) and (5.7) in FORTRAN. To restrict the
number of digraphs G, € P(G), with which an optimal digraph G has to be compared,
we use the simple bounds from [21]. To this end, we compare digraph G consecutively
with the digraphs G from P((G) in non-decreasing order of the objective function values
(the makespans). The bound from [21] is used as stopping rule, since, due to this rule, the
digraphs with large makespan value need not be considered.



When randomly generating the test instances, we distributed the operations evenly over the
machines and then the operations assigned to the same machine have been evenly distributed
over the jobs. We considered the following 15 types of job shop problems J//C\,4z-

|J*|=3,n1 =ny =n3 =3,m=3.

|J*| = 3,n1 = 3,ny = 2,n3 =4, m = 3.

| |=3.n1 =ny=n3 =4, m=4.

|J*| =4,n1 = ny =ng =n4 =3,m = 6.

|‘]*| =4,n =ny=3,n3=n4 =2,m =4

|J*| =4,ny =4,n9 =3,n3 =ng =2,m = 6.

|J*| =bni=ny=4,n3=ns =3, ns=2,m=17.

|J*| = 5,n1 =ny =3, n3 =ng =ns =2,m = 6.

9: |J*|=6,n1=ny=nzg=ny=3,n5=ng=2,m=1"1.

10: |J*|=6,n1 =ny=4,n3 =n4 =3,n5 =ng = 2,m = 8.
1: |J* | =5,n=5n=n3=4,n,=ns=3,m=29.

12: |J*|=6,ny =ny =ng=ny =ns =ng =3,m=2_8.

13: |J*|=6,n1 =ny=5,n3 =n4 = 3,n5 = neg = 2,m = 10.
M: |J*|=T,ny=ny=ng=ny=3,n5=ng=nr=2,m=29.
5: |J*|=7,ny=ny=ng=ng=ns=3,ng=nr=2,m=09.

Here n; denotes the number of operations per job J; € J* = {Ji,J5,...,Jjy«}. First we
generated 100 (pseudo)random instances of each of the types 1 - 10, where the processing
times are uniformly distributed real numbers in the segment [pyin, Pmar] = [10,1000]. The
results are given in Table 1. For each type of problems (column 1 in Table 1) we calculated the
stability radii of all makespan optimal semi-active schedules of all 100 randomly generated
instances. The minimal, average and maximal values of gs(p) among all 100 instances are
presented in columns 2, 3 and 4, respectively. Moreover, each calculated stability radius
has been divided by pavi = (3 ;cq Pi)/¢, and the obtained minimal, average and maximal
values for the whole series of instances are presented in columns 5, 6 and 7, respectively. If
there was more than one makespan optimal schedule for the same instance, we calculated
the minimal, average and maximal differences between them. The average and maximal
differences among all 100 instances of a series are presented in columns 8 and 9. Note
that the minimum of these values was equal to zero for each type of problems 1 - 10. The
minimal, average and maximal numbers of feasible semi-active schedules among 100 instances
of a series are presented in columns 10, 11 and 12. The average and maximal numbers of
optimal schedules are presented in columns 13 and 14. For each of these 10 types, there
was at least one instance with only one makespan optimal schedule. Column 15 contains the
numbers NPO of instances (among 100 considered in each series) with two or more makespan
optimal schedules. For each instance the CPU time, which was necessary for constructing the
whole set of feasible semi-active schedules and calculating the stability radii for all optimal
schedules, has been measured. The average value of this CPU time (in seconds on a PC 486,
33 MHz) for each type of problems is given in column 16.

Table 1

We can observe that (at least for the considered types of problems) the optimal digraph is
often not unique. Only for the problems of types 1 and 3 we obtained a value of NPO less
than 50 %. The largest numbers of optimal schedules were obtained for the problems of

10



type 10: On average, each of these instances has more than 16 makespan optimal schedules,
and there was an instance even with 66 makespan optimal schedules. So, one can conclude
that from a practical point of view, it makes sense to look for a makespan optimal schedule
with the largest value of the stability radius. The difference of the stability radii of the
optimal schedules of the same problem type may be rather large (see columns 8 and 9). This
difference reached the value 301 for an instance of type 8, and on average, for all problem
types 1 — 10, this difference was between 30.09 and 56.73.

From columns 2 — 7 it follows that makespan optimal schedules are stable (i.e. they have
a strictly positive stability radius), and therefore o (p) may be used as a good measure of
stability of makespan optimal schedules. It is worth to note that in this simulation study, we
never obtained an unstable makespan optimal schedule, i.e., one with zero stability radius.
However, in series of types 4, 5 and 9, there were optimal schedules with very small relative

values of 05(p) : 0s(p)/pave = 0.01.

Table 2

On the basis of problems of types 11 — 15, we investigated the influence of different ranges
of the variations of the processing times: [10,100], [10, 1000] and [100,1000]. To this end we
generated 10 problems of each of the types 11 — 15. The results are given in Table 2. Of
course, larger processing times imply larger values of the stability radii (see columns 2, 3
and 4 in Table 2), but the relative values of the stability radii do not differ very much for
different ranges of the processing times (see columns 5, 6 and 7). Indeed, we have obtained
the following segments for the average values of o) /pave: [4.39, 10.05], [4.96, 13.28] and
[3.76, 8.16].

Figure 3

In conclusion of the first part of the paper we present in Fig. 3 one randomly generated
instance of type 10 (see Table 1), where the processing times p; are given near the vertices
i €{1,2,...,18} and operations 0 (start) and * (finish) are fictitious. To give an impression
on the above simulation study, we present the following additional information for the mixed
graph which is drawn in Fig. 3. This instance has 1728 feasible semi-active schedules, 12
of them are makespan optimal: 4 optimal schedules have the smallest stability radius 9.99,
4 other optimal schedules have the stability radius 14.86, and the other optimal schedules
have the stability radii 25.67, 31.08, 58.16 and 63.57, respectively. The optimal value of the
objective function (makespan) for this instance is equal to 2886.47. The largest value of
the objective function among all feasible semi-active schedules is equal to 6750.76. While
calculating all 12 stability radii for this instance, we considered about 29 % of all feasible
semi-active schedules due to the mentioned bounds from [21]. However, it is worth to note
that to find the exact values of the stability radii (without guarantee that these are indeed
the exact values of the stability radii), it was sufficient to consider only 0.52 % of all feasible
semi-active schedules. The construction of the whole set of feasible semi-active schedules
and the calculation of the stability radii for all optimal schedules for this instance took 9.78
seconds.

We can note that the time needed to calculate the stability radii for all optimal schedules
for an instance increases exponentially with the number of edges in the corresponding mixed

11



graph. In our experiments, for different types of problems the average CPU time on a PC
486 (33 MHz) for such a calculation varied from 0.11 seconds for instances of type 6 up
to 46.92 seconds for instances of type 11. However, the bottleneck for considering problem
types of larger size (using only internal memory) is connected with the required number of
dominant paths to be considered, i.e., with the required internal memory of the computer.
A possible way to overcome this memory restriction is to generate the dominant paths of
the feasible digraphs systematically and to consider them one by one, without storing them.

