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Abstract

In this chapter we investigate empirical specification of smooth transition error cor-
rection models (STECMs). These models can be used to describe linear long-run re-
lationships between nonstationary variables where adjustment towards equilibrium is
nonlinear and can depend on exogenous variables. The various steps involved in speci-
fying an appropriate model are discussed for a monthly bivariate interest rate series for
The Netherlands. Using simulations we first establish that standard (linearity-based)
cointegration tests can be used to examine joint long-run properties. Second, we apply
various tests for nonlinearity to decide on an appropriate function for the adjustment
of disequilibrium errors. When we estimate an STECM, we find indications that non-
linearity is due to only two observations. We investigate the relevance of these data
points by applying robust tests for linearity and by considering less aggregated, i.e.
weekly, data. We conclude with some suggestions for practitioners.
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1 Introduction

Many economic variables, while nonstationary individually, are linked by long-run equilib-
rium relationships. The concept of cointegration, introduced by Granger (1981) and Engle
and Granger (1987), together with the corresponding error-correction models, allows these
two characteristics to be modelled simultaneously. In the ‘standard’ error-correction model
adjustment towards the long-run equilibrium is linear, i.e., it is always present and of the
same strength under all circumstances. There are however economic situations for which
the validity of this assumption might be questioned. Recently, there have been several
attempts to construct econometric models which allow for nonlinear adjustment, see An-
derson (1995), Dwyer et al. (1996), Hansen and Kim (1996), Kunst (1992,1995), and
Swanson (1996). It appears that relevant forms of nonlinear error-correction often con-
cern some sort of asymmetry, i.e., distinction is made between adjustment of positive or
negative and of large or small deviations from equilibrium. Both types of asymmetry
arise in a rather natural way when applying cointegration techniques to modelling prices
of so-called equivalent assets in financial markets, see Yadav et al. (1994) and Anderson
(1995) for an elaborate discussion. Equivalent assets in a certain sense represent the same
value, examples include stock and futures, and bonds of different maturity. Since these
assets are traded in the same market, or in markets which are linked by arbitrage-related
forces, their prices should be such that investors are indifferent between holding either one
of the equivalent assets. If prices deviate from equilibrium, arbitrage opportunities are
created which will result in the prices being driven back together again. However, market
frictions can give rise to asymmetric adjustment of such deviations. For example, due
to short-selling restrictions, the response to negative deviations will be different from the
response to positive deviations from equilibrium. Alternatively, transaction costs prevent
adjustment of equilibrium errors as long as the benefits from adjustment, which equal the
price difference, are smaller than those costs. Additionally, short-selling restrictions and
transaction costs are not the same for all market participants. Because of this heterogene-
ity among traders, it might be expected that the aggregate force on the prices to return
to equilibrium might be gradually changing, see Anderson (1995).

The purpose of this chapter is twofold. First, we document that both types of asym-

metric adjustment discussed above can be modelled by means of Smooth Transition Error-



Correction Models (STECMs). Second, and more important, we aim to review the practical
issues involved in the empirical specification of STECMs and to provide useful guidelines
for practitioners. These practical issues concern (i) cointegration, i.e., how can one estab-
lish whether there is a linear long-run relation while there is nonlinear adjustment? (ii)
nonlinearity, i.e., which form of nonlinear adjustment is appropriate?, (iii) outliers, i.e.,
can we prevent that our results are due to only a few influential data points?, and (iv)
aggregation, i.e., what is the effect of aggregation on finding nonlinear adjustment? We
address these issues using an example of a monthly bivariate interest rate series in The
Netherlands, of which we also have weekly observed data.

The outline of this chapter is as follows. Section 2 introduces the general idea of smooth
transition error-correction by discussing a simple model, which subsequently will be used in
simulation experiments. This section also contains an outline of an empirical specification
procedure for STECMs. Section 3 focuses on the first step in this specification procedure
by presenting some Monte Carlo evidence on the performance of standard linearity-based
tests for cointegration, when applied in the presence of nonlinear error-correction. Section
4 reviews the results of Lagrange Multiplier (LM) tests for nonlinear error-correction when
applied to the interest rate series, and it also presents estimates of an STECM for these
series. Section 5 deals with the issues of outliers and sampling frequency. For our sample
series we find that these issues have a substantial impact on finding an adequate empirical

model. Finally, Section 6 contains some recommendations for practitioners.

2 Smooth transition error-correction

The concept of smooth transition error-correction can conveniently be introduced by con-

sidering the following system for a bivariate time series {(y;, z;),t =1,...,T},
Yo+ Bre = 2, 2= (p1+p2F(z-a))z-1 + e, (1)
Y tory = wy, W= w1+ 0, (2)

where the so-called transition function F(z;_4) is continuous and bounded between 0 and

1,de{1,2,...}, a # 3, and
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The standard linear set-up, which is used by, inter alia, Banerjee et al. (1986) and Engle
and Granger (1987), is obtained by taking F'(z;—4) equal to zero and imposing the restric-
tion |p1| < 1. The series y; and z; then are cointegrated with cointegrating vector (1,03)’.
Put differently, the series y; and x; are linked by the (long-run) relationship y; = —fBuy,
and z; represents the deviation from this ‘equilibrium’. In the general system (1)-(3), z;
is assumed to follow a smooth transition autoregressive (STAR) model, see Granger and
Terdsvirta (1993) and Terédsvirta (1994) for elaborate discussions of this class of nonlinear
time series models. For y; and z; still to be cointegrated in this case, z; has to be sta-
tionary. This implies that, depending on the specific form of the function F(z;_4), certain
restrictions have to be put on p; and ps. For example, |pi| < 1 and |p1 + p2| < 1 are
sufficient, but not necessary, conditions for z; to be stationary for all possible choices of
F(zi—q)-

It is useful to rewrite the system (1)-(2) in error-correction format as,

alpr + p2F(z1-a) — 1)

Ay, = - zt—1 + &1t (4)
Az, —(p1 + P;}i(g—d) k) SO - (5)

where &;,7 = 1,2, are linear combinations of ¢, and 7;. From (4)-(5), the term smooth
transition error-correction is obvious. For example, in the equation for Ay, the strength
of error-correction changes smoothly from a(p; —1)/(a — ) to a(p1 + p2 — 1)/(a — B) as
F(z4—q) changes from 0 to 1.

