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Abstract

In this chapter we investigate empirical speci�cation of smooth transition error cor-
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cointegration tests can be used to examine joint long-run properties. Second, we apply
various tests for nonlinearity to decide on an appropriate function for the adjustment
of disequilibrium errors. When we estimate an STECM, we �nd indications that non-
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weekly, data. We conclude with some suggestions for practitioners.
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1 Introduction

Many economic variables, while nonstationary individually, are linked by long-run equilib-

rium relationships. The concept of cointegration, introduced by Granger (1981) and Engle

and Granger (1987), together with the corresponding error-correction models, allows these

two characteristics to be modelled simultaneously. In the `standard' error-correction model

adjustment towards the long-run equilibrium is linear, i.e., it is always present and of the

same strength under all circumstances. There are however economic situations for which

the validity of this assumption might be questioned. Recently, there have been several

attempts to construct econometric models which allow for nonlinear adjustment, see An-

derson (1995), Dwyer et al. (1996), Hansen and Kim (1996), Kunst (1992,1995), and

Swanson (1996). It appears that relevant forms of nonlinear error-correction often con-

cern some sort of asymmetry, i.e., distinction is made between adjustment of positive or

negative and of large or small deviations from equilibrium. Both types of asymmetry

arise in a rather natural way when applying cointegration techniques to modelling prices

of so-called equivalent assets in �nancial markets, see Yadav et al. (1994) and Anderson

(1995) for an elaborate discussion. Equivalent assets in a certain sense represent the same

value, examples include stock and futures, and bonds of di�erent maturity. Since these

assets are traded in the same market, or in markets which are linked by arbitrage-related

forces, their prices should be such that investors are indi�erent between holding either one

of the equivalent assets. If prices deviate from equilibrium, arbitrage opportunities are

created which will result in the prices being driven back together again. However, market

frictions can give rise to asymmetric adjustment of such deviations. For example, due

to short-selling restrictions, the response to negative deviations will be di�erent from the

response to positive deviations from equilibrium. Alternatively, transaction costs prevent

adjustment of equilibrium errors as long as the bene�ts from adjustment, which equal the

price di�erence, are smaller than those costs. Additionally, short-selling restrictions and

transaction costs are not the same for all market participants. Because of this heterogene-

ity among traders, it might be expected that the aggregate force on the prices to return

to equilibrium might be gradually changing, see Anderson (1995).

The purpose of this chapter is twofold. First, we document that both types of asym-

metric adjustment discussed above can be modelled by means of Smooth Transition Error-
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Correction Models (STECMs). Second, and more important, we aim to review the practical

issues involved in the empirical speci�cation of STECMs and to provide useful guidelines

for practitioners. These practical issues concern (i) cointegration, i.e., how can one estab-

lish whether there is a linear long-run relation while there is nonlinear adjustment? (ii)

nonlinearity, i.e., which form of nonlinear adjustment is appropriate?, (iii) outliers, i.e.,

can we prevent that our results are due to only a few in
uential data points?, and (iv)

aggregation, i.e., what is the e�ect of aggregation on �nding nonlinear adjustment? We

address these issues using an example of a monthly bivariate interest rate series in The

Netherlands, of which we also have weekly observed data.

The outline of this chapter is as follows. Section 2 introduces the general idea of smooth

transition error-correction by discussing a simple model, which subsequently will be used in

simulation experiments. This section also contains an outline of an empirical speci�cation

procedure for STECMs. Section 3 focuses on the �rst step in this speci�cation procedure

by presenting some Monte Carlo evidence on the performance of standard linearity-based

tests for cointegration, when applied in the presence of nonlinear error-correction. Section

4 reviews the results of Lagrange Multiplier (LM) tests for nonlinear error-correction when

applied to the interest rate series, and it also presents estimates of an STECM for these

series. Section 5 deals with the issues of outliers and sampling frequency. For our sample

series we �nd that these issues have a substantial impact on �nding an adequate empirical

model. Finally, Section 6 contains some recommendations for practitioners.

2 Smooth transition error-correction

The concept of smooth transition error-correction can conveniently be introduced by con-

sidering the following system for a bivariate time series f(yt; xt)
0; t = 1; : : : ; Tg,

yt + �xt = zt; zt = (�1 + �2F (zt�d))zt�1 + "t; (1)

yt + �xt = wt; wt = wt�1 + �t; (2)

where the so-called transition function F (zt�d) is continuous and bounded between 0 and

1, d 2 f1; 2; : : :g, � 6= �, and 
"t
�t

!
� i.i.d(0;�); � =

 
1 ��

�� �2

!
: (3)
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The standard linear set-up, which is used by, inter alia, Banerjee et al. (1986) and Engle

and Granger (1987), is obtained by taking F (zt�d) equal to zero and imposing the restric-

tion j�1j < 1. The series yt and xt then are cointegrated with cointegrating vector (1; �)0.

Put di�erently, the series yt and xt are linked by the (long-run) relationship yt = ��xt,

and zt represents the deviation from this `equilibrium'. In the general system (1)-(3), zt

is assumed to follow a smooth transition autoregressive (STAR) model, see Granger and

Ter�asvirta (1993) and Ter�asvirta (1994) for elaborate discussions of this class of nonlinear

time series models. For yt and xt still to be cointegrated in this case, zt has to be sta-

tionary. This implies that, depending on the speci�c form of the function F (zt�d), certain

restrictions have to be put on �1 and �2. For example, j�1j < 1 and j�1 + �2j < 1 are

su�cient, but not necessary, conditions for zt to be stationary for all possible choices of

F (zt�d).

It is useful to rewrite the system (1)-(2) in error-correction format as,

�yt =
�(�1 + �2F (zt�d)� 1)

�� �
zt�1 + �1t; (4)

�xt =
�(�1 + �2F (zt�d)� 1)

�� �
zt�1 + �2t; (5)

where �it; i = 1; 2, are linear combinations of "t and �t. From (4)-(5), the term smooth

transition error-correction is obvious. For example, in the equation for �yt, the strength

of error-correction changes smoothly from �(�1 � 1)=(�� �) to �(�1 + �2 � 1)=(�� �) as

F (zt�d) changes from 0 to 1.

The function F (zt�d) can be used to obtain many di�erent kinds of nonlinear error-

correction behaviour. As argued in the introduction, in empirical applications involving

�nancial variables, one might be especially interested in modelling asymmetric adjustment.