7 Stability Analysis of an e-Approximate Solution

As follows from the above theoretical and computational results (see also [21]), it is possible to
find the exact value of p,(p) for general shop problems only with very small dimensions since
the used formulas (5.6) and (5.7) are based on a direct comparison of dominant paths in the
set (or in the subset) of feasible digraphs P((). To avoid such an enormous enumeration, we
shall now consider rather simple scheduling problems (essentially simpler than GG//C\,q., but
still NP-hard in the general case), for which the set of dominant paths H; of each solution
s consists of a unique path. Moreover, instead of the 'min-max’ criterion, considered in
Sections 1 — 6, we shall consider the ‘min-sum’ criterion.

More precisely, in the remainder of the paper we restrict our attention to those scheduling
problems, which may be represented in terms of linear binary programming [3, 6, 11] (or,
similarly, in terms of a linear trajectory problem [4, 5, 19]). A concept of stability analysis
for the latter problem has been developed in [4, 5, 10, 11, 12, 24] and in some other papers
(see [20] for the extensive survey). It should be noted that most results have been obtained
for the stability radius of the whole set of optimal trajectories, i.e., for the largest radius of
an open ball in the space of the numerical input data such that a new optimal trajectory
does not arise. Unfortunately, the set of all optimal trajectories is often unknown since its
cardinality may be large. Fven if the optimal trajectory is unique for the problem, this
information is usually inaccessible for OR workers. On the other hand, the investigation of
the stability radius of one optimal trajectory of such a problem has the following drawback:
The stability radius of an optimal solution of a linear trajectory problem is equal to zero,
if at least one alternative optimal solution exists. Therefore, in [3, 6, 19] the stability of an
e-approximate solution has been investigated.

In Sections 7 - 14 we survey known stability results for e-approximate solutions, and prove
some new ones. For simplicity, we use here the notations from [3, 6, 19, 20] which are more
suitable for linear binary programming. However, we try to keep most notations (for the
criterion, the stability radius and the variable data) close to those used in the first part of
the paper. We hope that this will not imply any ambiguity for the reader since we do not
use cross-references between the first and second parts (with the exception of Section 15,
which contains some concluding remarks).

Let N ={1,2,...,n} and X C {0,1}" be the set of all feasible vectors (feasible solutions).
For a given vector p € R" and a feasible solution # € X, let ®(p,z) = >, .y pix; be the
objective function. We assume that the set X of feasible solutions is finite and does not
depend on the vector p = (p1, p2, ..., pn) of objective coefficients. For brevity, we shall call
p the objective vector.

12



The linear binary programming problem under consideration is to find an optimal vector
(optimal solution) a? = (2}, a%,... 22) € X with

O(p,x?) = min{P(p,z) |z € X}. (7.1)

We investigate problem (7.1) under the assumption that all or a subset of the objective
coefficients py, pa, ..., p, can change their values in comparison with the initial ones. We first
consider the stability region and the stability ball of an e-approximate solution of problem
(7.1), where € > 0. Let @ € X be an e-approximate solution of the problem (7.1), i.e., the
condition

(I)(p,l') < (1 + 6) ) (I)(pv xp) (72)

holds. We investigate the situation when w given components of the objective vector p,
1 < w < n, can be changed after solving problem (7.1) but the remaining n — w components
of p cannot be changed. Without loss of generality we assume that the first w compo-

nents pi, p2, ..., py of the objective vector p can be changed (unstable components). Hence,
the values of the objective coefficients pyy1, puta, - .., p, are reliable, but the values of the
objective coefficients py, pa, ..., py can change after solving problem (7.1).

From now on, we shall consider only objective vectors p € R"*, where the last n — w compo-
nents are equal to given values, say pyir1 = Put1s Puwt2 = Dwt2,---> Pn = Pn, and for such
objective vectors we define p = (p1,pa, ..., pw) € RY as the vector of its first w components.

Definition 3 The set of all objective vectors p € RY, for which x € X is an ¢-approrimate
solution, is called the stability region of ¥ and it is denoted by K (x) :

KP(x) = {p € R" | ®(p.x) < (14 ¢) - D(p,2")}. (7.3)

Definition 4 The closed ball O} (p) with radius ¢ and vector p as centre is called a stability
ball of e-approximate solution v € X if O} (p)N R C K*(x).

Definition 5 Let @ € X be an e-approximate solution with respect to the objective vector p.
The radius o of the largest stability ball O} (p) of x is called the stability radius of x and it
is denoted by o¥(x,p).

In the next section we prove some simple properties of the set K (x).

8 The Stability Region

For every « € X, define & = (21, x9,...,2,) as the vector of its first w components. Further-
more, define X = {# € X | 2 € X}, and let U be a reflexive binary relation on the set X
with maximal cardinality such that (,3') € U if and only if for all « € {1,2,...,w} from the
equality x; = 1 the equality @} = 1 follows. In other words, we have (x,2’) € U if and only
if the set of indices of the variables having the value 1 in x is a subset of those in 2’. Due
to the maximal cardinality, the relation U is uniquely determined for each X C {0,1}¥. In
the following, we use the vectors &' = (27, #5,...,2)) and 2’ = (2,29, ..., 2,2, ..., 2).

n

13



Define K¥ = (), ox K (x). Obviously, K contains all objective vectors p that are con-
tained in the stability region of every feasible solution x € X. Using the above notations,
we can formulate and then prove the following assertions about the stability region K(x)
with © € X, w < n and ¢ > 0.

Property 1: The stability region K*(x) and the set K are polyhedra.
Property 2: If ¢, < ¢, then K (2) C K2(x).

Property 3: If the inclusion (%, &) € U and the inequality

thzgz:tx (8-1)

i=w+1 i=w+1

hold, then K (z') C K*(x).

Property 4: We have | J . K(z) = R,
Property 5: At least one of the regions K*(x),x € X, is unbounded.

Proof: First we show that K(x) can be represented as the set of solutions of a system of
linear inequalities. From (7.1) and (7.3) it follows that the set K(x) contains all objective
vectors p which satisfy the inequality

szl’z_ (1+¢) mm{sz Y EX} (8.2)

1EN 1EN

Consequently, inequality (8.2) can be written as

sz Ty 1"'6) ]

Pi

b, 2 e X,

IA

(8.3)

Y

0, 1=1,2,...,w,

where

1‘|‘6 Z pix Z DiTi.

i=w+1 i=w+1

Hence, the stability region K (x) is given as the set of solutions of system (8.3) of linear in-
equalities with the variable objective coefficients p1, p2, ..., p,. Thus, K(x) is a polyhedron
(note that K (xz) = 0 is possible). K is also a polyhedron because it is the intersection of
polyhedra. Thus, Property 1 holds.

The validity of Property 2 immediately follows from the definition of K (). Indeed, if the
inequality ®(p,x) < (1 +¢€) - ®(p, «?) holds for € = ¢;, then it is also satisfied for each € = €
with ¢; < €.