The function F(z;_4) can be used to obtain many different kinds of nonlinear error-
correction behaviour. As argued in the introduction, in empirical applications involving
financial variables, one might be especially interested in modelling asymmetric adjustment.
Asymmetric effects of positive and negative deviations can be obtained by setting F'(z;_4)

equal to the logistic function,

F(z-4) = F(2-4;7,¢) = (1 + exp{—(z-a —=)}) ™', 7>0. (6)

In the resulting logistic STECM (LSTECM), the strength of attraction of z; to zero changes
monotonically from py to p; + p2 for increasing values of z;_4. The logistic model therefore
allows for different effects of positive and negative deviations (relative to the threshold c)
from the equilibrium. The parameter v determines the speed of the transition; the higher

v, the faster the change from p; to p; + p2. If v — 0, the LSTECM becomes linear, while



if v — o0, the logistic function approaches an Heaviside function, taking the value 0 for
zi—q < cand 1 for z;_g > c.
The second type of asymmetry, which distinguishes between small and large equilibrium

errors, is obtained when F'(z; 4) is taken to be the exponential function,

F(zt—d;’y’c) =1- exp{_’Y(zt—d - 0)2}7 v > 0, (7)

which results in gradually changing strength of adjustment for larger (both positive and
negative) deviations from equilibrium. In the resulting STECM, the strength of mean
reversion changes from p; + p2 to p; and back again with increasing z; 4, and this change
is symmetric around c. A possible drawback of this choice for the transition function is
that both if v — 0 or v — oo, the model becomes linear. This can be avoided by using

the ‘quadratic logistic’ function

F(zi—g;7,c1,¢2) = (1 + exp{—y(2t—a — c1)(2t—a — 02)})_17 v>0, (8)

as proposed by Jansen and Terédsvirta (1995). In this case, if 7 — 0, the model becomes
linear, while if y — oo, the function F'(-) is equal to 1 for z;_4 < ¢; and z;_gq > ¢2, and
equal to 0 inbetween. Hence, the model nests the three regime threshold error-correction
model of Balke and Fomby (1997) as a limiting case. Note that for finite 7, the minimum
value taken by the function (8), which is attained for z;_4 = (c1 + ¢2)/2, is not equal
to zero. This has to be kept in mind when interpreting estimates from models with this
particular transition function.

It is fairly straightforward to extend the specification strategy for STAR models of
Terdsvirta (1994) to the error-correction case considered here. Empirical specification of
an STECM then involves the following steps: (i) testing for cointegration and estimating
the cointegrating relationship, (ii) testing for nonlinearity of the adjustment process and
investigating the type of nonlinearity, and (iii) estimating and evaluating the STECM.

Each of these steps is addressed in turn in the following sections.

3 Testing for cointegration

In this section we address the first step involved in specifying an STECM, i.e., testing for

cointegration and estimating the cointegrating relationship. Escribano and Mira (1996)



show that the cointegrating vector(s) can still be estimated superconsistently in the pres-
ence of neglected nonlinearity in the adjustment process, see also Corradi et al. (1995). In
this section we evaluate these theoretical results using Monte Carlo experiments. Addition-
ally, we also examine the finite sample properties of linearity-based tests for cointegration.
These simulations complement and extend the Monte Carlo results in Pippenger and Go-
ering (1993) and Balke and Fomby (1997). Both studies only consider the case of threshold
error-correction and, furthermore, Pippenger and Goering (1993) only consider situations
in which the cointegrating relationship can be assumed to be known, something which may
not always be possible in practice.

We consider those cointegration tests that are most popular among practitioners: the
residual-based test suggested by Engle and Granger (1987) and the likelihood ratio test
introduced by Johansen (1988). For simplicity, we discuss the tests only for (bivariate)
cases where no deterministic regressors are included in the model. The residual-based test
for cointegration is performed via the two-step procedure of Engle and Granger (1987).

That is, we first estimate the cointegrating regression

Yy = —Pxy + uy (9)

by ordinary least squares (OLS) and, second, test for the presence of a unit root in the
regression residuals @y = yt—i—ﬁxt. The latter is done by using the Augmented Dickey-Fuller
(ADF) test of Dickey and Fuller (1979), which is the familiar ¢-ratio of p in the auxiliary

AR(p) regression
p—1
Aty = pitg_1 + Y ¢ilNiy_i + 1y - (10)
i=1

The ADF statistic requires the choice of an appropriate value for p in (10). The number of
lagged differences included should be such that the residuals 7j; obtained from (10) resemble
white noise. In our Monte Carlo experiments, we follow Gregory (1994) by initially setting
p fairly large (equal to 6) and then reducing this number until the last lag included is
significant at the 5% level, using normal critical values.

The likelihood ratio tests developed by Johansen (1988) are derived from the vector
ECM (VECM), for the 2 x 1 vector time series {X; = (yg, z¢), t =1—p,..., T},

p—1
AXt:HXt—1+ZaiAXt—i+5tat:1a---Ta (11)
=1



where e, ~ NID(0,%). If y; and z; are cointegrated, the matrix IT has rank 1 and can be
decomposed as IT = af’ for 2 x 1 vectors a and . Johansen (1988) advocates to test for
cointegration by testing the rank r of II. This can be done by applying likelihood ratio
(LR) tests to test the significance of the squared partial canonical correlations between A X,
and X;_1, denoted Sqandsz, which can be obtained by solving a generalized eigenvalue
problem. Ordering them such that 5\1 > 5\2, the trace statistics can be used to test

Hy : r = o against the alternative hypothesis Hy : r > ro+ 1 for ro = 0,1, and is given by

2
LRyaee = =T Y In(l—2X). (12)
i=ro+1

The asymptotic distribution of the trace statistic is non-standard and depends on the
number of zero canonical correlations, see Johansen (1988,1991). If the trace test points
towards cointegration between y; and z;, an estimate of the cointegrating vector 3 is given
by the eigenvector corresponding to the largest canonical correlation A1. In our Monte
Carlo experiments, the VAR-order p in (11) is determined by minimizing the Schwarz-

criterion BIC.
3.1 Monte Carlo experiments

The tests for cointegration discussed above assume that the adjustment process driving the
variables towards the equilibrium is linear. In this section we investigate the empirical re-
jection frequencies of the tests, as well as the corresponding estimates of the cointegrating
vector, when the series of interest are characterized by smooth transition error-correction.

For convenience, we denote the rejection frequency of the cointegration tests as ‘power’.
Monte Carlo design

The generalized bivariate system (1)-(3) is used as DGP for the artificial time series y;
and z;. Both types of asymmetric error-correction which have been dicussed before are
investigated, by using (6) and (8) as transition functions with z;_; as transition variable,
i.e., d = 1. In the Monte Carlo experiments, we investigate the effects of the autoregressive
parameters in the STAR model for z;, p1 and p2, on the power of the tests for cointegration
and the estimates of the cointegrating parameter 3.