Asymmetric e�ects of positive and negative deviations can be obtained by setting F (zt�d)

equal to the logistic function,

F (zt�d) � F (zt�d; 
; c) = (1 + expf�
(zt�d � c)g)�1; 
 > 0 : (6)

In the resulting logistic STECM (LSTECM), the strength of attraction of zt to zero changes

monotonically from �1 to �1+�2 for increasing values of zt�d. The logistic model therefore

allows for di�erent e�ects of positive and negative deviations (relative to the threshold c)

from the equilibrium. The parameter 
 determines the speed of the transition; the higher


, the faster the change from �1 to �1 + �2. If 
 ! 0, the LSTECM becomes linear, while
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if 
 ! 1, the logistic function approaches an Heaviside function, taking the value 0 for

zt�d � c and 1 for zt�d > c.

The second type of asymmetry, which distinguishes between small and large equilibrium

errors, is obtained when F (zt�d) is taken to be the exponential function,

F (zt�d; 
; c) = 1� expf�
(zt�d � c)2g; 
 > 0 ; (7)

which results in gradually changing strength of adjustment for larger (both positive and

negative) deviations from equilibrium. In the resulting STECM, the strength of mean

reversion changes from �1+ �2 to �1 and back again with increasing zt�d, and this change

is symmetric around c. A possible drawback of this choice for the transition function is

that both if 
 ! 0 or 
 ! 1, the model becomes linear. This can be avoided by using

the `quadratic logistic' function

F (zt�d; 
; c1; c2) = (1 + expf�
(zt�d � c1)(zt�d � c2)g)
�1; 
 > 0 ; (8)

as proposed by Jansen and Ter�asvirta (1995). In this case, if 
 ! 0, the model becomes

linear, while if 
 ! 1, the function F (�) is equal to 1 for zt�d < c1 and zt�d > c2, and

equal to 0 inbetween. Hence, the model nests the three regime threshold error-correction

model of Balke and Fomby (1997) as a limiting case. Note that for �nite 
, the minimum

value taken by the function (8), which is attained for zt�d = (c1 + c2)=2, is not equal

to zero. This has to be kept in mind when interpreting estimates from models with this

particular transition function.

It is fairly straightforward to extend the speci�cation strategy for STAR models of

Ter�asvirta (1994) to the error-correction case considered here. Empirical speci�cation of

an STECM then involves the following steps: (i) testing for cointegration and estimating

the cointegrating relationship, (ii) testing for nonlinearity of the adjustment process and

investigating the type of nonlinearity, and (iii) estimating and evaluating the STECM.

Each of these steps is addressed in turn in the following sections.

3 Testing for cointegration

In this section we address the �rst step involved in specifying an STECM, i.e., testing for

cointegration and estimating the cointegrating relationship. Escribano and Mira (1996)
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show that the cointegrating vector(s) can still be estimated superconsistently in the pres-

ence of neglected nonlinearity in the adjustment process, see also Corradi et al. (1995). In

this section we evaluate these theoretical results using Monte Carlo experiments. Addition-

ally, we also examine the �nite sample properties of linearity-based tests for cointegration.

These simulations complement and extend the Monte Carlo results in Pippenger and Go-

ering (1993) and Balke and Fomby (1997). Both studies only consider the case of threshold

error-correction and, furthermore, Pippenger and Goering (1993) only consider situations

in which the cointegrating relationship can be assumed to be known, something which may

not always be possible in practice.

We consider those cointegration tests that are most popular among practitioners: the

residual-based test suggested by Engle and Granger (1987) and the likelihood ratio test

introduced by Johansen (1988). For simplicity, we discuss the tests only for (bivariate)

cases where no deterministic regressors are included in the model. The residual-based test

for cointegration is performed via the two-step procedure of Engle and Granger (1987).

That is, we �rst estimate the cointegrating regression

yt = ��xt + ut ; (9)

by ordinary least squares (OLS) and, second, test for the presence of a unit root in the

regression residuals ût = yt+�̂xt. The latter is done by using the Augmented Dickey-Fuller

(ADF) test of Dickey and Fuller (1979), which is the familiar t-ratio of � in the auxiliary

AR(p) regression

�ût = �ût�1 +

p�1X
i=1

�i�ût�i + �t : (10)

The ADF statistic requires the choice of an appropriate value for p in (10). The number of

lagged di�erences included should be such that the residuals �̂t obtained from (10) resemble

white noise. In our Monte Carlo experiments, we follow Gregory (1994) by initially setting

p fairly large (equal to 6) and then reducing this number until the last lag included is

signi�cant at the 5% level, using normal critical values.

The likelihood ratio tests developed by Johansen (1988) are derived from the vector

ECM (VECM), for the 2� 1 vector time series fXt = (yt; xt)
0; t = 1� p; : : : ; Tg,

�Xt = �Xt�1 +

p�1X
i=1

�i�Xt�i + "t ; t = 1; : : : T ; (11)
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where "t � NID(0;�). If yt and xt are cointegrated, the matrix � has rank 1 and can be

decomposed as � = ��0 for 2� 1 vectors � and �. Johansen (1988) advocates to test for

cointegration by testing the rank r of �. This can be done by applying likelihood ratio

(LR) tests to test the signi�cance of the squared partial canonical correlations between �Xt

and Xt�1, denoted �̂1and�̂2, which can be obtained by solving a generalized eigenvalue

problem. Ordering them such that �̂1 > �̂2, the trace statistics can be used to test

H0 : r = r0 against the alternative hypothesis H1 : r � r0+1 for r0 = 0; 1, and is given by

LRtrace = �T
2X

i=r0+1

ln(1� �̂i) : (12)

The asymptotic distribution of the trace statistic is non-standard and depends on the

number of zero canonical correlations, see Johansen (1988,1991). If the trace test points

towards cointegration between yt and xt, an estimate of the cointegrating vector � is given

by the eigenvector corresponding to the largest canonical correlation �̂1. In our Monte

Carlo experiments, the VAR-order p in (11) is determined by minimizing the Schwarz-

criterion BIC.

3.1 Monte Carlo experiments

The tests for cointegration discussed above assume that the adjustment process driving the

variables towards the equilibrium is linear. In this section we investigate the empirical re-

jection frequencies of the tests, as well as the corresponding estimates of the cointegrating

vector, when the series of interest are characterized by smooth transition error-correction.

For convenience, we denote the rejection frequency of the cointegration tests as `power'.

Monte Carlo design

The generalized bivariate system (1)-(3) is used as DGP for the arti�cial time series yt

and xt. Both types of asymmetric error-correction which have been dicussed before are

investigated, by using (6) and (8) as transition functions with zt�1 as transition variable,

i.e., d = 1. In the Monte Carlo experiments, we investigate the e�ects of the autoregressive

parameters in the STAR model for zt, �1 and �2, on the power of the tests for cointegration

and the estimates of the cointegrating parameter �.