14



Let the conditions of Property 3 be satisfied, objective vector p° € K*(z’) be arbitrary and
p° be equal to (p?,pS,...,p%, Pusts---,Pun). We consider the value

holds. Considering (8.1), we obtain ®(p°,z) < ®(p°,2') < (1+¢€)- D(p°, :L'po), i.e., the vector
x is an e-approximate solution of problem (7.1) for any objective vector p° from the region
K"(z"). Hence, K*(2') C K(x) holds which proves Property 3.

For the proof of Property 4 we note that, since the set X is finite, there exists an ¢-
approximate solution of problem (7.1) for any given p € R" and any given € > 0. Especially,
we can take the vector 2, automatically satisfying inequality (7.2), as e-approximate solution

of problem (7.1).

Property 4 means that for any € > 0, there exists a finite covering of the space R by stability
regions K(x). Because we have a finite number of regions in the set { K (z) | « € X} but
RY is unbounded, at least one stability region must be unbounded, i.e., Property 5 holds. m

Property 1 can be strengthened for the important special case when w = n (considered in [6]).

Property 6: The set K!(x) is a closed convex cone with the origin in (p; = 0,py =
0,....pn=0) € R".

Proof: Indeed, for any A > 0 we obtain from (7.2), ®(Ap,x) = A®(p,x) < (1+€)-AP(p,2?) <
(14 ¢) - ®(Ap,2*?). Hence, we have A\p € K"(z) for A > 0 which proves Property 6. [

As we shall illustrate in the following example, the set K“(z) (and, consequently, in general
the set K) can be empty. However, in the case w = n, due to Property 6 any set K"(x)
is non-empty: In fact, the set K” is not () because the n-dimensional vector (p; = 0,py =
0,...,p, = 0) belongs to K for any € > 0.

9 Example 2

A broad class of discrete optimization problems can be formulated as a linear binary program-
ming problem, e.g., a one-machine scheduling problem with sequence dependent setup times
between the processing of the jobs which is equivalent to the traveling salesman problem
that was, by the way, the first linear trajectory problem for which a formula for calculating
the stability radius of the whole set of optimal trajectories has been derived [10].

15



Here we consider as an illustrative example the scheduling problem of minimizing the sum of
processing times of the jobs on parallel (but not identical) machines. Assume that we have
m machines that have to process [ jobs, where the processing times do not depend on the
jobs but on the machine and on the processing order. The matrix P gives the processing
times p;; > 0 if a job is the j-th job in the job order of machine ¢. The problem is to assign
all [ jobs to the machines such that the sum of processing times becomes minimal.

Let m = 2, | = 3 and the matrix P = [pi;](n) of the initial data be as follows:

P 1055:p1p2p3
T Pa Ps P |

We set p = (p1,p2,...,p6) and n = m - [. Let x;; = 1 if at least j jobs are processed on
machine ¢ and z;; = 0 otherwise. Analogously, we denote

R A T B R
L21 L22 T23 T4 x5 Tp |
The set X of feasible vectors for this problem can be described as follows:

X = {l’EXn|Z$Z':l; [2; =1, lu<i<Il(u+1), u>0, uis integer]
=1

= [Xpg1 = T2 = ... =221 = 1]}
For the given values of m and [, we have four feasible vectors:
X = {z'=(1,1,1,0,0,0),2* = (1,1,0,1,0,0),
2 =(1,0,0,1,1,0),2* = (0,0,0,1,1,1)}.

First, we determine the stability regions K?(z*) for i € {1,2,3,4} with p = (p1,p2,5,7,7,7)
and € = 0. For x = 2!, system (7.3) is as follows:

prtp2+d < prtpa+ 7
prtp+d < pp+ 14
prtp+5 < 21
o= 0
p2 =2 0
The above system is equivalent to
p2 <9
prtp2 < 16
o2
P2 2
For « = 22, system (7.3) is inconsistent:
prtp2+7 < pr+p2+5
prtp+7 < pp+14
prtp+7 < 21
o2
P2 2

—
D



For x = z°, system (7.3) is equivalent to:

P2
1
1

AVARVARRAYS

For x = z*, system (7.3) is equivalent to:

p1L+p2 16
1

P2

AVARAVARIY]

The above stability regions are given in Fig. 4. They form a covering of the space R" with
w = 2. Note that KZ(2?) = () and, consequently, K7 = (). Both regions K3(2°) and KZ(x*)
are unbounded.

Figure 4

Analogously, we determine the stability regions K2(z') fors € {1,2,3,4} with p = (p1, p2,5,7,7,7)

and € = 0.5. It is easy to see that the regions K3 (z'), Kis(z?), Kis(2®) and K3 (x?), re-

spectively, are polyhedra given by the solutions of the following systems of linear inequalities:

1) p1—05p, < 16
prt+p2 <265
po o= 0
pe = 0
2) —05p1+ps < 14
prt+tp2 <245
po o= 0
pe = 0
3) p1+3p2 2> 13
pr < 175
po o= 0
pe = 0
4) prtp = 9
po o= 0
pe = 0

These stability regions are shown in Fig. 5. The bounds of these regions are shaded in the
same way as in Fig. 4, only the stability region of z? additionally occurs in a new form
of shading. For the regions KZ.(2') = KZ.(2?) and Kis(z) = Kjs(z') the conditions of
Property 3 are satisfied. Hence, K3 :(2') C KZ5(x) holds.

Figure 5

17



We note that the polyhedron K2 (where each feasible solution is an e-approximate solution
with € = 0.5) is given by the set of solutions of the following system:

—05p1 +p2 < 14
p1+p2 < 245
prtp =29

p1+3p2 > 13
p < 17.5
o= 0
p2 =2 0

Fig. 6 illustrates Property 2 if p = (p1,p2,5,7,7,7),w = 2,2 = 2" and € € {0, 0.5, 1}.
Figure 6

Obviously, the determination of the stability regions is possible only for special problems of
the type (7.1) with a very small number of variables. Moreover, for w > 3 we need a special
form even to draw the stability region in the plane.

10 An Upper Bound on o"(z,p)

Similarly to Section 3, if the ball O}'(p) is a stability ball of an e-approximate solution x for
any positive p, then we write o (x, p) = co. In the following we strengthen an upper bound
for the stability radius given in [19] by using the following result about the existence of an
infinitely large stability radius of an e-approximate solution.

Theorem 4 The stability radius o2 (x,p) equals oo if and only if for any vector ' € X the
condition (#,3') € U and the inequality

Z piri < (L+¢€)- Z pi (10.1)

i=w+1 i=w+1

hold.

The proof of Theorem 4 can be found in [3] and [19]. Applying this theorem, we obtain the
following bound on o (z, p).

Theorem 5 [f o¥(x,p) < 0o, then we have o (x,p) < p., where

P = max {max{pi |1 <i<w}, (1+e€) Z P — Z pixi} ) (10.2)

i=w+1 i=w+1

18



Proof: Due to Theorem 4, one of the following conditions must be satisfied because of
o' (w,p) < o0

(i) there exists a vector @’ € X such that (&,3') & U or

(ii) inequality (10.1) does not hold.