In case (6) is used as transition function (which will be referred to as case I), the



threshold ¢ is fixed at zero, such that adjustment is different for positive and negative
equilibrium errors, while the parameter v, which determines the speed of the transition, is
set equal to .5 and 5. Finally, p; and p2 are chosen such that p; and p; + p2, which are the
effective autoregressive parameters for F'(-) = 0 and F(-) = 1, respectively, vary between
0.2 and 1.

In case (8) is taken to be transition function (case II), the thresholds ¢; and ¢y are
varied between 0 and 8, with ¢; = —co = ¢, while + is set equal to .1 and 1. For v =1,
the transition is already almost instantaneous at the thresholds, so it is not very useful
to consider larger values for this parameter. In all experiments p; is fixed at 1, while
p2 is varied between 0 and -.8. Hence, adjustment is stronger for larger deviations from
equilibrium. Finally, it should be remarked that the function F(-) is scaled by applying the
transformation F*(-) = (F(-) — F(0))/(1 — F(0)). The function F*(-) attains a minimum
value of 0 at z;_1 = 0 and approaches 1 for large negative and positive values of z;_1.
Hence, no error-correction is present at z;—1 = 0 (and for y = 1, almost no error-correction
occurs for —c¢ < z;_1 < ¢).

The remaining parameters in the model are fixed at the following values for both case
ILand II: B = —1, a = —2, 02 = 1, § = 0. For each experiment we generate 2500 series of
T = 100 or 250 observations. The starting values for both y; and x; are set equal to zero
and the first 100 observations are discarded. All calculations are performed using GAUSS.

Strictly speaking, power comparisons of the various tests are possible only when size-
adjusted critical values are used. The power calculations presented in this section are
made using asymptotic critical values, since this corresponds to empirical practice. The
asymptotic critical values for the ADF test are taken from Phillips and Ouiliaris (1990),
Tables ITa, while Table 0 in Osterwald-Lenum (1992) gives critical values for the Johansen

trace test.

Results of Monte Carlo experiments

The results for case I are set out in Tables 1 and 2. Table 1 shows the rejection fre-
quencies of the ADF and trace tests. Note that the cells corresponding to p; = 1.0 and
p1 + p2 = 1.0 denote the size of the tests, and the cells corresponding to p1 = p1 + p2

denote the power of the tests in case of linear error-correction. The remaining cells contain



estimates of the power in case of asymmetric error-correction.
- insert Table 1 -

From Table 1, it is seen that the power of both tests is almost not affected by the
nonlinearity of the error-correction process. The only exception to this general observation
is the case where either p; or p; + p2 is equal to 1, i.e., in case there is no correction at all
of either negative or positive errors, respectively.

Table 2 shows the means and standard deviations of the bias in the estimates of the
cointegrating parameter 3, obtained from the static regression (9) (OLS) and the Johansen
procedure (VECM). Only the results for v = 0.5 are shown, the results for v = 5.0 are
very similar. It should be noted that all entries are only based on those replications for

which the respective test procedures detect cointegration at the 5% significance level.
- insert Table 2 -

It is seen that on average, the cointegrating parameter is over- and underestimated
by the static regression and maximum likelihood procedure, respectively. This however
can simply be a consequence of the choice of the DGP. Some conclusions which emerge
from Table 2 are that the mean of the bias from the static regression is larger, but the
variance is smaller. Both the mean and the variance of the bias decrease as the strength
of attraction of the equilibrium error becomes stronger, i.e., for increasing values of p; and
p1 + p2.

The results for case II are shown in Tables 3 and 4.
- insert Table 3 -

It appears that overall the simple ADF test is more powerful than the trace statistic,
although the difference in power is not very large. Increasing values of ¢ imply that the
strength of error-correction increases more slowly as z;_; gets larger (in absolute value).
It is seen that the power of the tests decreases accordingly. More negative values of po
imply that the strength of attraction of z; to zero becomes larger for given values of z;_1.
It might be expected that in this case the power of the tests increases, which is confirmed
by Table 3. Finally, increasing ~y, while keeping ¢ and p9 fixed, has two opposing effects.

On the one hand, for large values of v the strength of error-correction is virtually zero



as long as z;_1 € (—c¢,c¢), while for small ~y, error-correction becomes active as soon as
there is a deviation from equilibrium. This effect might be expected to decrease the power
of the cointegration tests as < increases. On the other hand, for larger values of v, the
transition to the maximum strength of attraction is much quicker, which might be expected
to increase the power of the tests. The simulation results seem to suggest that the second
effect dominates, since for a very large majority of combinations of ¢ and p2 the power of
the tests is higher for v = 1.0.

Table 4 displays the means and standard deviations of the bias in the estimates of the
cointegrating parameter 3 for case II. From this table, roughly the same conclusions can
be drawn as for case I. The main difference is that for 7" = 100 and v = 0.1, the mean of
the bias from the static regression now is smaller (in absolute value) than the mean bias

from the VECM.
- insert Table 4 -

In general, we observe that the bias in estimating the cointegrating rank and the
cointegrating vector is not larger for asymmetric and nonlinear adjustment when compared
to linear adjustment. These findings serve to substantiate some of the theoretical results

in Escribano and Mira (1996) and Corradi et al. (1995).
3.2 Data analysis

In this subsection we examine the cointegration properties of our bivariate sample series.
It is generally accepted that interest rates can be characterized as nonstationary processes
or, to be more precise, processes which are integrated of order 1 (I(1)). Hall et al. (1992)
argue that many theories of the term structure of interest rates imply that n interest rates
of different maturity are cointegrated with cointegrating rank n — 1, with the differences
between the interest rates, or spreads, being the stationary linear combinations. If interest
rates are such that the spread deviates from its equilibrium value, arbitrage opportunities
are created, and these will drive the interest rates back towards equilibrium. Anderson
(1995) argues that, due to market imperfections such as transaction costs, asymmetric
error-correction of large and small deviations may play an important role.