In case (6) is used as transition function (which will be referred to as case I), the
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threshold c is �xed at zero, such that adjustment is di�erent for positive and negative

equilibrium errors, while the parameter 
, which determines the speed of the transition, is

set equal to .5 and 5. Finally, �1 and �2 are chosen such that �1 and �1+�2, which are the

e�ective autoregressive parameters for F (�) = 0 and F (�) = 1, respectively, vary between

0.2 and 1.

In case (8) is taken to be transition function (case II), the thresholds c1 and c2 are

varied between 0 and 8, with c1 = �c2 � c, while 
 is set equal to .1 and 1. For 
 = 1,

the transition is already almost instantaneous at the thresholds, so it is not very useful

to consider larger values for this parameter. In all experiments �1 is �xed at 1, while

�2 is varied between 0 and -.8. Hence, adjustment is stronger for larger deviations from

equilibrium. Finally, it should be remarked that the function F (�) is scaled by applying the

transformation F �(�) = (F (�) � F (0))=(1 � F (0)). The function F �(�) attains a minimum

value of 0 at zt�1 = 0 and approaches 1 for large negative and positive values of zt�1.

Hence, no error-correction is present at zt�1 = 0 (and for 
 = 1, almost no error-correction

occurs for �c < zt�1 < c).

The remaining parameters in the model are �xed at the following values for both case

I and II: � = �1, � = �2, �2 = 1, � = 0. For each experiment we generate 2500 series of

T = 100 or 250 observations. The starting values for both yt and xt are set equal to zero

and the �rst 100 observations are discarded. All calculations are performed using GAUSS.

Strictly speaking, power comparisons of the various tests are possible only when size-

adjusted critical values are used. The power calculations presented in this section are

made using asymptotic critical values, since this corresponds to empirical practice. The

asymptotic critical values for the ADF test are taken from Phillips and Ouiliaris (1990),

Tables IIa, while Table 0 in Osterwald-Lenum (1992) gives critical values for the Johansen

trace test.

Results of Monte Carlo experiments

The results for case I are set out in Tables 1 and 2. Table 1 shows the rejection fre-

quencies of the ADF and trace tests. Note that the cells corresponding to �1 = 1:0 and

�1 + �2 = 1:0 denote the size of the tests, and the cells corresponding to �1 = �1 + �2

denote the power of the tests in case of linear error-correction. The remaining cells contain
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estimates of the power in case of asymmetric error-correction.

- insert Table 1 -

From Table 1, it is seen that the power of both tests is almost not a�ected by the

nonlinearity of the error-correction process. The only exception to this general observation

is the case where either �1 or �1+ �2 is equal to 1, i.e., in case there is no correction at all

of either negative or positive errors, respectively.

Table 2 shows the means and standard deviations of the bias in the estimates of the

cointegrating parameter �, obtained from the static regression (9) (OLS) and the Johansen

procedure (VECM). Only the results for 
 = 0:5 are shown, the results for 
 = 5:0 are

very similar. It should be noted that all entries are only based on those replications for

which the respective test procedures detect cointegration at the 5% signi�cance level.

- insert Table 2 -

It is seen that on average, the cointegrating parameter is over- and underestimated

by the static regression and maximum likelihood procedure, respectively. This however

can simply be a consequence of the choice of the DGP. Some conclusions which emerge

from Table 2 are that the mean of the bias from the static regression is larger, but the

variance is smaller. Both the mean and the variance of the bias decrease as the strength

of attraction of the equilibrium error becomes stronger, i.e., for increasing values of �1 and

�1 + �2.

The results for case II are shown in Tables 3 and 4.

- insert Table 3 -

It appears that overall the simple ADF test is more powerful than the trace statistic,

although the di�erence in power is not very large. Increasing values of c imply that the

strength of error-correction increases more slowly as zt�1 gets larger (in absolute value).

It is seen that the power of the tests decreases accordingly. More negative values of �2

imply that the strength of attraction of zt to zero becomes larger for given values of zt�1.

It might be expected that in this case the power of the tests increases, which is con�rmed

by Table 3. Finally, increasing 
, while keeping c and �2 �xed, has two opposing e�ects.

On the one hand, for large values of 
 the strength of error-correction is virtually zero
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as long as zt�1 2 (�c; c), while for small 
, error-correction becomes active as soon as

there is a deviation from equilibrium. This e�ect might be expected to decrease the power

of the cointegration tests as 
 increases. On the other hand, for larger values of 
, the

transition to the maximum strength of attraction is much quicker, which might be expected

to increase the power of the tests. The simulation results seem to suggest that the second

e�ect dominates, since for a very large majority of combinations of c and �2 the power of

the tests is higher for 
 = 1:0.

Table 4 displays the means and standard deviations of the bias in the estimates of the

cointegrating parameter � for case II. From this table, roughly the same conclusions can

be drawn as for case I. The main di�erence is that for T = 100 and 
 = 0:1, the mean of

the bias from the static regression now is smaller (in absolute value) than the mean bias

from the VECM.

- insert Table 4 -

In general, we observe that the bias in estimating the cointegrating rank and the

cointegrating vector is not larger for asymmetric and nonlinear adjustment when compared

to linear adjustment. These �ndings serve to substantiate some of the theoretical results

in Escribano and Mira (1996) and Corradi et al. (1995).

3.2 Data analysis

In this subsection we examine the cointegration properties of our bivariate sample series.

It is generally accepted that interest rates can be characterized as nonstationary processes

or, to be more precise, processes which are integrated of order 1 (I(1)). Hall et al. (1992)

argue that many theories of the term structure of interest rates imply that n interest rates

of di�erent maturity are cointegrated with cointegrating rank n� 1, with the di�erences

between the interest rates, or spreads, being the stationary linear combinations. If interest

rates are such that the spread deviates from its equilibrium value, arbitrage opportunities

are created, and these will drive the interest rates back towards equilibrium. Anderson

(1995) argues that, due to market imperfections such as transaction costs, asymmetric

error-correction of large and small deviations may play an important role.

To investigate the empirical usefulness of STECMs, we consider a monthly bivariate

interest rate series for the Netherlands, consisting of one- and twelve-month interbank
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rates. We denote these as R1;t and R12;t, respectively. The sample runs from January 1981

until December 1995, giving 180 monthly observations in total. The series are graphed in

Figure 1.