First we consider the case (i), i.e., there exists an index j with 1 < 7 < w such that z; =1
and 2% = 0. We consider the following vector p' = (p,p5,...,p,) € R". Here we set
P = p. > pe, where p. is given by (10.2). For each ¢ with 1 <7 < w and 1 # j, we set pi = 0.
For the stable components of the vector p’ we have, of course, pi = p; (w41 <1 < n).

Now we evaluate ®(p', x) for the vector p':

O(p,x) = D pa

iEN

= ZPN&‘F Z pia;

i=w+1

= p+ Z pii

i=w+1

= p+ Z Di%;

i=w+1

> 1—|—6 sz

i=w+1

— (1+9- Y #

i—w—l—l

(1+¢)- ZpixH (1+¢)- Z pix

=1 i=w+1

= (403l
=1

> (14¢€)-®(p,z").

Y

The first of the above inequalities holds because of p. > p. and the second inequality follows

Zp'x'—o ad 3 pz Y pal

i=w+1 i=w+1

from

Consequently, the vector x is not an e-approximate solution of problem (7.1) for objective
vector p = p'. Therefore, we have o (x,p) < r(p,p’) < p.. Obviously, the value of p/ can be
arbitrarily close to p. with p. < p! and the inequality o¥(x,p) < r(p,p’) is satisfied. Thus, if
condition (i) holds, we have the inequality oY (z,p) < pe.

Let condition (ii) be satisfied, i.e., there exists a vector 2’ € X for which the inequality

Z pi%; > 1‘|'6 Z pix

i=w+1 i=w+1

19



holds. Then we consider the objective vector p” = (p{, p%, ..., p") with the components

v J 0 fore=1,2,...,w,
g fori=w+lLw+2,.. 0.

Now we evaluate ®(p”, x):

o(p",x) = P

= (14Dl

=1

n
. s " " " " "
> (1+4¢) -mm{ piay | (@ xg, oo al,al g, ) € X}

=1

= (1+¢)- CI)(p",:sz“).

Hence, the vector # € X is not an e-approximate solution of the problem (7.1) for objective
vector p = p” and oY (x,p) < r(p,p”) < max{p; | 1 <i < w}. Thus, the theorem has been
proved. [

From Theorem 5 we immediately obtain the following corollary.
Corollary 1 [f o?(x,p) < oo, then ol (x,p) < p. = max{p;, | | <i < n}.

It is easy to see that the upper bound p”(x, p) < p. is tight and that the bound

o(x,p) < (1+¢)- sz Zpil‘z’

i=w+1 i=w+1

is tight under the condition that the vector (a1, xa,..., 24, 1,1,...,1) is feasible.

While the upper bound of p¥(x,p) is implied from Theorem 4 about an infinite stability ra-
dius, a lower bound will be implied from the claims about the zero stability radius considered
in the next section.

11 A Zero Value of o“(z,p)

Necessary and sufficient conditions for p¥(x,p) = 0 have been given in [19], which are valid
only for & # 0, where 0 is the zero vector in R". Here we prove separately criteria for the
case & # 0 as well as & = 0.

20



Theorem 6 Lel p € K¥(x), ¥ #£0, w<n, e>0 and p; > 0 for each i =1,2,...,w. Then
we have o (x,p) =0 if and only if condition (7.2) is satisfied as equality.

Proof: a) Sufficiency: Let the condition (7.2) be satisfied as equality, i.e.,
B(p ) = (14 ) B(p ") (1L1)

Since # # 0 and p; > 0 for each ¢ = 1,2,...,w, the value ®(p,x) is not equal to zero.
Because we have € > 0 in (7.1), we conclude that vector x is not a solution of the problem
(7.1). Then we take any nonzero component of &, say @; = 1,1 € {1,2,...,w}, and consider
the following two possible cases:

Case (i): a¥ = 0. Let the positive real number v > 0 be arbitrarily small. Then the
objective vector p” = (p1,P2,y -y Dic1, Pi + Vo Ditly -+ s Duws Putls-- - Pn) € R* satisfies the
following conditions:

®(p',x) = v+ (px

I
2
_'_
—
_'_
™

VoIV
-2 2
+ +
==
+ +

Poo okl
KA

SRS
\'E%

Thus, we have p” ¢ K(z) and, because of r(p,p”) = v, the set OY(p) N B* is not a subset
of K(z). Consequently, the ball OY(p) is not a stability ball of the ec-approximate solution
x. Since this holds for any arbitrarily small v > 0, we have o¥(x,p) = 0.

Case (ii): 2% = 1. Let us consider the objective vector p) = (p1,...,pi_1,Pi — ¥, Pigis-- -,
Pus Puog1s > Pn)e 10 < v < pg, then pi) € RY due to p; > 0. Since ¢ > 0, the objective
vector p?) satisfies the following relations:

= (1+¢) ®(p,2") —~

> (I+¢)-@(p,a”) —(1+€)y
= (I+¢)-0(p", 2"

> (L+6)-o(p,2#7”)

Thus, we have p" & K¥(z) and the ball OY(p) is not a stability ball of the e-approximate
solution z. Because this holds for any arbitrarily small v > 0, we conclude again that

ol (x,p) = 0.

b) Necessity will be proved by contradiction: Assume that o¥(x,p) = 0 and that condition
(7.2) is satisfied as a strict inequality, i.e., we have

(14+¢)-D(p,a?) — d(p,ax) =A, > 0. (11.2)

We show that there exists a real number p > 0 such that inequality (11.2) remains valid
for any objective vector p’ € R* with p' € O)(p) N R*. Weset o = 3 = A,/(3 4+ ¢)w > 0.
Because of r(p, p') < 3, we obtain

D(p,w) = B(p.a) Sw-B=A,/(3+¢) (11.3)

21



and

(146 @(pea?) = (14 ) - By, 2
w-B- (L4 = A, (1+/B+0).

(L+¢)- ®(p.a®) = (L+¢) @(p,a")

<
. (11.4)

We summarize the left and the right terms of the inequalities (11.3) and (11.4):

O(p,z) —®(p,x)+ (14+¢) - P(p,a?)— (1 +¢)- (I)(p/,l'p/)
< AJ/BHee+A - (T+6)/(3+¢)
A, (24¢€¢)/(3+¢€).

From this we get

(I4¢)-@(p,2") = d(p,x) > (L+¢)-B(p.a’) —d(p,z) — A, - (24 ¢)/(3+¢)
= Ap—Ap'(2+6)/(3+6)
= A,/(3+¢€)>0.

Thus, p' € OF(p) N R* implies p' € K¥(x), i.e. the ball Of(p) is a stability ball of the
e-approximate solution x. We obtain a contradiction to the assumption: o¥(x,p) > 0 =

Ap/(3 4+ e)w > 0. n

Next we prove the analogy to Theorem 6 for the case # = 0.