To investigate the empirical usefulness of STECMs, we consider a monthly bivariate

interest rate series for the Netherlands, consisting of one- and twelve-month interbank



rates. We denote these as Ri; and Ria4, respectively. The sample runs from January 1981
until December 1995, giving 180 monthly observations in total. The series are graphed in

Figure 1.
- insert Figure 1 -

Table 5 shows the results from applying univariate ADF tests to the interest rates and
the spread S;, which is defined as Ri2; — R1;. The tests clearly indicate that the series

are individually (1), while the spread seems to be stationary at the 5% significance level.
- insert Table 5 -

In order to check whether it is appropriate to use the spread as cointegrating relation-
ship, i.e., to impose the cointegrating vector to be equal to (1,-1), a regression from R;;
on Rj2; (including a constant as well) renders an estimate of 0.999, which seems close
enough to unity.

The Johansen trace test is also computed, including one lagged difference of the series
in the VECM (a VAR order of 2 for the levels is indicated by the Schwarz criterion),
and no constants. The trace test for testing » = 0 and r = 1 are equal to 15.30 and
1.88. When compared with the appropriate 5% critical values, we conclude that the tests
point towards cointegration. The estimate of the normalized cointegrating vector is (1,
-1.029). Since the estimated standard error of the second element equals 0.018, we cannot
reject the hypothesis that it is equal to unity. Hence, in the remainder of the analysis we
assume that the spread amounts to a stationary linear combination of our two interest
rates. Furthermore, the estimates of the parameters in the linear VECM (not shown here)
reveal that the error-correction variable S;_; is not significant in the equation for the
twelve-month interest rate. For this reason, we focus on the equation for the short-term
rate Ry by conditioning on Ry2;.

The fitted linear conditional error-correction model (CECM) for R, ; is

ARl,t =—0.02 + 0.13 S;_1 + 0.93 ARIZ,t — 0.16 ARLtfl + 0.09 AR12,t71 (13)
(0.02) (0.04) (0.04) (0.07) (0.08)

6. = 0.236, DW = 2.00, SK = 0.00, EK = 4.23, JB = 132.92(0.00), ARCH(1) = 16.53(0.00),
ARCH(4) = 19.03(0.00), LB(8) = 7.84(0.45), LB(12) = 19.42(0.08), BIC = —2.767,
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where standard errors are given in parentheses below the parameter estimates, . is the
residual standard deviation, DW is the Durbin-Watson statistic, SK is skewness, EK ex-
cess kurtosis, JB the Jarque-Bera test of normality of the residuals, ARCH is the LM test
of no autoregressive conditional heteroscedasticity, LB is the Ljung-Box test of no auto-
correlation and BIC is the Schwarz criterion. The figures in parentheses following the test
statistics are p-values.

This linear model seems quite satisfactory, with reasonable values for all coefficients.
Due to the large kurtosis, normality of the residuals is strongly rejected. Closer inspection
of the residuals reveals that this may be entirely caused by only three observations in the
beginning of the sample for which the residuals are very large (in absolute value). These
aberrant observations may also cause the ARCH tests to reject homoscedasticity. On the
other hand, it may also be that these significant test values are cauased by neglected

nonlinearity. In the next section, we focus on a nonlinear extension of (13).

4 Testing for smooth transition error-correction

Once the presence of an equilibrium relationship has been established, the next question is
whether possible nonlinearity in the adjustment process can be detected. Alternatively, if,
perhaps contrary to one’s prior expectations, cointegration may not have been found, the
application of linearity tests may provide some insight in the causes for this finding. The
Lagrange Multiplier (LM) type tests developed by Luukkonen et al. (1988) for general
smooth transition nonlinearity can easily be adapted to test for smooth transition error-
correction, see also Swanson (1996). The objective of testing for nonlinearity is threefold.
First, we want to obtain an impression of whether the error-correction process is indeed
nonlinear. Second, we need to determine the appropriate transition variable, i.e., obtain
an estimate of the lag d. Third, we want to obtain an idea of the most appropriate form
of the nonlinearity in the error-correction, i.e., we want to select between the forms of
nonlinearity implied by (6) on the one hand and (7) or (8) on the other. In our empirical
example, we confine our analysis to selecting between the logistic function (6) and the
quadratic logistic function (8).

Consider a general CECM for y;,

Ay, = mwy + F(z_g;7y, ¢)mhwe + 1y (14)

11



where w, = (1L, w), 0 = (24—1, AYi—1y oo, AYp—pi1, Azyy ..., Azy_p 1), 20 = Y + By,
i = (0, Tits -+ - Tim)', for @ = 1,2, m = 2p — 1. The noise process {n;} is assumed to
be normally distributed with mean zero and variance 072]. Compared to (4), constants and
lagged first differences of y; and x; have been added to allow for more general dynamic
structures.

The null hypothesis of linear error-correction in (14) with (6) or (8) can be formulated
as Hy : v = 0. It is immediately seen that under the null hypothesis the model is not
identified and, hence, the usual asymptotic theory cannot be applied to derive LM tests,
see Davies (1977,1987) for a general discussion of such identification problems. Luukkonen
et al. (1988) suggest to solve this by replacing the transition function F(z;_g4;7,c) in (14)
by a suitable approximation around «y = 0. In the reparameterized model, the identification
problem is no longer present and linearity can easily be tested.

A general test against smooth transition error-correction emerges when F(z;_g4) is
replaced by a third-order Taylor approximation. Rearranging terms yields the reparame-

terized model,
Ay = ¢'wp + G izea + Pyinzi g + Gy0ez_ g + e (15)

It should be noted that when d > p, w; should be replaced by w; because z;_4 is not present
as an (implicit) regressor in w;. The original null hypothesis of linearity, Hy : v = 0,
is easily shown to be equivalent to the hypothesis that all coefficients of the auxiliary
regressors ﬁ)tzgid,j = 1,2,3 are zero, i.e.,, Hy : ¢1 = ¢p2 = ¢3 = 0. The LM-type test for

this null hypothesis can be carried out in a few steps:

1. Estimate the parameters of the model under the null hypothesis by regressing Ay
on wy, with z; replaced by 2, = y + B:I:t, where B is obtained from preliminary
cointegration analysis. The value of p, necessary for the construction of w; can be
taken from the linear model. Compute the sum of squared residuals SSRy = 3" 77,

where 7, = yy — T wy.
2. Estimate the parameters ¢ and ¢;,7 = 1,2,3 from the auxiliary regression
M= ¢'wy + Pz g + Phinzi_g + Pyz_g + v (16)
and compute the sum of squared residuals SSR; = 3" 72

12



3. The LM-type test statistic can now be computed as

LMy =T(SSRy — SSRy)/SSRy . (17)

The test statistic has an asymptotic x? distribution with 3m degrees of freedom, where it
is assumed that prior estimation of 3 does not affect the asymptotic distribution. In small

samples it usually is recommended to use an F' version of the test, i.e.,

SSR() - S'SRl)/(?)m)
LMy = )
SSRy/(T — 4m)

(18)

which is approximately F' distributed with 3m and T' — 4m degrees of freedom under the
null hypothesis of linearity.