- insert Figure 1 -

Table 5 shows the results from applying univariate ADF tests to the interest rates and

the spread St, which is de�ned as R12;t � R1;t. The tests clearly indicate that the series

are individually I(1), while the spread seems to be stationary at the 5% signi�cance level.

- insert Table 5 -

In order to check whether it is appropriate to use the spread as cointegrating relation-

ship, i.e., to impose the cointegrating vector to be equal to (1,-1), a regression from R1;t

on R12;t (including a constant as well) renders an estimate of 0.999, which seems close

enough to unity.

The Johansen trace test is also computed, including one lagged di�erence of the series

in the VECM (a VAR order of 2 for the levels is indicated by the Schwarz criterion),

and no constants. The trace test for testing r = 0 and r = 1 are equal to 15.30 and

1.88. When compared with the appropriate 5% critical values, we conclude that the tests

point towards cointegration. The estimate of the normalized cointegrating vector is (1,

-1.029). Since the estimated standard error of the second element equals 0.018, we cannot

reject the hypothesis that it is equal to unity. Hence, in the remainder of the analysis we

assume that the spread amounts to a stationary linear combination of our two interest

rates. Furthermore, the estimates of the parameters in the linear VECM (not shown here)

reveal that the error-correction variable St�1 is not signi�cant in the equation for the

twelve-month interest rate. For this reason, we focus on the equation for the short-term

rate R1;t by conditioning on R12;t.

The �tted linear conditional error-correction model (CECM) for R1;t is

�R1;t = � 0:02

(0:02)

+ 0:13

(0:04)

St�1 + 0:93

(0:04)

�R12;t � 0:16

(0:07)

�R1;t�1 + 0:09

(0:08)

�R12;t�1 (13)

�̂" = 0:236, DW = 2:00, SK = 0:00, EK = 4:23, JB = 132:92(0:00), ARCH(1) = 16:53(0:00),
ARCH(4) = 19:03(0:00), LB(8) = 7:84(0:45), LB(12) = 19:42(0:08), BIC = �2:767;
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where standard errors are given in parentheses below the parameter estimates, �̂" is the

residual standard deviation, DW is the Durbin-Watson statistic, SK is skewness, EK ex-

cess kurtosis, JB the Jarque-Bera test of normality of the residuals, ARCH is the LM test

of no autoregressive conditional heteroscedasticity, LB is the Ljung-Box test of no auto-

correlation and BIC is the Schwarz criterion. The �gures in parentheses following the test

statistics are p-values.

This linear model seems quite satisfactory, with reasonable values for all coe�cients.

Due to the large kurtosis, normality of the residuals is strongly rejected. Closer inspection

of the residuals reveals that this may be entirely caused by only three observations in the

beginning of the sample for which the residuals are very large (in absolute value). These

aberrant observations may also cause the ARCH tests to reject homoscedasticity. On the

other hand, it may also be that these signi�cant test values are cauased by neglected

nonlinearity. In the next section, we focus on a nonlinear extension of (13).

4 Testing for smooth transition error-correction

Once the presence of an equilibrium relationship has been established, the next question is

whether possible nonlinearity in the adjustment process can be detected. Alternatively, if,

perhaps contrary to one's prior expectations, cointegration may not have been found, the

application of linearity tests may provide some insight in the causes for this �nding. The

Lagrange Multiplier (LM) type tests developed by Luukkonen et al. (1988) for general

smooth transition nonlinearity can easily be adapted to test for smooth transition error-

correction, see also Swanson (1996). The objective of testing for nonlinearity is threefold.

First, we want to obtain an impression of whether the error-correction process is indeed

nonlinear. Second, we need to determine the appropriate transition variable, i.e., obtain

an estimate of the lag d. Third, we want to obtain an idea of the most appropriate form

of the nonlinearity in the error-correction, i.e., we want to select between the forms of

nonlinearity implied by (6) on the one hand and (7) or (8) on the other. In our empirical

example, we con�ne our analysis to selecting between the logistic function (6) and the

quadratic logistic function (8).

Consider a general CECM for yt,

�yt = �01wt + F (zt�d; 
; c)�
0

2wt + �t ; (14)
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where wt = (1; ~wt)
0; ~wt = (zt�1;�yt�1; : : : ;�yt�p+1;�xt; : : : ;�xt�p+1)

0, zt = yt + �xt,

�i = (�i0; �i1; : : : ; �im)
0, for i = 1; 2, m = 2p � 1. The noise process f�tg is assumed to

be normally distributed with mean zero and variance �2� . Compared to (4), constants and

lagged �rst di�erences of yt and xt have been added to allow for more general dynamic

structures.

The null hypothesis of linear error-correction in (14) with (6) or (8) can be formulated

as H0 : 
 = 0. It is immediately seen that under the null hypothesis the model is not

identi�ed and, hence, the usual asymptotic theory cannot be applied to derive LM tests,

see Davies (1977,1987) for a general discussion of such identi�cation problems. Luukkonen

et al. (1988) suggest to solve this by replacing the transition function F (zt�d; 
; c) in (14)

by a suitable approximation around 
 = 0. In the reparameterized model, the identi�cation

problem is no longer present and linearity can easily be tested.

A general test against smooth transition error-correction emerges when F (zt�d) is

replaced by a third-order Taylor approximation. Rearranging terms yields the reparame-

terized model,

�yt = �0wt + �01 ~wtzt�d + �02 ~wtz
2
t�d + �03 ~wtz

3
t�d + �t ; (15)

It should be noted that when d > p, ~wt should be replaced by wt because zt�d is not present

as an (implicit) regressor in wt. The original null hypothesis of linearity, H0 : 
 = 0,

is easily shown to be equivalent to the hypothesis that all coe�cients of the auxiliary

regressors ~wtz
j
t�d; j = 1; 2; 3 are zero, i.e., H 0

0 : �1 = �2 = �3 = 0. The LM-type test for

this null hypothesis can be carried out in a few steps:

1. Estimate the parameters of the model under the null hypothesis by regressing �yt

on wt, with zt replaced by ẑt = yt + �̂xt, where �̂ is obtained from preliminary

cointegration analysis. The value of p, necessary for the construction of wt can be

taken from the linear model. Compute the sum of squared residuals SSR0 =
P
�̂2t ,

where �̂t = yt � �̂01wt.