Theorem 7 Let p € K¥(z), =0, w<n, e >0 and p; > 0 for each i =1,2,...,w. Then
we have o (x,p) = 0 if and only if condition (7.2) is satisfied as an equality and there exists
an optimal solution x? of problem (7.1) for which & # 0.

Proof: a) Sufficiency: Since @ # 0, there exists a nonzero component z¥ = 1, i €
{1,2,...,w}. As in case (ii) in the proof of Theorem 6, we consider the objective vec-
tor p() and by using arguments quite similar as before we obtain ¢¥(z, p) = 0.

b) Necessity: Let o2 (x, p) = 0. The case when condition (7.2) is satisfied as a strict inequality
can be considered similarly as in the proof of the necessity of Theorem 6. To complete the
proof, we still have to consider the situation when A, = 0 holds (where A, is as defined in
(11.2)) but for any solution z of problem (7.1) we have &” = 0. Since x; = 2! = 0 for any
i€ {1,2,...,w}, due to the equality

B(p.7) = (1 +¢) - B(p,a?), (11.5)
we have
O(p,x)= Y pai=(l+e) Y pat <(l+e)- Y pal=(1+e) ®(p.a).
i=w+1 i=w+1 =1

for any vector @’ € X which is not a solution of problem (7.1). Now we calculate the value

Ao = min{(1 +¢) - ®(p, ) — (p, ) | ' € X\{z}, B(p,a’) > B(p,?)} > 0.

22



Setting 8 = By = Ao/(3 + €)w > 0 and repeating the steps performed for the case A, > 0 in
the proof of the necessity of Theorem 6, we obtain the inequality

(14+¢)-®(p,2")—d(p,z) >0 (11.6)

which holds for any objective vector p’ € OF(p) N k™.

Due to # = 0 and 2 = 0 for any solution z* of problem (7.1), any variation of the objective
vector p does not affect the validity of equation (11.5). Thus, for any objective vector p/
both inequality (11.6) for any vector @’ € X which is not a solution of problem (7.1) and
inequality (11.5) (with p replaced by p') for any solution ¥ of problem (7.1) are valid. We
can conclude that O (p) is a stability ball of the e-approximate solution = which contradicts
to the assumption that the stability radius of x is equal to zero.

[

In the above proofs we have actually derived a lower bound on the stability radius of an
e-approximate solution. It is presented in the next section, along with a lower bound on the
stability radius of an optimal solution.

12 Lower Bounds on ¢“(z,p)

While proving the necessity of Theorem 6 and the necessity of Theorem 7 for the case A, > 0,
we obtained the following lower bound for the value oY (z, p).

Corollary 2 Let p € K¥(x), w < n, € > 0. If condition (7.2) is satisfied as a strict
inequality, then we have o¥(x,p) > A,/(3 + €)w > 0.

Note that any strictly positive lower bound can be used as a conservative estimate of the
stability radius, i.e., O} (p) is a stability ball if o > 0 is equal to a lower bound on o} (z, p).
In particular, one may be interested in lower bounds on the stability radius of an optimal
solution x?. For optimal solutions we have the following lower bound, which is better than
the one given in Corollary 2.

Theorem 8 Let x? be an optimal solution of problem (7.1) and let v(x?) denote the number
of 1’s in vector ¥, then

wiop . Ap Ap
Qe(x 7p)Zmln{(1+6).w_6.v(xp)7(1—|—6)-w—v($p)}‘

Proof: For any pair of feasible solutions y,z € X, let D(y, z) denote the set of components
which are equal to 1 in § and 0 in Z, and let F(y, z) denote the set of components which are
equal to 1 in both vectors § and Z.

3 AP AP
Let L be equal to min { S s e R e s e

feasible solution z’ we have

} and suppose r(p, p’) < L. For an arbitrary

23



=1
Yoopi=p) —e Y. (Hi-p) —(1+¢) (p; —pi) <
1€D(zP,z’) 1€E(zP,z’) 1€D(z! zP)

sz 1‘|'6 sz
Z L —e¢- Z (L) =(1+¢)- >

1€D(zP,z’) 1€ E(zP,z’) 1€D(z! ,zP)

A+ Y Lot Y L4(l4e- Y L
1€D(zP,z’) 1€E(zP,z') 1€D(z! ,zP)

Now if ¢ < 1, then this is at most

_A_|_ZL—|—ZL—|—1—|-6 Z

1€D(zP,z’) 1€E(zP,z') D(z'

—A, +v@®)- L +(1+¢€)- - (w—wv(P)) L=

—A, +[(1+¢€-w—e-v(xP)]L=0.

Hence, 2P is an e-approximate solution for p’.

For the case € > 1 the proof is similar.

Next, we present a new algorithm for calculating the stability radius.

13 The Calculation of the Stability Radius

In [19] the following theorem has been proved.

24



Theorem 9 The closed ball O} (p) with ¢ > 0 is a stability ball of an e-approximate solution
x of problem (7.1) if and only if the condition (p+ 6) € K (x) is satisfied for all 2 vectors
§ = (01,02,...,0y) € RY with the components é; € {o, max{—p;, —o}} fori=1,2,... w.

We first show that the above characterization of a stability ball may be simplified.

Theorem 10 The closed ball O} (p) with ¢ > 0 is a stability ball of an e-approximate solution
x of problem (7.1) if and only if the condition (p+90) € K (x) is satisfied for all vectors § =
(61,02,...,6,) € RY which have §; € {p,max{—p;,—o}} if v; = 1, and §; = max{—p;, —o}
ife;, =0, 0=1,2,...,w.

Proof: It suffices to show that the condition of Theorem 10 implies the seemingly stronger
condition of Theorem 9. Suppose the condition of Theorem 10 is satisfied and consider any
vector 6" with components 8! € {p, max{—p;, —o}}, 7 =1,2,...,w. We define the vector §"
by 67 =6 if ;=1 and 6 = max{—p;,—o} if 2, =0,1=1,2,...,w. We have

n n n n

Y i+ dei=Y i+ < (140 Y (pi+d)ai < (1+0)-) (pi+ )l

=1 =1 =1 =1

where the equality holds because 6” and ¢ differ only in components for which the corre-
sponding component of  is equal to 0, the first inequality is true because the condition of
Theorem 10 is satisfied, and the last inequality follows from the fact that 6” < ¢ and all com-
ponents of 2’ are non-negative. Since 2’ € X is arbitrary, it now follows that (p+4') € K (x),
which completes the proof.

[

Let us return to Example 2 (see Section 9). We shall show that for objective vector p =
(10,5,5,7,7,7) the ball O3(p) with the centre p = (10,5) is not a stability ball for the
optimal solution ' (i.e., if € = 0). Indeed, the point (10 + 3,5 + 3) = (13,8) does not
belong to the set KZ(z!') since inequality (7.2) is not satisfied with e = 0: 13 +8 +5 >
(140) - min{134+84+ 7,13+ 747,74+ 7+ 7} On the other hand, it is not difficult to show
that this ball is a stability ball of the e-approximate solution z' with p = (10,5,5,7,7,7),
p = (10, 5) and € = 0.5. Indeed, checking inequality (7.2), we obtain that the vectors
(13,8),(13,2),(7,8) and (7,2) belong to the set KZ (z'). It follows from Theorem 10 that
the ball O3(p) is a stability ball of the e-approximate solution z* with e = 0.5. In Fig. 6 this
ball is shaded.