To decide upon the most appropriate lag of z; to use as transition variable, the test
should be carried out for a number of different values of d, say d = 1,...,D. If linearity
is rejected for several values of d, the one with the smallest p-value is selected as the
transition variable. This rule is motivated by the notion that the test might be expected
to have maximum power if the true transition variable is used, see Granger and Terasvirta
(1993).

Deciding between the transition functions (6) and (8) can be done by a short sequence
of tests nested within Hy. This testing sequence is motivated by the observation that if a
logistic alternative is appropriate, the second order derivative in the Taylor expansion is
zero. Hence, when ¢9 = 0, the model can only be a logistic model. The null hypotheses

to be tested are as follows

Hpz: 3 =10,
Hyy : ¢pp = 0|¢p3 =0, (19)

Hyy : ¢y = 0|3 = 2 = 0.

Granger and Terésvirta (1993) suggest to carry out all three tests, independent of rejection
or acceptance of the first or second test, and use the outcomes to select the appropriate
transition function. The decision rule is to select the quadratic logistic function (8) only if
the p-value corresponding to Hys is the smallest, and select the logistic function (6) in all
other cases. There is however no guarantee that this sequence will give the right answer.
For practical purposes it therefore seems useful to estimate models with both transition

functions and to base a decision between the two on other criteria.

13



- insert Table 6 -

We compute the LM-type test statistics for the various null hypotheses for the one-
month Dutch interest rate in the estimated CECM (13). We set d equal to 1 through 6.
The first panel of Table 6 shows the p-values of the standard LM-type tests. From the
results for Hy, it is seen that linearity is rejected for both d = 1 and d = 2. Based upon
the p-values, we select d = 1 as the appropriate transition variable. Unfortunately, the
p-values of the test sequence for testing Hos, Hp2 and Hy, are not very conclusive with
respect to the appropriate transition function. The p-values are equal to 0.075,0.093 and
0.004. Hence, if we would adopt the decision rule of Granger and Terdsvirta (1993), a
logistic model seems most appropriate. When we estimate STECMS with (6) and (8), we
find however that the logistic function (6) does not render sensible results. Therefore, in
the sequel we only present models which assume (8) as the transition function.

We estimate the parameters of our STECM by non-linear least squares (NLS). We
follow the suggestions of Terasvirta (1994) and standardize the exponent of F(S;_1) by
dividing it by the variance of the transition variable, UELI = 0.229, such that v is a

scale-free parameter. The estimation results are

AR;y = —0.03 + 0.12 S;_1 + 0.90 ARy2; — 0.11 ARy ;1 + 0.11 ARy2;1 +
(0.03) (0.07) (0.04) (0.08) (0.09)
(0.32 + 042 5; 1+ 0.15 AR12,t + 0.25 ARl,tfl — 0.73 AR12,t71) (20)
(0.12) (0.24) (0.19) (0.19) (0.34)
X (1 + exp[— 3.74 (Sj—1 + 0.40)(S;—1 — 1.25)/oe,_ )7 +&
(5.67) (0.08) (0.12)

6. = 0.225, DW = 1.89, SK = —0.14, EK = 4.88, JB = 177.25(0.00), ARCH(1) = 0.01(0.92),

ARCH(4) = 3.48(0.48), BIC = —2.672.
The large standard error of the estimate of 7y is due to the fact that a wide range of values
of this parameter renders about the same transition function. Accurate estimation of ~y
then requires a large number of observations close to ¢; and ¢y, see Terdsvirta (1994) for a
discussion. The estimate of  is such that transition from F(S;_1) =0 to F(S;—1) =1 is
almost instantaneous at the thresholds -0.40 and 1.25. The estimates of the coefficients of
the error-correction term S;_; are such that adjustment is stronger if the series is in the
upper or lower regime, i.e., if the spread lagged one period is larger (in absolute value).

Note that for the lower regime (S;_; < —0.40) this is counteracted considerably by the
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change in the intercept. In fact, S;_1 needs to be smaller than -0.81, approximately, for
the first effect to dominate.
Also notice that the ARCH test statistics have become insignificant, i.e., the previous

evidence of ARCH in the linear model may have been due to neglected nonlinearity.
- insert Figure 2 -

Figure 2 shows some graphs which serve to illustrate the estimated smooth transition
model. From the residual plot in the lower left panel it appears that the model still fails
to capture some of the large interest rate movements in the beginning of the sample. The
upper right panel shows how the transition function evolves over time. It is seen that the
nonlinearity mainly serves to explain the behavior in 1993-1994, when the shape of the term
structure was inverted, i.e., the short term rate exceeds the long term rate. Apart from
this period, a few observations in the beginning of the 1980s are picked up by the nonlinear
function, when the spread was more than 1.25%. From the graph in the lower right panel,
it is seen that there are in fact only two observations in the regime S; 1 > 1.25. In the
next section we examine whether these two observations might be regarded as outliers, or
whether the monthly sampling frequency does not lead to sufficient observations in the

different regimes, and hence that aggregation has resulted in ‘less nonlinearity’.

5 Nonlinearity, outliers and sampling frequency

In this section we investigate whether our findings in the previous section based on monthly
data may be caused by only a few observations by applying tests for nonlinearity which
are robust to additive outliers. We also address the importance of sampling frequency or

aggregation level of the series. For this purpose, we investigate model (20) for weekly data.
Testing for nonlinearity in the presence of outliers

Using theoretical derivations and extensive Monte Carlo simulations, Van Dijk et al. (1996)
show that evidence for nonlinearity based on the above LM-type tests can be due to only a

few additive outliers. For practical purposes it is important to investigate this possibility

in order to prevent the empirical specification process to be governed by only a few data
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points. As an example, the ¢y parameter in (8) appears to be quantified on the basis of
only two observations in our monthly data set.