2. Estimate the parameters � and �j ; j = 1; 2; 3 from the auxiliary regression

�̂t = �0wt + �01 ~wtzt�d + �02 ~wtz
2
t�d + �03 ~wtz

3
t�d + �t ; (16)

and compute the sum of squared residuals SSR1 =
P
�̂2t .
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3. The LM-type test statistic can now be computed as

LM0 = T (SSR0 � SSR1)=SSR0 : (17)

The test statistic has an asymptotic �2 distribution with 3m degrees of freedom, where it

is assumed that prior estimation of � does not a�ect the asymptotic distribution. In small

samples it usually is recommended to use an F version of the test, i.e.,

LM0 =
SSR0 � SSR1)=(3m)

SSR1=(T � 4m)
; (18)

which is approximately F distributed with 3m and T � 4m degrees of freedom under the

null hypothesis of linearity.

To decide upon the most appropriate lag of zt to use as transition variable, the test

should be carried out for a number of di�erent values of d, say d = 1; : : : ;D. If linearity

is rejected for several values of d, the one with the smallest p-value is selected as the

transition variable. This rule is motivated by the notion that the test might be expected

to have maximum power if the true transition variable is used, see Granger and Ter�asvirta

(1993).

Deciding between the transition functions (6) and (8) can be done by a short sequence

of tests nested within H0. This testing sequence is motivated by the observation that if a

logistic alternative is appropriate, the second order derivative in the Taylor expansion is

zero. Hence, when �2 = 0, the model can only be a logistic model. The null hypotheses

to be tested are as follows

H03 : �3 = 0 ;

H02 : �2 = 0j�3 = 0 ; (19)

H01 : �1 = 0j�3 = �2 = 0 :

Granger and Ter�asvirta (1993) suggest to carry out all three tests, independent of rejection

or acceptance of the �rst or second test, and use the outcomes to select the appropriate

transition function. The decision rule is to select the quadratic logistic function (8) only if

the p-value corresponding to H02 is the smallest, and select the logistic function (6) in all

other cases. There is however no guarantee that this sequence will give the right answer.

For practical purposes it therefore seems useful to estimate models with both transition

functions and to base a decision between the two on other criteria.

13



- insert Table 6 -

We compute the LM-type test statistics for the various null hypotheses for the one-

month Dutch interest rate in the estimated CECM (13). We set d equal to 1 through 6.

The �rst panel of Table 6 shows the p-values of the standard LM-type tests. From the

results for H0, it is seen that linearity is rejected for both d = 1 and d = 2. Based upon

the p-values, we select d = 1 as the appropriate transition variable. Unfortunately, the

p-values of the test sequence for testing H03, H02 and H01, are not very conclusive with

respect to the appropriate transition function. The p-values are equal to 0:075; 0:093 and

0:004. Hence, if we would adopt the decision rule of Granger and Ter�asvirta (1993), a

logistic model seems most appropriate. When we estimate STECMS with (6) and (8), we

�nd however that the logistic function (6) does not render sensible results. Therefore, in

the sequel we only present models which assume (8) as the transition function.

We estimate the parameters of our STECM by non-linear least squares (NLS). We

follow the suggestions of Ter�asvirta (1994) and standardize the exponent of F (St�1) by

dividing it by the variance of the transition variable, �2St�1
= 0:229, such that 
 is a

scale-free parameter. The estimation results are

�R1;t = � 0:03

(0:03)

+ 0:12

(0:07)

St�1 + 0:90

(0:04)

�R12;t � 0:11

(0:08)

�R1;t�1 + 0:11

(0:09)

�R12;t�1 +

(0:32

(0:12)

+ 0:42

(0:24)

St�1 + 0:15

(0:19)

�R12;t + 0:25

(0:19)

�R1;t�1 � 0:73

(0:34)

�R12;t�1) (20)

�(1 + exp[� 3:74

(5:67)

(St�1 + 0:40

(0:08)

)(St�1 � 1:25

(0:12)

)=�2St�1
])�1 + "t

�̂" = 0:225, DW = 1:89, SK = �0:14, EK = 4:88, JB = 177:25(0:00), ARCH(1) = 0:01(0:92),
ARCH(4) = 3:48(0:48), BIC = �2:672.

The large standard error of the estimate of 
 is due to the fact that a wide range of values

of this parameter renders about the same transition function. Accurate estimation of 


then requires a large number of observations close to c1 and c2, see Ter�asvirta (1994) for a

discussion. The estimate of 
 is such that transition from F (St�1) = 0 to F (St�1) = 1 is

almost instantaneous at the thresholds -0.40 and 1.25. The estimates of the coe�cients of

the error-correction term St�1 are such that adjustment is stronger if the series is in the

upper or lower regime, i.e., if the spread lagged one period is larger (in absolute value).

Note that for the lower regime (St�1 < �0:40) this is counteracted considerably by the

14



change in the intercept. In fact, St�1 needs to be smaller than -0.81, approximately, for

the �rst e�ect to dominate.

Also notice that the ARCH test statistics have become insigni�cant, i.e., the previous

evidence of ARCH in the linear model may have been due to neglected nonlinearity.

- insert Figure 2 -

Figure 2 shows some graphs which serve to illustrate the estimated smooth transition

model. From the residual plot in the lower left panel it appears that the model still fails

to capture some of the large interest rate movements in the beginning of the sample. The

upper right panel shows how the transition function evolves over time. It is seen that the

nonlinearity mainly serves to explain the behavior in 1993-1994, when the shape of the term

structure was inverted, i.e., the short term rate exceeds the long term rate. Apart from

this period, a few observations in the beginning of the 1980s are picked up by the nonlinear

function, when the spread was more than 1.25%. From the graph in the lower right panel,

it is seen that there are in fact only two observations in the regime St�1 > 1:25. In the

next section we examine whether these two observations might be regarded as outliers, or

whether the monthly sampling frequency does not lead to su�cient observations in the

di�erent regimes, and hence that aggregation has resulted in `less nonlinearity'.

5 Nonlinearity, outliers and sampling frequency

In this section we investigate whether our �ndings in the previous section based on monthly

data may be caused by only a few observations by applying tests for nonlinearity which

are robust to additive outliers. We also address the importance of sampling frequency or

aggregation level of the series. For this purpose, we investigate model (20) for weekly data.

Testing for nonlinearity in the presence of outliers

Using theoretical derivations and extensive Monte Carlo simulations, Van Dijk et al. (1996)

show that evidence for nonlinearity based on the above LM-type tests can be due to only a

few additive outliers. For practical purposes it is important to investigate this possibility

in order to prevent the empirical speci�cation process to be governed by only a few data
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points. As an example, the c2 parameter in (8) appears to be quanti�ed on the basis of

only two observations in our monthly data set.