From Fig. 6 it follows that the radius of this ball is not the largest possible one for e = 0.5:
We have the strict inequality o3 (2!, p) > 3. The exact value of the above stability radius
will be calculated in Section 14.

4. None of the components of #* is equal to 1. Therefore, to check

Now let us consider =
whether O3(p) is a stability ball of the e-approximate solution z* with e = 0.5, it suffices to
check only whether (7,2) belongs to the set K3 (z*). Tt is left to the reader to verify that

this is indeed the case, and that o} 5(x*, p) = 3.

Theorem 10 allows us to calculate the stability radius, as is shown in the proof of the next
theorem.

25



Theorem 11 Let « be an e-approzimate solution and let v(x) denote the number of 1’s in .
If the calculation of ®(p',x,) can be done in O(g(n)) time for any objective vector p' € R",
then the stability radius 0”(x,p) can be calculated in O(2°®) - w - g(n)) time.

Proof: The proof is constructive. We denote the set of indices of 1’s in the vector & by V' :
V={i|z;=1;1=1,2,...,w}. For every subset [ C V and for every ¢ > 0, we define the
vector 6[1,p] € R by é; = pif i € I, and §; = max{—p;, —p} if i € {1,2,...,w}\I. Let o5
denote the largest value of p for which p + §[/, 0] € K*(x). We propose to calculate p; for
every I C V. It follows from Theorem 10 that the stability radius is equal to the minimum
of these 2°(*) values.

Let us consider a fixed subset I C V. For any o > 0, we define p[l, o] € R" by p[l, o] =
p+ 61, 0] and p[l,9]; = p; for i = w+ 1,w+2,...,n. Now we consider ®(p[l, o], ), the
value of solution z, as a function of o > 0. If p increases from 0, then initially this function
is linear with slope equal to |I| — |V\I|. When p becomes equal to min{p; | ¢ € V\I},
the slope of the function changes into |I| — |{t € V\I | o < p;}|, and so on. It follows that
O (p[l, 0], x) is a continuous and piecewise linear function of g, with breakpoints occuring
exactly at the values p = p;, i € V\I.

From the observations above, it also follows that for every ' € X, the function ®(p[[, o], 2)
is continuous and piecewise linear, with breakpoints occuring at some subset of the values
o =pi, 1 € {1,2,...,w}\I. Let us therefore refer to the values p;;i € {1,2,... w}\I, as
critical points. For convenience, we also define () and oo to be critical points. Hence, between
two consecutive critical points, the functions ®(p[l, o, z'), @' € X, are all linear. Moreover,
the slope of each of these functions is an integer in the range from |I| — w to |[|, with the
extreme values occuring when z/ = 1 if and only if ¢ ¢ [, and when 2} = 1 if and only if
1 € I, respectively.

Furthermore, we define for ¢ > 0 the function Hy(p) as Hy(o) = (14€)mingex{®(p[/, o], 2") }.
Since between two consecutive critical points, the functions (1 + €) - ®(p[l, 9], 2’), @’ € X,
are all linear, it follows that on such an interval the function Hj(p) is the minimum of
a finite number of linear functions. It is well-known that this implies that H;(p) is con-
tinuous, piecewise linear and concave on these intervals (see [2]). Since between consec-
utive critical points the functions ®(p[l,o],2’), «’ € X, each have an integer slope in
the range from |I| — w to |I|, it follows that the slope of Hj(p) is always in the set
{T+ (I —w),(I+e)(|[I]| —w+1),....(1 + €)(|I])}. Because of concavity, the slope
of Hi(p) is non-increasing, which implies that H;(p) has at most w breakpoints on any in-
terval between two consecutive critical points. Also note that the continuity of the functions
(I+¢)-D(p[l,0],2"), x € X, implies that H;(p) is continuous for o > 0.

The shapes of the functions ®(p[[l, o], x) and Hj(p) between two consecutive critical points gy
and gq, imply that if ®(p[l, 0], x) < H(p) for both o = p; and ¢ = p,, then ®(p[[l, o], 2) <
Hi(p) for all p € [p1,02], i.e.,  is an e-approximate solution on the complete interval. By
evaluating the functions ®(p[/, o], x) and Hj(p) at the critical points, we can find the largest
finite critical point, say o', for which x is an e-approximate solution. This takes O(w - g(n))
time, because there are at most w + 1 finite critical points and calculating H(o) at each of
them boils down to calculating ®(p/, x,/) for a given p’ € R", which requires O(g(n)) time.

We have already observed that on the interval between o' and its next critical point o”,
O (p[l, o], ) is linear, while Hy(p) is concave and piecewise linear with at most w breakpoints.

26



There exists a method (see [2]) which determines all the linear pieces of Hj(p) on this interval
in O(B - g(n)) time, where B is the number of breakpoints of H;(g) on the interval. Hence,
it takes O(w - g(n)) time to determine the linear pieces. Once this has been done, the value
or is found by calculating the largest intersection point of ®(p[l,¢],x) and Hj(p) on the
interval. Note that there always exists an intersection point, if ¢” is finite. Hence, if the
functions do not intersect, ¢” = oo and also p; = oo. If there is more than one intersection
point, the set of intersection points is a complete linear piece of Hj(p). In any case, the
largest intersection point can be found in time bounded by the number of linear pieces of

Hi(o).

Thus, for each subset I C V', it is possible to calculate p; in O(w - g(n)) time. Since we need
to consider 2¥(®) subsets, the result now follows. [

The value v(x) may be significantly less than w. In particular, if the number of unstable
components increases when n grows, the problem structure may prevent v(x) from growing
as fast as w. For instance, in the traveling salesman problem, if the unstable components
are the distances with respect to one specific city, then w is of the same order as the number
of cities, but v(x) = 2 for every feasible solution x.

On the one hand, note that even for fixed w, the asymptotic bound O(2"®) - w - g(z)) in
Theorem 11 is exponential if g(n) is an exponential function. This is no surprise, since it has
been shown in [15] and [25] that, even if w = 1, computing the stability radius exactly for
any € > 0, is NP-hard if the original optimization problem is NP-hard. On the other hand,
we obtain the following ‘positive result’.

Corollary 3 Let problem (7.1) be polynomially solvable. We consider the mazimum number
of decision variables corresponding to unstable components of objective vector p which can
be chosen equal to 1 in any feasible solution. If, when n increases, this number grows as
O(log n), then the stability radius o¥(x,p) of any e-approximate solution x can be calculated
in polynomial time.