We apply the robust LM-type tests for nonlinearity, as they are proposed in Van Dijk
et al. (1996), to our monthly data set, and we report the p-values of the test statistics
in the second panel of Table 6. The robust test involves the same steps as the standard
test outlined in the previous section. The difference is that the linear model under the
null hypothesis is estimated using a robust method, which downplays the effect of addi-
tive outliers. The auxiliary regression (16) is estimated using both weighted residuals and
weighted regressors, where the weights indicate the relative importance of the observations
in the robust estimation procedure. The asymptotic distributions of the various tests are
still x? and F. The results in Table 6 show that evidence for nonlinearity seems to vanish,
i.e., the null hypothesis of overall linearity is now rejected at about the 12% level or more.
Additionally, the test results for Hys, Hypo, and Hgy less clearly point towards a specific

choice of a nonlinear adjustment function.

Sampling frequency

So far, we have considered monthly data to fit our STECMs for the bivariate interest
rate series. Although nonlinear error-correction can be motivated by arbitrage arguments,
it is unclear at what speed such arbitrage would take place. When arbitrage would take,
say, three weeks to become effective, and we sample our data only monthly, one can expect
nonlinear adjustment to be reflected only in a single observation. Would one, however,
consider weekly data, one may obtain three data points which are informative for nonlinear

modeling.
- insert Table 7 -

To evaluate our empirical STECM in (20) in the light of sampling frequency, we collect
weekly observed data for the same bivariate interest rate series. Similar to the monthly data
we calculate standard and robust LM-type tests for the various hypotheses on nonlinear
error-correction, and we report the results in Table 7. From the first panel of this table,
which contains the standard tests, we can conclude that there is substantial evidence

for nonlinearity in these weekly data. For the robust tests, shown in the second panel,
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we observe that the p-values are generally smaller than the comparable ones in Table 6,
although the overall evidence for nonlinearity is still weak. Only when d equals 6 we can
reject Hy, Hyz and Hpy quite convincingly, and when d = 1 we can reject Hpe at the 5%
level.

In order to compare the effect of sampling frequency, we decide to estimate the same

model as in (20) for the weekly data. The estimation results are

ARy; = —0.01 4+ 0.05S5, |+ 0.81 ARjs; — 0.04 ARy; 1+ 0.07 ARy9; 1 +
(0.01)  (0.02) (0.03) (0.04) (0.04)
(012 + 0.10 S;_1 + 0.41 ARlz,t + 0.21 ARl,t—l — 0.21 ARIQ,t_I) (21)
(0.02) (0.03) (0.08) (0.10) (0.12)
x(1 4 exp[— 7.38 (Sj—1 + 0.42)(S;—1 — 1.03)/0%,_ ) ' +&
(9.02) (0.04) (0.04)

6. =0.131, DW = 1.97, SK = 0.32, EK = 4.80, JB = 762.59(0.00), ARCH(1) = 63.45(0.00),
ARCH(4) = 89.10(0.00), BIC = —4.063.
Compared with the estimated model for the monthly data, two things are most noteworthy.
First, the coefficients for the error-correction (as well as the intercepts) are smaller, which
intuitively makes sense, and, second, the estimate for the threshold ¢y has become smaller,

as well as the corresponding standard error.
- insert Figure 3 -

In Figure 3 we present similar graphs as in Figure 2. The most relevant difference
between these two Figures appears in the lower panel on the right, containing the function
F(-) versus the transition variable S;_1. As opposed to the model for the monthly data,
there are now several observations in the upper regime, and, hence, we can have more
confidence in the precision of the estimate of ¢y in the transition function (8). In other

words, it pays off to consider less aggregate data for this bivariate interest rate series.

6 Concluding remarks

In this paper we have analyzed the empirical specification of a smooth transition error-
correction model for a bivariate Dutch interest rate series, where we used monthly and
weekly observed data. Using simulation experiments we substantiated the conjecture that
standard linearity-based cointegration tests can be used to test for the presence of coin-

tegration and to estimate the corresponding cointegrating vector. From our empirical
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results we must conclude that tests for nonlinearity should be used with caution when one
aims to specify the nonlinear adjustment function in the STECM. First of all, our (unre-
ported, tentative) estimation results show that key parameters like transition lag and type
of transition function may not always be indicated by formal test results. We therefore
recommend the practitioner to estimate various models and to base model selection also on
the empirical sensibility of the estimated transition function. Secondly, additive outliers
can spuriously suggest nonlinearity, and may lead to the specification of complicated non-
linear functions for only one or two data points. We recommend the use of a robust test
for smooth transition nonlinearity in order to prevent one from putting too much effort
in fitting a small number of observations. In fact, it may be that a robust test suggests
linearity or another form of nonlinearity. When robust tests give such deviating results,
one may consider other sampling frequencies, if such data are available. In fact, the third
conclusion from our empirical results is that less aggregated data can lead to more precise
estimates of nonlinear adjustment functions. In practice, the optimal level of sampling
can be based on the available data at hand. Whether any theoretical arguments for some

optimal level of aggregation for nonlinear modeling exist is left for further research.
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Table 1: Size and power of cointegration tests, case I'

p1Lt p2
T v p1 Test 1.0 0.8 0.6 0.4

100 0.5 1.0 ADF 6.6 19.2 39.8 62.8
LRirace 4.4 11.1 27.6 52.6

0.8 ADF 17.4 80.3 93.4 95.9
LRi¢rgce 10.8 60.5 88.4 94.0

0.6 ADF 39.8 93.8 96.2 97.2
LRirace 28.5 89.4 94.8 94.7

0.4 ADF 62.7 95.6 96.9 98.0
LRirace 51.2 94.1 94.6 94.6

5.0 1.0 ADF 5.7 10.2 10.3 10.6
LR¢race 3.2 6.3 7.0 7.2

0.8 ADF 10.1 79.4 90.0 89.8
LRirgce 5.4 60.0 81.8 87.7

0.6 ADF 10.2 90.0 96.3 97.0
LRirgce 5.8 83.5 93.4 93.6

0.4 ADF 10.0 90.5 97.0 98.0
LRirgee 6.0 88.2 93.7 93.8

250 0.5 1.0 ADF 46 277 552 782
LRypace 46 211 484 740

0.8 ADF  29.7  99.8 100.0  100.0
LRypace 222 944 944  94.6

0.6 ADF 56.5 100.0  100.0  100.0
LRirace 49.2 94.4 94.6 94.5

0.4 ADF 77.8 100.0  100.0  100.0
LRirace T74.1 94.4 94.5 94.5

5.0 1.0 ADF 4.6 10.3 10.0 9.9
LRtrace 4.6 7.2 7.5 7.0

0.8 ADF 11.4 99.8 99.9 99.8
LRtrace 7.7 94.4 94.5 94.5

0.6 ADF 11.2 100.0 100.0 100.0
LRtrace 7.8 94.4 94.6 94.6

0.4 ADF 10.8 99.8  100.0  100.0
LRirgce 7.7 94.5 94.5 94.5

! Rejection frequencies at 5% significance level using asymptotic crit-
ical values for series generated by (1)-(3) and (6). The table is based on
2500 replications. Critical values are taken from Phillips and Ouiliaris
(1990), table IIa, for the ADF test and from Osterwald-Lenum (1992),
table 0, for the LRyqce tests.
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Table 2: Mean and standard deviation of ﬁ — 3, case I!