We apply the robust LM-type tests for nonlinearity, as they are proposed in Van Dijk

et al. (1996), to our monthly data set, and we report the p-values of the test statistics

in the second panel of Table 6. The robust test involves the same steps as the standard

test outlined in the previous section. The di�erence is that the linear model under the

null hypothesis is estimated using a robust method, which downplays the e�ect of addi-

tive outliers. The auxiliary regression (16) is estimated using both weighted residuals and

weighted regressors, where the weights indicate the relative importance of the observations

in the robust estimation procedure. The asymptotic distributions of the various tests are

still �2 and F . The results in Table 6 show that evidence for nonlinearity seems to vanish,

i.e., the null hypothesis of overall linearity is now rejected at about the 12% level or more.

Additionally, the test results for H03;H02, and H01 less clearly point towards a speci�c

choice of a nonlinear adjustment function.

Sampling frequency

So far, we have considered monthly data to �t our STECMs for the bivariate interest

rate series. Although nonlinear error-correction can be motivated by arbitrage arguments,

it is unclear at what speed such arbitrage would take place. When arbitrage would take,

say, three weeks to become e�ective, and we sample our data only monthly, one can expect

nonlinear adjustment to be re
ected only in a single observation. Would one, however,

consider weekly data, one may obtain three data points which are informative for nonlinear

modeling.

- insert Table 7 -

To evaluate our empirical STECM in (20) in the light of sampling frequency, we collect

weekly observed data for the same bivariate interest rate series. Similar to the monthly data

we calculate standard and robust LM-type tests for the various hypotheses on nonlinear

error-correction, and we report the results in Table 7. From the �rst panel of this table,

which contains the standard tests, we can conclude that there is substantial evidence

for nonlinearity in these weekly data. For the robust tests, shown in the second panel,
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we observe that the p-values are generally smaller than the comparable ones in Table 6,

although the overall evidence for nonlinearity is still weak. Only when d equals 6 we can

reject H0;H03 and H02 quite convincingly, and when d = 1 we can reject H02 at the 5%

level.

In order to compare the e�ect of sampling frequency, we decide to estimate the same

model as in (20) for the weekly data. The estimation results are

�R1;t = � 0:01

(0:01)

+ 0:05

(0:02)

St�1 + 0:81

(0:03)

�R12;t � 0:04

(0:04)

�R1;t�1 + 0:07

(0:04)

�R12;t�1 +

(0:12

(0:02)

+ 0:10

(0:03)

St�1 + 0:41

(0:08)

�R12;t + 0:21

(0:10)

�R1;t�1 � 0:21

(0:12)

�R12;t�1) (21)

�(1 + exp[� 7:38

(9:02)

(St�1 + 0:42

(0:04)

)(St�1 � 1:03

(0:04)

)=�2St�1
])�1 + "t

�̂" = 0:131, DW = 1:97, SK = 0:32, EK = 4:80, JB = 762:59(0:00), ARCH(1) = 63:45(0:00),
ARCH(4) = 89:10(0:00), BIC = �4:063.

Compared with the estimated model for the monthly data, two things are most noteworthy.

First, the coe�cients for the error-correction (as well as the intercepts) are smaller, which

intuitively makes sense, and, second, the estimate for the threshold c2 has become smaller,

as well as the corresponding standard error.

- insert Figure 3 -

In Figure 3 we present similar graphs as in Figure 2. The most relevant di�erence

between these two Figures appears in the lower panel on the right, containing the function

F (�) versus the transition variable St�1. As opposed to the model for the monthly data,

there are now several observations in the upper regime, and, hence, we can have more

con�dence in the precision of the estimate of c2 in the transition function (8). In other

words, it pays o� to consider less aggregate data for this bivariate interest rate series.

6 Concluding remarks

In this paper we have analyzed the empirical speci�cation of a smooth transition error-

correction model for a bivariate Dutch interest rate series, where we used monthly and

weekly observed data. Using simulation experiments we substantiated the conjecture that

standard linearity-based cointegration tests can be used to test for the presence of coin-

tegration and to estimate the corresponding cointegrating vector. From our empirical

17



results we must conclude that tests for nonlinearity should be used with caution when one

aims to specify the nonlinear adjustment function in the STECM. First of all, our (unre-

ported, tentative) estimation results show that key parameters like transition lag and type

of transition function may not always be indicated by formal test results. We therefore

recommend the practitioner to estimate various models and to base model selection also on

the empirical sensibility of the estimated transition function. Secondly, additive outliers

can spuriously suggest nonlinearity, and may lead to the speci�cation of complicated non-

linear functions for only one or two data points. We recommend the use of a robust test

for smooth transition nonlinearity in order to prevent one from putting too much e�ort

in �tting a small number of observations. In fact, it may be that a robust test suggests

linearity or another form of nonlinearity. When robust tests give such deviating results,

one may consider other sampling frequencies, if such data are available. In fact, the third

conclusion from our empirical results is that less aggregated data can lead to more precise

estimates of nonlinear adjustment functions. In practice, the optimal level of sampling

can be based on the available data at hand. Whether any theoretical arguments for some

optimal level of aggregation for nonlinear modeling exist is left for further research.
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Table 1: Size and power of cointegration tests, case I1

�1 + �2
T 
 �1 Test 1:0 0:8 0:6 0:4

100 0:5 1:0 ADF 6:6 19:2 39:8 62:8

LRtrace 4:4 11:1 27:6 52:6

0:8 ADF 17:4 80:3 93:4 95:9

LRtrace 10:8 60:5 88:4 94:0

0:6 ADF 39:8 93:8 96:2 97:2

LRtrace 28:5 89:4 94:8 94:7

0:4 ADF 62:7 95:6 96:9 98:0

LRtrace 51:2 94:1 94:6 94:6

5:0 1:0 ADF 5:7 10:2 10:3 10:6

LRtrace 3:2 6:3 7:0 7:2

0:8 ADF 10:1 79:4 90:0 89:8

LRtrace 5:4 60:0 81:8 87:7

0:6 ADF 10:2 90:0 96:3 97:0

LRtrace 5:8 83:5 93:4 93:6

0:4 ADF 10:0 90:5 97:0 98:0

LRtrace 6:0 88:2 93:7 93:8

250 0:5 1:0 ADF 4:6 27:7 55:2 78:2

LRtrace 4:6 21:1 48:4 74:0

0:8 ADF 29:7 99:8 100:0 100:0

LRtrace 22:2 94:4 94:4 94:6

0:6 ADF 56:5 100:0 100:0 100:0

LRtrace 49:2 94:4 94:6 94:5

0:4 ADF 77:8 100:0 100:0 100:0

LRtrace 74:1 94:4 94:5 94:5

5:0 1:0 ADF 4:6 10:3 10:0 9:9

LRtrace 4:6 7:2 7:5 7:0

0:8 ADF 11:4 99:8 99:9 99:8

LRtrace 7:7 94:4 94:5 94:5

0:6 ADF 11:2 100:0 100:0 100:0

LRtrace 7:8 94:4 94:6 94:6

0:4 ADF 10:8 99:8 100:0 100:0

LRtrace 7:7 94:5 94:5 94:5
1Rejection frequencies at 5% signi�cance level using asymptotic crit-

ical values for series generated by (1)-(3) and (6). The table is based on
2500 replications. Critical values are taken from Phillips and Ouiliaris
(1990), table IIa, for the ADF test and from Osterwald-Lenum (1992),
table 0, for the LRtrace tests.
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Table 2: Mean and standard deviation of �̂ � �, case I1