Proof: The function g(n) in Theorem 11 is now polynomial in n, and the growth of v(x)
is O(log n). Hence, the running time O(2"®) - w - g(n)) of the above algorithm becomes
O(n -w - g(n)), which is clearly polynomial in n. [

The next section illustrates the algorithm for calculating o (x, p), presented implicitly in the
proof of Theorem 11.

14 The Calculation of p’(z,p) for Example 2

For Example 2 (see Section 9), we calculate o} s(x!, p) with p = (10,5,5,7,7,7). Since &' =
(1,1), we have V = {1,2}, which means that the subsets I are @, {1}, {2} and {1,2}. For

each of these subsets we have to calculate ;.

Let us consider the calculation of g5y in detail. The vector p[{2}, o] is equal to (max{0,10—
0},5+0,5,7,7,7). Therefore, the values of ®(p[{2}, o], 2*) = 2521 pl{2}, Q]j:li;, i €{1,2,3,4},

27



are as shown in Fig. 7.
Figure 7

Note that some of the functions have a breakpoint at ¢ = 10, which corresponds to p;. There
are no other breakpoints, since 1 is the only element of V\/. Hence, the critical points are
0, 10 and co. From Fig. 7 we see that Hyy(p), which is defined as 1.5 - min{®(p[{2}, o], z") |
i € {1,2,3,4}}, is given by the following piecewise linear function:

1.5 (20), if0<p<4,
Heyy(e) =4 1.5-(24—p), if4<p<10,
1.5 (14), if 10 < o.

Note that this function is indeed concave between consecutive critical points.
Figure 8

In Fig. 8, the function is drawn together with ®(p[{2}, o], z'). The largest value of o for which
®(pl{2}, 0], ") < Hpay(p) is equal to 11. Hence, this is the value of pfoy. Our algorithm,
however, does not construct the two functions completely, before it determines og,. What
the algorithm does, is the following. It first considers the smallest positive critical point,
0 = 10. The values ®(p[{2},10],2') and H,(10) are calculated. The first calculation is
trivial, since 2! is a fixed solution. For the second calculation we need to solve an instance
of the scheduling problem (see the proof of Theorem 11, where this takes g(n) time). Since
®(p[{2},10], 2') < H{21(10), the algorithm proceeds with the next critical point. This point
is oo, and therefore the functions ®(p[{2}, o], z') and H{s(p) are considered for arbitrarily
large values of p. Because ®(p[{2},0],2') > Hp (o) for such values, we conclude that
0(2y € [10,00). To find the value of gy, we first construct Hy, () on the interval, which is
easy in this case since the function is linear on the interval. (How the construction is done in
general will be described below.) Subsequently o(} is calculated as the (largest) intersection

point of Hpay(0) and ®(p[{2}, o], ).

Figure 9

In Fig. 9, we have illustrated the calculation of gy 2y. (It is left to the reader to verify
that the functions have indeed the shown shape.) In this case the only critical points are
0 and oo. Note again that H (o) is indeed concave between these two values. The
method to construct this function can briefly be described as follows. First we determine
optimal solutions corresponding to the endpoints of the interval. These solutions define linear
functions, which are possible pieces of the function to be constructed. Next the intersection
point of the two linear functions is calculated. In our case, this is ¢ = 0.5, and therefore
H{191(0.5) is calculated. Since this does not yield a new solution (linear function), it can
be concluded that all the linear parts of Hy 53(0) have been found. In general, we continue
this procedure by calculating the intersection points of the newly found linear function with
the concave lower envelope of the linear functions found earlier. The procedure stops if no
new intersection points are generated. We refer to [2] for a proof of the correctness of this

28



procedure, which requires solving O(B) instances of the scheduling problem, where B is the
number of breakpoints of the function to be constructed.

From Fig. 9, we see that o ) = 5.75. It is now left to the reader to verify that gy = oo and
oq13 = 16.5. Hence, we calculate the stability radius: of 5(2',p) = min{11, 5.75, 16.5, co} =
5.75. The correctness of this result can be checked in Fig. 6, where the ball with this radius
is drawn.

15 Concluding Remarks

In deterministic scheduling theory the processing times are supposed to be given in advance,
i.e., before applying a scheduling procedure. More general cases have been considered in
stochastic scheduling (see [14]), where p; is a random variable with a known distribution
of probabilities. However, in practice such functions may also be unknown. The results
surveyed and developed in this paper may be considered as an attempt to initialize further
investigations of scheduling problems under conditions of uncertainty.

We have applied the same stability analysis for a large class of scheduling problems: Those
which may be represented as linear binary programming problems and more general schedul-
ing problems which may be represented as extremal problems on a disjunctive (mixed) graph.
Of course, the complexity of the problems has to be taken into account: The stability results
which seems to be appropriate for the general shop problems (see Sections 2 — 6) are rather
rough for the linear binary programming problems which allow the deriviation of deeper
mathematical results and more efficient algorithms.

In turn, stability properties of an optimization problem may be used to characterize its
complexity. We can illustrate this on the job shop problem from the first part, and on the
traveling salesman and assignment problem from the second part. (The latter corresponds
to an optimal distribution of n jobs to m parallel non-identical machines in a single-stage
system). The stability radius of an optimal schedule for problem J//C\,4. is usually strictly
positive, even if the optimal schedule is not unique (see Theorem 1 and the computational
results in Section 6). On the other hand, it is easy to show that g§(x, p) = 0 if there exist at
least two optimal solutions for a traveling salesman problem (or for an assignment problem).
For this reason, the main focus in the second part of the paper was on a stability analysis of
e-approximate solutions (see Theorems 6 and 7). Such a difference of the complexity of the
considered problems is not implied by the different type of objective functions (‘min-max’
for problem G//C,,q, and ‘min-sum’ for problem (7.1)): As follows from [1], a general shop
problem with mean flow time criterion (i.e., of type ‘min-sum’) becomes even more difficult
for a stability analysis than problem G//C\4z-

Possible trends for future research may be the investigation of connections between the
complexity of scheduling problems and the complexity of calculating the stability radius of
an optimal schedule (see [15, 20, 25]). Recall that in [15, 25] it was shown that the existence
of a polynomial algorithm for calculating o}(z, p) implies a polynomial algorithm for problem
(7.1). In [25] a similar implication was also proven for the case ¢ > 0. Moreover, in [15] it
was shown that if problem (7.1) is polynomially solvable, then g}(z,p) may be calculated in
polynomial time. Thus the value gj(z,p) may be calculated in polynomial time for a given
optimal solution x of the assignment problem, while a similar calculation for the traveling

29



salesman problem requires exponential time, unless P = NP. An interesting subject for
research may be connected with a generalization of the result from [15]: Is it possible to find
the stability radius p,(p) of an optimal schedule s in polynomial time, if s may be constructed
in polynomial time?

The setting of scheduling problems in the first part of the paper is so general that it is
unlikely to find simple answers to those questions, which are usual for deterministic schedul-
ing problems. So, future research may also focus on determining classes of rather simple
scheduling problems for which it is possible to find the stability radius of an optimal or
an approximate solution in a reasonable time, e.g., if the stability region for such a class
will be convex, an algorithm similar to that developed in the proof of Theorem 11 may be
applied. Therefore, another interesting topic of research is to establish that for some types
of scheduling problems the stability region of an optimal schedule is a convex set.