p1+ p2

T vy pm 1.0 0.8 0.6 0.4
100 0.5 1.0 OLS 0.505(0.607) 0.135(0.380) 0.073(0.163) 0.050(0.118)
VECM  0.553(1.593)  —0.021(0.805)  —0.012(1.179)  0.393(14.49)
0.8 OLS 0.126(0.302)  0.049(0.084)  0.043(0.071)  0.037(0.062)
VECM 0.023(0.754)  —0.078(0.332)  —0.026(0.185)  —0.035(0.868)
0.6 OLS 0.070(0.177)  0.043(0.069)  0.036(0.056)  0.032(0.050)
VECM  —0.060(0.434)  —0.213(8.906)  —0.010(0.090)  —0.019(0.358)
0.4 OLS 0.048(0.120) 0.037(0.062) 0.031(0.050) 0.029(0.044)
VECM —0.060(0.289) 0.006(0.506)  —0.012(0.046)  —0.014(0.052)
250 0.5 1.0 OLS 0.519(0.475) 0.094(0.240) 0.058(0.133) 0.043(0.104)
VECM  —0.294(6.776)  —0.065(0.754)  —0.028(0.653)  —0.417(17.51)
0.8 OLS 0.099(0.228) 0.035(0.049) 0.026(0.038) 0.022(0.034)
VECM  —0.028(0.380)  —0.013(0.074)  —0.017(0.040)  —0.020(0.030)
0.6 OLS 0.055(0.135) 0.027(0.039) 0.021(0.029) 0.018(0.025)
VECM  —0.072(1.386)  —0.018(0.035)  —0.021(0.026)  —0.022(0.018)
0.4 OLS 0.040(0.086) 0.022(0.034) 0.018(0.025) 0.016(0.022)
VECM  —0.029(0.329)  —0.020(0.031)  —0.022(0.017)  —0.022(0.014)

! Mean(standard deviation) of (3 — ) for series generated by (1)-(3) and (6). OLS and VECM refer to the
estimates obtained from the cointegrating regression (9) and the vector error-correction model (11) respectively.
The entries for the respective estimators are based on those replications for which the ADF and LR¢yqce statistic
reject the null of no cointegration.
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Table 3: Size and power of cointegration tests, case II'

c
T ¥ p2  Test 0 2 4 6 8
100 0.1 -0.2 ADF 27.8 25.2 175 11.6 9.4

LRirgee  13.9 13.0 9.6 6.2 5.7

—-0.4 ADF 59.2 52.3 31.0 14.0 10.2
LRtrace  32.7 28.2 16.2 8.3 6.1

—0.6 ADF 79.7 73.9 46.2 16.6 10.3
LRirgee  07.3 49.4 243 9.7 6.6

—0.8 ADF 88.0 84.4 60.1 193 109
LRirgee  78.8 70.2 34.8 11.1 6.8

1.0 —0.2 ADF 74.2 99.2 171 111 9.1
LR¢rgce  92.1 33.3 10.1 8.1 6.4

—0.4 ADF 95.2 89.4 2v.7 13.6 10.7
LRirgee  94.3 83.8  16.5 9.5 7.4

—0.6 ADF 96.8 929 431 176 123
LRtrace  94.7 943 26.6 11.3 7.9

—0.8 ADF 97.5 95.1 63.5 21.8 14.6
LRtrace  94.6 94.8 441 143 9.0

250 0.1 —-0.2 ADF 93.3 91.3 78.2 32,6 13.3
LRtrace  81.8 76.4 514 18.2 8.6

—-0.4 ADF 98.6 98.1 93.6 58.5 16.6
LRtrace  94.2 94.2 88.8 334 105

—0.6 ADF 99.6 99.5 971 744 200
LRtrace  94.3 944 941 494 124

—0.8 ADF 99.9 99.7 98.8 835 235
LRirgee 944 943 943 652 142

1.0 —-0.2 ADF 99.8 98.9 783 234 126
LRtrace 944 943 56.0 15.0 8.4

—-0.4 ADF 100.0 99.9 88.8 40.0 164
LR¢rgce  94.5 944 89.8 254 121

—0.6 ADF 100.0  100.0 95.7 65.1 27.1
LR¢rgce  94.6 944 944 488 174

—0.8 ADF 100.0 100.0 984 827 428
LRirgee  94.5 945 945 738 28.0

! Rejection frequencies at 5% significance level using asymptotic critical values
for series generated by (1)-(3) and (8). The table is based on 2500 replications.
Critical values are taken from Phillips and Ouiliaris (1990), table IIa, for the ADF
test and from Osterwald-Lenum (1992), table 0, for the LRtyqce tests.
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Table 4: Mean and standard deviation of B — B, case II'