�1 + �2
T 
 �1 1.0 0.8 0.6 0.4

100 0:5 1:0 OLS 0:505(0:607) 0:135(0:380) 0:073(0:163) 0:050(0:118)

VECM 0:553(1:593) �0:021(0:805) �0:012(1:179) 0:393(14:49)

0:8 OLS 0:126(0:302) 0:049(0:084) 0:043(0:071) 0:037(0:062)

VECM 0:023(0:754) �0:078(0:332) �0:026(0:185) �0:035(0:868)

0:6 OLS 0:070(0:177) 0:043(0:069) 0:036(0:056) 0:032(0:050)

VECM �0:060(0:434) �0:213(8:906) �0:010(0:090) �0:019(0:358)

0:4 OLS 0:048(0:120) 0:037(0:062) 0:031(0:050) 0:029(0:044)

VECM �0:060(0:289) 0:006(0:506) �0:012(0:046) �0:014(0:052)

250 0:5 1:0 OLS 0:519(0:475) 0:094(0:240) 0:058(0:133) 0:043(0:104)

VECM �0:294(6:776) �0:065(0:754) �0:028(0:653) �0:417(17:51)

0:8 OLS 0:099(0:228) 0:035(0:049) 0:026(0:038) 0:022(0:034)

VECM �0:028(0:380) �0:013(0:074) �0:017(0:040) �0:020(0:030)

0:6 OLS 0:055(0:135) 0:027(0:039) 0:021(0:029) 0:018(0:025)

VECM �0:072(1:386) �0:018(0:035) �0:021(0:026) �0:022(0:018)

0:4 OLS 0:040(0:086) 0:022(0:034) 0:018(0:025) 0:016(0:022)

VECM �0:029(0:329) �0:020(0:031) �0:022(0:017) �0:022(0:014)

1Mean(standard deviation) of (�̂ � �) for series generated by (1)-(3) and (6). OLS and VECM refer to the
estimates obtained from the cointegrating regression (9) and the vector error-correction model (11) respectively.
The entries for the respective estimators are based on those replications for which the ADF and LRtrace statistic
reject the null of no cointegration.
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Table 3: Size and power of cointegration tests, case II1

c

T 
 �2 Test 0 2 4 6 8

100 0:1 �0:2 ADF 27:8 25:2 17:5 11:6 9:4

LRtrace 13:9 13:0 9:6 6:2 5:7

�0:4 ADF 59:2 52:3 31:0 14:0 10:2

LRtrace 32:7 28:2 16:2 8:3 6:1

�0:6 ADF 79:7 73:9 46:2 16:6 10:3

LRtrace 57:3 49:4 24:3 9:7 6:6

�0:8 ADF 88:0 84:4 60:1 19:3 10:9

LRtrace 78:8 70:2 34:8 11:1 6:8

1:0 �0:2 ADF 74:2 59:2 17:1 11:1 9:1

LRtrace 52:1 33:3 10:1 8:1 6:4

�0:4 ADF 95:2 89:4 27:7 13:6 10:7

LRtrace 94:3 83:8 16:5 9:5 7:4

�0:6 ADF 96:8 92:9 43:1 17:6 12:3

LRtrace 94:7 94:3 26:6 11:3 7:9

�0:8 ADF 97:5 95:1 63:5 21:8 14:6

LRtrace 94:6 94:8 44:1 14:3 9:0

250 0:1 �0:2 ADF 93:3 91:3 78:2 32:6 13:3

LRtrace 81:8 76:4 51:4 18:2 8:6

�0:4 ADF 98:6 98:1 93:6 58:5 16:6

LRtrace 94:2 94:2 88:8 33:4 10:5

�0:6 ADF 99:6 99:5 97:1 74:4 20:0

LRtrace 94:3 94:4 94:1 49:4 12:4

�0:8 ADF 99:9 99:7 98:8 83:5 23:5

LRtrace 94:4 94:3 94:3 65:2 14:2

1:0 �0:2 ADF 99:8 98:9 78:3 23:4 12:6

LRtrace 94:4 94:3 56:0 15:0 8:4

�0:4 ADF 100:0 99:9 88:8 40:0 16:4

LRtrace 94:5 94:4 89:8 25:4 12:1

�0:6 ADF 100:0 100:0 95:7 65:1 27:1

LRtrace 94:6 94:4 94:4 48:8 17:4

�0:8 ADF 100:0 100:0 98:4 82:7 42:8

LRtrace 94:5 94:5 94:5 73:8 28:0
1Rejection frequencies at 5% signi�cance level using asymptotic critical values

for series generated by (1)-(3) and (8). The table is based on 2500 replications.
Critical values are taken from Phillips and Ouiliaris (1990), table IIa, for the ADF
test and from Osterwald-Lenum (1992), table 0, for the LRtrace tests.
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Table 4: Mean and standard deviation of �̂ � �, case II1

c

T 
 �2 0 2 4 6 8

100 0:1 �0:2 OLS 0:067(0:147) 0:072(0:156) 0:066(0:187) 0:086(0:281) 0:110(0:382)
VECM �0:161(0:430) �0:158(0:446) �0:110(0:413) �0:125(0:655) �0:037(0:602)

�0:4 OLS 0:056(0:106) 0:057(0:112) 0:067(0:143) 0:085(0:223) 0:087(0:351)
VECM �0:133(0:394) �0:120(0:365) �0:110(0:508) �0:172(0:463) �0:120(0:581)

�0:6 OLS 0:052(0:090) 0:053(0:094) 0:059(0:120) 0:074(0:201) 0:085(0:337)
VECM �0:102(0:333) �0:101(0:345) �0:152(0:616) �0:163(0:456) �0:125(0:605)

�0:8 OLS 0:050(0:082) 0:051(0:086) 0:058(0:108) 0:066(0:183) 0:087(0:317)
VECM �0:053(0:271) �0:075(0:452) �0:116(0:475) �0:116(0:476) �0:112(0:503)