An important question is connected with the determination of simple conditions (preferably
conditions which can be verified in polynomial time) for the validity of os(p) = 0 similar
to those derived in [8] for os(p) = oo for the problems J//Chur and J//Lpez. 1t is also of
interest to develop simple bounds for g,(p) and p¥(x, p) (see e.g. (2.2), Theorem 5, Corollary
2 and Theorem 8). An interesting question is how a branch-and-bound algorithm, which is
often used for NP-hard scheduling problems, can be combined with calculating (bounds on)
the stability radius of an optimal or e-approximate schedule (see [13, 21]).

Finally, we note that the above approach to stability analysis is not the only possible one (see
survey [20]). For example, a completely different approach to stability analysis is discussed
in [7], where the sensitivity of a heuristic algorithm with respect to the variation of the
processing time of one job is investigated. Note also that stability analysis is a well-studied
topic in linear programming. For instance, in [26] a tolerance approach is presented. A
similar concept could be applied to some scheduling problems.

Acknowledgements

The first author would like to thank Prof. Tsung-Chyan Lai for the kind opportunity to
perform the simulation study for Section 6 during his visit to the Department of Business
Administration of the National Taiwan University.

Some of the results in Section 13 were obtained while the second author was visiting the
Operations Center at the Massachusetts Institute of Technology with financial support of
the Netherlands Organization for Scientific Research (NWO).

References

[1] Brésel, H.; Sotskov, Yu.N.; Werner, F.: Stability of a Schedule Minimizing Mean Flow
Time, Math. Comput. Modelling, Vol. 24 (1996) 39 - 53.

[2] Eisner, M.J.; Severance, D.G.: Mathematical Techniques for Efficient Record Segmen-
tation in Large Shared Databases, J. Assoc. Comput. Mach., Vol. 23 (1976) 619 - 635.

30



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Girlich, E.; Sotskov, Yu.N.; Werner, F.: Extreme Values of the Stability Radius of an
Approximate Solution of a Linear Boolean Minimization Problem, Preprint 6/93, TU

Magdeburg, 1993.

Gordeev, E.N.; Leontev, V.K.: The Complexity of the Tabulation of Trajectory Prob-
lems, U.S.S.R. Comput. Maths. Math. Phys. 25, No. 4 (1985) 199 - 201.

Gordeev, E.N.; Leontev, V.K.: Stability in Bottleneck Problems, U.S.S.R. Comput.
Maths. Math. Phys. 20, No. 4 (1980) 275 - 280.

Kovalyov, M.Y.; Sotskov, Yu.N.: The Stability of an e-Approximate Solution of a Min-
imization Problem of Boolean Linear Forms, Vesti Akad. Navuk BSSR, Ser. Fyz.-Mat.
Navuk 2 (1990) 111 - 116 (in Russian).

Kolen, A.-W.J.; Rinnooy Kan, A.H.G.; van Hoesel, C.P.M.; Wagelmans, A.P.M.: Sensi-
tivity Analysis of List Scheduling Algorithms, Discrete Appl. Math., Vol. 55 (1994) 145
- 162.

Kravchenko, S.A.; Sotskov, Yu.N.; Werner, F.: Optimal Schedules With Infinitely Large
Stability Radius, Optimization, Vol. 33 (1995) 271 - 280.

Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Shmoys, D.B.: Sequencing and
Scheduling: Algorithms and Complexity, in Logistics of Production and Inventory,
Handbook in Operations Research and Management Science 4, G.C. Graves; A.H.G.
Rinnooy Kan and P.H. Zipkin eds. North Holland, Amsterdam, 1993, pp. 445 - 522.

Leontev, V.K.: The Stability of the Traveling Salesman Problem, U.S.S.R. Computs.
Maths. Math. Phys., Vol. 15, No. 5 (1975) 199 - 213.

Leontev, V.K.: Stability in Combinatorial Choice Problems, Soviet Math. Dokl., Vol.
17 (1976) 635 - 638.

Libura, M.: Sensitivity Analysis for Minimum Hamiltonian Path and Traveling Sales-

man Problems, Discrete Appl. Math., Vol. 30 (1991) 197 - 211.

Libura, M.; van der Poort E.S.; Sierksma G.; van der Veen J.A.A.: Sensitivity Analysis
Based on k-best Solutions of the Traveling Salesman Problem, Research Report 96A14,
University of Groningen, The Netherlands (1996) 27 pages.

Pinedo, M.: Scheduling. Theory, Algorithms, and Systems, Prentice-Hall, Englewood
Cliffs, 1995.

Ramaswamy, R.; Chakravarti, N.: Complexity of Determining Exact Tolerances for
Min—Sum and Min—Max Combinatorial Optimization Problems, Working Paper WPS-
247/95, Indian Institute of Management, Calcutta, India (1995) 34 pages.

Roy, B.; Sussmann, B.: Problems d’ordonnancement avec constraints disjunctives,

SEMA. Note DS, No 9 bis Montrauge, 1964.

Sotskov, Yu.N.: The Stability of High-Speed Optimal Schedules, U.5.S.R. Comput.
Maths. Math. Phys. 29, No. 3 (1989) 57 - 63.

31



[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Sotskov, Yu.N.: Stability of an Optimal Schedule, European J. Oper. Res. 55 (1991) 91
- 102.

Sotskov, Yu.N.: The Stability of the Approximate Boolean Minimization of a Linear
Form, Comput. Maths. Math. Phys. 33, No. 5 (1993) 699 - 707.

Sotskov, Yu.N.; Leontev, V.K.; Gordeev, E.N.: Some Concepts of Stability Analysis in
Combinatorial Optimization, Discrete Appl. Math., Vol. 58 (1995) 169 - 190.

Sotskov, Yu.N.; Sotskova, N.Y.; Werner, F.: Stability of an Optimal Schedule in a Job
Shop, OMEGA, 1997 (to appear).

Sussmann, B.: Scheduling Problems with Interval Disjunctions, Z. Oper. Res., Vol. 16
(1972) 165 - 178.

Tanaev, V.S.; Sotskov, Yu.N.; Strusevich, V.A.: Scheduling Theory, Multi-Stage Sys-
tems, Kluwer Academic Publishers, 1994.

Tarjan, R.E.: Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees,
Inform. Processing Letters, Vol. 14 (1982) 30 - 33.

Van Hoesel, C.P.M.; Wagelmans, A.P.M.: On the Complexity of Postoptimality Anal-
ysis of 0/1 Programs, Report 9167/A, Econometric Institute, Erasmus University Rot-
terdam, Rotterdam, The Netherlands (1991) 18 pages.

Wendell, R.E.: The Tolerance Approach to Sensitivity Analysis in Linear Programming,
Management Sci. 31 (1985), 564 - 578.

32