c

T ¥ p2 0 2 4 6 8
100 01 -0.2 OLS 0.067(0.147) 0.072(0.156) 0.066(0.187) 0.086(0.281) 0.110(0.382)
VECM —0.161(0.430) —0.158(0.446) —0.110(0.413) —0.125(0.655) —0.037(0.602)
—-0.4 OLS 0.056(0.106) 0.057(0.112) 0.067(0.143) 0.085(0.223) 0.087(0.351)
VECM  —0.133(0.394) —0.120(0.365) —0.110(0.508) —0.172(0.463) —0.120(0.581)
—0.6 OLS 0.052(0.090) 0.053(0.094) 0.059(0.120) 0.074(0.201) 0.085(0.337)
VECM  —0.102(0.333) —0.101(0.345) —0.152(0.616) —0.163(0.456) —0.125(0.605)
-0.8 OLS 0.050(0.082) 0.051(0.086) 0.058(0.108) 0.066(0.183) 0.087(0.317)
VECM  —0.053(0.271) —0.075(0.452) —0.116(0.475) —0.116(0.476) —0.112(0.503)
1.0 -0.2 OLS 0.051(0.089) 0.056(0.105) 0.066(0.319) 0.050(0.118) 0.122(0.396)
VECM  —0.094(0.330) —0.127(0.463) —0.156(0.537) —0.105(0.523) —0.009(0.618)
—-0.4 OLS 0.040(0.063) 0.049(0.078) 0.073(0.272) 0.037(0.062) 0.098(0.354)
VECM  —0.012(0.193) —0.046(0.469) —0.140(0.417) —0.119(0.456) —0.050(0.543)
-0.6 OLS 0.033(0.051) 0.043(0.068) 0.075(0.243) 0.032(0.050) 0.104(0.320)
VECM  —0.012(0.051) —0.001(0.260) —0.102(0.531) —0.096(0.447) 0.292(3.903)
-0.8 OLS 0.029(0.044) 0.040(0.061) 0.078(0.207) 0.029(0.044) 0.114(0.293)
VECM  —0.014(0.036) —0.006(0.065) —0.111(0.616) —0.050(0.673) —0.069(0.504)
250 0.1 —-0.2 OLS 0.057(0.079) 0.058(0.082) 0.063(0.096) 0.071(0.146) 0.092(0.224)
VECM  —0.063(1.220) —0.037(0.761) —0.100(0.479) —0.167(0.699) —0.131(0.488)
-04 OLS 0.043(0.061) 0.046(0.064) 0.054(0.076) 0.063(0.111) 0.086(0.199)
VECM  —0.006(0.060) —0.003(0.067) —0.025(0.204) —0.134(0.410) —0.104(0.526)
-0.6 OLS 0.036(0.051) 0.038(0.054) 0.047(0.067) 0.064(0.100) 0.084(0.184)
VECM  —0.011(0.047) —0.010(0.051) 0.003(0.154) —0.107(0.401) —0.097(0.438)
—-0.8 OLS 0.032(0.045) 0.034(0.047) 0.043(0.061) 0.063(0.093) 0.078(0.175)
VECM  —0.012(0.158) —0.014(0.040) —0.006(0.062) —0.086(0.386) —0.094(0.495)
1.0 -0.2 OLS 0.037(0.052) 0.044(0.061) 0.065(0.099) 0.077(0.177) 0.109(0.245)
VECM  —0.010(0.057) —0.007(0.088) —0.090(0.780) —0.071(0.458) —0.102(0.488)
-04 OLS 0.024(0.033) 0.031(0.043) 0.057(0.086) 0.074(0.142) 0.099(0.212)
VECM  —0.026(0.292) —0.016(0.042) —0.020(0.219) —0.091(0.814) —0.101(0.449)
—0.6 OLS 0.019(0.026) 0.026(0.035) 0.053(0.076) 0.075(0.118) 0.087(0.183)
VECM  —0.021(0.018) —0.022(0.160) —0.010(0.523) —0.102(0.376) —0.061(1.076)
-0.8 OLS 0.017(0.022) 0.023(0.031) 0.051(0.068) 0.078(0.109) 0.091(0.149)
VECM  —0.022(0.014) —0.020(0.022) —0.001(0.060) —0.064(0.710) —0.097(0.401)

' Mean(standard deviation) of (3 — 3) for series generated by (1)-(3) and (8). OLS and VECM refer to the estimates
obtained from the cointegrating regression (9) and the vector error-correction model (11) respectively. The entries for
the respective estimators are based on those replications for which the ADF and LRiyqc. statistic reject the null of no
cointegration.
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Table 5: ADF statistics for interest rates!

5%crit.

Rl,t R12,t St value
Level —2.15 —2.06 —-3.00 —2.88
First Difference —5.65 —8.35 — —1.94

L ADF tests applied to monthly interest rates and spread. Test
statistics for levels are 7,, while those for the first differences are 7.
Number of lagged differences in each regression were chosen such
that the last lag included is significant at 5% level, using normal
critical values.

Table 6: Standard and outlier robust LM-type tests for smooth
transition error-correction in a CECM for monthly data on the
one-month interest rate!

d
Test Null 1 2 3 4 5 6
Standard Hy 0.002 0.039 0.968 0.880 0.485 0.721

Hypz 0.075 0988 0.828 0.327 0.313 0.669
Hypy 0.093 0406 0.829 0.995 0.543 0.214
Hp; 0.004 0.001 0.804 0.757 0.478 0.956

Robust Hy 0.151 0.124 0.936 0.523 0.700 0.889

Hps 0.390 0.976 0.555 0.188 0.452 0.578

Hypz 0.724 0.545 0.903 0.599 0.452 0.576

Hy;  0.027 0.006 0.839 0.738 0.820 0.957
! p-values for LM-type tests for smooth transition error-correction in one
month Dutch interest rate. The upper panel gives p-values for standard tests,

the lower panel for LM-type tests which are robust to additive outliers. The
null hypotheses are given in the text.
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Table 7: Standard and outlier robust LM-type tests for smooth
transition error-correction in a CECM for weekly data on the
one-month interest rate'

d
Test Null 1 2 3 4 5 6
Standard Hy 0.000 0.000 0.001 0.001 0.000 0.000

Hs 0.000 0.000 0.000 0.000 0.517 0.867
Hy 0.000 0.000 0.001 0.006 0.018 0.006
H, 0.003 0.005 0.001 0.001 0.000 0.000

Robust Hy 0.107 0.181 0.236 0.402 0.422 0.008

Hs; 0.520 0.689 0.625 0.134 0.594 0.027

H; 0.048 0.054 0.160 0.114 0.150 0.017

H; 0.240 0.324 0.212 0.402 0.607 0.454
! p-values for LM-type tests for smooth transition error-correction in weekly
observations on the one month Dutch interest rate. The upper panel gives p-

values for standard tests, the lower panel for LM-type tests which are robust
to additive outliers. The null hypotheses are given in the text.
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Figure 1: Monthly Dutch short- and long-term interest rates

Interest rate

1981 1984 1987 1990 1993 1996

Time

Note: Monthly Dutch short- and long-term interest rates, Jan 1981 - Dec 1995, — short term rate Ry ¢, - -
- long-term rate Ri2¢.
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Figure 2: Quadratic logistic STECM

Series + Fit F(Sy{-y) vs. time
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Note: Graphical representation of STECM estimated for monthly Dutch short- and long-term interest rates,
Jan 1981 - Dec 1995. The parameters of this model are given in (20).
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Figure 3: Quadratic logistic model - weekly observations
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Note: Graphical representation of STECM estimated for weekly Dutch short- and long-term interest rates,

Jan 1981 - Dec 1995. The parameters of this model are given in (21).
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