1:0 �0:2 OLS 0:051(0:089) 0:056(0:105) 0:066(0:319) 0:050(0:118) 0:122(0:396)
VECM �0:094(0:330) �0:127(0:463) �0:156(0:537) �0:105(0:523) �0:009(0:618)

�0:4 OLS 0:040(0:063) 0:049(0:078) 0:073(0:272) 0:037(0:062) 0:098(0:354)
VECM �0:012(0:193) �0:046(0:469) �0:140(0:417) �0:119(0:456) �0:050(0:543)

�0:6 OLS 0:033(0:051) 0:043(0:068) 0:075(0:243) 0:032(0:050) 0:104(0:320)
VECM �0:012(0:051) �0:001(0:260) �0:102(0:531) �0:096(0:447) 0:292(3:903)

�0:8 OLS 0:029(0:044) 0:040(0:061) 0:078(0:207) 0:029(0:044) 0:114(0:293)
VECM �0:014(0:036) �0:006(0:065) �0:111(0:616) �0:050(0:673) �0:069(0:504)

250 0:1 �0:2 OLS 0:057(0:079) 0:058(0:082) 0:063(0:096) 0:071(0:146) 0:092(0:224)
VECM �0:063(1:220) �0:037(0:761) �0:100(0:479) �0:167(0:699) �0:131(0:488)

�0:4 OLS 0:043(0:061) 0:046(0:064) 0:054(0:076) 0:063(0:111) 0:086(0:199)
VECM �0:006(0:060) �0:003(0:067) �0:025(0:204) �0:134(0:410) �0:104(0:526)

�0:6 OLS 0:036(0:051) 0:038(0:054) 0:047(0:067) 0:064(0:100) 0:084(0:184)
VECM �0:011(0:047) �0:010(0:051) 0:003(0:154) �0:107(0:401) �0:097(0:438)

�0:8 OLS 0:032(0:045) 0:034(0:047) 0:043(0:061) 0:063(0:093) 0:078(0:175)
VECM �0:012(0:158) �0:014(0:040) �0:006(0:062) �0:086(0:386) �0:094(0:495)

1:0 �0:2 OLS 0:037(0:052) 0:044(0:061) 0:065(0:099) 0:077(0:177) 0:109(0:245)
VECM �0:010(0:057) �0:007(0:088) �0:090(0:780) �0:071(0:458) �0:102(0:488)

�0:4 OLS 0:024(0:033) 0:031(0:043) 0:057(0:086) 0:074(0:142) 0:099(0:212)
VECM �0:026(0:292) �0:016(0:042) �0:020(0:219) �0:091(0:814) �0:101(0:449)

�0:6 OLS 0:019(0:026) 0:026(0:035) 0:053(0:076) 0:075(0:118) 0:087(0:183)
VECM �0:021(0:018) �0:022(0:160) �0:010(0:523) �0:102(0:376) �0:061(1:076)

�0:8 OLS 0:017(0:022) 0:023(0:031) 0:051(0:068) 0:078(0:109) 0:091(0:149)
VECM �0:022(0:014) �0:020(0:022) �0:001(0:060) �0:064(0:710) �0:097(0:401)

1Mean(standard deviation) of (�̂ � �) for series generated by (1)-(3) and (8). OLS and VECM refer to the estimates
obtained from the cointegrating regression (9) and the vector error-correction model (11) respectively. The entries for
the respective estimators are based on those replications for which the ADF and LRtrace statistic reject the null of no
cointegration.
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Table 5: ADF statistics for interest rates1

5%crit:

R1;t R12;t St value

Level �2:15 �2:06 �3:00 �2:88

First Di�erence �5:65 �8:35 � �1:94
1ADF tests applied to monthly interest rates and spread. Test

statistics for levels are �̂� while those for the �rst di�erences are �̂ .
Number of lagged di�erences in each regression were chosen such
that the last lag included is signi�cant at 5% level, using normal
critical values.

Table 6: Standard and outlier robust LM-type tests for smooth

transition error-correction in a CECM for monthly data on the

one-month interest rate1

d

Test Null 1 2 3 4 5 6

Standard H0 0:002 0:039 0:968 0:880 0:485 0:721

H03 0:075 0:988 0:828 0:327 0:313 0:669

H02 0:093 0:406 0:829 0:995 0:543 0:214

H01 0:004 0:001 0:804 0:757 0:478 0:956

Robust H0 0:151 0:124 0:936 0:523 0:700 0:889

H03 0:390 0:976 0:555 0:188 0:452 0:578

H02 0:724 0:545 0:903 0:599 0:452 0:576

H01 0:027 0:006 0:839 0:738 0:820 0:957
1 p-values for LM-type tests for smooth transition error-correction in one

month Dutch interest rate. The upper panel gives p-values for standard tests,
the lower panel for LM-type tests which are robust to additive outliers. The
null hypotheses are given in the text.
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Table 7: Standard and outlier robust LM-type tests for smooth

transition error-correction in a CECM for weekly data on the

one-month interest rate1

d

Test Null 1 2 3 4 5 6

Standard H0 0:000 0:000 0:001 0:001 0:000 0:000

H3 0:000 0:000 0:000 0:000 0:517 0:867

H2 0:000 0:000 0:001 0:006 0:018 0:006

H1 0:003 0:005 0:001 0:001 0:000 0:000

Robust H0 0:107 0:181 0:236 0:402 0:422 0:008

H3 0:520 0:689 0:625 0:134 0:594 0:027

H2 0:048 0:054 0:160 0:114 0:150 0:017

H1 0:240 0:324 0:212 0:402 0:607 0:454
1 p-values for LM-type tests for smooth transition error-correction in weekly

observations on the one month Dutch interest rate. The upper panel gives p-
values for standard tests, the lower panel for LM-type tests which are robust
to additive outliers. The null hypotheses are given in the text.
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Figure 1: Monthly Dutch short- and long-term interest rates

Note: Monthly Dutch short- and long-term interest rates, Jan 1981 - Dec 1995, | short term rate R1;t, - -

- long-term rate R12;t.

26



Figure 2: Quadratic logistic STECM

Note: Graphical representation of STECM estimated for monthly Dutch short- and long-term interest rates,

Jan 1981 - Dec 1995. The parameters of this model are given in (20).

27



Figure 3: Quadratic logistic model - weekly observations

Note: Graphical representation of STECM estimated for weekly Dutch short- and long-term interest rates,

Jan 1981 - Dec 1995. The parameters of this model are given in (21).
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